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Abstract

Cross-domain few-shot segmentation (CD-FSS) is proposed to first pre-train the
model on a large-scale source-domain dataset, and then transfer the model to
data-scarce target-domain datasets for pixel-level segmentation. The significant
domain gap between the source and target datasets leads to a sharp decline in the
performance of existing few-shot segmentation (FSS) methods in cross-domain
scenarios. In this work, we discover an intriguing phenomenon: simply filtering
different frequency components for target domains can lead to a significant perfor-
mance improvement, sometimes even as high as 14% mIoU. Then, we delve into
this phenomenon for an interpretation, and find such improvements stem from the
reduced inter-channel correlation in feature maps, which benefits CD-FSS with
enhanced robustness against domain gaps and larger activated regions for segmen-
tation. Based on this, we propose a lightweight frequency masker, which further
reduces channel correlations by an amplitude-phase-masker (APM) module and an
Adaptive Channel Phase Attention (ACPA) module. Notably, APM introduces only
0.01% additional parameters but improves the average performance by over 10%,
and ACPA imports only 2.5% parameters but further improves the performance by
over 1.5%, which significantly surpasses the state-of-the-art CD-FSS methods.

1 Introduction

Recent advancements in semantic segmentation have been driven by large-scale annotated datasets
and developments in deep neural networks [8, 29, 50, 44]. Nevertheless, the requirement for extensive
labeled data remains a significant challenge, particularly for dense prediction tasks like semantic
segmentation. Hence, few-shot semantic segmentation (FSS) [35, 11, 49] has been proposed to meet
this challenge, aiming to produce predictions for the unseen categories with only limited annotated
data. However, these FSS methods perform poorly when confronted with domain shifts, particularly
when there is a significant gap between the novel class (target domain) and the base class (source
domain). This issue has spurred the development of the cross-domain few-shot semantic segmentation
(CD-FSS) task [24]. Despite various efforts in CD-FSS, the outcomes remain sub-optimal.

To handle the domain shift problem, efforts have been made to study the generalization of neu-
ral networks. Recently, some works [42, 40, 7] have explored this from the perspective of the
frequency domain, achieving theoretical breakthroughs. Compared to humans, neural networks
exhibit heightened sensitivity to different frequency components. Additionally, amplitude and phase
exhibit distinct properties and effects on neural network performance. Inspired by these works,
we study the domain shift problem from the perspective of the frequency domain and discover an
intriguing phenomenon shown in Figure 1: for a model already trained on the source domain, simply
filtering frequency components of images during testing can lead to significant performance
improvements, sometimes even as high as 14% mIoU.
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Figure 1: For a model already trained on the source domain, we simply filter out different frequency
components and plot mIoU against the maintained ones of images. P denotes Phase, A denotes
Amplitude, H denotes High Frequency, and L denotes Low Frequency. We can see the performance
is significantly improved in most cases compared with the baseline (Ax, Px), even as high as 14% on
the Chest X-ray dataset (AL

x , Px). In this paper, we delve into this phenomenon for an interpretation,
and propose a lightweight frequency masker for efficient cross-domain few-shot segmentation.

In this paper, we delve into this phenomenon for an interpretation. Through experiments and
mathematical derivations, we find the filtering of the phase and amplitude effectively disentangles
feature channels, which lowers the channel correlations and helps the model capture a larger range of
semantic patterns. This benefits the model with improved robustness against large domain gaps, and
helps to discover the whole object for segmentation.

Based on the above interpretations, we propose a lightweight frequency masker for the CD-FSS
task. This masker does not need to be trained on the source domain, and can be directly inserted into
intermediate feature maps during target-domain fine-tuning. It includes an Amplitude-Phase Masker
(APM) module and an Adaptive Channel Phase Attention (ACPA) module. APM adaptively learns
on target domains to filter out harmful amplitude and phase components at a finer granularity, which
improves the effectiveness of channel disentanglement. ACPA learns the attention over channels
through phase information. Notably, the APM module only introduces 0.01% additional parameters,
but can effectively improve the mIoU by over 10% on average, and ACPA further improves the
performance by 1.5% on average with only 2.5% additional parameters introduced.

In summary, our contributions can be listed as

• We find a phenomenon that simply filtering frequency components on target domains can signifi-
cantly improve performance, with the highest improvement reaching nearly 14%.

• We delve into this phenomenon for an interpretation. We find the frequency filtering operation
can effectively disentangle feature map channels, benefiting the model with improved robustness
against large domain gaps and a larger range of discovered regions of interest.

• Based on our interpretations, we propose a lightweight frequency masker for the CD-FSS task,
which significantly improves the mIoU by 11% on average with only 2.5% parameters introduced.

• Extensive experiments on four target datasets show that our work, through a simple and effective
design, significantly outperforms the state-of-the-art CD-FSS method.

2 Interpreting Enhanced Performance from Frequency Filtering

In this section, we delve into why filtering certain frequency components can significantly improve
CD-FSS performance in certain target domains for interpretation.

