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Abstract

Understanding the conformational landscape of proteins is essential for elucidating
protein function and facilitating drug design. However, existing protein confor-
mation benchmarks fail to capture the full energy landscape, limiting their ability
to evaluate the diversity and physical plausibility of AI-generated structures. We
introduce ProteinConformers, a large-scale benchmark dataset comprising over
381,000 physically realistic conformations for 87 CASP targets. These were de-
rived from more than 40,000 structural decoys via extensive all-atom molecular
dynamics simulations totaling over 6 million CPU hours. Using this dataset,
we propose novel metrics to evaluate conformational diversity and plausibility,
and systematically benchmark six protein conformation generative models. Our
results highlight that leveraging large-scale protein sequence data can enhance
a model’s ability to explore conformational space, potentially reducing reliance
on MD-derived data. Additionally, we find that PDB and MD datasets influence
model performance differently, current models perform well on inter-atomic dis-
tance prediction but struggle with inter-residue orientation generation. Overall,
our dataset, evaluation metrics, and benchmarking results provide the first com-
prehensive foundation for assessing generative models in protein conformational
modeling. Dataset and instructions are available at https://huggingface.co/
datasets/Jim990908/ProteinConformers/tree/main. Codes are stored at
https://github.com/auroua/ProteinConformers. An interactive website
locates at https://zhanggroup.org/ProteinConformers.

1 Introduction

In recent years, the field of protein structure prediction has rapidly shifted from a “single-
conformation” paradigm toward “multi-conformation” modeling. While energy-based and deep
learning–based methods such as I-TASSER[1], AlphaFold[2] and RoseTTAFold[3] deliver accurate
static 3D structures, proteins under physiological conditions typically sample multiple functionally
relevant states. The prediction of protein multi-conformations from conformational landscape is
critical both for understanding molecular mechanisms and for demanding downstream applications.
Yet, most studies to date have paid little systematic attention to balancing a model’s ability to generate
multiple conformers with conformational diversity, or to examine the atom-level physical plausibility.
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There remains no benchmark dataset or metric suite that faithfully emulates a realistic folding funnel
while simultaneously capturing polymorphism and ensuring physical plausibility.

To date, there is no analogous benchmark for multi-conformation generation. For single-conformation
prediction, the Protein Data Bank (PDB)[4] serves as the golden standard, and its experimentally
determined “native” structures naturally occupy global minima in the folding funnel. Some efforts
have attempted to harvest a conformational ensemble by running extensive all-atom molecular
dynamics (MD) simulations from the native state, yielding a wealth of near-native fluctuations around
the crystallographic structure. However, the energy-based nature of MD inherently biases sampling
toward the initial funnel basin[5, 6], and only extremely long simulations have any chance of escaping
into more remote minima—at a computational cost that is both prohibitive and difficult to predict.

In terms of evaluation metrics, the community has established measures to assess single-conformation
quality, such as TM-score[7], RMSD[8], and LDDT[9]. Metrics tailored to multi-conformation
ensembles, however, remain in infancy. Recent proposals compute Jensen-Shannon (JS) divergence
between ensembles based on pairwise distance distributions, or radius of gyration histograms, but
still fall short of capturing atom-level distance and angle plausibility. Since a protein’s conformation
is uniquely defined by its internal geometry, a truly comprehensive metrics should directly evaluate
the completeness and physical realism of all interatomic distance and torsional angles.

To address these gaps, we introduce ProteinConformers (Figure1). Starting from 87 Critical
Assessment of protein Structure Prediction (CASP) [10, 11, 12] targets, we collected and filtered
over 40,000 decoy conformers generated by hundreds of different traditional and AI based prediction
algorithms. Each decoy was independently refined with all-atom MD simulations to resolve steric
clashes and fine-tune geometry, yielding more than 381,000 physically realistic conformations that
both span diverse regions of the folding landscape and satisfy stringent physicochemical constraints.
To our knowledge, this is the first dataset of its kind, and none of the 87 proteins we release appear in
prior multi-conformer benchmarks. Building this resource consumed over 6 million CPU hours.

Built on this diverse and trustful dataset, we design a dual-axis evaluation framework. Axis one is
Conformational Diversity, to quantify the breadth and representativeness of generated conform-
ers across the overall energy funnel, with corresponding metrics. The axis is Conformational
Physics Plausibility, which assesses the all-atom geometric and energetic validity of every generated
conformer, with dedicated metrics.

