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Abstract

Diffusion models operating in discrete state spaces have emerged as powerful
approaches, demonstrating remarkable efficacy across diverse domains, including
reasoning tasks and molecular design. Despite their promising applications, the the-
oretical foundations of these models remain substantially underdeveloped, with the
existing literature predominantly focusing on continuous-state diffusion models. A
critical gap persists in the theoretical understanding of discrete diffusion modeling:
the absence of a rigorous framework for quantifying estimation error with finite
data. Consequently, the fundamental question of how precisely one can reconstruct
the true underlying distribution from a limited training set remains unresolved. In
this work, we analyze the estimation error induced by a score estimation of the
discrete diffusion models. One of the main difficulties in the analysis stems from
the fact that the cardinality of the state space can be exponentially large with respect
to its dimension, which results in an intractable error bound by a naive approach.
To overcome this difficulty, we make use of a property that the state space can be
smoothly embedded in a continuous Euclidean space that enables us to derive a
cardinality independent bound, which is more practical in real applications. In
particular, we consider a setting where the state space is structured as a hypercube
graph, and another where the induced graph Laplacian can be asymptotically well
approximated by the ordinary Laplacian defined on the continuous space, and then
derive state space size independent bounds.

1 Introduction

Diffusion modeling has demonstrated state-of-the-art performance in learning problems such as
creating images (Song et al., 2021; Dhariwal and Nichol, 2021), videos (Ho et al., 2022), and audios
(Chen et al., 2020; Kong et al., 2020), drawing significant attention to their applications.

Theoretical studies on diffusion modeling in continuous state spaces have been conducted within the
framework of score-based generative modeling (Sohl-Dickstein et al., 2015; Song and Ermon, 2019;
Song et al., 2021; Ho et al., 2020; Vahdat et al., 2021). One of the most important characterizations
of diffusion modeling is the formulation using stochastic differential equations (SDEs) proposed by
Song et al. (2021).

With the advent of SDE formulation, significant efforts have been made to analyze the estimation
error between the true distribution and the generated distribution. Lee et al. (2022b) showed that
the total variation distance between the two distributions can be bounded by the polynomial order
of the score estimation error and the step size with the time discretization of the reverse process.
Lee et al. (2022b) assumed the smoothness of the score function and the validity of the log-Sobolev
inequality (LSI) for the true distribution, while Chen et al. (2023b) and Lee et al. (2022a) derived error
bounds without the LSI condition, Chen et al. (2023a) further relaxed the smoothness assumption.
Moreover, Song et al. (2021), Pidstrigach (2022) evaluated error rates under the manifold hypothesis,
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which assumes that the true distribution is concentrated on a low-dimensional manifold. De Bortoli
et al. (2021) and De Bortoli (2022) derived error bounds under the assumptions of score estimation
error bounds at each time step and each point, considering dissipative structures and the manifold
hypothesis, respectively.

While the above studies assumed the accuracy for score approximation, Oko et al. (2023) developed a
theoretical framework that derives the approximation error of the score function when the true density
belongs to a Besov space. Their work combined function approximation theory from deep learning
with the approximation theory of diffusion modeling and employed concentration inequalities to
establish score estimation error bounds. Building upon this seminal work, several refined theoretical
analyses have been proposed, including relaxation of the lower bound condition for the density
(Zhang et al., 2024), analyses under the manifold assumption on the support of the data distribution
(Azangulov et al., 2024), statistical guarantees for reflected diffusion models (Holk et al., 2024), and
minimax optimality of the probability flow ODE (Cai and Li, 2025).

Recently, diffusion modeling for discrete states has also gained attention (Hoogeboom et al., 2021;
Austin et al., 2021; Richemond et al., 2022; Meng et al., 2022; Sun et al., 2023; Santos et al., 2023;
Lou et al., 2024). Notable advancements have been made in learning problems with discrete structures,
such as natural language processing (Austin et al., 2021; He et al., 2023; Wu et al., 2023), molecular
design (Zhang et al., 2023; Gruver et al., 2023; Campbell et al., 2024; Lee et al., 2025), graph
generation (Niu et al., 2020; Shi et al., 2020; Vignac et al., 2023), and segmentation (Zbinden et al.,
2023). In addition, in areas where continuous diffusion modeling performs well, such as image (Hu
et al., 2022; Zhu et al., 2023) and audio generation (Yang et al., 2023), discrete diffusion models have
been shown to efficiently infer multimodal generation problems conditioned on discrete structures
like text.

As for the theoretical analysis of discrete diffusion modeling, Campbell et al. (2022) analyzed total
variation distance based on Markov chains, and Chen and Ying (2024) reduced the error under the
condition that the discrete state space is restricted to the vertices of a hypercube. Ren et al. (2025)
proposed a more general approximation theory for discrete diffusion characterized by a Poisson
random measure with evolving intensity, allowing discrete diffusion modeling to be formulated as
stochastic integrals similar to the theory of continuous diffusion modeling.

However, the theoretical analysis of score estimation error in discrete diffusion modeling remains
unexplored. In this study, we derive score estimation error bounds for discrete diffusion models by
applying the function approximation theory of neural networks and concentration inequalities, which
were previously used in the score estimation theory of continuous diffusion modeling (Oko et al.,
2023). Our main contributions are summarized as follows:

• First, we develop a theoretical framework for bounding the score estimation error in discrete
diffusion models. Unlike continuous diffusion models that rely on L2 loss in score matching,
our analysis handles the Bregman divergence loss that naturally arises in discrete diffusion, and
we rigorously control the estimation error using the Hellinger distance.

• Second, we introduce a novel approach to achieve state-size independent error bounds by
embedding the discrete space X into Rd and approximating the eigenvectors of the graph
Laplacian by functions in an anisotropic Besov space. This enables the use of advanced
function approximation results for deep ReLU networks. Under mild regularity assumptions,
we show that the error bound depends only polylogarithmically on the number of discrete states
M , which nearly achieves the optimal rate conjectured in Ren et al. (2025).

• Third, we demonstrate that this framework can be instantiated in concrete settings such as the
hypercube [0, 1]D and graph-based diffusion processes on smooth manifolds. In both examples,
we show that the eigenvectors of the transition matrix admit efficient approximations.

2 Preliminary

Here, we introduce discrete diffusion models and prepare some technical matters for our theoretical
analysis. Before introducing the discrete diffusion models, we briefly review the continuous state
diffusion models. The continuous diffusion models consist of two stochastic processes, the forward
process and the reverse process, so that the model can generate data whose distribution is sufficiently
close to the true distribution p0 on Rd. The forward process {Xt}t≥0 on Rd is formulated as the
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following Ornstein-Uhlenbeck (OU) process:

X0 ∼ p0, dXt = −Xtdt+
√
2dBt,

where {Bt}t≥0 represents a d-dimensional standard Brownian motion. Under certain assumptions
on the initial distribution p0 (Haussmann and Pardoux, 1986; Cattiaux et al., 2023), the distribution
of Xt, denoted by pt, converges exponentially to the standard normal distribution as t → ∞. The
reverse process {Yt}0≤t≤T (T ≥ 0) defined by the following stochastic process trace-backs the
forward process:

Y0 ∼ pT , dYt = (Yt + 2∇ log pT−t(Yt))dt+
√
2dBt.

That is, the distribution of YT−t coincides with pt for 0 ≤ t ≤ T , and thus we can generate samples
from the target distribution p0 by sampling YT via the reverse process. However, we do not know
the initial distribution of the reverse process pT and the score function ∇ log pt because both of
them are dependent on the unknown true distribution p0. Here, the initial distribution pT can be
replaced by the standard normal distribution for sufficiently large T since pt converges to the standard
normal exponentially fast, and the score function∇ log pt(Yt) can be estimated by least squares score
matching using finite-size training data. These approximations, along with the time discretization of
the process, induce errors in the resulting distribution generated by the model. Chen et al. (2023a)
obtained an upper bound on this error in terms of Kullback–Leibler divergence (KL-divergence).
Their result implies that the main part of the error is the estimation error of the score function∇ log pt.
Based on this observation, Oko et al. (2023) derived the following bound on the score estimation
error.
Proposition 1 (Oko et al. (2023), informal). Under some smoothness assumptions on p0, a score
matching estimator ŝt obtained on a deep neural network model with an appropriate network size,
can achieve

Ex0,i

[∫ T

δ
Ext∼pt

[
∥∇ log pt(xt)− ŝt(xt)∥2

]
dt
]
≲ n−

2s
d+2s log18 n. (1)

Here, s represents the smoothness parameter of the Besov space to which p0 belongs, and δ > 0 is a
sufficiently small end-point time.
This theorem implies that diffusion models with an appropriately designed score-function estimator
can achieve the minimax optimal rate n−

2s
d+2s to estimate the target distribution with smoothness s.

In this work, we establish an analogue of this result for discrete diffusion models.

2.1 Discrete diffusion modeling

Discrete diffusion modeling is defined over a finite set X instead of Rd. Let M := |X|, and consider
estimating the probability mass vector p0 ∈ ∆M , where ∆M :=

{
p |
∑

x∈X p(x) = 1, p ∈ RM
≥0

}
.

We assume that each x ∈ X has a vector representation ι(x) ∈ RD. We identify this vector
representation with x and use the same notation x for both meanings. A typical situation is X =
{0, 1}D where ι(x) = (x1, . . . , xD) ∈ RD, and another example is one-hot-vector representation
X = {x ∈ {0, 1}M |

∑M
i=1 xi = 1}.

Forward process: In the forward process of discrete diffusion modeling, the distribution {pt}t≥0 at
each time step follows the master equation of the following Markov process:

dpt
dt

= Qtpt, (2)

where Qt ∈ RM×M is the transition rate matrix satisfying Qt(x, x) = −
∑

y ̸=xQt(y, x) (∀x ∈ X)
and Qt(x, y) ≥ 0 (∀x ̸= y ∈ X). If π denotes the stationary distribution of the Markov process (2),
the following equation analogous to the continuous diffusion model holds (Bobkov and Tetali, 2006):

KL(pt||π) ≤ exp(−ρ(Q)t)KL(p0||π). (3)

Here, ρ(Q) is the modified log-Sobolev constant(Bobkov and Tetali, 2006) defined as

ρ(Q) := inf
{

Eπ(f,log f)
Entπ(f)

| f : X 7→ R, Entπ(f) > 0
}
,

where Entπ(f) := Eπ[f log f ]− Eπ[f ] logEπ[f ] and Eπ(f, g) = Eπ[fQ
⊤g].
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Reverse process: The reverse process {qt}0≤t≤T = {pT−t}0≤t≤T can be formulated by using
another transition rate matrix Qt as follows (Kelly, 2011):

q0 = pT ,
dqt
dt

= QT−tqt (0 ≤ t ≤ T ), (4)

where Qt(y, x) = pt(y)
pt(x)

Qt(x, y) and Qt(x, x) = −
∑

y ̸=xQt(y, x). Then, it is known that qt =

pT−t (0 ≤ t ≤ T ). Although this reverse process only gives the ODE of the probability mass function
qt, its particle implementation can be given by the τ -leaping algorithm (Campbell et al., 2022; Ren
et al., 2025). This algorithm expresses the reverse process as a stochastic integral and applies the
Euler-Maruyama scheme, similar to the continuous case. The transformation into a stochastic integral
is performed using a Poisson random measure with evolving intensity (Protter, 1983). For simplicity,
we consider the case where Qt is time-homogeneous (Qt = Q holds for all t ≥ 0).
Proposition 2 (Ren et al. (2025)). The reverse process (4) can be expressed as the following stochastic
integral defined by a Poisson process N [µ] with respect to an intensity function µ (see Definition 2 in
Appendix B for its definition):

yt = y0 +
∫ t

0
(y − yt−)N [µ](dt,dy), µt(y) = s◦T−t(yt−, y)Q̃(yt−, y).

where Xt− denotes the left limit of Xt and Q̃ denotes the matrix Q with the diagonal elements set to
0.