2.1 Preliminaries
Cross-domain few-shot semantic segmentation (CD-FSS) aims to generalize knowledge acquired
from source domains with ample training labels to unseen target domains. Given a source domain
Ds = (Xs,Ys) and a target domain Dt = (Xt,Yt), where X represents input data distribution and
Y represents label space. The model will be trained on the training set from the Ds, then applied
to perform segmentation on novel classes in the Dt. Notably, Ds and Dt exhibit distinct input data
distribution, with their respective label spaces having no intersection, i.e., Xs ̸= Xt, Ys ∩ Yt = ∅.

In this work, we adopt the episodic training manner. Specifically, both the training set sampled from
Ds and the testing set sampled from Dt are composed of several episodes, each episode is constructed
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Table 1: Mutual information between feature channels for the best and the worst cases in Fig. 1. We
find that mutual information (MI) consistently decreases when the performance is improved.

Dataset
FSS-1000 Deepglobe ISIC Chest X-ray

baseline best worst baseline best worst baseline best worst baseline best worst
1-shot mIoU 77.54 64.34↓ 48.054↓ 33.19 40.42↑ 33.44↑ 32.65 33.16↑ 27.124↓ 47.34 61.58↑ 31.394↓
support MI 1.3736 1.3791↑ 1.8767↑ 1.3679 1.35024↓ 1.35584↓ 1.3789 1.36974↓ 1.3951↑ 1.3952 1.39304↓ 1.4315↑
query MI 1.3739 1.3805↑ 1.8201↑ 1.3667 1.34354↓ 1.35984↓ 1.3792 1.36944↓ 1.3890↑ 1.3921 1.38774↓ 1.4368↑

Figure 2: Mean Magnitude of Channels (MMC) for the best case in Fig. 1 on four target datasets. For
domains with improved performance, their curves are lower than the baseline after masking.

of K support samples S = {Iis,M i
s}Ki=1 and a query Q = {Iq,Mq} (I is the image and M is the

label). Within each episode, the model is expected to use {Is,Ms} and Iq to predict the query label.

2.2 Enhanced Performance Stem from Reduced Inter-Channel Correlation
Existing research indicates inter-channel relationships are crucial for performance, as different feature
channels can represent distinct features [3, 30]. Therefore, we study the change of channel correlations
brought by the frequency filtering. Specifically, we measured the mean mutual information (MI) [4]
between channels from the last layer of the backbone network. The measured cases include the
combination of phase and amplitude for the highest and lowest performance in Fig. 1. We report the
1-shot mIoU and MI in Tab. 1, where we can see that for frequency combinations with improved
mIoU, their MI consistently decreases, indicating reduced inter-channel correlation in the feature
maps. Conversely, for frequency combinations with decreased mIoU, their MI consistently increases.

The higher the mutual information value, the larger the correlation between channels, while a low
MI indicates more independent semantic information captured by different channels. Therefore,
the experimental results demonstrate that improved performance is associated with decreased inter-
channel correlation in the feature map.

2.3 Why Lower Inter-Channel Correlation is Better?
The reduced inter-channel correlation benefits our model in two aspects:

(1) Cross-domain generalization. Previous works [2, 51] indicate that a lower correlation between
features implies reduced redundancy and enhanced generalizability. Intuitively, a lower inter-channel
correlation demonstrates that channels capture patterns more independently, therefore each channel
will capture patterns in the input image more uniformly, which means the mean magnitude of each
channel across all images will be more uniform. Consistent with our intuition, [30] shows the channel
bias problem affects the generalizability of few-shot methods, and it utilizes the Mean Magnitude of
Channels (MMC) to visualize and measure the channel response in features, where effective few-shot
methods might have a more uniform MMC curve in the testing set. Therefore, this means the reduced
correlation also benefits our model by addressing the channel bias problem, as studied in [30].

Inspired by this, we visualize the MMC before and after applying the mask to filter frequency
components on four target datasets. As shown in Figure 2, for FSS-1000, performance degrades after
masking, with the curve steeper than the baseline. Conversely, for the other three target datasets,
performance improves with the curve more uniform than the baseline after masking. This indicates
the channel bias problem is also handled by frequency filtering, which benefits the model with more
independent and diverse semantic patterns to represent target domains.

(2) Exploring larger activated regions for segmentation. To study why reducing inter-channel
correlation through frequency filtering benefits the segmentation task, we visualize the heatmap of
feature maps before and after filtering out specific frequency components. As shown in Figure 3(a),
after filtering certain frequency components, the heatmap demonstrates expanded activation regions,
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which results from more recognition patterns captured by independent channels. Since the segmenta-
tion task requires the model to pixel-wisely detect the whole semantic object, an expanded activation
region means the model can better detect the entire object, instead of only focusing on the most
discriminative parts.

2.4 Why Feature Disentanglement in the Frequency Domain?
In this subsection, we illustrate why the feature disentanglement is carried in the frequency domain.

