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Abstract

Previous studies have proved that cross-lingual001
knowledge distillation can significantly im-002
prove the performance of pre-trained mod-003
els for cross-lingual similarity matching tasks.004
However, the student model needs to be large005
in this operation. Otherwise, its performance006
will drop sharply, thus making it impracti-007
cal to be deployed to memory-limited devices.008
To address this issue, we delve into cross-009
lingual knowledge distillation and propose010
a multi-stage distillation framework for con-011
structing a small-size but high-performance012
cross-lingual model. In our framework, the013
contrastive learning and an assistant model are014
introduced to prevent performance from being015
compromised during the compression process.016
The experimental results demonstrate that our017
method can compress the size of XLM-R and018
MiniLM by more than 50%, while the perfor-019
mance is only reduced by about 1%. In addi-020
tion, our framework is model-independent and021
applicable to all transformer-based models.022

1 Introduction023

With the expansion of international information024

exchanges, many multilingual contents have ap-025

peared on the Internet. It is widespread to store026

texts in dozens of languages in an information sys-027

tem. Cross-lingual similar text matching in multi-028

lingual systems is a great challenge for many sce-029

narios, e.g., search engines, recommendation sys-030

tems, question-answer robots, etc.(Cer et al., 2017;031

Hardalov et al., 2020; Asai et al., 2021).032

In the monolingual scenario, benefiting from033

the robust performance of the pre-trained language034

models (PLMs) (e.g., BERT(Devlin et al., 2019),035

RoBERTa(Liu et al., 2019), T5(Raffel et al., 2020),036

etc.), significant success has been achieved in text-037

similarity matching tasks. For example, Reimers038

and Gurevych (2019) proposed the SBERT model039

trained with similar text pairs and achieved the040

state-of-the-art performance in the supervised simi-041
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Figure 1: Evaluation results of XLM-R with different
number of encoder layers on the STS2017 monolin-
gual task and the STS2017-extend cross-lingual task,
using SBERT-paraphrases for knowledge distillation.

lar matching. In unsupervised scenarios, Gao et al. 042

(2021) proposed the SimCSE model, which was 043

trained on Wiki corpus through contrastive learning 044

task. 045

Drawing on the success in the monolingual sce- 046

nario, researchers began to introduce pre-training 047

technology into cross-lingual scenarios and pro- 048

posed a series of multilingual pre-trained models, 049

e.g., mBERT(Devlin et al., 2019), XLM(Conneau 050

and Lample, 2019), XLM-R(Conneau et al., 2020), 051

etc. Due to the vector collapse issue(Li et al., 2020), 052

the performances of these cross-lingual models 053

on similarity matching tasks are still not satis- 054

factory. Reimers and Gurevych (2020) injected 055

the similarity matching ability of SBERT into the 056

cross-lingual model through knowledge distillation, 057

which alleviated the collapse issue and significantly 058

improved the performance of cross-lingual similar- 059

ity matching tasks. 060

Although the cross-lingual similarity matching 061

tasks have achieved some positive results, the exist- 062

ing cross-lingual models are huge and challenging 063

to be deployed in industrial scenarios, especially 064

in devices with limited memory. We try to dis- 065

till the SBERT model into an XLM-R model with 066

fewer layers following the method in Reimers and 067
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Gurevych (2020). However, as shown in Figure068