Score estimation: However, to implement the τ -leaping algorithm, we need to know the score
function s◦t (x, y) :=

pt(y)
pt(x)

. We approximate it using a score network s : X2 × R→ R ((x, y, t) 7→
st(x, y)) in a deep neural network model F . The score network s can be estimated via score matching
analogous to the continuous state diffusion models, but we need to account for the non-negativity
constraint of the score function. For that purpose, the denoising score entropy is employed instead of
L2 loss (Lou et al., 2024):

s ∈ argmin
s∈F

∫ T

0

Ex∼pt

∑
y ̸=x

BRK(st(x, y)∥s◦t (x, y)) · s◦t (x, y)Q(x, y)

dt

= argmin
s∈F

∫ T

0

Ex0∼p0

Ex∼pt(·|x0)

∑
y ̸=x

BRK(st(x, y)∥s◦t (x, y | x0)) · s◦t (x, y | x0)Q(x, y)

dt.

Here s◦t (x, y | x0) :=
pt(y|x0)
pt(x|x0)

and BR denotes the Bregman divergence defined by

BRf (s
∗∥s) := f(s∗)− f(s)− ∂f(s)(s∗ − s),

for a strictly convex function f , where we employ a particular choice K(x) := x − log x for the
convex function f . In training the neural network, analogous to continuous diffusion models, we
approximate the expectation over x0 ∼ p0 by empirical distribution defined by the training data
Dn := {xi}ni=1 (xi

i.i.d.∼ p0) with size n, and we seek ŝ ∈ F that minimizes this empirical loss. We
define the loss function ℓ as

ℓs(x0) :=

∫ T

δ

Ext∼pt(·|x0)

∑
y ̸=xt

BRK(st(xt, y)∥s◦t (xt, y | x0)) · s◦t (xt, y | x0)Q(xt, y)

dt.

Then, the empirical loss L̂(s) can be written as L̂(s) := 1
n

n

i=1
ls(xi). As we have stated above, we

find the empirical risk minimizer ŝ in the set of deep neural networks that is defined as

Φ(L,W, S,B) := {(A(L)η(·) + b(L)) ◦ · · · ◦ (A(1)x+ b(1)) |

A(i) ∈ RWi+1×Wi , b(i) ∈ RWi+1 ,
∑L

i=1(∥A(i)∥0 + ∥b(i)∥0) ≤ S,maxi ∥A(i)∥∞ ∨ ∥b(i)∥∞ ≤ B},

where L represents the depth, W = (Wi)
L
i=1 represents the width with WL+1 = 1, B represents the

sparsity, and B is a bound on the norm of parameters. Here, the activation function η(·) is given by
η(x) = ReLU(x) := max(x, 0). The function class to which the score network belongs is defined
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Algorithm 1 Implementation of discrete diffusion modeling by τ -leaping
1: Input: ŷ0 ∼ π, time discretization {tk}k∈[0,K] (t0 = 0, tK = T − δ), intensity function µ̂t,

score networkŝt
2: Output: sample from ŷtK ∼ q̂T−δ

3: for n = 0 to K − 1 do
4: ŷtn+1

←
∑

y∈X(y − ŷtn)P(µ̂tn(y)(tn+1 − tn));
5: end for

as F := {s ∈ Φ(L,W, S,B) | st(x, y) ∈ [1/R,R] (∀t, x, y)} with a hyper-parameter R ≥ 1 (see
Assumption 3)1.

We denote the expectation of a measurable function f with respect to x0 ∼ p0 as Pf , and its empirical
distribution as Pnf , i.e., Pf := Ex0∼p0

[f ] and Pnf := 1
n

∑n
i=1 f(xi). Accordingly, the expected

loss L(s) and empirical loss L̂(s) can be expressed as

L(s) := Ex0∼p0
[ℓs(x0)] = P (ℓs), L̂(s) :=

1
n

∑n
i=1 ℓs(xi) = Pn(ℓs),

Then, the empirical risk minimizer on the deep neural network model F is given by

ŝ ∈ argmin
s∈F

Pn(ℓs).

Once we have obtained an estimator ŝ, we can define the corresponding intensity function µ̂t with
time discretization (tk)

K
k=0, with t0 = 0 and tK = T − δ, as

µ̂⌊t⌋(y) = ŝT−⌊t⌋(ŷ⌊t⌋−, y)Q̃(ŷ⌊t⌋−, y),

where ⌊t⌋ = tk for t ∈ [tk, tk+1). Moreover, due to Eq. (3), the initial distribution of the reverse
process q0 can be replaced by π(≃ pT ). Then, the τ -leaping algorithm with our estimate ŝ can be
implemented as in Algorithm 1.

2.2 Technical assumptions and theoretical tools for the error analysis

To derive the discrepancy between the generated distribution and the true target distribution for the
estimated discrete diffusion model implemented by τ -leaping algorithm (Alg. 1), we prepare some
technical tools.

Assumption 1. The transition rate matrix Q is symmetric, and there exist positive constants C,D,
and D such that Q(x, y) < C, D < −Q(x, x) < D.

Assumption 2. There exists a lower bound ρ > 0 for the modified log-Sobolev constant ρ(Q).

Assumption 3. There exists R ≥ 1 such that the true score function and our model satisfy s◦t (x, y) ∈
[1/R,R] and ŝt(x, y) ∈ [1/R,R].

Assumption 4. There exists γ ∈ [0, 1] such that for any y ∈ X satisfying Q(xt−, y) > 0, the

following holds:
∣∣∣pt(xt−)Q(xt,y)
pt(xt)Q(xt−,y) − 1

∣∣∣ ≲ 1 ∨ t−γ .

Assumption 1 is a natural condition for discrete diffusion models which ensures the regularity of
the rate matrix (Ren et al., 2025). Assumption 2 guarantees the exponential convergence of the
forward process in discrete diffusion models, serving a role analogous to functional inequalities in
the continuous case (Bakry et al., 2014). Assumption 3 imposes boundedness on the score function,
which mirrors common assumptions made in continuous-state diffusion processes (Chen et al., 2023a).
Assumption 4 corresponds to the Lipschitz continuity of the score function in continuous diffusion
models (Chen et al., 2023b,a), ensuring sufficient regularity for the analysis. Under these assumptions,
the following result holds.

1The function value restriction can be practically implemented as Φ′ = max{min{Φ, R}, R−1} where min
and max can be realized by ReLU activation.
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Proposition 3 (Ren et al. (2025)). 2 In the τ -leaping algorithm, suppose the time discretization
{tk}k∈[0,K] satisfies tk+1 − tk ≤ κ(1 ∨ (T − tk+1)

1+γ−η) for some η > 0 and assume that

K−1∑
k=0

(tk+1−tk)E
[∑

y ̸=xtk−
BRK(ŝT−tk(xtk−, y)∥s◦T−tk

(xtk−, y))s
◦
T−tk

(xtk−, y)Q(xtk−, y)
]
≤εsc,

for the score network ŝt(x, y). Here, we suppose that γ < η ≲ 1− T−1 for γ < 1, and η = 1 for
γ = 1, and it holds that

T = O
(

log(ε−1
sc log |X|)
ρ

)
, κ = O

(
εscρ

D̄2 log(ε−1
sc log |X|)

)
, δ =

{
0 (γ < 1),

Ω
(
e−

√
T
)

(γ = 1).

Then, under Assumption 1 to 4, the following error bound holds

KL(pδ∥q̂T−δ) ≲ exp(−ρT ) logM︸ ︷︷ ︸
(i)

+D
2
κT︸ ︷︷ ︸

(ii)

+ εsc︸︷︷︸
(iii)

.

Similar to continuous diffusion modeling, the upper bound on the error consists of three terms. (i)
corresponds to the error from the convergence rate of the forward process, as shown in Eq. (3). (ii)
arises from time discretization. (iii) represents the estimation error of the score network. Although
the Girsanov’s theorem cannot be applied to discrete diffusion models, another similar proposition
can be derived from the characterization of a Poisson random measure with evolving intensity (Ren
et al., 2025), which allows for the evaluation of the estimation error. However, unlike continuous
diffusion models, the sample size or neural network parameter size required to satisfy the estimation
error assumption has not been examined. Hence, the aim of this paper is to show an upper bound of
εsc analogous to Eq. (1).

3 Naive estimation error bound of discrete diffusion models

Here, we derive an estimation error bound of the score estimation network in a rather naive way. In
our analysis, the key step is to derive an upper bound on the Hellinger distance between the empirical
risk minimizer ŝ and the true score function s◦, defined by

h(ŝt, s
◦
t ) :=

(
Ext∼pt

[∑
y ̸=xt

(√
ŝt(xt, y)−

√
s◦t (xt, y)

)2
Q(xt, y)

])1/2

.

First, we give a bound on this Hellinger distance under a naive setting.
Theorem 1. Under Assumption 1 to 4, and the same parameter settings as Proposition 3, if the
network size is set as L = O(log2(mM)), W = Õ(M), S = Õ(M), B = Õ(M2) and T =
O(log(M ∨ n)), then with probability at least 1− 2e−t for t ≥ 1, it holds that∫ T

δ

h2(ŝt, s
◦
t )dt = O

(
Mt

n
log8(M ∨ n)

)
.

The formal proof of Theorem 1 is provided in Appendix C . By Proposition 3 and Theorem 1, we
obtain the following result showing an estimation error bound for the estimated distribution.
Theorem 2. Suppose that the same condition as that of Theorem 1 holds. Then, the following
estimation error bound holds with probability 1− 2e−t for t ≥ 1:

KL(pδ∥q̂T−δ) ≲
Mt

n
log8(M ∨ n).