Our preliminary benchmarking of six approaches[13, 14, 15] reveals that, while many methods
accurately reproduce interatomic distance distributions, they generally under-explore the broader
conformational landscape and exhibit significant shortcomings in torsion-angle sampling. Besides the
basic task of ProteinConformers to understand how well current conformational generative methods
explore the broader conformational landscape, this work seeks to provide some insight to the question:
Is it possible to develop generative models capable of superior energy landscape exploration without
reliance on molecular dynamics (MD) simulation datasets? By releasing ProteinConformers and
its accompanying evaluation framework, we provide a large-scale, high-fidelity benchmark that will
accelerate advances in protein structure prediction, multi-conformation modeling, computational
biology, and rational drug discovery.

2 Related Work

2.1 Protein Conformational Landscape Exploration

Early efforts to map the protein folding funnel relied on coarse-grained sampling methods that rotate
backbone or side-chain dihedrals under simplified force fields [16, 17], as well as fragment-assembly
threading guided by Monte Carlo Simulation[18] algorithm, such as 3DRobot [19]. Although
computationally efficient, these approaches suffer from low-accuracy energy functions and heavily
reduced representations of protein geometry. To improve physical fidelity, recent work such as
AIMD-Chig[20] has explored conformational space at the DFT level [21], but only for a single
166-atom peptide due to the prohibitive cost. Likewise, large-scale MD simulations initialized from
experimental structures, such as BPTI [22], Atlas [23], mdCATH [24], Dynamic PDB [25], provide
ensembles of near-native fluctuations, yet these trajectories remain confined to the primary funnel
basin unless run for impractically long time, limiting exploration of more diverse conformations.
Unlike previous studies, we run MD simulations in batch with decoys at variant positions in energy

2



Figure 1: Overview of the ProteinConformers benchmark and evaluation framework. (A) We
curate decoy ensembles for CASP targets and, for each decoy, perform all-atom MD refinement
to sample across the folding landscape. (B) Beyond providing conformations, ProteinConformers
includes a panel of per-conformation energy metrics, enabling auxiliary assessment of decoy quality.
(C) We define diversity metrics that quantify how well generated conformations explore the overall
conformational funnel. (D) We design physics-plausibility metrics to evaluate the atom-level realism
based on inter-residual distances and torsion angles.

landscapes generated by hundreds of different algorithms, which guarantees both diversity and
plausibility of protein conformational landscape exploration.

2.2 Protein Conformation Generative Models

Traditional generative strategies commonly adopt coarse-grained movements to synthesize conform-
ers [26, 27], but such models frequently produce steric clashes, and require post hoc side-chain
reconstruction. With the advent of highly accurate single-structure predictors, a new class of diffusion
[28, 29] and flow-based [30] generative models has emerged, fine-tuning backbones or post-processing
predicted poses to yield all-atom ensembles. Examples include AlphaFlow [13], ESMFlow [13],
BioEmu [14] and ESMDiff [15]. AlpahFlow and ESMFlow are two protein conformation generative
models obtained by fine-tuning AlphaFold2 [2] and ESMFold [31] using flow matching framework,
respectively. BioEmu [14] uses the trained AlphFold2 model to extract features and using a two-step
training strategy to train a denoise diffusion model based on the extracted features to generate a collec-
tion of conformations that can reflect the equilibrium distribution of the structure of input sequences.
ESMDiff [15] is fine-tuned from pre-trained ESM3 [32], and uses a conditional language model to
capture sequence-specific conformational distributions. AFsample2 [33] generates ensembles by
MSA (multiple sequence alignment) sampling based on AlphaFold2. AlphaFold3 [34] produces
multiple conformations by initiating random noises during diffusion inference.