Fourier Transform (FT) FT transforms finite signals into complex-valued functions of frequency.
For a single channel f ∈ Rh×w of the feature map, the Fourier transform is formulated as:

F (u, v) =
1

wh

w−1∑
x=0

h−1∑
y=0

f(x, y)e−i2π(ux
w + vy

h ) (1)

where i is imaginary unit, h and w are the height and the width of f . f(x, y) is an element of f at
spatial pixel (x, y), and F (u, v) represents the Fourier coefficient at frequency component (u, v).

The process in which the spatial feature f is decomposed into the amplitude α and phase ρ is called
spectral decomposition. The corresponding frequency feature F can be reassembled from amplitude
α and phase ρ (|F | is the modulus of F ):

F = α cos(ρ) + iα sin(ρ) = α · eiρ (2)

|F | =
√
α2(cos2(ρ) + sin2(ρ)) =

√
α2 = α (3)

Mathematical Derivation. To intuitively prove the correlation between phase differences and channel
correlation within a feature map. For different channels of a feature map, representing distinct features,
F1(m,n) = α1e

iρ1 and F2(m,n) = α2e
iρ2 are defined as the frequency domain representations

of the same location in different channels. The correlation coefficient is calculated based on the
following formula in the frequency domain:

r =

h−1∑
m=0

w−1∑
n=0

F1(m,n)F ∗
2 (m,n)√

|F1(m,n)|2|F2(m,n)|2
=

h−1∑
m=0

w−1∑
n=0

r(m,n) (4)

The F ∗
2 (m,n) is the complex conjugate of F2(m,n), can be computed as:

F ∗
2 (m,n) = α2 cos(ρ2)− iα2 sin(ρ2) = α2e

−iρ2 (5)

Substituting equations (2), (3), and (5) into equation (4) yields:

F1(m,n)F ∗
2 (m,n) = α1α2e

i(ρ1−ρ2) (6)

|F1(m,n)|2|F2(m,n)|2 = α2
1α

2
2 (7)

from which we can further derive:

r(m,n) =
α1α2e

i(ρ1−ρ2)√
α2
1α

2
2

= ei(ρ1−ρ2), ρ1 − ρ2 = ∆ρ ∈ [0, π] (8)

According to Euler’s formula, we know that eπi = −1 and e0 = 1. From this derivation, we
have proved that the correlation between features in the spatial domain can be translated into phase
differences and amplitudes in the frequency domain. When the frequency components are identical,
the following can be inferred: 1) ∆ρ = 0, r(m,n) = 1 indicates perfect positive correlation;
2) ∆ρ = π, r(m,n) = −1 indicates a perfect negative correlation. Therefore, when the phase
differences of more corresponding points from different channels in the frequency domain aggregate
around 0 or π, there is a higher correlation between the channels. For amplitude, when the phase
differences are the same, the closer the amplitudes, the more similar the waveforms are, thus indicating
a higher correlation between the channels.
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Figure 3: (a) After masking certain frequency components, the model’s attention regions are enlarged
with more patterns encompassed. (b) A higher concentration of phase differences at 0 and π indicates
a higher correlation, so that on FSS-1000 the performance drops but on Chest X-ray it increases.

Experiments for derivation. To validate our derivations, we measured the phase difference his-
tograms between channels, using amplitude as weights, to observe the relationship between phase
differences among feature map channels. The phase difference and weight are as follows:

∆ρ = |ρ1 − ρ2|, weight =
α1α2

|α1 − α2|
(9)

The results shown in Figure 3(b), indicate that for FSS-1000, after masking certain frequency
components, the inter-channel correlation increases. Correspondingly, phase differences between
channels tend to cluster more around 0 and π. Conversely, for Chest X-ray, masking certain frequency
components reduces inter-channel correlation, resulting in fewer phase differences clustering around
0 and π. The experimental results have validated the accuracy of our derived conclusions.

2.5 Conclusion and Discussion
Through mathematical derivation and experiments, we demonstrate that manipulating the frequency
can reduce inter-channel correlation in feature maps. Each channel of the feature map represents a
distinct pattern, and a lower inter-channel correlation implies a higher degree of channel disentangle-
ment, leading to more independent and diverse semantic patterns for each feature. This benefits the
model with 1) alleviation of channel bias, boosting model robustness on target domains; and 2) larger
activated regions for segmentation, therefore a simple frequency filtering operation can significantly
improve performance for the CD-FSS task.

Based on the above analysis, we can draw the following insights: 1) The aforementioned mask
operates at the input level, but fundamentally affects the feature map’s channel correlation. Therefore,
we can directly apply mask operations to the frequency domain of each channel in the feature map;
2) Different domains require filtering different components. The aforementioned mask manually
filters different frequencies based on the target domain, but the mask can be made adaptive; 3)
The aforementioned mask does not perform well on FSS-1000. We believe this may be due to the
overly coarse high-low frequency division. A finer frequency division can be designed, dividing the
frequency into h× w parts (where h and w are the spatial dimensions of the feature map).