One of the biggest difficulties in deriving this bound is the requirement to carefully treat the Bregman
divergence in contrast to the continuous diffusion models where we could directly deal with the
L2-norm. The difficulty can be overcome by noticing that the Bregman divergence can be lower
bounded by the Hellinger distance. By combining this notion with the so-called peeling device

2It was later pointed out that the τ -leaping update can become ill-defined for non-ordinal data when multiple-
jumps appear in a single time-window, which we were not aware of at the time of writing. Our theoretical results
do not rely on this aspect and therefore remain valid.
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van de Geer (2000), we achieve O(1/n) rate of convergence with respect to the sample size n,
which significantly improves upon the standard Rademacher complexity bound that only provides an
O(1/

√
n) bound. An additional technical contribution is to show how ReLU neural networks can

effectively approximate the score function st.

This bound holds under minimal assumptions. On the other hand, if the state space is a product
space such as X = {0, 1}D (which often happens in real applications), then M can be exponentially
large with respect to the dimension D. To overcome this difficulty, we consider a situation where the
discrete state space X can be embedded into a Euclidean space Rd and the eigenvectors corresponding
to the Markov transition operator Q can be well approximated by a smooth function on Rd. By doing
so, we obtain a significantly improved bound as seen in the next section.

4 State size independent error analysis with continuous space embedding

As we mentioned above, we aim to improve the estimation error by explicitly considering an
embedding from the discrete space X into a Euclidean space RD. Through the embedding, we may
approximate the eigenvectors of Q by functions defined on RD enabling the application of function
approximation theory for smooth functions defined on Euclidean spaces. Especially, the anisotropic
Besov space is a useful function class that covers a wide range of functions with smoothness.

Anisotropic Besov space. Here, we begin by defining anisotropic Besov spaces. Let Ω = [0, 1]d.
For a function f : Ω→ R, we define its Lp-norm as

∥f∥p := ∥f∥Lp(Ω) :=

{
(
∫
Ω
|f |pdx)1/p (0 < p <∞),

supx∈Ω |f(x)| (p =∞).

For β ∈ Rd
++, let |β| :=

∑d
j=1 |βj |. The r-th order finite difference in the direction h ∈ Rd is

defined as: ∆r
h(f)(x) := ∆r−1

h (f)(x+ h)−∆r−1
h (f)(x) and ∆r

h(f)(x) := f(x), for x+ rh ∈ Ω;
otherwise, we define ∆r

h(f)(x) = 0.

Definition 1 (Anisotropic Besov Space). Let 0 < p, q ≤ ∞, β = (β1, . . . , βd)
⊤ ∈ Rd

++, r :=
maxi⌊βi⌋+ 1. Then the Besov semi-norm is defined as

|f |Bα
p,q

:=

{(∑∞
k=0[2

kwr,p(f, (2
−k/β1 , . . . , 2−k/βd))]q

)1/q
(q <∞),

supk≥0 2
kwr,p(f, (2

−k/β1 , . . . , 2−k/βd)) (q =∞),

where wr,p is the r-th order modulus of smoothness defined by wr,p(f, t) :=
suph∈Rd:|hi|≤ti ∥∆

r
h(f)∥p. The anisotropic Besov space Bβ

p,q(Ω) is defined as Bβ
p,q(Ω) :=

{f ∈ Lp(Ω) | ∥f∥Bβ
p,q

:= ∥f∥p + |f |Bβ
p,q

< ∞}. The unit ball of the anisotropic Besov space is

denoted by U(Bβ
p,q).

The harmonic mean of the components of β, which is given by β̃ := (
∑d

j=1 1/βj)
−1, plays an

important role in evaluating the approximation error by ReLU deep neural networks. It is known
that the Hölder class and the Sobolev class with p = 2 are special cases of anisotropic Besov spaces
Triebel (1983, 2011). In the following, we consider a situation where the eigenvectors of Q can be
well approximated by a function in a Besov space on the continuous space.

4.1 Assumpitons

We now summarize the additional assumptions required for the analysis.
Assumption 5. Let 0 < ε < 1. Suppose the orthonormal eigenvectors U = (u1, . . . , uM ) of the
graph Laplacian L = −Q satisfy uj(x) = O(1/

√
M) for all x ∈ X and the initial distribution p0

can be expanded as:
p0(x) =

∑M
j=1 cjuj(x) (∀x ∈ X).

Assume that for each j = 1, . . . ,M , there exists a function
√
Mu∗j : X→ [0, 1] satisfying |u∗j (x)−

uj(x)| ≤ ε/
√
M and representable as u∗j (x) = hj(Px), where hj ∈ γjU(Bβ

p,q) with γj > 0 and
P ∈ Rd×D are projection matrices for all j. Moreover, assume ∥P∥∞ = O(1) and β̃ > 1/p.
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Assumption 6. For each j = 1, . . . ,M , the expansion coefficient satisfies |cj | ≲ |c1| · j−s and the
Besov norms of hj satisfy |γj | ≲ jγ where s > 0 and γ ≥ 0.

Assumption 5 is a technical condition that enables the application of function approximation theories
in the anisotropic Besov space (Suzuki and Nitanda, 2021) (see also Suzuki (2019)). The factor
O(1/

√
M) in uj stems from the normalization of orthonormal eigenvectors, i.e.,

∑
x∈X uj(x)

2 =
1. Assumption 6 imposes a polynomial decay condition on cj , which is a standard regularity
assumption in nonparametric statistics, particularly in the analysis of kernel methods (Caponnetto
and De Vito, 2007; Ying and Pontil, 2008; Dieuleveut and Bach, 2016). The condition on γj reflects
the increasing complexity of the basis functions hj . Similar assumptions are common in the analysis
of eigenfunctions of the Laplacian operator in continuous settings.

4.2 State space size independent error bound

Theorem 3. Assume that Assumption 5 and 6 as well as Assumption 1 to 4 hold, and if the network
size is set as L = O(log2(M)), W = Õ(M), S = Õ(M), B = Õ(M2) and T = O(log(M ∨ n)),
the following estimation error bound holds with probability 1− 2e−t:

∫ T

δ

h2(ŝt, s
◦
t )dt=



O
((

λ
− 2β̃

(1+2β̃)(s−1)+β̃
2 n

− 2β̃(s−1)

(1+2β̃)(s−1)+β̃ +
(

ε
λ2

)2
+ t

n

)
log8(M ∨ n)

)
(s−γ≥1),

O
((

M
2(1−(s−γ)+β̃)

1+2β̃ n
− 2β̃

1+2β̃ +M2
(

ε
λ2

)2
+ t

n

)
log8(M ∨ n)

)
(s<1),

O

((
λ
− 2(1−(s−γ)+β̃)

(1+2β̃)(s−1)+(1−(s−γ)+β̃)

2 n
− 2β̃(s−1)

(1+2β̃)(s−1)+(1−(s−γ)+β̃) + t
n

+ε2
 nβ̃(1−(s−γ))

λ
2γ(1+2β̃)+2(1−(s−γ)+β̃)
2


1

(1+2β̃)(s−1)+(1−(s−γ)+β̃)

 log8(M∨n)

 (otherwise).

The proof of Theorem 3 is given in Appendix D. The estimation error bound in Theorem 3 shows
that for s ≥ 1, the dependence on M is only polylogarithmic, successfully removing any polynomial
dependence on M . This aligns with the optimal rate conjectured in Ren et al. (2025) for discrete
diffusion models. Even when γ + 1/2 < s < 1, the exponent on M remains below 1, yielding an
improved convergence rate over Theorem 1.

As for the dependence on the sample size n, the bound does not explicitly depend on the embedded di-
mension d, which is desirable. Moreover, when s < 1, the rate recovers the optimal rate n−2β̃/(1+2β̃)

derived by Suzuki and Nitanda (2021), but can be dependent on M polynomially. This is because
estimation errors for O(M)-basis functions affect the final results when the decrease of coefficients
is slow. On the other hand, when s is large, we may “cut-off” redundant basis functions so that we
mitigate the dependency on M to poly-log order while the rate with respect to n becomes a bit slower
instead.

Finally, combining Proposition 3 and theorem 3 yields an upper bound on the distribution estimation
error. Here, we let the right hand side of the bound in Theorem 3 be denoted by Ξn,t.
Theorem 4. Suppose that the same condition as that of Theorem 3 holds. Then, the following error
bound holds with probability 1− 2e−t:

KL(pδ∥q̂T−δ) ≲ Ξn,t.

Example 1: Hypercube {0, 1}D. As an example, we consider the hypercube setting X = {0, 1}D
similar to Chen and Ying (2024). This setting is natural in practice, as the general discrete space
X = [S]D which is commonly assumed in many works such as Campbell et al. (2022); Lou et al.
(2024); Zhang et al. (2025) can be encoded as a hypercube structure {0, 1}D log |S|. We let the
eigenvalues of L = −Q be ordered as 0 = λ1 < λ2 ≤ · · · ≤ λM .
Assumption 7. Let the discrete state space be X = {0, 1}D. For any pair of distinct states x ̸= y,
assume the rate matrix Q(x, y) satisfies:

Q(x, y) =

{
1 (d(x, y) = 1),

0 (otherwise),

where d(x, y) denotes the Hamming distance between x and y.
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Under Assumption 7, since the diagonal term satisfies −Q(x, x) = D, we obtain D = O(D).
Moreover, the following spectral property holds.
Lemma 4. Under Assumption 7, for every w ∈ X, hw(x) := cos(πw⊤x)/

√
M is an eigenvector

corresponding to the eigenvalue 2|w|, where |w| is the number of ones in w. In particular, λ2 = 2,
which is independent of the dimension D.

Based on this lemma, we can derive the convergence of the discrete diffusion model as follows.
Corollary 1. Under the assumptions of Proposition 3 and Assumption 5 to 7, for arbitrary δ0 > 0,
the following error bound holds with probability 1− 2e−t:

KL(pδ∥q̂T−δ) ≲

{
(n−(2(s−1)−δ0)/(2s−1) + t/n) log8(M ∨ n) (s ≥ 1),
M+t
n log8(M ∨ n) (s < 1).

The proof can be found in Appendix E. We observe that when s ≥ 1, the convergence rate is
essentially Õ(n−(2(s−1))/(2s−1)), which is independent of the state space size M . This rate could
be achieved by showing that the eigenvectors in this setting can be represented by cosine functions
on the continuous space, and that such trigonometric functions can be efficiently approximated by
deep neural networks. On the other hand, when s < 1, the convergence rate is Õ(M/n), matching
the error bound of the naive estimator in Theorem 1. In this case, accurately approximating the
score function requires aggregating contributions across the entire state space, which leads to higher
estimation complexity.