3 ProteinConformers Dataset

3.1 Source of ProteinConformers

CASP is a biennial competition and the CASP committee curates dozens of representative targets
and invite global teams to predict the structures under blind conditions. The resulting predictions
reflect the cutting-edge-tech in protein structure prediction and exhibit high conformational diversity
due to the variety of methods employed by participating teams, which collectively enables extensive
sampling of the protein folding landscape. However, these predicted structures are not guaranteed to
be physically realistic at the atomic level. The MD simulation, by contrast, use physics-based force
fields to refine protein conformations at full atomic resolution. Nevertheless, MD simulations are
computationally expensive and conformational transitions are often limited to regions near the input
structure or trapped in local minima[5, 6], resulting in high redundant conformations.
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To address these complementary limitations, by integrating the strengths of both resources, we
compiled the predictions from CASP and, after quality control, curated a dataset of 40,387 predicted
structures for 87 proteins, and then performed MD simulations on each structure. Taking advantage of
the large conformational shifts observed in the early phase of MD trajectories, we limited simulations
to short timescales to reduce computational cost and redundancy. This resulted in a final dataset of
381,546 all-atom, physically refined protein conformations broadly sampling the folding landscape.

3.2 Preprocessing of Protein Conformers

To build ProteinConformers benchmark, we systematically collected, cleaned and corrected all
prediction entries in CASP14 [11] and CASP15 [12]. In CASP14, nearly 100 teams participated in
predicting structures for 90 modeling targets. CASP15 had a similar number of participants working
on 127 targets. The predicted protein structures are processed according to the following steps.

First, we remove duplicate accessions, non-protein entries and redundant sequences to obtain 172
unique targets with corresponding predictions. Second, for each prediction, chain sequences are
extracted with Biopython [35] and aligned to the corresponding reference. The alignment yields
three mutually exclusive categories: same means full-length and residue-order identity; disorder
means a contiguous subsequence of the reference (internal or terminal deletions, order preserved);
mismatch means any substitution, insertion or reordered segment. Oligomeric or hetero-complex
models are annotated and excluded from the benchmark. Third, based on the categories from the
previous step, the same models are accepted without modification. The disorder models are retained
only if their residue numbers already matched the reference structure; otherwise the coordinates are
automatically renumbered to restore one-to-one correspondence. All mismatch entries are discarded.
Fourth, when multiple experimental native structures exists, pairwise TM-scores are calculated to
chose the reference native. Targets without a definitive match are resolved by manual inspection.
Fifth, a target enters the benchmark only if it had at least one native structure and 100 decoys. For
targets below this threshold, additional decoys are generated using 3DRobot [19].

3.3 MD Simulation Protocol

MD simulations are performed using GROMACS 2023 [36]. Each protein conformer follows the same
workflow. Topology construction and solvation: The OPLS–AA force field is used for topology
generation, together with the TIP3P water model. Each protein is centered in a dodecahedral box, and
the box is filled with pre-equilibrated SPC216 water. Na+ and Cl− ions are added to neutralize total
charge. Energy minimization: Steepest-descent minimization is applied until the largest force on any
atom fell below 1000 kJmol−1 nm−1 (maximum 50,000 steps), thereby eliminating steric clashes
and unrealistic geometries. Two-stage equilibration: The NVT phase (100 ps, 300K) employed
the V-rescale thermostat with positional restraints on heavy atoms to stabilize temperature. The
subsequent NPT phase (100 ps, 1 bar) uses the Parrinello–Rahman barostat after partially releasing
restraints to equilibrate density. Run and sampling: Restraints are removed and a simulation between
125 ps to 375 ps is executed. Periodic-boundary artifacts are eliminated by recentering and re-imaging
the trajectory. Snapshots are extracted every 25 ps. System energies (total, potential, and protein-only)
are recorded throughout for subsequent energy-landscape modeling. Computational resources:
Simulations are executed on high-performance computers equipped with AMD EPYC 7763 (64-core,
2.45 GHz) processors. Applying this protocol to 40,387 starting conformers from 87 proteins
generated 381,546 all-atom refined conformations, at an aggregate cost over 6 million CPU hours.
These trajectories and associated physical properties constitute the core of the ProteinConformers.

3.4 Analysis of ProteinConformers Dataset

ProteinConformers benchmark dataset is challenging. It comprises 87 CASP targets with an average
sequence length of 305 residues and a median of 255 (Figure 2A). These targets, selected by the
CASP committee, span a broad array of fold topologies—including predominantly α-helical proteins,
β-sheet–rich folds, disordered regions, and multi-domains. Notably, 32 of the targets exceed 300
residues, and the largest reaches 949 residues. ProteinConformers provides both diverse and balanced
protein conformational landscape ensembles. Each protein sampled 4,386 conformations on average.
By classifying conformers as near-native (TM-score ≥ 0.5) or non-native (TM-score < 0.5),
we show that the dataset spans the full spectrum of conformational landscape, as visualized by
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Figure 2: Global distribution of the ProteinConformers dataset. (A) Number of conformers per
protein, sorted by sequence length (x-axis). The y-axis shows the total distinct conformational states
captured for each target. Bar color encodes the log10-ratio of near-native to non-native conformations
in our benchmark. Insets display 3D renderings of randomly selected proteins. (B) TM-score
coverage histogram across the dataset. The x-axis divides TM-score into 32 equal-width bins from
low (non-native) to high (near-native), and the y-axis indicates the number of proteins in each bin.