3 Method
Our method consists of two major steps, i.e., 1) amplitude-phase masker is proposed to reduce
feature correlation, and obtain more accurate and generalized feature maps; 2) adaptive channel phase
attention is proposed to select features that benefit the current instance and align the feature spaces of
support and query. Our modules do not require source-domain training and can be directly integrated
into during target-domain fine-tuning. The overall framework of our approach is shown in Figure 4.

3.1 Amplitude-Phase Masker
Amplitude-Phase Masker(APM) is a model-agnostic module that filters out negative frequency
components at the feature level within feature maps. Through mathematical derivation, it is shown
that APM accomplishes feature disentanglement. Consequently, this leads to a feature map that is
more robust, generalizable, and provides broader and more accurate representations.

In our work, we utilize a fixed encoder, trained on the source domain, to extract feature maps
F ∈ Rc×h×w, where c, h and w represent channels, height, and width. We then apply the Fast
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Figure 4: Overview of our method in a 1-shot example. After obtaining the feature map, APM is
introduced to adaptively filter certain frequency components based on different domains, facilitating
feature disentanglement to achieve more generalizable representations. Additionally, we propose
ACPA to encourage the model to focus on more effective features while aligning the feature space of
the support and query images. The internal structure of APM and ACPA is highlighted in green.

Fourier Transformation (FFT) to convert these feature maps from the spatial domain into the frequency
domain, further decomposing them into phase spectrum P and amplitude spectrum A:

AeiP = FFT (F) (10)

Then, the phase and amplitude obtained from the FFT are each subjected to a Hadamard product
with their respective sigmoid-activated phase mask (PM) Mp and amplitude mask (AM) Ma. This
operation effectively filters out negative components from both the phase and amplitude:

Penh = Sigmoid(Mp)⊗ P
Aenh = Sigmoid(Ma)⊗A (11)

where ⊗ indicates the element-wise multiplication, Penh and Aenh denotes the enhanced phase and
amplitude, respectively. For each task, the APM is initialized with all ones, where Sigmoid(M∗) ∈
[0, 1]. Here, 1 allows complete passage of frequency components, while 0 results in their total
filtration. The original APM (APM-S) is a lightweight module, configured as an h× w matrix that
matches the height and width of the feature map. We also offer a variant APM (APM-M) that expands
the dimensions to c× h× w, in alignment with the feature map’s dimensions.

The filtered phase and amplitude components are recombined and transformed back into the spatial
domain using the Inverse Fast Fourier Transform (IFFT) to produce the enhanced feature map:

Fenh = IFFT (Aenhe
iPenh) (12)

We iterate and optimize the APM using the support and its corresponding labels. After the APM
process, the model generates a feature map that is more accurate and generalizable. This feature map
is then fed into the subsequent Adaptive Channel Phase Attention module for further optimization.

3.2 Adaptive Channel Phase Attention
Adaptive Channel Phase Attention(ACPA) can be seen as a process of feature selection. Building on
the APM-optimized feature map, ACPA encourages the model to focus on more effective channels
(features) while aligning the feature spaces of the support and query. Its underlying insight is that
amplitude and phase are considered as style and content, respectively. Therefore, the phase can be
seen as an invariant representation, with consistent phase elements across both support and query.

For the enhanced support feature maps Fsup
enh, a support mask Ms ∈ {0, 1}H×W is applied to discard

irrelevant activations:
Fsup

mask = Fsup
enh ⊗Ms (13)

Subsequent operations input to ACPA are consistent with those applied to the query feature maps.
Therefore, we uniformly refer to the feature map fed into ACPA as Fenh. We adopt a SE block
following SENet [19] as our channel attention module, denoted as SE:

Wphase = SE(Penh) (14)
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Table 2: Mean-IoU of 1-shot and 5-shot results on the CD-FSS benchmark. The best and second-best
results are in bold and underlined, respectively. * denotes the model implemented by ourselves.
APM-S is an 1× h× w matrix, while APM-M (more parameters) expands to c× h× w.

Method
FSS-1000 Deepglobe ISIC Chest X-ray Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
PGNet [45] 62.42 62.74 10.73 12.36 21.86 21.25 33.95 27.96 32.24 31.08
PANet [41] 69.15 71.68 36.55 45.43 25.29 33.99 57.75 69.31 47.19 55.10
CaNet [46] 70.67 72.03 22.32 23.07 25.16 28.22 28.35 28.62 36.63 37.99

RPMMs [43] 65.12 67.06 12.99 13.47 18.02 20.04 30.11 30.82 31.56 32.85
PFENet [37] 70.87 70.52 16.88 18.01 23.50 23.83 27.22 27.57 34.62 34.98
RePRI [5] 70.96 74.23 25.03 27.41 23.27 26.23 65.08 65.48 46.09 48.34

HSNet [31] 77.53 80.99 29.65 35.08 31.20 35.10 51.88 54.36 47.57 51.38
HSNet∗ [31] 77.54 80.21 33.19 36.46 32.65 35.09 47.34 48.63 47.68 50.10
PATNet [24] 78.59 81.23 37.89 42.97 41.16 53.58 66.61 70.20 56.06 61.99