1, the performance will be significant reduced as069

the number of layers decreases. This phenomenon070

indicates that cross-lingual capabilities are highly071

dependent on the model size, and simply compress-072

ing the number of layers will bring a seriously per-073

formance loss.074

In this work, we focus on building a small but075

high-performance model for cross-lingual similar-076

ity matching tasks. For this purpose, we explore077

a cross-lingual distillation and propose a multi-078

stage distillation compression framework. Ben-079

efiting from the multi-stage strategy, We can gradu-080

ally transfer knowledge from a large monolingual081

model to a small multilingual model with mini-082

mal performance losses. We conduct experiments083

on the STS-2017(Cer et al., 2017) and STS2017-084

extend datasets(Reimers and Gurevych, 2020) for085

the monolingual and cross-lingual tasks. Exper-086

imental results show that our method effectively087

reduces the embedding and encoder size of the088

multilingual pre-trained model. We also study the089

performance impact of reducing the embedding or090

the encoder sizes.091

The main contributions of this work can be sum-092

marized as follows:093

• We verify that the cross-lingual capability has094

a higher requirement on model size.095

• We propose a multi-stage distillation frame-096

work to compress the cross-lingual model097

with minimal performance losses.098

• A series of small-size cross-lingual models099

are released on Github1 along with the code.100

2 Related work101

There are two areas closely related to this work,102

namely, multilingual models and knowledge distil-103

lation.104

2.1 Multilingual models105

Existing multilingual models can be divided into106

two categories: (1) Multilingual general model. (2)107

Cross-lingual representation model.108

In the first category, transformer-based pre-109

trained models have been massively adopted in110

multilingual NLP tasks(Huang et al., 2019; Chi111

et al., 2021; Luo et al., 2021; Ouyang et al.,112

2021). mBERT(Devlin et al., 2019) was pre-trained113

1Will be publicly available once accepted.

on Wikipedia corpus in 104 languages, achieved 114

significant performance in the downstream task. 115

XLM(Conneau and Lample, 2019) presented the 116

translation language modeling (TLM) objective to 117

improve the cross-lingual transferability by lever- 118

aging parallel data. XLM-R(Conneau et al., 2020) 119

was built on RoBERTa(Liu et al., 2019) using Com- 120

monCrawl Corpus. 121

In the second category, LASER(Artetxe and 122

Schwenk, 2019a) used an encoder-decoder architec- 123

ture based on a Bi-LSTM network and was trained 124

on the parallel corpus obtained by neural machine 125

translation. Multilingual Universal Sentence En- 126

coder (mUSE)(Chidambaram et al., 2019; Yang 127

et al., 2020) adopted a bi-encoder architecture and 128

was trained with an additional translation ranking 129

task. LaBSE(Feng et al., 2020) turned the pre- 130

trained BERT into a bi-encoder mode and was 131

optimized with the objectives of mask language 132

model (MLM) and translation language model 133

(TLM)(Conneau and Lample, 2019). Recently, 134

Mao et al. (2021) presented a lightweight bilin- 135

gual sentence representation method based on the 136

dual-transformer architecture. 137

2.2 Knowledge distillation 138

However, Multilingual models do not necessarily 139

have cross-lingual capabilities, especially in the 140

first category, in which vector spaces of different 141

languages are not aligned. Knowledge distilla- 142

tion(Hinton et al., 2015) used knowledge from a 143

teacher model to guide the training of a student 144

model, which can be used to compress the model 145

and align its vector space at the same time. 146

For model compression, knowledge distillation 147

aimed to transfer knowledge from a large model 148

to a small model. BERT-PKD(Sun et al., 2019) 149

extracted knowledge from both last layer and 150

intermediate layers at fine-tuning stage. Distil- 151

BERT(Sanh et al., 2019) performed distillation 152

at pre-training stage to halve the depth of BERT. 153

TinyBERT(Jiao et al., 2020) distilled knowledge 154

from BERT at both pre-training and fine-tuning 155

stages. MobileBERT(Sun et al., 2020) distilled bert 156

into a model with smaller dimensions at each layer. 157

MiniLM(Wang et al., 2021) conducted deep self- 158

attention distillation. In terms of vector alignment, 159

(Reimers and Gurevych, 2020) aligned the vector 160

space of the multilingual model with the monolin- 161

gual SBERT(Reimers and Gurevych, 2019) model 162

through cross-lingual knowledge distillation. 163
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Figure 2: The overview of the model architecture and the multi-stage distillation. It consists of four stages and
aims to obtain a small multilingual student model. For convenience, we take the English SBERT as the teacher
model, XLM-R as the assistant model. < si, ti > is a pair of parallel sentences in two different language.