the log-ratio color scale in Figure 2A and TM-score distribution in Figure 2B. The TM-score
distribution reveals a roughly uniform count of target proteins from non-native to near-native regions.
In contrast to prior benchmarks that focus on sampling near-native conformers around PDB structures,
ProteinConformers achieves uniform coverage across the entire TM-score range.

3.5 Conformation Similarity Predictor

Unlike other datasets, ProteinConformers also provides energy metrics for each conformation, includ-
ing TM–score, RMSD, and atomic-level energy scores from EvoEF2 [38], RW [40], RWplus [40],
FoldX [37], and Rosetta [39]. To illustrate the utility of these features, we explore a challenging task:
predicting structural similarity metrics without access to native structures using only energy features.
The similarity metrics are TM–score and TM–RMSD. Here, TM-RMSD is defined as

TM-RMSD = TM-score +
1

1 + RMSD
(1)

which ranges in (0, 2], with higher values indicating greater structural similarity. Identical confor-
mations (TM-score = 1, RMSD = 0) result in a TM–RMSD of 2. Predicting such global and
local similarity metrics without reference structures is a nontrivial task. While AlphaFold’s pLDDT
score is commonly used for model quality estimation, its pTM metric is derived from Evoformer
internals and is not directly accessible. We train a simple conformation similarity predictor using the
ProteinConformers’ energy features (Figure 3). The 87 proteins are split into train, test and validation
dataset with ratio of 0.8, 0.1 and 0.1. We use AutoGluon[41] to fit a simple linear regression model
using the five energy terms and protein length as features. Despite its simplicity, the model achieved
promising results: PCC of 0.743 for TM–score and 0.748 for TM–RMSD, and SCC of 0.776 and
0.745, respectively. These findings demonstrate that ProteinConformers’ energy features are valuable
resource for conformational analysis and quality prediction.
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Figure 3: Structural-quality assessment using classical energy functions and our learned Con-
formation Similarity Predictor. (A) Density scatter plots of length-normalized potential energy
(x-axis) versus TM-score (y-axis) for three classical scoring functions[37, 38, 39]. Color denotes
point density; insets report R2, Pearson correlation coefficient (PCC), and Spearman rank coefficient
(SCC). (B) Analogous density plots of length-normalized potential energy (x-axis) versus TM-RMSD
(y-axis). (C) True TM-score (y-axis) versus our predictor’s estimated TM-score (x-axis). Inset
statistics include RMSE, MAE, R2, PCC, and SCC; the diagonal line denotes perfect agreement. (D)
True TM-RMSD (y-axis) plotted against predicted TM-RMSD (x-axis).

4 Experiment

4.1 Evaluation Metrics and Compared Models

Based on the ProteinConformers dataset, we employ a coverage-based metric derived from free
energy landscapes and introduce a new quantitative measure to assess two distinct aspects of the
generated conformational ensembles: (i) Coverage-based metrics, which assesses the diversity of
the protein conformational landscape by calculating the coverage rate of the generated conformers to
the benchmark dataset, and (ii) Protein Conformation Plausibility Map (PCPM) and its derived
Protein Conformation Plausibility Score (PCPS), which evaluate the plausibility of the generated
conformational ensembles in relation to known folding landscapes. To gain new insights into current
conformational generative models, six different models were systematically compared. Two distilled
variants of AlphaFlow were included: AlphaFlowDis

PDB , trained on experimental ensembles from PDB,
and AlphaFlowDis

MD, trained on 300 K all-atom explicit-solvent MD trajectories. The same protocol
is applied to ESMFlowDis

PDB and ESMFlowDis
MD. For ESMDiff, the DDPM sampling paradigm with

a step size of 1,000 is used. BioEmu is executed according to its official workflow. Each model
generates 3,000 conformations for a curated subset of 18 proteins from the ProteinConformers.