Ours (APM-S) 78.25 80.29 40.77 44.85 41.48 49.39 75.22 76.89 58.93 62.86
Ours (APM-M) 79.29 81.83 40.86 44.92 41.71 51.16 78.25 82.81 60.03 65.18

where Wphase ∈ Rc×1×1 is phase attention weight, Penh is the phase of Fenh. Then we apply the
phase attention weights to the feature map Fenh to obtain the final feature map Ffinal:

Ffinal = ζl(Wphase)⊗Fenh (15)

where ⊗ is the Hardmard product and ζl(∗) extends the weight to match the dimension of the feature
map by expanding along the spatial dimension, i.e., ζl : Rc×1×1 → Rc×h×w.

Finally, a pair of query feature maps Fqry
final and support feature maps Fsup

final are fed into comparison
module forms affinity maps C ∈ Rh×w×h×w using cosine similarity:

C(m,n) = ReLU(
Fqry

final(m) · Fsup
final(n)

∥NFqry
final(m)∥∥Fsup

final(n)∥
) (16)

where m,n denote 2D spatial positions of feature maps Fqry
final and Fsup

final respectively. Then, the
C(m,n) is fed into the decoder to obtain segmentation results, as shown in Figure 4.

4 Experiments
4.1 Datasets
We utilize the benchmark established by PATNet [24] and adopt the same data preprocessing methods.
For training, our source domain is the PASCAL-5i dataset [35], an extended version of PASCAL
VOC 2012 [13] enhanced with additional annotations from the SDS dataset. For evaluation, our target
domains include FSS-1000 [26], Deepglobe [10], ISIC2018 [9, 38], and the Chest X-ray datasets
[6, 20]. See Appendix A.1 for more details about datasets.

4.2 Implementation Details
We employ ResNet-50 [18] as our encoder, initialized with weights pre-trained on ImageNet [34].
The training manner is consistent with our baseline model HSNet [31]. To optimize memory usage
and speed up training, the spatial sizes of both support and query images are set to 400 × 400. The
model is trained using the Adam [21] optimizer with a learning rate of 1e-3.

During the adaptation stage, the model initially predicts the support mask and then uses the corre-
sponding label to optimize the APM and ACPA through CE loss. The adaption stage of the APM and
the ACPA leverage feature maps from conv5_x whose channel dimensions are 2048 and spatial size
is 13×13, is performed using the Adam optimizer, with learning rates set at 0.1 for Chest X-ray, 0.01
for FSS-1000 and ISIC, and 1e-5 for Deepglobe. Each task undergoes a total of 60 iterations.

4.3 Comparison with State-of-the-Art Works
In Table 2, we compare our method with several state-of-the-art few-shot semantic segmentation
approaches on the benchmark introduced by PATNet [24]. Our results show a significant improvement
in cross-domain semantic segmentation for both 1-shot and 5-shot tasks. Specifically, APM-S exceeds
the performance of the state-of-the-art PATNet, based on ResNet-50, by 2.87% and 0.87% in average
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Figure 5: Qualitative results of our model.

Table 3: Ablation study on various designs

APM-S APM-M ACPA 1-shot 5-shot

47.68 50.10
✓ 57.77 61.39
✓ ✓ 58.93 62.86

✓ 59.13 63.53
✓ ✓ 60.03 65.18

Table 4: APM-S implemented in the trans-
former architecture.

FSS Deepglobe ISIC Chest Average

perSAM [48] 79.65 33.39 21.27 31.12 41.35
FPTrans [47] 78.90 38.29 47.60 78.92 60.93
FPTrans+ours 79.84 39.78 50.37 79.29 62.32

mIoU for the 1-shot and 5-shot settings, respectively. APM-M outperforms the state-of-the-art by
3.97% and 3.19%. Additionally, Figure 5 presents qualitative results of our method in 1-way 1-shot
segmentation, highlighting a substantial enhancement in generalization across large domain gaps
while maintaining comparable accuracy with similar domain shifts.

4.4 Ablation Study

Effectiveness of each module. We evaluated each proposed module in both 1-shot and 5-shot
settings to assess their effectiveness. As detailed in Table 3, introducing APM-S increased the average
mIoU by 10.09% for 1-shot and 11.29% for 5-shot. Adding ACPA further enhanced the mIoU by
1.16% and 1.47%, respectively. Additionally, APM-M, a variant of APM with more parameters, when
combined with ACPA, increased the average mIoU by 12.35% for 1-shot and 15.08% for 5-shot.
Model-agnostic method. We implemented our method for FPTrans [47], which employs the Vision
Transformer (ViT) [12] as its encoder. As shown in Table 4, our approach can also effectively enhance
the performance of models based on the transformer architecture. Moreover, the new large-scale
SAM [22] model has significantly advanced image segmentation, showcasing impressive zero-shot
capabilities. However, SAM is not suited for cross-domain few-shot segmentation. Thus, we evaluate
PerSAM [48] to compare our method with the SAM-based approach. The result shows that our
method performs much better than PerSAM in cross-domain few-shot segmentation.
Comparison with other method. To demonstrate the effectiveness of our method, we compared it
with full parameter fine-tuning and feature disentangling method, as shown in Table 5. Compared to
full parameter fine-tuning, our method uses fewer parameters and achieves better performance. For
spatial domain feature disentangling, we added a mutual information loss to the baseline model during
training to encourage each channel of the feature map to learn independent representations. Our
method significantly outperforms this approach. Intuitively, feature disentanglement in the frequency
domain offers finer granularity and global representation, which is more beneficial for segmentation
tasks compared to the local representation in the spatial domain.