Example 2: Discrete graph diffusion process. Finally, we consider a diffusion process defined on
a graph. In this setting, each point of X is randomly generated on a d-dimensional, smooth, closed
and connected Riemannian manifoldM⊂ RD isometrically embedded in Rd through ι :M→ RD,
where each point x obeys the uniform distribution p onM independently. On this point cloud X, we
can define the transition rate matrix as the ordinary graph Laplacian: First, let the affinity matrix
be W (x, y) := kσ(x,y)

pσ(x)pσ(y)
where kσ(x, y) = exp

(
−∥x−y∥2

2σ2

)
and pσ(x) =

∑
y∈X kσ(x, y), second,

using a diagonal matrix D ∈ RX×X defined as D(x, x) =
∑

y∈XW (x, y), let the normalized weight
matrix as A = D−1W , and finally we define the normalized Graph Laplacian as the transition matrix
Q = 1

σ2 (A− I). The stochastic process corresponding to Q is known as a diffusion process on the
graph with the normalized weight matrix A. In this setting, the graph Laplacian Q can be considered
as a discrete approximation of the Laplace–Beltrami operator −∆M defined onM, and thus the
eigenfunctions and eigenvalues of the Laplace–Beltrami operator provide a good approximation of
those of Q (i.e., bounding ε in Assumption 5) (Dunson et al., 2021). Since the eigenfunctions of ∆M
are included in the Sobolev space W β

2 (M) with arbitrary β, we can apply our theorem to derive the
following bound. The proof is given in Appendix F.
Corollary 2. Suppose that the same assumptions as Theorem 3 and Assumption 5 and 6 hold,

and s > 1. Then, if M is sufficiently large so that M = Ω(n
max{1+10/d,5/2+4/d}(8d+26)

(d/β+2)(s−1)+1 ) and σ =(
log(M)

M

) 1
4d+13

, then there exists an event with high probability on the realization of X such that, for

arbitrary β such that s− 2β/d > 1, the following error bound holds with probability 1− 2e−t:

KL(pδ∥q̂T−δ) ≲

(
n−

2(s−1)
2(s−1)/(2β/d)+2s−1 +

(
log(M)

M

) 1
8+4d

+
t

n

)
log8(M ∨ n).

Therefore, a distribution on a point cloud X on a smooth manifoldM can be well approximated by
the discrete diffusion models that utilize the graph diffusion process induced by the graph Laplacian
as the forward process.

5 Numerical experiment

To complement our theoretical analysis, we conducted a score-matching experiment that exactly
instantiates Example 1 on the hypercube {0, 1}D with M := 2D. For each D = 6, 8, 10 we
constructed two distributions using the Hadamard basis H ∈ {±M−1/2}M×M :

ℓ(x) := (Hc)x, p(x) =
eℓ(x)∑M−1

y=0 eℓ(y)
.
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Figure 1: Score matching results on hypercube toy examples. Each bar shows the mean denoising
score entropy (DSE) over 10 trials; error bars are ±1 standard deviation (≈ 0.4–0.7× 10−4).

The coefficient vector c ∈ RM was chosen in two regimes:
Low-frequency: c0, . . . , c4 ∼ N (0, 1), ck = 0 for k ≥ 5.
High-frequency: ck ∼ N (0, 1) for all k ≥ 2 (DC and first harmonic set to zero).
Activating only the first few modes yields a smooth distribution, whereas using the whole spectrum
(minus the DC term) creates a highly oscillatory one. Each distribution was evolved for t = 1 under
the rate matrix Q shown in Assumption 7. We then train a one-hidden-layer score network sθ(x, y)
(input 2D, 256 ReLU units, Softplus output) using the denoising score entropy (DSE) loss. Training
used 5000 random Hamming-1 pairs, ADAM (lr = 10−3), and 20 epochs. Performance was evaluated
as the mean DSE over all Hamming-1 pairs. Each setting was repeated 10 times.

The mild increase from D = 6 to D = 10 matches the logarithmic dependence on M = 2D

predicted by Theorem 4 and corollary 1, while the higher errors for high-frequency mixtures reflect
the bounds’ sensitivity to the smoothness parameter. These observations provide concrete evidence
that the theoretical guarantees translate directly to practice without any hyper-parameter tuning or
architectural changes.

6 Conclusion

In this study, we established the first theoretical framework for estimating score functions in discrete
diffusion models. We proved that directly approximating the score function for each discrete state
using a neural network yields an estimation error rate of Õ(M/n) under a naive analysis and
further improved this bound to Õ(n−2β̃(s−1)/(s−1+2sβ̃−β̃)) independent of the state space size M by
assuming a polynomial decay condition on the spectral decomposition of the target distribution. Our
analysis made use of a decomposition of the target distribution by eigenvectors of the transition matrix
Q. Then, we utilized the fact that the eigenfunctions can be well approximated by smooth functions
(i.e., Besov spaces) on an embedded continuous space in order to reduce the model complexity. We
also demonstrated concrete bounds for the hypercube settings and the graph diffusion processes.

One of the main drawbacks of our analysis is that we assumed a mild condition on the score function
s◦t such that it is bounded above by R and below by 1/R. This condition inherits the same condition
assumed in the continuous space (Oko et al., 2023). Relaxing this condition to the case where there is
no uniform lower bound on the density as performed in Zhang et al. (2024) is an important direction
for future work.
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A Construction of Neural Networks

This section collects fundamental tools on function approximation using neural networks. These
results play a central role in our approximation error analysis. Many of the lemmas below are based
on Oko et al. (2023).

A.1 Composition and Combination Lemmas

We begin with lemmas that describe how to combine multiple neural networks. These lemmas are
essential to realize a large neural network that approximates complicated functions.
Lemma 5 (Nakada and Imaizumi (2020)). For any neural networks ϕ1, . . . , ϕk with ϕi : Rdi →
Rdi+1 and ϕi ∈ Φ(Li,W i, Si, Bi), there exists a network ϕ ∈ Φ(L,W,S,B) such that ϕ(x) =
ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1(x) for x ∈ Rd1 with

L =

k∑
i=1

Li, ∥W∥∞ ≤ 2

k∑
i=1

∥W i∥∞, S ≤ 2

k∑
i=1

Si, B ≤ max
1≤i≤k

Bi.

Lemma 6 (Oko et al. (2023)). For any networks ϕ1, . . . , ϕk with ϕi : Rdi → Rd′
i and

ϕi ∈ Φ(Li,W i, Si, Bi), there exists a network ϕ ∈ Φ(L,W, S,B) such that ϕ(x) =

[ϕ1(x1)
⊤, . . . , ϕk(xk)

⊤]⊤ : Rd1+···+dk → Rd′
1+···+d′

k for x = (x⊤1 · · ·x⊤k )⊤ with

L = max
1≤i≤k

Li, ∥W∥∞ ≤ 2

k∑
i=1

∥W i∥∞,

S ≤ 2

k∑
i=1

(Si + LW i
L), B ≤ max{ max

1≤i≤k
Bi, 1}.

Lemma 7 (Oko et al. (2023)). For any networks ϕ1, . . . , ϕk with ϕi : Rdi → Rd and ϕi ∈
Φ(Li,W i, Si, Bi), there exists a network ϕ ∈ Φ(L,W, S,B) such that ϕ(x) =

∑k
i=1 ϕ

i(xi) :
Rd1+···+dk → Rd for x = (x⊤1 · · ·x⊤k )⊤ with

L = max
1≤i≤k

Li + 1, ∥W∥∞ ≤ 4

k∑
i=1

∥W i∥∞,

S ≤ 4

k∑
i=1

(Si + LW i
L) + 2WL, B ≤ max{ max

1≤i≤k
Bi, 1}.

Lemma 8 (Oko et al. (2023)). For t1 < t2 < t1 < t2 and f(x, t) : Rd × R → R, assume
that ϕi(x, t) approximates f(x, t) up to ε > 0 within [ti, ti] (i = 1, 2). There exist networks
ϕ1swit(t; t2, t1), ϕ

2
swit(t; t2, t1) ∈ Φ(3, (1, 2, 1, 1)⊤, 8,max{t1, (t1 − t2)−1}) with

|ϕ1swit(t; t2, t1)ϕ
1(x, t) + ϕ2swit(t; t2, t1)ϕ

2(x, t)− f(x, t)| ≤ ε (t ∈ [t1, t2]).

A.2 Approximations of rational functions

The following lemmas describe how to approximate elementary operations such as multiplication
and reciprocal using neural networks. These are particularly important because the score function in
discrete diffusion models involves the ratio of probabilities between two discrete states, which can be
approximated by neural networks designed to emulate rational functions.
Lemma 9 (Oko et al. (2023)). For k ≥ 2, C ≥ 1, 0 < εerror ≤ 1 and ε > 0, there exists a network
ϕmult(x1, . . . , xk) ∈ Φ(L,W,S,B) with L = O(log k(log ε−1 + k logC)), ∥W∥ = 48k, S =
O(k log ε−1 + k logC), B = Ck such that |ϕmult(x)| ≤ Ck, ϕmult(x1, . . . , xk) = 0 if at least one
of xi is equal to zero, and∣∣∣∣∣ϕmult(x

′
1, x

′
2, . . . , x

′
k)−

k∏
i=1

xi

∣∣∣∣∣ ≤ ε+ kCk−1εerror, ∀x ∈ [−C,C]k, ∥x− x′∥∞ ≤ εerror.
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Lemma 10 (Oko et al. (2023)). For a constant R > 1 and any 0 < ε < R−1, there exists a
network ϕrec(x1, . . . , xk) ∈ Φ(L,W, S,B) with L = O(log2 ε−1), ∥W∥ = O(log3 ε−1), S =
O(log4 ε−1), B = O(ε−2) such that∣∣∣∣ϕrec(x′)− 1

x

∣∣∣∣ ≤ ε+R2|x′ − x|, ∀x ∈ [R−1, R], x′ ∈ R.

B Poisson Random Measures with evolving intensity

In this section, we introduce the formal definition of Poisson random measures with evolving intensity,
which is a foundational concept required for implementing the τ -leaping algorithm. Although this
concept is not central to the main theoretical results of this paper, we include the definition here for
completeness and reference.

Definition 2 (Protter (1983); Ren et al. (2025)). Consider a probability space (Ω,F ,P) and a
measure space (X,B, ν). A non-negative predictable process λt(y) on R+ ×X × Ω is assumed to
satisfy for any T > 0: ∫ T

0

∫
X

(
1 ∨ |y| ∨ |y|2

)
λt(y)ν(dy)dt <∞ a.s.

where ν is the counting measure. probability measure N [λ](dt, dy) on R+ × X is called a Poisson
random measure with evolving intensity λt(y) if:

1. For any B ∈ B and 0 ≤ s < t, N [λ]((s, t]×B) ∼ P
(∫ t

s

∫
B
λτ (y)ν(dy)dτ

)
. where P(·)

represents a Poisson distribution with the given expectation.

2. For any t ≥ 0, B and disjoint sets{Bi}ni=1, the processes {Nt[λ](Bi) := N [λ]((0, t] ×
Bi)}ni=1 are independent.

C Proof of Theorem 1

To prove Theorem 1, we decompose the total estimation error into approximation and generalization
components . We begin by analyzing the score approximation error with a neural network. This part
captures the model bias, and the resulting bound depends on the smoothness of the score function
and the expressive power of the network class. The subsequent subsection will then address the
generalization error using tools from statistical learning theory. Together, these analyses yield the
desired estimation error bound.