4.1.1 Protein Conformational Landscape Diversity

Protein conformational landscape diversity is measured by the overlap of low-energy regions in free
energy landscapes between ProteinConformers and generated ensembles (Figure 4). We project
protein conformations onto a 2D space using Principal Component Analysis (PCA) via MDAnalysis
[42, 43], using the first two principal components from ProteinConformers for each protein. Generated
conformers are projected onto this same space. The 2D projections are discretized into a 64 × 64
grid. Conformer density in each bin constructs free energy landscapes (pmf = −kT log(hist),
where hist is normalized density and kT = 2.494 kJ/mol, more in supplementary materials). Area
intersection, coverage, and Jaccard index (equations in Supplementary Material) quantify low-energy
region overlap between generation and ProteinConformers.
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Figure 4: Case of free energy landscapes comparison from ProteinConformers and generative models.

Figure 5: Illustration of PCPM and PCPS. Left: Six representative protein conformations with
varying TM-scores and PCPMs. Upper Right: Geometric features construction: symmetric (distance
D, dihedral Ω) and asymmetric (dihedral Θ, planar angle Φ). Lower Right: PCPM and PCPS
construction workflow, comparing residue-pair distribution statistics (mean, std. dev., skewness) of
an input ensemble’s PCPM with a benchmark PCPM via cosine similarity.

4.1.2 Protein Conformation Plausibility Maps and Scores

Traditional metrics such as TM-score [7], compare a generated structure with a single native reference
and therefore quantify structural similarity rather than atomic-level plausibility of the conformational
distribution. To address this gap, we introduce the PCPM and its derived PCPS, which directly assess
the local physical realism of an ensemble of conformations (Figure 5 ) .

PCPM Construction For a protein of length N and an ensemble of M conformations C =
{C(m)}Mm=1, we compute four inter-residue geometric feature maps G ∈ {D,Ω,Θ,Φ} for every
conformation, analogous to trRosetta [44] and DeepPotential [45]. Feature definitions are in Table 1.

For every residue-pair (i, j) ∈ {1, . . . , N} of each conformation m in ensembles, we calculate the
four geometric features. We then summarize the three central moments of the ensembles geometric
features—mean (µ), standard deviation (σ), and skewness (γ), which results representation tensor
for geometric feature map G is PG ∈ R3×N×N , where PG

ij ∈ {µ, σ, γ}. The complete PCPM is the
concatenation P =

[
PD, PΩ, PΘ, PΦ

]
∈ R12×N×N .
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Table 1: Geometric features used for PCPM. For Ω, Θ, and Φ, a pseudo Cβ is used for glycine.
Symbol Type Atoms Involved Symmetry Description

D Euclidean Dist. Cα,i, Cα,j Symmetric Distance (Dij = Dji)
Ω Dihedral Angle Cα,i, Cβ,i, Cβ,j , Cα,j Symmetric Rotation about Cβ,i − Cβ,j virtual axis
Θ Dihedral Angle Ni, Cα,i, Cβ,i, Cβ,j Asymmetric Orientation of Cβ,j to residue i backbone
Φ Planar Angle Cα,i, Cβ,i, Cβ,j Asymmetric Position of Cβ,j to Cα,i − Cβ,i bond

PCPS Computation Let PPC be ProteinConformer’s PCPM and PB be the benchmark method’s
map. After aligning residue indices (discarding missing ones), for every entry (i, j) we build vectors

uij =
[
µ, σ, γ

]⊤
(PC)

and vij =
[
µ, σ, γ,

]⊤
(B)

, and compute cosine similarity sij =
u⊤

ijvij

∥uij∥ ∥vij∥ . Then

PCPS = 1
|C|

∑
(i,j)∈C sij , where C is the set of aligned residue-pair entries. PCPS ∈ [−1, 1]; higher

values indicate better reproduction of atomic-level statistics of the authentic folding landscape.

We also used Jensen-Shannon Divergence (JSD) to evaluate the diversity, which measures the
similarity between two probability distributions, P and Q.

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), where M =

1

2
(P +Q)

Specifically, we employ two JSD-based metrics to assess the structural diversity and compactness
distributions.