4.5 APM: Feature Disentanglement via Frequency Operations

Reduce inter-channel correlation. As shown in Table 6, we validated APM’s ability to reduce inter-
feature correlation and improve generalization performance by calculating the mutual information
between feature map channels. Compared to Table 1, this result demonstrates that the adaptive
feature-level approach is more effective than the input-level masking, further reducing inter-feature
correlation. Furthermore, we plotted the cumulative distribution function (CDF) of inter-channel
correlations in the feature maps, as shown in Figure 6. It can be observed that with the inclusion of
APM, the CDF curve shifts to the left, indicating a decrease in inter-channel correlations.

Table 5: Compare our method with fine-tuning
and spatial domain feature disentangle method.

FSS Deepglobe ISIC Chest Average

baseline 77.54 33.19 32.65 47.34 47.68
baseline + ft 78.06 33.54 33.28 74.16 54.76

baseline+MI Loss 78.90 32.28 32.53 52.12 48.76
ours(APM-M) 79.29 40.86 41.71 78.25 60.03

Table 6: Verify the effectiveness of the APM by
the mean mutual information (MI). (w/o ACPA)

APM-S FSS Deepglobe ISIC Chest
1-shot mIoU 77.98↑ 40.74↑ 38.79↑ 73.55↑
support MI 1.3501↓ 1.2761↓ 1.3139↓ 1.2610↓
query MI 1.3509↓ 1.2794↓ 1.3121↓ 1.2620↓
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Figure 6: Cumulative distribution function (CDF) of inter-channel correlations. After passing through
APM, the CDF curve shifts to the left, indicating a decrease in inter-channel correlations.

More independent semantic representations. As shown in Table 7 (Left), we visualized the
heatmaps of feature maps processed by APM and those not processed by APM. It is evident that
after applying APM, the model focuses on more different features. For example, in the first column,
the baseline only highlights the swan’s head, whereas APM makes each feature representation more
independent, allowing the model to attend to various features of the swan.

4.6 ACPA: Aligning Task-Relevant Features and Feature Spaces

ACPA can be seen as feature selection, enabling the model to focus on features that are more effective
for the current task while aligning the feature spaces of the support and query feature maps. As shown
in Table 7 (Left), after APM disentangles the features and produces a more broadly represented
feature map, ACPA selects features that are more effective and discriminative for the current task. For
example, in the first row, ACPA selects the swan’s wings and head. In the second column, it selects
the bird’s head, tail, and feet. Furthermore, we measured the CKA (Centered Kernel Alignment) to
calculate the distance between the support feature map and the query feature map, validating that
ACPA aligns the support and query feature spaces. CKA is proposed to measure both intra-domain
and inter-domain distances [52]; the smaller the CKA value, the closer the feature spaces. As shown
in Table 7 (Right), after applying APM, the distance between support and query is reduced, and with
the addition of ACPA, the support and query feature spaces are further aligned.

APM-S APM-M ACPA FSS Deepglobe ISIC Chest

0.3591 0.2691 0.2494 0.5848
✓ 0.3481 0.2678 0.2433 0.5025
✓ ✓ 0.2907 0.2676 0.2032 0.3628

✓ 0.3293 0.2675 0.2310 0.4635
✓ ✓ 0.2883 0.2674 0.1811 0.3986

Table 7: (Left) Feature map visualizations show: 1) APM achieves feature disentanglement. 2) ACPA
encourages the model to focus on more effective features. (Right) Verify the effectiveness of the
ACPA in aligning the support and query feature spaces by CKA measure.

4.7 Comparison with Domain Transfer Methods

We compare our method against traditional frequency-based and correlation-based approaches to
validate our method’s effectiveness. For a fair comparison, all methods are implemented on the
baseline HSNet [31] and then evaluated under the 1-shot setting on the CD-FSS benchmark.

Frequency-based method DFF [27] preserves frequency information beneficial for generalization.
GFNet [32] replaces self-attention layer with global frequency filter layer. ARP [7] introduces
Amplitude-Phase Recombination via amplitude transformation. DAC [23] proposes a normalization
method that removes style (amplitude) while preserving content (phase) through spectral decompo-
sition. Although these methods improve generalization, they fall short in addressing large domain
gaps. Our method requires no source domain training. It adaptively masks harmful components
for the target domain at the feature level. By treating amplitude and phase separately, we exploit
phase invariance to design a channel attention module that handles intra-class variations. As shown
in Table 8 our method outperforms existing frequency-based approaches on the CD-FSS task.