3 Method164

In this section, we will introduce our method in165

detail. First, we exhibit the model architecture,166

and then introduce the multi-stage distillation strat-167

egy for the model training. An overview of our168

approach is shown in Figure 2.169

3.1 Model architecture170

Given a large-size monolingual model as teacher171

T and a small-size multilingual model as stu-172

dent S, our goal is to transfer semantic similar-173

ity knowledge from T to S and simultaneously174

compress the size of S with m parallel sentences175

P = {< s1, t1 >,< s2, t2 >, · · · < sm, tm >}.176

3.1.1 Teacher model177

In this work, we use SBERT(Reimers and178

Gurevych, 2019) as the teacher model, which has179

been proven to perform well on monolingual se-180

mantic similarity tasks. SBERT adopts a siamese181

network structure to fine-tune a BERT(Devlin et al.,182

2019) encoder, and applies a mean pooling opera- 183

tion to its output to derive sentence embedding. 184

3.1.2 Assistant model 185

Mirzadeh et al. (2020) proved that when the gap 186

between the student and teacher is large, the perfor- 187

mance of the student model will decrease. We hope 188

to get a small student model with cross-lingual ca- 189

pabilities, while the teacher is a large monolingual 190

model. To alleviate the gaps, we introduce an as- 191

sistant model A (Mirzadeh et al., 2020), which is a 192

large multilingual model with cross-lingual ability. 193

3.1.3 Student model 194

Inspired by ALBERT(Lan et al., 2020), we design 195

the student model with Parameter Recurrent and 196

Embedding Bottleneck strategy. Since there is no 197

available multilingual ALBERT, we need to design 198

from scratch. 199

Parameter Recurrent: We choose the firstM lay- 200

ers of the assistant model as a recurring unit (RU). 201
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Concretely, the RU is defined as,202