JS Divergence of Pairwise Distances (JS-PwD): This metric measures the similarity of inter-residue
distance distributions. For each Cα–Cα atom pair (i, j) separated by at least 3 residues, we treat it as
a distinct “channel”. For each channel, we collect the distance values across all conformations in
generated ensembles and ProteinConformers to form two distributions. We then compute the JSD for
each channel and report the final JS-PwD as the mean JSD across all channels.

JS Divergence of Radius of Gyration (JS-Rg): This metric measures the similarity of overall
molecular compactness between generated ensembles and ProteinConformers. For each ensemble,
we compute the Radius of Gyration (Rg) of all conformations, build normalized histograms, and
calculate the Jensen–Shannon divergence between the two distributions.

Ramachandran outlier rate (Rama outlier %): This metric quantifies the fraction of residues
whose backbone dihedral angles (ϕ, ψ) fall outside the favored Ramachandran regions. The final
value is the mean outlier percentage across all conformations in the ensemble.

4.2 Evaluation Results

4.2.1 Protein Conformational Landscape Diversity

Figure 4 illustrates the two-dimensional free energy landscapes for protein T1043 as derived
from the ProteinConformers dataset and five generative models: AlphaFlowDis

MD, AlphaFlowDis
PDB ,

ESMFlowDis
MD, and ESMFlowDis

PDB , and BioEmu. Low-energy basins (in blue) indicate regions of
high conformer density, while high-energy regions (in red) are sparsely populated. The yellow star
marks the native structure projected onto the same PCA space. ProteinConformers exhibits a more
diverse and widely distributed free energy landscape. In contrast, generative models, especially the
distilled variants, tend to produce narrower distributions.

Table 2 compares three free energy overlap metrics—interaction, coverage, and Jaccard index—across
energy thresholds of 5, 10, and 20 kJ/mol. BioEmu performs best at 5 kJ/mol with strong interaction
and Jaccard scores, indicating effective low-energy sampling. In contrast, distilled models like
AlphaFlowDis

MD and ESMFlowDis
MD show consistently lower scores, suggesting narrower sampling

near dominant energy basins.

ESMDiff, trained solely on PDB data without MD simulations, still shows strong conformational
exploration ability. This strength likely arises from its ESM3 foundation, pretrained on large-scale
multimodal data, where massive sequence corpora provide implicit priors for sampling realistic
conformations. Similar to PLAID [46], this highlights the potential of sequence-based pretraining for
generating diverse, physically plausible protein structures.
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Table 2: Protein Conformational Landscape with Different Energy Thresholds
Method Energy Interaction(↑) Energy Coverage(↑) Energy Jaccard(↑)

5 10 20 5 10 20 5 10 20

AlphaFlowDis
MD 4.42 38.20 86.96 0.059 0.132 0.195 0.008 0.028 0.063

AlphaFlowDis
PDB 4.65 41.26 89.66 0.064 0.152 0.196 0.012 0.046 0.086

ESMFlowDis
MD 2.85 46.04 99.08 0.049 0.144 0.202 0.004 0.030 0.064

ESMFlowDis
PDB 2.39 32.92 76.25 0.043 0.121 0.171 0.005 0.025 0.055

AFsample2 1.14 13.86 90.43 0.004 0.047 0.116 0.003 0.020 0.070
AlphaFold3 7.47 60.00 104.59 0.039 0.081 0.126 0.021 0.045 0.076
BioEmu 5.24 38.55 73.68 0.054 0.120 0.143 0.017 0.044 0.075

Note: The unit of the different energy thresholds is kJ/mol.

Our experimental results also show that the diffusion-based AlphaFold3 performs comparably to
AlphaFlow, consistent with their similar generative paradigms. In contrast, AFsample2 exhibits the
weakest performance, indicating that such perturbations only induce minor local structural variations
and fail to capture global conformational diversity.

4.2.2 Protein Conformational Landscape Plausibility

The six generative models’ PCPM is denoted as PCPMB. We also computed three reference PCPM
values on the ProteinConformers dataset itself: PCPMnear-native, using decoys with TM-score ≥ 0.5;
and PCPMall, using the full set of decoys regardless of TM-score. We then compare PCPMB against
each of the PCPMnear-native and PCPMall to obtain the PCPS, which reflects the physical realism
of the generative models in different regions of the protein conformational landscape—non-native,
near-native, and global. The results are summarized in Table 3.