9



Table 8: Compare our method to previous
frequency-based methods under 1-shot setting.

FSS Deepglobe ISIC Chest Average

baseline [31] 77.54 33.19 32.65 47.34 47.68
DFF [27] 78.18 32.16 35.71 60.29 51.59

GFNet [32] 76.86 32.23 33.95 53.12 49.04
ARP [7] 78.83 35.06 35.61 59.83 52.33

DAC [23] 78.83 35.98 36.02 57.66 51.98
ours(APM-M) 79.29 40.86 41.71 78.25 60.03

Table 9: Compare our method to other reducing
correlation approaches under 1-shot setting.

FSS Deepglobe ISIC Chest Average

baseline [31] 77.54 33.19 32.65 47.34 47.68
MMC(Simple) [30] 77.48 34.70 34.32 48.74 48.81
MMC(Oracle) [30] 77.45 35.12 34.59 50.27 49.36

SRIP [1] 78.13 34.61 34.05 50.58 49.34
baseline+whitening 77.92 33.22 32.98 50.89 48.75

ours(APM-M) 79.29 40.86 41.71 78.25 60.03

Correlation-based method For methods that directly constrain the model (orthogonality, whiten-
ing): the few-shot setting means limited sample size, and existing models have a large number of
parameters. Directly adjusting the model with constraints using such small datasets is not effective
and even can lead to negative optimization. As seen in Table 9, the performance of orthogonality
constraints(SRIP [1]) and whitening is not satisfactory. For feature transformation/augmentation
methods like MMC [30]: the stability is not guaranteed because they use specific feature transforma-
tion functions. Due to the domain gap, a transformation method effective for one domain may not be
effective for others. In contrast, our method has the advantages of being 1) lightweight (allowing
for quick adaptation in the few-shot setting) and 2) stable and robust (with adaptive adjustments for
different target domains). These benefits are well reflected in the performance results.

5 Related Work

Few-shot learning Few-shot learning aims to build robust representations for new concepts with
limited annotated examples. Existing approaches typically fall into three categories: metric learning
[36, 39], optimization-based methods [14, 33] and graph-based methods [15, 28]. Recently, cross-
domain few-shot learning has gained attention due to disparities in both data distribution and label
space between meta-testing and meta-training stages. BSCD-FSL [16] introduces a challenging
benchmark for cross-domain few-shot learning, featuring a substantial domain gap between the source
and target domains. It covers several target domains with varying similarities to natural images.

Few-shot semantic segmentation Few-shot semantic segmentation aims to segment unseen classes
in query images with only a few annotated samples. OSLSM [35] is the first two-branch FSS model.
Following this, PL [11] introduces a prototype learning paradigm utilizing cosine similarity between
pixels and prototypes. SG-One [49] adopts masked average pooling (MAP) to optimize the extraction
of support features. Recently, many FSS methods have emerged in the research community, such as
RPMMs [43], PFENet [37], ASGNet [25], and HSNet [31]. HSNet employs efficient 4D convolutions
on multi-level feature correlations, serving as the baseline for our work. However, these methods
primarily address segmenting novel classes within the same domain and struggle with generalization
across disparate domains due to significant feature distribution disparities. Bridging this substantial
domain gap, particularly with limited labeled data, remains a formidable challenge.

6 Conclusion

In this paper, we delve into the phenomenon that filtering specific frequency components based on
different domains significantly improves performance, providing an interpretation through experiment
and mathematical derivation. Building on our interpretation, we propose the APM, a feature-level
frequency component mask designed to enhance the generalization of feature map representations.
Further, we introduced ACPA. Based on the APM-optimized feature map, the ACPA encourages the
model to focus on more effective features while aligning the feature spaces of the support and query.
Experimental results demonstrate the approach’s effectiveness in reducing domain gaps.
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A Appendix / supplemental material

A.1 More Dataset Details

Figure 7: Examples of segmentation for four target datasets.

Our experimental setup is grounded in the benchmark established by PATNet [24]. Fig. 7 presents an
example of segmentation for four target datasets. Further details follow:

PASCAL-5i [35] extends the PASCAL VOC 2012 [13] by integrating additional annotations from
the SDS dataset [17]. Utilizing PASCAL-5i as our source domain for training, we then evaluate the
models’ performance across four target datasets.

FSS-1000 [26] is a few-shot segmentation dataset comprising 1000 natural image categories, with
each category containing 10 samples. In our experiment, we adhere to the official split for semantic
segmentation and report results on the designated testing set, which encompasses 240 classes and
2,400 images. We consider FSS-1000 as our designated target domain for testing.