C.1 Approximation error analysis

In this subsection, we construct a neural network that approximates the true score function s◦t (x, y)
in a compositional manner by separately approximating pt(x) and its reciprocal 1/pt(x), and then
combining them in a multiplicative way.

Lemma 11. For any ε1 > 0, there exists a neural network ϕ1(x, t) ∈ Φ(L,W,S,B) such that∣∣ϕ1(x, t)−Mpt(x)
∣∣ ≤ ε1 ∀t > 0.

The parameters of ϕ1(x, t) are bounded as follows:

L = O(log2Mε−1
1 ),

∥W∥∞ = O(M log3Mε−1
1 ),

S = O(M log5Mε−1
1 ),

B = O(M2 ∨ logMε−1
1 ).

Proof. We begin by approximating the function e−λjt using a neural network. Define A := log 3ε−1.
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For j = 0, we set ϕj = 1 so that e−λjt is approximated without an error. For j > 0, using the Taylor
expansion, we obtain

e−λjt = e−λjs

(
k∑

i=0

(−λj)i

i!
(t− s)i + (−λj)k+1

(k + 1)!
(θ(t− s))k+1

)
,

where θ ∈ [0, 1]. Setting k = max{⌈2e2D⌉, ⌈log 3ε−1⌉}, we obtain the bound∣∣∣∣e−λjs
(−λj)k+1

(k + 1)!
(θ(t− s))k+1

∣∣∣∣ ≤ ∣∣∣∣ (−λj)k+1

(k + 1)!

∣∣∣∣ < ∣∣∣∣ 1

((k + 1)/2eD)k+1

∣∣∣∣ ≤ |e−k+1| ≤ ε.

Here, we used (n/e)n < n! in the second inequality. By Lemma 9, for each (−λj)
i

i! (t − s)i, there
exists a neural network ϕ(t; i) that approximates it within an error of ε/3(k + 1) over the interval
s ≤ t ≤ s+ 2/λj . The network parameters satisfy:

L = O(log2 ε−1),

∥W∥∞ = O(log ε−1),

S = O(log2 ε−1),

B = O(1).

Similarly, by lemma 7, there exists a neural network ϕs(t) that approximates e−λjt within an error of
ε/3 over s ≤ t ≤ s+ 2/λj , with the following parameter bounds:

L = O(log2 ε−1),

∥W∥∞ = O(log2 ε−1),

S = O(log4 ε−1),

B = O(1).

Note that |cjuj(x)| ≤ 1. Indeed,

cj =
∑
x∈X

p0(x)uj(x) ≤

√√√√(∑
x∈X

p0(x)2

)(∑
x∈X

uj(x)2

)
=

√∑
x∈X

p0(x)2 ≤
∑
x∈X

p0(x) = 1.

Thus, we can construct a neural network ϕ∗j (x, t) that approximates cjuj(x)e−tλj as follows:

ϕ∗j (x, t) :=ϕmult(ϕ
2
swit(t; 1/λj , 2/λj), cjuj(x)ϕ0(t))+

⌈A⌉−1∑
s=1

ϕmult(ϕ
1
swit(t; (s+ 1)/λj , (s+ 2)/λj), ϕ

2
swit(t; s/λj , (s+ 1)/λj), cjuj(x)ϕs/λj

(t)).

Using Lemma 9, the approximation error from each ϕmult is bounded by ε/ log ε−1. We set the
parameters of ϕmult to L = O(log ε−1), ∥W∥∞ = O(1), S = O(log ε−1), B = O(1). To restrict
the input t of ϕ∗j (x, t) to the range [0, A], we define ϕj(x, t) := ReLU(ϕ∗j (x, t) − ϕ∗j (x,A)) +

ϕ∗j (x,A). This ensures that ϕj(x, t) approximates e−λjt with an error at most ε for all t ≥ 0.
For t ≤ A, the following inequality holds: |ϕj(x, t) − cjuj(x)e

−λjt| ≤ ε/3 + ε/3 < ε. For
t > A, we have |ϕj(x, t)− cjuj(x)e−λjt| ≤ |ϕj(x, t)− ϕj(x,A)|+ |ϕj(x,A)− cjuj(x)e−λjA|+
|cjuj(x)(e−λjt − e−λjA)| ≤ 0 + 2ε/3 + ε/3 = ε. Thus, the parameters of ϕ(x, t) are evaluated as
follows:

L = O(log2 ε−1),

∥W∥∞ = O(log3 ε−1),

S = O(log5 ε−1),

B = O(log ε−1).
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Finally, setting ε := ε1/M
2 and summing ϕj(x, t) over all j = 1, . . . ,M , we construct a neural

network ϕ1(x, t) that approximates Mpt(x) within an error of ε1. By Lemmas 7 and 9, the parameter
bounds are given by

L = O(log2Mε−1
1 ),

∥W∥∞ = O(M log3Mε−1
1 ),

S = O(M log5Mε−1
1 ),

B = O(M2 ∨ logMε−1
1 ).

Building on this result, we next construct a neural network that approximates the reciprocal 1/pt(x).

Lemma 12. For any 0 < ε0 ≤ 1
R and ε1 > 0 there exists a neural network ϕ2(x, t) ∈ Φ(L,W, S,B)

satisfying the following inequality:∣∣∣∣ϕ2(x, t)− 1

Mpt(x)

∣∣∣∣ ≤ ε0 +R2ε1 ∀t > 0.

with the parameters of ϕ2 are bounded as follows:

L = O(log2 ε−1
0 ∨ log2Mε−1

1 ),

∥W∥∞ = O(log3 ε−1
0 ∨M log3Mε−1

1 ),

S = O(log4 ε−1
0 ∨M log5Mε−1

1 ),

B = O(M2 ∨ ε−2
0 ∨ logMε−1

1 ).

Proof. From Lemmas 5 and 10, there exists ϕ2(x, t) = ϕrec ◦ ϕ1(x, t) satisfying∣∣∣∣ϕ2(x, t)− 1

Mpt(x)

∣∣∣∣ ≤ ε0 +R2ε1.

Here, the network parameters coincide with those stated above. Regarding pt, the boundedness of the
score function ensures that Mpt(x) =

Mpt(x)∑
y∈X pt(y)

= M∑
y∈X st(y,x)

≥ 1
R which satisfies the conditions

of Lemma 10

Combining the approximations of pt(x) and its reciprocal, we are now ready to construct a neural
network that directly approximates the score function s◦t (x, y) = pt(y)/pt(x). The following lemma
formalizes this construction and provides the approximation error bound.

Lemma 13. For any 0 < ε0 ≤ 1
R and ε1, ε2 > 0, there exists a network ϕscore(x, y, t) ∈ F such

that
|ϕscore(x, y, t)− s◦t (x, y)| ≲ ε0 +R2ε1 + ε2 ∀t > 0.

Here, the parameters of ϕscore are evaluated as:

L = O(log2 ε−1
0 ∨ log2Mε−1

1 ∨ log ε−1
2 ),

∥W∥∞ = O(log3 ε−1
0 ∨M log3Mε−1

1 ),

S = O(log4 ε−1
0 ∨M log5Mε−1

1 ∨ log ε−1
2 ),

B = O(ε−2
0 ∨ logMε−1

1 ).

In particular, the following holds:∫ T

δ

Ex∼pt

∑
y ̸=x

BRK(ϕscore(x, y, t)∥s◦t (x, y)) · s◦t (x, y)Q(x, y)

dt ≲ R log(R)TD(ε0+R
2ε1+ε2)

2.
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Proof. Consider the neural network ϕ3(x, y, t) := [ϕ1(y, t), ϕ2(x, t)]⊤, which parallelizes the esti-
mation of pt(y) and 1/pt(x). The function ϕscore(x, y, t) := ϕmult ◦ ϕ3(x, y, t) is a neural network
that estimates s◦t (x, y) =

pt(y)
pt(x)

, and its error is evaluated as follows:

|ϕscore(x, y, t)− s◦t (x, y)| ≤ |ϕmult(ϕ
1(y, t), ϕ2(x, t))− ϕ1(y, t)ϕ2(x, t)|+ |ϕ1(y, t)ϕ2(x, t)− s◦t (x, y)|

≤ ε2 +
∣∣∣∣ϕ1(y, t)ϕ2(x, t)− ϕ1(y, t)

Mpt(x)
+
ϕ1(y, t)

Mpt(x)
− s◦t (x, y)

∣∣∣∣
≤ ε2 + |ϕ1(y, t)|

∣∣∣∣ϕ2(x, t)− 1

Mpt(x)

∣∣∣∣+ ∣∣∣∣ 1

Mpt(x)

∣∣∣∣ |ϕ1(y, t)− pt(y)|
≤ ε0 + (R2 +R)ε1 + ε2.

From Lemmas 5, 9, 11 and 12, the parameters are bounded as showed in above:

L = O(log2 ε−1
0 ∨ log2Mε−1

1 ∨ log ε−1
2 ),

∥W∥∞ = O(log3 ε−1
0 ∨M log3Mε−1

1 ),

S = O(log4 ε−1
0 ∨M log5Mε−1

1 ∨ log ε−1
2 ),

B = O(ε−2
0 ∨ logMε−1

1 ).

Considering ϕ̄score(x, y, t) which restricts the output of ϕscore(x, y, t) to [1/R,R], Assumption 3
ensures that this restriction does not increase the error, and the order of the parameters remains
unchanged. Thus, we can conclude ϕscore ∈ F .

Since 1/R ≤ ϕscore, s◦ ≤ R and 0 ≤ x− log(x)− 1 ≤ 4 log(R)(x− 1)2 for x ∈ [−1/R2, R2], we
have that

BRK(ϕscore(x, y, t)∥s◦t (x, y)) =
(
ϕscore(x, y, t)

s◦t (x, y)
− log

ϕscore(x, y, t)

s◦t (x, y)
− 1

)
≤ 4 log(R)(ϕscore(x, y, t)/s

◦
t (x, y)− 1)2.

Therefore, we obtain that∫ T

δ

Ex∼pt

∑
y ̸=x

BRK(ϕscore(x, y, t)∥s◦t (x, y)) · s◦t (x, y)Q(x, y)

 dt

≤
∫ T

δ

Ex∼pt

∑
y ̸=x

(ϕscore(x, y, t)/s
◦
t (x, y)− 1)2s◦t (x, y)Q(x, y)

dt

≤
∫ T

δ

Ex∼pt

∑
y ̸=x

4 log(R)(ϕscore(x, y, t)− s◦t (x, y))2s◦t (x, y)−1Q(x, y)

dt

≤ 4R log(R)(ε0 + (R2 +MR)ε1 + ε2)
2

∫ T

δ

Ddt

≲ R log(R)TD(ε20 +R4ε21 + ε22),

which achieves the assertion.

C.2 Generalization Error Analysis

This subsection focuses on bounding the generalization error. The analysis proceeds in three steps:

• First, we relate the score estimation error to a conditional form via a denoising representation.

• Second, we define a loss class and control its generalization error using local Rademacher
complexity and Peeling device.