RU = {Li|i ∈ [1,M ]} , (1)203

where L is the ith transformer layer.204

Embedding Bottleneck: Multilingual pre-trained205

models usually require a large vocabulary V to206

support more languages, which leads to large em-207

bedding layer parameters. We add a bottleneck208

layer (He et al., 2016; Lan et al., 2020; Sun et al.,209

2020) of size B between embedding layer and hid-210

den layer H . In this way, the embedding layer is211

reduced from O(V ×H) to O(V ×B +B ×H).212

3.2 Multi-stage distillation213

Multi-stage Distillation is the key for enabling the214

small-size student model with cross-lingual match-215

ing ability.216

Stage 1. Teaching assistant217

As the Stage 1 in Figure 2, we use the teacher218

model and parallel corpus to align vector space be-219

tween different languages through the loss function220

in (2), enabling its cross-lingual ability (Reimers221

and Gurevych, 2020).222

`stage1 =
1

|N |

N∑
i

[
(hsiT − hsiA)2 + (hsiT − htiA)2

]
,

(2)223

where N is the batch size, and si and ti denotes the224

parallel sentences in a mini batch.225

Stage 2. Align student embedding226

As the Stage 2 in Figure 2, we align the embedding227

bottleneck layer with the assistant embedding space228

through the loss function in (3),229

`stage2 =
1

|N |

N∑
i

[
(hsiAe − hsiBe)2 + (htiBe − htiAe)2

]
,

(3)230

where hsiAe, h
ti
Ae denotes the output of assistant em-231

bedding layer, hsiBe, h
ti
Be denotes the output of em-232

bedding bottleneck layer.233

Stage 3. Teaching student234

In the Stage 3, the student model is trained to im-235

itate the output of the assistant model with loss236

function in (4),237

`stage3 =
1

|N |

N∑
i

[
(hsiA − hsiS )2 + (htiS − htiA)2

]
,

(4)238

where hsiA , h
ti
A denotes the output of assistant model,239

hsiS , h
ti
S denotes the output of student model.240

Stage 4. Multilingual contrastive learning 241

After the above three stages, we can get a small 242

multilingual sentence embedding model. How- 243

ever, as shown in Figure 1, when the model size 244

decrease, its cross-lingual performance decreases 245

sharply. Therefore, in this stage, we propose mul- 246

tilingual contrastive learning (MCL) task further 247

to improve the performance of the small student 248

model. 249

Assuming the batch size isN , for a specific trans- 250

lation sentence pair (si, ti) in one batch, the mean- 251

pooled sentence embedding of the student model 252

is (hsiS , h
ti
S ). The MCL task takes parallel sentence 253

pair (hsiS , h
ti
S ) as positive one, and other sentences 254

in the same batch
{

(hsiS , h
tj
S )|j ∈ [1, N ] , j 6= i

}
as 255

negative samples. Considering that the MCL task 256

needs to be combined with knowledge distillation. 257

Unlike the previous work(Yang et al., 2019; Feng 258

et al., 2020; Mao et al., 2021), the MCL task does 259

not directly apply the temperature-scaled cross- 260

entropy loss function. 261

Here, we introduce the implementation of the 262

MCL task. For each pair of negative examples 263

(si, tj) in the parallel corpus, the MCL task first 264

unifies (si, tj) into the source language (si, sj), 265

then uses the fine-grained distance between hsiT and 266

hsjT in the teacher model to push away the semantic 267

different pair (hsiS , h
tj
S ) in the student model. For 268

positive one, the distance between hsiT and hsiT in 269

the teacher model is used to pulling semantically 270

similar pair (hsiS , h
ti
S ) together. The MCL task loss 271

is (5), 272

`MCL =
1

N2

N∑
i

N∑
j

(
φ(hsiT , h

sj
T )− φ(hsiS , h

tj
S )
)2
,

(5) 273

where φ is the distance function. Following prior 274

work (Yang et al., 2019; Feng et al., 2020), we set 275

φ(x, y) = cosine(x, y). we also add the knowl- 276

edge distillation task for multilingual sentence rep- 277

resentation learning. The knowledge distillation 278

loss is defined as, 279

`KD =
1

|N |

N∑
i

[
(hsiT − hsiS )2 + (hsiT − htiS )2

]
.

(6) 280

In stage 4, the total loss function is added by `MCL 281

and `KD. 282

`stage4 = `MCL + `KD (7) 283
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Model AR-AR ES-ES EN-EN Avg. Embedding size Encoder size

Pre-trained Model
mBERT(mean) 50.9 56.7 54.4 54.0 92.20M 85.05M
XLM-R(mean) 25.7 51.8 50.7 42.7 192.40M 85.05M
mBERT-nli-stsb 65.3 83.9 80.2 76.5 92.20M 85.05M
XLM-R-nli-stsb 64.4 83.1 78.2 75.3 192.40M 85.05M
LASER 68.9 79.7 77.6 75.4 23.56M 17.06M
LaBSE 69.1 80.8 79.4 76.4 385.28M 85.05M

Knowledge Distillation
mBERT← SBERT-nli-stsb 78.8 83.0 82.5 81.4 92.20M 85.05M
DistilmBERT← SBERT-nli-stsb 77.7 84.0 82.1 81.2 92.20M 46.10M
XLM-R← SBERT-nli-stsb 79.9 83.5 82.5 82.0 192.40M 85.05M
mBERT← SBERT-paraphrases 79.1 86.5 88.2 84.6 92.20M 85.05M
DistilmBERT← SBERT-paraphrases 77.7 85.8 88.5 84.0 92.20M 46.10M
XLM-R← SBERT-paraphrases 79.6 86.3 88.8 84.6 192.40M 85.05M
MiniLM← SBERT-paraphrases 80.3 84.9 85.4 83.5 96.21M 21.29M

Ours(Teacher model=SBERT-paraphrases)
XLM-R(b = True, bs = 128, |RU | = 3) 76.7 84.5 86.6 82.6 32.49M 21.26M
XLM-R(b = True, bs = 128, |RU | = 12) 79.0 85.5 88.4 84.3 32.49M 85.05M
XLM-R(b = False, |RU | = 3) 79.9 86.8 88.4 85.0 192.40M 21.26M

Ours(Teacher model=SBERT-paraphrases)
MiniLM(b = True, bs = 128, |RU | = 3) 72.8 79.3 84.4 78.8 32.05M 5.32M
MiniLM(b = True, bs = 128,|RU | = 12) 79.0 84.4 85.2 82.9 32.05M 21.29M
MiniLM(b = False, |RU | = 3) 79.9 85.3 85.6 83.6 96.21M 5.32M

Table 1: Spearman rank correlation (ρ × 100) between the cosine similarity of sentence representations and the
gold labels for STS 2017 monolingual dataset. b indicates whether to use the Embedding Bottleneck strategy, bs
indicates the hidden size of Bottleneck layer. |RU | indicates the first |RU | layers from the basic model are taken
as Recurrent Unit, the recurrent times = basic model layers/|RU |.