Table 3: Performance of PCPS with benchmark models
Near-native( ↑) All (↑)

D O P T A D O P T A

AlphaFlowDis
MD 0.946 0.627 0.801 0.537 0.728 0.900 0.644 0.772 0.574 0.723

AlphaFlowDis
PDB 0.922 0.616 0.786 0.564 0.722 0.871 0.592 0.746 0.542 0.688

ESMFlowDis
MD 0.957 0.604 0.811 0.539 0.728 0.922 0.710 0.814 0.665 0.778

ESMFlowDis
PDB 0.859 0.516 0.710 0.468 0.638 0.819 0.603 0.700 0.578 0.675

BioEmu 0.967 0.717 0.826 0.665 0.794 0.935 0.764 0.862 0.713 0.818
ESMDiff 0.971 0.649 0.693 0.191 0.626 0.967 0.807 0.639 0.338 0.688

Note: Metrics abbreviations: D-Distance, O-Omega, P-Phi, T-Theta, A-Average.

Table 4: Comparison of models on JS metrics and Ramachandran outliers
Model Avg. JS-PwD (↓) Avg. JS-Rg (↓) Rama Outlier % (↓)

AlphaFlowDis
MD 0.424 0.310 13.43%

AlphaFlowDis
PDB 0.445 0.412 9.93%

ESMFlowDis
MD 0.283 0.507 13.36%

ESMFlowDis
PDB 0.417 0.697 12.26%

AFsample2 0.490 0.311 6.61%
AlphaFold3 0.632 0.293 2.66%
BioEmu 0.235 0.206 10.69%
ESMDiff 0.128 0.104 20.41%

From Table 3, MD-trained AlphaFlow and ESMFlow outperform their PDB-trained counterparts
across most metrics. While all models align well with native Cα distance distributions, they reproduce
orientation angles poorly. This may stem from FAPE loss focusing on per-residue alignment without
enforcing inter-residue pose consistency, and from two-stage architectures that limit torsional realism.
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BioEmu offers the best overall physical plausibility, whereas ESMDiff, despite its superior distance
modeling, still lacks angular accuracy.

We evaluated geometric and stereochemical quality across models Table4. ESMDiff achieved the
best geometric similarity (lowest JS-PwD = 0.128, JS-Rg = 0.104) but had the highest Ramachandran
outlier rate (20.41%). AlphaFold3 showed the most stereochemically plausible structures with only
2.66% outliers, while AFsample2 and BioEmu performed moderately. Diffusion- and flow-based
variants exhibited intermediate to high outlier levels.

These results reveal a trade-off between geometric similarity and physical plausibility. Models
optimized for distributional alignment with experimental ensembles tend to sacrifice stereochemical
accuracy, while structure-prediction-based frameworks such as AlphaFold3 and AFsample2 maintain
physically realistic torsion angles but explore a narrower conformational space. The consistency
between Ramachandran statistics and PCPS trends reinforces the reliability of our plausibility
assessment framework.

5 Discussion

This study introduces ProteinConformers, a large-scale, diverse and physically realistic benchmark
dataset with corresponding evaluation metrics. We collect over 40,387 decoys from 87 CASP
targets, refine each decoy with all-atom MD simulations and sample 381,546 conformations at a cost
exceeding 6 million CPU hours. We further defined a dual-axis evaluation framework comprising
conformational diversity and physical plausibility.

We applied ProteinConformers and corresponding evaluation metrics to benchmark generative models.
Our results show that models trained on native structures excel at exploring near-native energy funnel,
whereas those trained on MD trajectories yield superior atomic-level physical realism. Although
all methods reproduce good inter-residue distance distributions, they underperform in sampling
inter-residue torsion angles. We believe that integrating both PDB and MD data and focusing on
torsion-angle learning will be crucial for improving conformational plausibility.

We observe that current multi-conformer generators perform poorly on torsion-angle prediction,
likely due to weak coupling between local geometry and long-range constraints. To address this, we
suggest three complementary directions: introducing long-range orientation modules to propagate
angular dependencies across residues; incorporating joint supervision of backbone and side-chain
torsions to enhance stereochemical realism; and applying energy-based angular regularization to
provide physics-guided priors that improve plausibility without compromising diversity.