• Third, we derive explicit complexity bounds using covering number estimates for neural
networks.
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We begin by expressing the explicit score matching entropy as the denoising score entropy. This
representation justifies interpreting the score entropy as the empirical loss.
Lemma 14 (Lou et al. (2024)). For any st(xt, y) and t > 0, the following holds:∑

xt

∑
y ̸=xt

BRK(st(xt, y)∥s◦t (xt, y)) · s◦t (xt, y)pt(xt)Q(xt, y)

=
∑
x0

∑
xt

∑
y ̸=xt

BRK(st(xt, y)∥s◦t (xt, y | x0)) · s◦t (xt, y | x0)pt(xt | x0)p0(x0)Q(xt, y) + C,

where C is a constant independent of st.

Proof.∑
xt

∑
y ̸=xt

BRK(st(xt, y)∥s◦t (xt, y)) · s◦t (xt, y)pt(xt)Q(xt, y)

= −
∑

xt,y ̸=xt

(
log

st(xt, y)

s◦t (xt, y)
− st(xt, y)

s◦t (xt, y)
+ 1

)
· pt(y)Q(xt, y)

= −
∑

x0,xt,y ̸=xt

(
log

st(xt, y)

s◦t (xt, y | x0)
− st(xt, y)

s◦t (xt, y | x0)
+ 1

)
· pt(y | x0)p0(x0)Q(xt, y)

+

 ∑
xt,y ̸=xt

(log s◦t (xt, y)) · pt(y)Q(xt, y)−
∑

x0,xt,y ̸=xt

log s◦t (xt, y | x0)


︸ ︷︷ ︸

=:C

=
∑

x0,xt,y ̸=xt

BRK(st(xt, y)∥s◦t (xt, y | x0)) · s◦t (xt, y | x0) · pt(xt | x0)p0(x0)Q(xt, y) + C,

where C is a constant depending only on pt, Q.

Next, We relate the Hellinger distance to the expected excess risk.

Lemma 15. For any g ∈ G := {g := ℓŝ − ℓs◦ | ŝ ∈ F}, we have that
∫ T−δ

0
h2(ŝt, s

◦
t )dt ≲ Pg.

Proof. From Lemma 14, we have:

Pg = L(ŝt)− L(st)

=

∫ T

δ

Ext∼pt

∑
y ̸=xt

BRK(ŝt(xt, y)∥s◦t (xt, y)) · s◦t (xt, y)Q(xt, y)

dt

= −
∫ T

δ

Ext∼pt

∑
y ̸=xt

(
log

ŝt(xt, y)

s◦t (xt, y)
− ŝt(xt, y)

s◦t (xt, y)
+ 1

)
· s◦t (xt, y)Q(xt, y)

dt

≥ −
∫ T

δ

Ext∼pt

∑
y ̸=xt

(
2

(√
ŝt(xt, y)

s◦t (xt, y)
− 1

)
− ŝt(xt, y)

s◦t (xt, y)
+ 1

)
· s◦t (xt, y)Q(xt, y)

 dt

=

∫ T

δ

Ex∼pt

∑
y ̸=xt

(−2
√
ŝt(xt, y)s◦t (xt, y) + s◦t (xt, y) + ŝt(xt, y))Q(xt, y)

dt

=

∫ T

δ

h(ŝt, s
◦
t )

2dt,

which concludes the assertion.

Here, we aim to bound the generalization error using the local Rademacher complexity Rn(Gr). We
define Gr := {g := ℓs − ℓs◦ | g ∈ G,Pg ≤ r}.
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Lemma 16. For any g ∈ G := {g := ℓs − ℓs◦ | s ∈ F}, it holds that ∥g∥∞ ≲ TRD which also
indicates that Pg2 ≲ TRDPg.

Proof. Define ℓ∗s(x, y, x0, t) := BRK(st(x, y)∥s◦t (x, y | x0)) · s◦t (x, y | x0). Then, for any s ∈
F , x, y ∈ X, it holds that

|ℓ∗s(x, y, x0, t)− ℓ∗s◦(x, y, x0, t)|

=

∣∣∣∣(st(x, y)− s◦(x, y)s◦t (x, y | x0)
− log

st(x, y)

s◦t (x, y)

)
· s◦t (x, y | x0)

∣∣∣∣
=

∣∣∣∣(st(x, y)− s◦(x, y))− log
st(x, y)

s◦t (x, y)
s◦t (x, y | x0)

∣∣∣∣
≤ |st(x, y)− s◦(x, y)|+

∣∣∣∣log st(x, y)s◦t (x, y)
s◦t (x, y | x0)

∣∣∣∣
≤ 2R+ 2 log(R)s◦t (x, y | x0).

Therefore, we arrive at

|ℓs(x0)− ℓs◦(x0)| ≤
∫ T

δ

Ext∼pt(·|x0)

∑
y ̸=xt

|ℓ∗s1(x, y, x0, t)− ℓ∗s2(x, y, x0, t)|Q(xt, y)

 dt

≤
∫ T

δ

Ext∼pt(·|x0)

∑
y ̸=xt

[2R+ 2 log(R)s◦t (x, y | x0)]Q(xt, y)

dt

≤ 2(T − δ)RD +

∫ T

δ

Eyt∼pt(·|x0)

∑
x ̸=yt

2 log(R)Q(x, yt)

 dt

≤ 4(T − δ)RD,

where we used the symmetricity of Q and R ≥ 1 in the last equality. Therefore, we have Pg2 ≤
∥g∥∞Pg ≲ TRDPg.

We introduce two classical tools for controlling the supremum of the empirical loss.

Proposition 17 (Peeling device (van de Geer, 2000; Bartlett et al., 2005; Koltchinskii, 2006)).
Suppose there exists a function ϕ : [0,∞)→ [0,∞) and r̂∗ > 0 such that ∀r > r̂∗,

ϕ(4r) ≤ 2ϕ(r), Rn(Gr) ≤ ϕ(r).

Then, ∀r > r̂∗, the following holds:

E{σi},{xi}

[
sup
g∈G

1
n

∑n
i=1 σig(xi)

Pg + r

]
≤ 4ϕ(r)

r
.

Proposition 18 (Talagrand’s concentration inequality). (Talagrand, 1996; Bousquet, 2002)] Let G̃
be a separable set of measurable functions on the probability space (X,A, P ), and suppose that
∀g ∈ G̃,

E[g] = 0, E[g2] = v, ∥g∥∞ ≤ C.

Then, ∀t > 0,

Pr

{
sup
g∈G̃

1

n

n∑
i=1

g(xi) ≥ 2E{x′
i}

[
sup
g∈G̃

1

n

n∑
i=1

g(x′i)

]
+

√
2tv

n
+

2tC

n

}
≤ e−t.

By using these theorems, the prediction error can be decomposed into the approximation error (model
bias term) and the generalization error (variance term).
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Lemma 19. Define s∗ := argminf∈F L(f), ŝ := argminf∈F L̂(f), ĝ := ℓŝ − ℓs◦ , and
r∗ := L(s∗) − L(s◦). For the function ϕ(r) defined in Proposition 17, there exists r̂ ≳

max
{
ϕ(r̂), r∗, tTD

n

}
such that the following holds with probability 1− 2e−t:

P ĝ ≲ r̂ + r∗ +O
(
TRDt

n

)
.

Proof. By Lemma 16,
Pg2 ≲ TRDPg, ∥g∥∞ ≤ TRD.

Define G̃ :=
{
g̃ := Pg−g(x)

Pg+r | g ∈ G
}

. Then, the following holds:

E[g̃] =
Pg − Pg
Pg + r

= 0,

∥g̃∥∞ =

∥∥∥∥Pg − gPg + r

∥∥∥∥
∞
≤
∥∥∥g
r

∥∥∥
∞

+ 1 ≲
TRD

r
,

∥g̃∥2L2
=
∥Pg − g∥2L2

(Pg + r)2
=
Pg2 − (Pg)2

(Pg + r)2
≤ Pg2

2rPg
≲
TRDPg2

rPg2
=
TRD

r
.

Using Proposition 17 to bound the term E{x′
i}

[
supg∈G̃

1
n

∑n
i=1g(x

′
i)
]

in Proposition 18, we have

E

[
sup
g̃∈G̃

|(P − Pn)g̃|

]
≤ 2Rn(G̃)

= 2E{σi},{xi}

[
sup
g∈G

1

n

n∑
i=1

σi
Pg − g(xi)
Pg + r

]

= 2E{σi},{xi}

[
sup
g∈G

1

n

n∑
i=1

σi
g(xi)

Pg + r

]

≤ 8ϕ(r)

r
.

The first inequality follows from a standard property of the Rademacher complexity, and the final
bound is derived using Proposition 17. Therefore, from Proposition 18, it follows that with probability
at least 1− e−t,

(P − Pn)

(
ĝ

P ĝ + r

)
≤ sup

g̃∈G̃

1

n

n∑
i=1

g̃(xi) ≲
16ϕ(r)

r
+

√
2tTRD

nr
+

2tTRD

nr
=: ψn(r).

Let us define g∗ := l ◦ s∗t − l ◦ st. Then, we get
P ĝ = L(ŝt)− L(st)

= L(ŝt)− L̂(ŝt) + L̂(ŝt)− L̂(s∗t ) + L̂(s∗t )− L(s∗t ) + L(s∗t )− L(st) + L̂(st)− L̂(st)
= (P − Pn)ĝ + (Pn − P )g∗ + Pg∗

≤ (P ĝ + r)ψn(r) + (Pn − P )g∗ + r∗.

Since Pg∗2 ≤ TRDPg∗, the second term can be bounded via Bernstein’s inequality (Wainwright,
2019, Proposition 2.14) as

(Pn − P )g∗ ≤ O

(√
r∗t

n
+
TRDt

n

)
≤ O

(
TRDt

n

)
+

r∗

TRD
,

with probability 1 − e−t for t > 0. We now choose r̂ ≳ max
{
ϕ(r̂), r∗, tTRD

n

}
. If necessary, we

can scale r̂ so that ψn(r̂) ≤ 1/2. Under this condition, the following inequality holds:

P ĝ ≤ ψn(r̂)

1− ψn(r̂)
r̂ +

1 + 1/(TRD)

1− ψn(r̂)
r∗ +O

(
TRDt

n

)
≲ r̂ + r∗ +O

(
TRDt

n

)
.
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To evaluate the complexity function ϕ(r), we use known bounds on the covering number of ReLU
neural networks.
Lemma 20 (Schmidt-Hieber (2020)). For S ⊂ Φ(L,W, S,B), the covering number logN(ε,S, ∥ ·
∥∞) satisfies

logN(ε,S, ∥ · ∥∞) ≤ 2SL log(L(B ∨ 1)Wε−1).

Combining Lemma 20 with the Dudley integral gives the following bound on the local Rademacher
complexity.
Lemma 21. For ϕ(r) defined in Proposition 17,

ϕ(r) ≤ O

(√
SLr

n
log(L(B ∨ 1)∥W∥∞n)

)
.