4 Experimental results284

4.1 Evaluation setup285

Dataset: The semantic text similarity (STS) task286

requires models to assign a semantic similarity287

score between 0 and 5 to a pair of sentences. Fol-288

lowing Reimers and Gurevych (2020), we eval-289

uate our method on two multilingual STS tasks,290

i.e., STS2017(Cer et al., 2017) and STS2017-291

extend(Reimers and Gurevych, 2020), which con-292

tain three monolingual tasks (EN-EN, AR-AR, ES-293

ES) and six cross-lingual tasks (EN-AR, EN-ES,294

EN-TR, EN-FR, EN-IT, EN-NL).295

Parallel corpus: In stage 1, stage 2296

and stage 3, we use TED2020(Reimers and297

Gurevych, 2020), WikiMatrix(Schwenk et al.,298

2021), Europarl(Koehn, 2005) and NewsCommen-299

tary(Tiedemann, 2012) as parallel corpus for train-300

ing. In stage 4, TED2020 is enough for contrastive301

learning. In this way, the student model first learns302

generalized multilingual knowledge and then pos-303

sesses semantic similarity capabilities.304

Metric: Spearman’s rank correlation ρ is re-305

ported in our experiments. Specifically, we first306

compute the cosine similarity score between two307

sentence embeddings, then calculate the Spearman308

rank correlation ρ between the cosine score and the309

golden score.310

4.2 Implementation details 311

Mean pooling is applied to obtain sentence embed- 312

dings, and the max sequence length is set to 128. 313

We use AdamW(Loshchilov and Hutter, 2019) op- 314

timizer with a learning rate of 2e-5 and a warm-up 315

of 0.1. In stage1, stage2, and stage3, the models 316

are trained for 20 epochs with a batch size of 64, 317

while in stage 4, the student model is trained for 318

60 epochs. The mBERT, XLM-R used in this work 319

are base-size model obtained from Huggingface’s 320

transformers package (Wolf et al., 2020), and the 321

MiniLM refers to MiniLM-L12-H3842 322

4.3 Performance comparison 323

We compare the model obtained from our multi- 324

stage distillation with the previous state-of-the- 325

art models, and results are shown in Table 1 and 326

Table 2. In Pre-trained Model, mBERT(mean) 327

and XLM-R(mean) are mean pooled mBERT 328

and XLM-R models. mBERT-nli-stsb and 329

XLM-R-nli-stsb are mBERT and XLM-R 330

fine-tuned on the NLI and STS training sets. 331

LASER and LaBSE are obtained from Artetxe 332

and Schwenk (2019b) and Feng et al. (2020). In 333

Knowledge Distillation, we use the paradigm of 334

Student←Teacher to represent the Student 335

model distilled from the Teacher model. There 336

2https://huggingface.co/microsoft/Multilingual-MiniLM-
L12-H384
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Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg. Embedding size Encoder size

Pre-trained Model
mBERT(mean) 16.7 33.9 16.0 21.5 33.0 34.0 35.6 27.2 92.20M 85.05M
XLM-R(mean) 17.4 21.3 9.2 10.9 16.6 22.9 26.0 17.8 192.40M 85.05M
mBERT-nli-stsb 30.9 62.2 23.9 45.4 57.8 54.3 54.1 46.9 92.20M 85.05M
XLM-R-nli-stsb 44.0 59.5 42.4 54.7 63.4 59.4 66.0 55.6 192.40M 85.05M
LASER 66.5 64.2 72.0 57.9 69.1 70.8 68.5 67.0 23.56M 17.06M
LaBSE 74.5 73.8 72.0 65.5 77.0 76.9 75.1 73.5 385.28M 85.05M

Knowledge Distillation
mBERT← SBERT-nli-stsb 77.2 78.9 73.2 79.2 78.8 78.9 77.3 77.6 92.20M 85.05M
DistilmBERT← SBERT-nli-stsb 76.1 77.7 71.8 77.6 77.4 76.5 74.7 76.0 92.20M 46.10M
XLM-R← SBERT-nli-stsb 77.8 78.9 74.0 79.7 78.5 78.9 77.7 77.9 192.40M 85.05M
mBERT← SBERT-paraphrases 80.8 83.6 77.9 83.6 84.6 84.6 84.2 82.7 92.20M 85.05M
DistilmBERT← SBERT-paraphrases 79.7 81.7 76.4 82.3 83.2 84.3 83.0 81.5 92.20M 46.10M
XLM-R← SBERT-paraphrases 82.3 84.0 80.9 83.1 84.9 86.3 84.5 83.7 192.40M 85.05M
MiniLM← SBERT-paraphrases 81.3 82.7 74.8 83.2 80.3 82.4 82.2 80.9 96.21M 21.29M

Ours(Teacher model=SBERT-paraphrases)
XLM-R(b = True, bs = 128, |RU | = 3) 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4 32.49M 21.26M
XLM-R(b = True, bs = 128, |RU | = 12) 79.4 83.6 78.7 83.3 84.2 85.6 84.8 82.8 32.49M 85.05M
XLM-R(b = False, |RU | = 3) 81.1 84.3 79.8 82.6 84.5 84.8 85.4 83.2 192.40M 21.26M