ProteinConformers has several limitations. Short MD simulations may miss high-energy conforma-
tions, and the decoy set lacks fragment assembly or physics-based diversity. The similarity predictor
is preliminary and unvalidated at scale. Due to computational limits, only 3,000 conformations per
protein were generated, preventing full model benchmarking. Dataset non-overlap hinders direct
comparison, and CASP-derived seeds may bias landscape coverage. Short MD windows miss rare
transitions, limiting Boltzmann sampling. The absence of enhanced-sampling methods reduces
exploration of high-energy states, and generalizability to experimental ensembles remains untested.
Plausibility metrics, such as Ramachandran outliers, may also be sensitive to parameter choices.

Future work will diversify decoy generation pipelines by combining fragment assembly, coarse-
grained physics simulations and generative modeling for more systematic coverage. We will also
extend the MD sampling protocol by integrating enhanced sampling techniques and longer trajectory.
Finally, we will develop an online platform that provides data browsing, metric computation and
model evaluation in a unified environment, facilitating use by the computational biology and drug
design communities.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly and accurately state the paper’s main
contributions and scope. Diverse and physically plausible conformational spaces, named
ProteinConformers, are obtained for each protein by applying structural decoys and molecu-
lar dynamics simulations to CASP-provided monomer structures. It paves the way for future
algorithms to jointly optimize conformational diversity and physical realism.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have disscussed the limitation in Sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code, data, and detailed experiment settings are (or will be) made available
to ensure full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provide open access to the data and code at https://huggingface.
co/datasets/Jim990908/ProteinConformers/tree/main.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are shown in the code, see Section 3.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To evaluate the quality of the ProteinConformers dataset and gain new insights
into current conformational generative models, six different models are systematically
compared in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources is provided in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Technical Appendices and Supplementary Material

A.1 Equations for Conformational Energy Landscape Overlap Analysis

To quantify the similarity between the protein conformations generated by AI-based models and those
in the ProteinConformers dataset, the following three commonly used overlap metrics are employed:
Interaction overlap, coverage, and the Jaccard index. These metrics evaluate the extent of agreement
in low-energy regions between the protein conformers from different models of the same protein,
based on a specified energy threshold.

Let A = {Ai,j} and B = {Bi,j} where i, j ∈ [0, N ], denote the two-dimensional free energy
landscapes corresponding of two conformational ensembles. Each element Ai,j and Bi,j represents
the free energy value at a specific grid point in the conformational energy landscape. For a given
energy threshold τ (e.g., 40 kJ/mol), the number of shared low-energy conformations is defined as:

|A ∩B| =
N∑

i,j=1

1[Ai,j < τ ∧Bi,j < τ ]

where N = 63, and 1[·] is the indicator function, which returns 1 if the condition inside is true and 0
otherwise.

The low energy area of different conformational free energy landscape under different threshold are
given by:

|A| =
N∑

i,j=1

1[Ai,j < τ ], |B| =
N∑

i,j=1

1[Bi,j < τ ]

Using the above definitions, the overlap metrics are computed as follows:

• Interaction:

Interaction = |A ∩B|
• Coverage (proportion of low-energy conformations in A also found in B):

Coverage =
|A ∩B|
|A|

• Jaccard Index (symmetric overlap metric between both sets):

Jaccard =
|A ∩B|

|A|+ |B| − |A ∩B|

A.2 Free Energy Landscapes Comparison

This section provides additional figures comparing the conformational landscapes of protein conform-
ers from ProteinConformers with those generated by AI models.

A.3 Overview the ProteinConformers proteins
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(a) Comparison of 2D conformational landscapes.

(b) Comparison of 3D conformational landscapes.

Figure 6: Comparison of conformational landscapes for protein T1030, generated by ProteinCon-
formers and protein conformation generative models.
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(a) Comparison of 2D conformational landscapes.

(b) Comparison of 3D conformational landscapes.

Figure 7: Comparison of conformational landscapes for protein T1031, generated by ProteinCon-
formers and protein conformation generative models.
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(a) Comparison of 2D conformational landscapes.

(b) Comparison of 3D conformational landscapes.

Figure 8: Comparison of conformational landscapes for protein T1040, generated by ProteinCon-
formers and protein conformation generative models.
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(a) Comparison of 2D conformational landscapes.

(b) Comparison of 3D conformational landscapes.

Figure 9: Comparison of conformational landscapes for protein T1087, generated by ProteinCon-
formers and protein conformation generative models.
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Figure 10: The 3D native structures of all 87 proteins in ProteinConformers.
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