By combining these local Rademacher complexity controls, we obtain the proof of Theorem 1.

Proof of Theorem 1. From Lemmas 15 and 19, with probability at least 1 − 2e−t the following
inequality holds: ∫ T

δ

h2(ŝt, s
◦
t )dt ≲ O

(
r̂ + r∗ +

TRDt

n

)
.

According to Lemma 13, the model bias term r∗ can be bounded as

r∗ ≲ TRD(ε0 + ε−2
0 ε1 + ε2),

Furthermore, from Lemma 21, the generalization error r̂ is bounded as

r̂ = O
(
SL log(L(B ∨ 1)∥W∥∞n)

n

)
.

The network parameters satisfy the following upper bounds:L = O(log2 ε−1
0 ∨ log2Mε−1

1 ∨
log ε−1

2 ), ∥W∥∞ = O(log3 ε−1
0 ∨M log3Mε−1

1 ), S = O(log4 ε−1
0 ∨M log5Mε−1

1 ∨log ε
−1
2 ), B =

O(M2∨ ε−2
0 ∨ logMε−1

1 ). To balance the size of each term, we set ε0 = M
nD
∧ 1

R , ε1 = M3

n3D
3 ∨ M

nD
,

ε2 = M
nD

. Given that D = O(M), the desired bound follows.

D Proof of Theorem 3

In this section, we provide the proof of Theorem 3. While the subsequent analysis closely parallels
the arguments in Appendix C, the key distinction here lies in the use of function approximation theory
in anisotropic Besov spaces.

D.1 Approximation thoery in anisotropic Besov spaces

Here, we give the function approximation method in an anisotropic Besov class by deep neural
networks. We define the affine composition model, which composes affine transformations with
functions in an anisotropic Besov space:

Haff := {h(Ax+ b) | h ∈ U(Bβ
p,q([0, 1]

d)), A ∈ Rd×D, b ∈ Rd s.t. Ax+ b ∈ [0, 1]d (∀x ∈ Ω)}.

Under this model, the following bound on the approximation error is known.
Proposition 22 (Suzuki and Nitanda (2021)). Suppose x follows the uniform distribution on Ω =
[0, 1]D, and define x̃ = Ax + b ∈ R, which is assumed to have a bounded density supported on
[0, 1]d. Suppose there exists a constant C such that ∥A∥∞ ∨ ∥b∥∞ ≤ C. Then for 0 < p, q, r ≤ ∞
and β ∈ Rd

++ satisfying β̃ > (1/p− 1/r)+, the following approximation error bound holds:

Rr(Φ(L1(d),W1(d), S1(d), d(C + 1)B1(d)),Haff) ≲ N−β̃ ,
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where Rr(F ,H) := supf∗∈H inff∈F ∥f∗ − f∥Lr(Ω) denotes the worst-case approximation error.
Here, the network parameters are set as

L1(d) := 3 + 2

⌈
log2

(
3d∨m

ϵc(d,m)

)
+ 5

⌉
⌈log2(d ∨m)⌉,

W1(d) := NW0,

S1(d) := [(L1(d)− 1)W 2
0 + 1]N,

B1(d) := O(Nd(1+ν−1)(1/p−β̃)+),

where ϵ = N−β̃ log(N)−1, and c(d,m) is a constant depending only on d and m.

D.2 Approximation error bound

Under Assumptions Assumption 5 to 7, we construct a neural network that approximates the score
function s◦t (x, y).
Lemma 23. For every k ∈ [1, . . . ,M ], there exists a neural network ϕ1cont(x, t) ∈ Φ(L,W, S,B)
such that ∣∣ϕ1cont(x, t)−Mpt(x)

∣∣ ≲ (N−β̃ ∨ e−tλ2ε)f1(k) ∨ e−tλ2f2(k) ∀t > 0,

The network parameters satisfy:

L = O(log2(M ∨N)),

∥W∥∞ = O(log3M ∨ kN),

S = O(log5M ∨ kN logN),

B = O(kγpoly(M ∨N)),

where the functions f1(k) and f2(k) are defined as:

f1(k) ≲


k1−(s−γ) (s− γ < 1),

log k (s− γ = 1),

1 (s− γ > 1),

f2(k) ≲


M1−s (s < 1),

logM (s = 1),

k1−s (s > 1),

for 1 ≤ k ≤M and f2(M) = 0.

Proof. We aim to approximate the function Mpt(x) = M
∑M

j=1 cjuj(x)e
−tλj using a neural

network by truncating the sum to a fixed number of terms. Specifically, we consider p∗t (x) =∑k
j=1 cju

∗
j (x)e

−tλj , where each u∗j ∈ Haff . By Proposition 22, there exists a neural network
ϕ0j ∈ Φ(L1(d),W1(d), S1(d), γjB1(d)) such that

∥u∗j − ϕ0j∥L∞(Ω) ≲ γjN
−β̃ .

Following the same strategy as in Lemma 11, we can construct a neural network to approximate the
exponential decay e−tλj . We define ϕ∗j (t) as follows:

ϕ∗j (t) :=ϕmult(ϕ
2
swit(t; 1/λj , 2/λj), ϕ0(t))+

⌈A⌉−1∑
s=1

ϕmult(ϕ
1
swit(t; (s+ 1)/λj , (s+ 2)/λj), ϕ

2
swit(t; s/λj , (s+ 1)/λj), ϕs/λj

(t)).

The product u∗j (x)·e−tλj can be approximated using ϕ∗j (t) and ϕ0j , and by summing over j = 1, . . . , k

and multiplying by M , we can construct the neural network ϕ1cont ∈ Φ(L,W,S,B) satisfying
∥ϕ1cont −Mp∗t ∥ ≤ N−β̃

∑k
j=1 γjj

−s. Here, we set the approximation error of ϕ∗j (t) and ϕmult to

ε =M−2N−β̃ . According to Lemmas 7 and 9, the parameters of ϕ1cont can be bounded as follows:

L = O(log2(M ∨N)),

∥W∥∞ = O(log3M ∨ kN),

S = O(log5M ∨ kN logN),

B = O(γkpoly(M ∨N)).

24



Now, the total error in approximating pt(x) is given by

|Mpt(x)− ϕ1cont(x, t)| ≤ N−β̃
k∑

j=1

γjj
−s +M

∣∣∣∣∣∣
M∑
j=1

cjuj(x)e
−tλj −

k∑
j=1

cju
∗
j (x)e

−tλj

∣∣∣∣∣∣
≲ N−β̃

k∑
j=1

j−(s−γ) +
√
Mε

k∑
j=1

c1j
−se−tλj +M

∣∣∣∣∣∣
M∑

j=k+1

c1j
−suj(x)e

−tλj

∣∣∣∣∣∣ .

For the sum
∑k

j=1 j
−(s−γ) and

∑M
j=k+1 j

−s, we have

k∑
j=1

j−(s−γ) ≤ 1 +

∫ k

1

j−(s−γ)dj ≲


k1−(s−γ) (s− γ < 1),

log k (s− γ = 1),

1 (s− γ > 1),

M∑
j=k+1

j−s ≤
∫ M

k

j−sdj ≲


M1−s (s < 1),

logM (s = 1),

k1−s (s > 1).

Since c1 = 1/
√
M , we can achieve the desired upper bound.

Lemma 24. For any 0 < ε0 ≤ R−1 , there exists a neural network ϕ2cont(x, t) ∈ Φ(L,W, S,B)
such that∣∣∣∣ϕ2cont(x, t)− 1

Mpt(x)

∣∣∣∣ ≲ ε0 +R2((N−β̃ ∨ e−tλ2ε)f1(k) ∨ e−tλ2f2(k)) ∀t > 0,

with network parameters bounded as:

L = O(log2 ε−1
0 ∨ log2(M ∨N)),

∥W∥∞ = O(log3(M ∨ ε−1
0 ) ∨ kN),

S = O(log5M ∨ log4 ε−1
0 ∨ kN logN),

B = O(ε−2
0 ∨ γkpoly(M ∨N)).

Here, f1(k) and f2(k) are defined in Lemma 23.

Proof. As in Lemma 12, we can construct ϕ2cont(x, t) = ϕrec ◦ ϕ1cont(x, t) to achieve the desired
approximation.

Lemma 25. Let 0 < ε0 ≲ R−1 and N ∈ N. Then, there exists a neural network ϕcont(x, y, t) ∈ F
such that

|ϕcont(x, y, t)− s◦t (x, y)| ≲ ε0 +R2((N−β̃ ∨ e−tλ2ε)f1(k) ∨ e−tλ2f2(k)) ∀t > 0.

The parameters of ϕcont are bounded as follows:

L = O(log2 ε−1
0 ∨ log2(M ∨N)),

∥W∥∞ = O(log3(M ∨ ε−1
0 ) ∨ kN),

S = O(log5M ∨ log4 ε−1
0 ∨ kN logN),

B = O(ε−2
0 ∨ γkpoly(M ∨N)).

Here, f1(k) and f2(k) are defined in Lemma 23. Moreover, the following bound holds:∫ T

δ

Ex∼pt

∑
y ̸=x

BRK(ϕcont(x, y, t)∥s◦t (x, y)) · s◦t (x, y)Q(x, y)

dt

≲ R log(R)TD(ε0 +R2λ−1
2 (εf1(k) ∨ f2(k)) +R2N−β̃f1(k))

2.
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Proof. The proof proceeds in a similar manner to Lemma 13. We construct a network
ϕ3cont(x, y, t) := [ϕ1cont(y, t), ϕ

2
cont(x, t)]

⊤ by combining the neural networks that approximate
Mpt(y) and 1/Mpt(x)in parallel. Then, define the overall network as ϕcont(x, y, t) := ϕmult ◦
ϕ3(x, y, t). This network estimates the true score s◦t (x, y) =

pt(y)
pt(x)

, and the error can be bounded as
follows:

|ϕcont(x, y, t)− s◦t (x, y)| ≤ |ϕmult(ϕ
1(y, t), ϕ2(x, t))− ϕ1(y, t)ϕ2(x, t)|+ |ϕ1(y, t)ϕ2(x, t)− s◦t (x, y)|

≤ ε1 +
∣∣∣∣ϕ1(y, t)ϕ2(x, t)− ϕ1(y, t)

Mpt(x)
+
ϕ1(y, t)

Mpt(x)
− s◦t (x, y)

∣∣∣∣
≤ ε1 + |ϕ1(y, t)|

∣∣∣∣ϕ2(x, t)− 1

Mpt(x)

∣∣∣∣+ ∣∣∣∣ 1

Mpt(x)

∣∣∣∣ |ϕ1(y, t)−Mpt(y)|

≲ ε0 + ε1 +R2((N−β̃ ∨ e−tλ2ε)f1(k) ∨ e−tλ2f2(k)).