Ours(Teacher model=SBERT-paraphrases)
MiniLM(b = True, bs = 128, |RU | = 3) 73.0 76.0 63.7 71.4 71.8 72.1 74.7 71.8 32.05M 5.32M
MiniLM(b = True, bs = 128, |RU | = 12) 79.7 81.0 74.1 81.9 80.1 80.8 80.7 79.8 32.05M 21.29M
MiniLM(b = False, |RU | = 3) 82.3 82.8 76.9 82.1 80.5 82.3 82.4 81.3 96.21M 5.32M

Table 2: Spearman rank correlation (ρ × 100) between the cosine similarity of sentence representations and the
gold labels for STS 2017-extend cross-lingual dataset. b indicates whether to use Embedding Bottleneck strategy,
bs indicates the hidden size of Bottleneck layer. |RU | indicates the first |RU | layers from the basic model are taken
as Recurrent Unit, the recurrent times = basic model layers/|RU |.

are two teacher models, i.e., SBERT-nli-stsb337

and SBERT-paraphrases, which are released338

by UKPLab3. The former is fine-tuned on the339

English NLI and STS training sets, and the lat-340

ter is trained on more than 50 million English341

paraphrase pairs. The student models include342

mBERT, XLM-R, DistilmBERT(Sanh et al., 2019)343

and MiniLM(Wang et al., 2021).344

Table 1 and Table 2 show the evaluation results345

on monolingual and multilingual STS task, respec-346

tively. For the XLM-R, our method compresses347

the embedding size by 83.2% with 0.3% worse348

monolingual performance and 0.9% worse cross-349

lingual performance, compresses the encoder size350

by 75% with slightly higher (0.4%) monolingual351

performance and 0.5% worse cross-lingual perfor-352

mance. When compressing the embedding layer353

and the encoder simultaneously, the model size is354

reduced by 80.6%, its monolingual performance355

drop by 2% and cross-lingual performance drop by356

4%, but it still outperforms the pre-trained models.357

For the MiniLM, our method compresses the358

embedding size by 66.7% with 0.6% worse mono-359

lingual performance and 1.1% worse cross-lingual360

performance, compresses the encoder size by 75%361

with slightly higher monolingual (0.1%) and cross-362

lingual (0.4%) performance.363

Compared with the knowledge distillation364

3https://github.com/UKPLab/sentence-transformers

Model AR-AR ES-ES EN-EN Avg.

ours 76.7 84.5 86.6 82.6
w/o MCL 76.4 83.9 86.8 82.3
w/o Rec. 67.4 80.1 86.6 78.0
w/o MCL+Rec. 67.9 79.3 86.6 77.9

Table 3: Results of ablation studies on STS-2017 mono-
lingual task

Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.

ours 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4
w/o MCL 75.9 79.7 73.2 79.9 80.4 80.4 80.5 78.5
w/o Rec. 69.1 73.4 66.5 70.2 73.7 73.0 75.9 71.7
w/o MCL+Rec. 67.8 73.6 66.4 68.5 72.8 71.8 75.2 70.9

Table 4: Results of ablation studies on STS2017-extend
cross-lingual task

method, XLM-R(b = True, bs = 128, |RU | = 365

12) and MiniLM(b = False, |RU | = 3) surpass 366

the DistilmBERT and MiniLM respectively with a 367

smaller size. 368

4.4 Ablation study 369

Multilingual contrastive learning (MCL) task and 370

parameter recurrent(Rec.) are two crucial mecha- 371

nisms in Multi-stage distillation. We perform abla- 372

tion studies to investigate the effects of these two 373

mechanisms. 374

XLM-R(b=True, bs=128, |RU | = 3) is selected 375

as the basic model. We consider three different 376

settings: 1) training without MLC task. 2) training 377
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Figure 3: Performance of XLM-R (b=True, bs=128,
|RU | = 3) after each training epoch on EN-AR, EN-ES,
EN-FR, EN-TR tasks with different contrastive learn-
ing settings.