Deepglobe [10] consists of satellite images annotated densely at the pixel level across 7 categories:
urban, agriculture, rangeland, forest, water, barren, and unknown. Since ground-truth labels are
available only in the training set, we utilize the official training dataset comprising 803 images to
showcase our results. We designate it as our testing target domain and follow the same processing
approach as PATNet.

ISIC2018 [9, 38] is designed specifically for skin cancer screening and comprises images of lesions,
with each image depicting exactly one primary lesion. Adhering to the guidelines established by
PATNet, we process and utilize the dataset, considering ISIC2018 as our target domain for testing.

Chest X-ray [6, 20] is tailored for Tuberculosis diagnosis, comprising 566 images with a resolution
of 4020 × 4892 pixels. These images depict cases from 58 Tuberculosis patients and 80 individuals
with normal conditions. A common approach to handling large image sizes involves resizing them to
1024 × 1024 pixels.

A.2 APM Reduces Inter-Channel Correlation by Frequency Domain Mask

Figure 8: Histogram of phase differences (weighted by amplitude) between channels in the feature
maps before and after APM.

As shown in Figure 8, we present histograms of the phase differences between channels in the feature
maps (weighted by amplitude) before and after adding the APM module. After applying APM, the
phase differences between channels concentrated around 0 and π are reduced, which aligns with our
mathematical derivation in the main text. The APM decreases the correlation between feature map
channels by altering phase and amplitude, thereby enhancing the independence of their semantic
representations. Additionally, due to the use of finer-grained frequency domain partitioning, APM
performs well on FSS-1000 compared to the simple high-low frequency partitioning at the input level.
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Figure 9: The visualization of the frequency components filtered by the masker.

A.3 Analyze the Frequency Components Filtered by the APM

The visualization results in Figure 9 show the average frequency components filtered by the amplitude
masker and phase masker across different domains. The center represents low frequencies, while the
periphery represents high frequencies. White indicates a value of 1, meaning the frequency component
passes through, and black indicates a value of 0, meaning the frequency component is filtered out.
For FSS, the amplitude masker (AM) primarily filters out mid-to-high-frequency components, while
the phase masker (PM) mainly retains mid-frequency components. For DeepGlobe, both AM and
PM retain more mid-to-high frequencies. For ISIC, AM filters out more mid-to-high frequencies,
retaining low frequencies, whereas PM retains relatively more mid frequencies. For ChestX, AM
mainly retains low-frequency components, while PM filters out frequencies across the spectrum,
retaining relatively more low-to-mid frequencies. These results align well with the patterns observed
in Figure 1 of our main text. It is evident that for different targets, AM and PM dynamically and
adaptively filter different frequency components, selecting those more beneficial for the current
domain. Additionally, the advantageous amplitude and phase frequency components vary across
different target domains, underscoring the necessity of considering amplitude and phase separately.

A.4 Detailed Ablation Study Results

In the main text, we demonstrate the effectiveness of our various designs by presenting the average
mIoU. Here, as shown in Table 10, we provide detailed results on each target dataset.

Table 10: Detailed ablation study results of various designs (Backbone: ResNet-50).

APM-S APM-M ACPA
FSS-1000 Deepglobe ISIC Chest X-ray Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
77.54 80.21 33.19 36.46 32.65 35.09 47.34 48.63 47.68 50.10

✓ 77.98 79.85 40.74 44.80 38.79 44.16 73.55 76.73 57.77 61.39
✓ ✓ 78.25 80.29 40.77 44.85 41.48 49.39 75.22 76.89 58.93 62.86

✓ 78.98 81.21 40.81 44.82 38.99 45.49 77.73 82.60 59.13 63.53
✓ ✓ 79.29 81.83 40.86 44.92 41.71 51.16 78.25 82.81 60.03 65.18

A.5 Broader Impact

Our research delves into the phenomenon that filtering specific frequency components based on
different domains significantly improves performance, providing an interpretation. Furthermore, we
demonstrated the relationship between frequency components and inter-channel correlation through
mathematical derivation. Building on our interpretation and derivation, we propose the APM, a
feature-level frequency component mask designed to enhance the generalization of feature map
representations. Further, we introduced Adaptive Channel Phase Attention (ACPA). Based on the
APM-optimized feature map, the ACPA encourages the model to focus on more effective features
while aligning the feature spaces of the support and query. Experimental results demonstrate the
effectiveness of our approach significantly enhances the model’s cross-domain transferability. This
work is applicable not only to CDFSS but also to other areas like domain generalization and domain
adaptation. Future research will aim to broaden our evaluations to encompass a wider range of target
domains, enhancing our understanding of their performance in various real-world scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the conclusion.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided the full set of assumptions and a complete (and correct)
proof for each theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Experiments are conducted based on the code released by HSNet (ICCV’21)
and benchmark proposed by PATNet (ECCV’22), which specified the random seed for
re-implementation and comparison. Therefore, we follow the same random seed to conduct
experiments and compare with other methods without the error bar.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have reported the computer resources in the implementation details.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the broader impact in the appendix.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not have the risk for misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have respected the license of assets used in this paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not have new assets in this paper.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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