without parameter recurrent. 3) training without378

both. The monolingual results and multilingual379

results are presented in Table 3.380

It can be observed that: 1) without MCL task, the381

model performs poorer on the cross-lingual tasks.382

2) without parameter sharing, the model performs383

poorer on all datasets. 3) MCL task can signifi-384

cantly improve the cross-lingual performance on385

EN-AR, EN-ES, EN-FR, EN-NL. It can be con-386

cluded that both MCL task and parameter recurrent387

play a key role in our method.388

4.5 Effect of contrastive learning389

To investigate the effects of contrastive learning in390

stage 4, we select XLM-R(b=True, bs=128, |RU |391

= 3), modify the original objective in (5) into three392

different settings, namely, Bool, CE and w/o CL.393

In the Bool setting, the soft label in (5) is re-394

placed with hard label (0 or 1), as (8),395

`Bool =
1

N2

N∑
i

N∑
j

(
δ(hsiT , h

sj
T )− φ(hsiS , h

tj
S )
)2
,

(8)396

Settings EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.

Ours 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4
Bool 77.0↓ 80.5↑ 73.5↓ 79.8↓ 80.3↓ 80.7↑ 81.2 79.0↓
CE 76.6↓ 79.9↑ 74.3↑ 80.0↓ 80.8↓ 80.6↑ 80.7↓ 78.9↓
w/o CL 75.9↓ 79.7↓ 73.2↓ 79.9↓ 80.4↓ 80.4↑ 80.5↓ 78.5↓

Table 5: Evaluation results of XLM-R (b = True, bs =
128, |RU | = 3) on the STS2017-extend cross-lingual
task with different contrastive learning settings.

where δ(x, y) = 1, if x = y, otherwise 0. 397

In the CE setting, the objective in (5) is replaced 398

with temperature-scaled cross-entropy, as (9), 399

`CE = −
N∑
i

N∑
j

φT log
eφS/τ∑N
k=1 e

φS/τ
, (9) 400

where φT = cos(hsiT , h
sj
T ), φS = cos(hsiS , h

tj
S ), 401

τ = 0.05 is a hyperparameter called temperature. 402

In the w/o CL setting, the contrastive learning is 403

removed in Stage 4. 404

Table 5 presents the model performance of cross- 405

lingual semantic similarity task with different set- 406

tings. It can be observed that all the above training 407

objectives can improve the model performance on 408

the cross-lingual task, compared with the w/o CL 409

settings. Model trained with (8) and (9) underper- 410

form that trained with (5), especially on EN-AR, 411

EN-ES, EN-FR, EN-NL task. 412

Meanwhile, we plot the convergence process of 413

different settings in Figure 3. On EN-AR, EN-ES, 414

EN-FR tasks, our original settings outperform other 415

settings. It is worth mentioning that on the EN-TR 416

task, our original settings underperform the CE 417

setting according to Table 5. However, the original 418

setting reaches the same level as CE setting during 419

the 30 to 40 epoch. 420

4.6 Effect of bottleneck and recurrent unit 421

In this section, we study the impact of embedding 422

bottleneck and recurrent unit strategies on multilin- 423

gual semantic learning. We consider three settings 424

for each strategy, as shown in Table 6 and Table 7. 425

First, we found that as the bottleneck hidden 426

size bs increases, the performance of XLM-R 427

and MiniLM on monolingual and cross-lingual 428

tasks both improved. The performance is best 429

when the entire embedding layer is retained, 430

The MiniLM(b=False) can outperform its original 431

model in Table 1 and Table 2. But the benefit of 432

increasing bs is not obvious unless the entire em- 433

bedding layer is retained. 434
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Model AR-AR ES-ES EN-EN Avg. Embedding size Encoder size

Teacher model=SBERT-paraphrases, Student model=XLM-R, |RU | = 3
b = True, bs = 128 76.7 84.5 86.6 82.6 32.49M 21.26M
b = True, bs = 256 76.2 84.9 87.4 82.8 64.59M 21.26M
b = False 79.9 86.8 88.4 85.0 192.40M 21.26M

Teacher model=SBERT-paraphrases, Student model=XLM-R, b = True, bs = 128
|RU | = 3 76.7 84.5 86.6 82.6 32.49M 21.26M
|RU | = 6 78.1 84.8 87.4 83.4 32.49M 42.52M
|RU | = 12 79.0 85.5 88.4 84.3 32.49M 85.05M

Teacher model=SBERT-paraphrases, Student model=MiniLM, |RU | = 3
b = True, bs = 128 72.8 79.3 84.4 78.8 32.05M 5.32M
b = True, bs = 256 72.2 81.2 85.2 79.5 64.10M 5.32M
b = False 79.9 85.3 85.6 83.6 96.21M 5.32M

Teacher model=SBERT-paraphrases, Student model=MiniLM, b = True, bs = 128
|RU | = 3 72.8 79.3 84.4 78.8 32.05M 5.32M
|RU | = 6 75.6 83.8 85.1 81.5 32.05M 10.64M
|RU | = 12 79.0 84.4 85.2 82.9 32.05M 21.29M

Table 6: The performance of STS2017 monolingual task based on XLM-R(b=True, bs=128, |RU | = 3) and
MiniLM(b=True, bs=128, |RU | = 3), We evaluated the effect of increasing bs or |RU |.

Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg. Embedding size Encoder size

Teacher model=SBERT-paraphrases, Student model=XLM-R, |RU | = 3
b = True, bs = 128 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4 32.49M 21.26M
b = True, bs = 256 79.2 81.8 73.8 82.3 82.7 81.6 82.6 80.6 64.59M 21.26M
b = False 81.1 84.3 79.8 82.6 84.5 84.8 85.4 83.2 192.40M 21.26M

Teacher model=SBERT-paraphrases, Student model=XLM-R, b = True, bs = 128
|RU | = 3 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4 32.49M 21.26M
|RU | = 6 78.8 80.0 74.7 82.9 83.5 83.4 84.6 81.1 32.49M 42.52M
|RU | = 12 79.4 83.6 78.7 83.3 84.2 85.6 84.8 82.8 32.49M 85.05M

Teacher model=SBERT-paraphrases, Student model=MiniLM, |RU | = 3
b = True, bs = 128 73.0 76.0 63.7 71.4 71.8 72.1 74.7 71.8 32.05M 5.32M
b = True, bs = 256 69.7 77.1 66.2 73.5 73.5 74.3 75.6 72.8 64.10M 5.32M
b = False 82.3 82.8 76.9 82.1 80.5 82.3 82.4 81.3 96.21M 5.32M

Teacher model=SBERT-paraphrases, Student model=MiniLM, b = True, bs = 128
|RU | = 3 73.0 76.0 63.7 71.4 71.8 72.1 74.7 71.8 32.05M 5.32M
|RU | = 6 77.1 78.7 68.2 78.1 75.9 77.0 77.6 76.1 32.05M 10.64M
|RU | = 12 79.7 81.0 74.1 81.9 80.1 80.8 80.7 79.8 32.05M 21.29M

Table 7: The performance of STS2017-extend cross-lingual task based on XLM-R(b=True, bs=128, |RU | = 3)
and MiniLM(b=True, bs=128, |RU | = 3), We evaluated the effect of increasing bs or |RU |.

Second, by increasing the number of recurrent435

unit layers |RU |, XLM-R and MiniLM have been436

steadily improved on these two tasks. The increase437

in model size caused by the |RU | is less than the438

bs. For example, the performance of MiniLM on439

cross-lingual tasks increased by 8%, while its size440

only increased by 15.9M.441

Finally, It can be observed that when us-442

ing the Bottleneck layer (b=True), the model443

performance will increase steadily as |RU | in-444

creases. The smaller the encoder hidden size, the445

more significant effect caused by |RU | increasing446

(∆MiniLM>∆XLM-R). However, The increase of447

bs can not improve performance significantly but448

make the embedding size larger. Therefore, an ef-449

fective conclusion can be drawn for compressing450

the multilingual model, that is, reducing bs while451

increasing |RU |. In this way, we shrink XLM-R452

by 58%, MiniLM by 55%, with less than 1.1%453

performance degradation.454

5 Conclusion 455

In this work, we realize that the cross-lingual simi- 456

larity matching task requires a large model size. To 457

obtain a small-size model with cross-lingual match- 458

ing ability, we propose a multi-stage distillation 459

framework. Knowledge distillation and contrastive 460

learning are combined to achieve the goal of com- 461

pressing model size with less performance loss. 462

Our experiments demonstrate promising STS re- 463

sults with three monolingual and six cross-lingual 464

pairs, covering eight languages. The empirical re- 465

sults show that our framework can shrink XLM-R 466

or MiniLM by more than 50%. In contrast, the 467

performance is only reduced by less than 0.6% on 468

monolingual and 1.1% on cross-lingual tasks. If we 469

slack the tolerated loss performance in 4%, the size 470

of XLM-R can be reduced by 80%. In addition, our 471

framework is model-independent and applicable to 472

all transformer-based models. 473
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