Setting ε1 = ε0 gives the desired approximation rate.
By the same argument as Lemma 13, we can bound the divergence as∫ T

δ

Ex∼pt

∑
y ̸=x

BRK(ϕcont(x, y, t)∥s◦t (x, y)) · s◦t (x, y)Q(x, y)

dt

≤
∫ T

δ

Ex∼pt

∑
y ̸=x

4R log(R)|ϕcont(x, y, t)− s◦t (x, y)|2Q(x, y)

dt

≤ 4R log(R)

∫ T

δ

(ε0 +R2((N−β̃ ∨ e−tλ2ε)f1(k) ∨ e−tλ2f2(k)))
2Ddt

≲ R log(R)

(
TDε20 +R4

∫ t0

δ

(e−tλ2(εf1(k) ∨ f2(k)))2Ddt+R4

∫ T

t0

(N−β̃f1(k))
2Ddt

)
≲ R log(R)TD(ε0 +R2λ−1

2 (εf1(k) ∨ f2(k)) +R2N−β̃f1(k))
2,

where we define t0 := min
{
δ, λ−1

2 (β̃ logN + log
(
ε ∨ f2(k)

f1(k)

)}
.

D.3 Proof of the statement

By combining the results from Appendices C.2 and D.2, we are now ready to prove Theorem 3.

Proof of Theorem 3. By applying Lemmas 15 and 19, we obtain∫ T

δ

h2(ŝt, s
◦
t )dt ≲ O

(
r̂ + r∗ +

TRDt

n

)
,

with probability 1 − 2e−t. By Lemmas 21 and 25, the model bias term r∗ and the generalization
error r̂ can be bounded as:

r∗ ≲ TR log(R)D[ε0 +R2λ−1
2 (εf1(k) ∨ f2(k)) +R2N−β̃f1(k)]

2,

r̂ = O
(
SL log(L(B ∨ 1)∥W∥∞n)

n

)
.

By setting N = O
(
nk−1f1(k)

2
) 1

1+2β̃ and ε0 = O
(
n−1/2

)
, we have

r∗ + r̂ ≲
[
(n−β̃kβ̃f1(k))

2

1+2β̃ + λ−2
2 f2(k)

2 + λ−2
2 ε2f1(k)

2
]
log8(M ∨N).

We consider balancing the first and second terms as follows:

1. When s ≤ 1 (and thus s− γ ≤ 1): By setting k =M , we obtain

r∗ + r̂ ≲

(
n
− 2β̃

1+2β̃M
2(1−(s−γ)+β̃)

1+2β̃ + λ−2
2 ε2M2

)
log8(M ∨N).
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2. When 1 < s and s− γ ≤ 1: By setting k = (λ1+2β̃
2 n−β̃)

− 1

(1+2β̃)(s−1)+(1−(s−γ)+β̃) , we have
that

r∗ + r̂ ≲

(
λ
− 2(1−(s−γ)+β̃)

(1+2β̃)(s−1)+(1−(s−γ)+β̃)

2 n
− 2β̃(s−1)

(s−1)(1+2β̃)+(1−(s−γ)+β̃)

+ε2λ
− 2(s−1+1−(s−γ))(1+2β̃)+2(1−(s−γ)+β̃)

(1+2β̃)(s−1)+(1−(s−γ)+β̃)

2 n
2β̃(1−(s−γ))

(s−1)(1+2β̃)+(1−(s−γ)+β̃)

)
log8(M ∨N).

3. When 1 < s and 1 < s− γ: By setting k = (n−β̃λ1+2β̃
2 )

1

1+β̃−s−2sβ̃ , we have

r∗ + r̂ ≲

(
λ
− 2β̃

s−1+2sβ̃−β̃

2 n
− 2β̃(s−1)

s−1+β̃+2β̃(s−1) + λ−2
2 ε2

)
log8(M ∨N).

E Proof of Corollary 1

E.1 Proof of Lemma 4

Before proceeding to the main proof, we present a preparatory result on the spectral properties of
the graph Laplacian in Lemma 4. Since hw(x) = (−1)w⊤x, for every w ∈ {0, 1}D, the function
hw : {0, 1}D → {−1, 1} is an eigenfunction of the adjacency matrix A defined on {0, 1}D. Let the
state vi ∈ {0, 1}D satisfy d(vi, x) = 1 in terms of the Hamming distance, where the index i indicates
the coordinate at which vi and x differ. Then, we obtain

D∑
i=1

hw(vi) = (D − |w|)hw(x)− |w|hw(x) = (D − 2|w|)hw(x),

which implies hw is an eigenfunction of A with the eigenvalue D− 2|w|. Since L = DI −A, where
I denotes the identity matrix, it follows that hw is also an eigenfunction of L with eigenvalue 2|w|,
and in particular, λ2 = 2.

E.2 Main proof

First, we show hw(x) := cos(πw⊤x)/
√
M belongs to the Sobolev classHβ([0, 1]D) for any constant

β ∈ N. Sobolev spaces are defined by

Hβ(Ω) :=

f ∈ L2(Ω)

∣∣∣∣∣∣∣ ∥f∥Hβ :=

∑
|α|≤β

∥Dαf∥22

1/2

<∞

 , Dαf :=
∂|α|

∂α1 . . . ∂αD
f.

Here α = (α1, . . . αD) ∈ ND
0 . Using the chain rule, we obtain

Dαhw(x) =
1√
M
pα(cos(πw

⊤x), sin(πw⊤x))(πw)|α|.
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The term pα is a finite linear combination of trigonometric functions and |pα| = O(1). In particular,
we have the bound |Dαhw| ≲ O(|w||α|/

√
M). Thus, the Sobolev norm of hw is bounded as

∥hw∥2Hβ =
∑
|α|≤β

∥Dαhw∥22

=
∑
|α|≤β

∫
[0,1]D

|Dαhw|2dx

=
∑
|α|≤β

O(|w|2|α|/M)

=

β∑
k=0

∑
|α|=k

O(|w|2|α|/M)

= O(D3β/M)

= O(1).

This implies that hw ∈ Hβ([0, 1]D) and, in particular, hw lies in the scaled Sobolev unit ball: there
exists a constant γw > 0 such that hw ∈ γwU(Hβ), where U(Hβ) denotes the unit ball in Hβ(RD).
Since Hβ = Bβ

2,2 in the sense of Besov spaces, Theorem 4 can be applied directly. Specifically, for
the function u∗j (x) = cos(πw⊤

j x), Assumptions 5 and 6 hold with parameters ε = 0, γj = O(1), and
γ = 0. Moreover, Lemma 4 ensures that λ2 = O(1). By choosing β sufficiently large, the desired
bound follows from Theorem 4.

F Proof of Corollary 2

Here, let ϕj(x) be the eigenfunctions of the Laplace-Beltrami operator −∆M normalized in L2(M),
and their corresponding eigenvalues are denoted by 0 = µ1 < µ2 ≤ · · · , that is, −∆Mϕj = µjϕj ,
and let σ(−∆M) := {µi}∞i=1 be the set of eigenvalues. For a vector u = (u(x))x∈X, we define

∥u∥ℓ2(p̂) :=
√
|Sd−1|σd

d

∑
x∈X

u(x)2

N (x)
,

where N (x) := {y ∈ X | ∥x− y∥ ≤ σ}. Then, the following result is known:
Proposition 26 (Dunson et al. (2021)). Suppose that M is sufficiently large such that

M > max

(X2 + µ
d/2+5
k

min(Γk, 1)

)8d+26

, (X3 + µ
(5d+7)/4
k )8d+26

 , (5)

where X2,X3 > 1 are constants depending on d and the volume, the radius, the curvature and the
second fundamental form of the manifoldM, and Γk = min1≤j≤k dist(µj , σ(−∆M)\{µj}). Let

σ =
(

log(M)
M

) 1
4d+13

. Then for 1 ≤ j ≤ K, it holds that

max
x∈X

∣∣∣∣ uj(x)

∥uj∥ℓ2(p̂)
− ϕj(x)

∣∣∣∣ ≤ C2

(
log(M)

M

) 1
8d+16

. (6)

Since −∆Mϕj = µjϕj , the Sobolev norm of ϕj for β ∈ N can be evaluated as

∥ϕj∥Wβ(M) ≤ C(1 + ∥∆
β
Mϕj∥L2(M)) ≤ C(1 + µβ

j ).

Moreover, since it is known that µj = Θ(j2/d) (Hassannezhad et al., 2016), we obtain that

∥ϕj∥Wβ(M) ≲ j2β/d.

This implies that we may choose γ = 2β/d. Now suppose that β is chosen so that s − γ > 1.
More precisely, we can approximate ϕj by a composite function ϕ̃j ◦ ψM where ψM : RD → Rd
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represents a smooth function giving the local coordinate ofM and ϕ̃j is a function on this local
coordinate that corresponds to ϕj . Then, we may think ϕ̃j is a function in a Besov space Bβ

2,2 on a
compact domain of Rd, and thus ϕ̃j ◦ ψM can be approximated by ReLU deep neural networks with
an error O(jγN−β/d).

Since p is the uniform distribution, a measure concentration inequality (Wainwright, 2019) implies

|Sd−1|σd

d

1

N (x)
= Θ

(
1

M

)
,

uniformly over x ∈ X, with high probability, provided that σ ≥
(

log(M)
M

) 1
4d+13

. In this event, we

see that ∥u∥ℓ2(p̂) = Θ(∥u∥/
√
M) = Θ(1/

√
M). Then, by Eq. (6), Assumption 5 is satisfied for

u∗j (x) = ∥uj∥ℓ2(p̂)ϕj(x) ≃ ϕj(x)/
√
M with the approximation error

ε =

(
log(M)

M

) 1
8d+16

.

To achieve the assertion in Theorem 4 with β̃ = β/d, we choose k in its proof as

k = (n−β/dλ
1+2β/d
2 )

1
1+β/d−s−2sβ/d ≃ n

1
(d/β+2)(s−1)+1 ,

which yields µk = O(n
2/d

(d/β+2)(s−1)+1 ). Hence, (µ
d/2+5
k )8d+26 = O(n

(1+10/d)(8d+26)
(d/β+2)(s−1)+1 ) and

(µ
(5d+7)/4
k )8d+26 = O(n

(5/2+4/d)(8d+26)
(d/β+2)(s−1)+1 ). We assume that M is sufficiently large to satisfy Eq. (5)

with this choice of k, which ensures the approximation error bound above holds.

Based on these arguments, Theorem 4, with β̃ = β/d and p = q = 2, gives that

KL(pδ∥q̂T−δ) ≲

(
n−

2(s−1)
2(s−1)/(2β/d)+2s−1 +

(
log(M)

M

) 1
8+4d

+
t

n

)
log8(M ∨ n),

which yields the assertion.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The target of the analysis (discrete diffusion models) is detailed in Section 2.
The convergence analysis is given in Sections 3 and 4. Proof details are provided throughout
the appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the conclusion section (Sec. 6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumptions of the theoretical analyses are given in Sections 2.2 and
Section 4 before we state our results. All complete proofs are provided throughout the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There is no numerical experiment in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: There is no numerical experiment conducted in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This is a purely theoretical paper. There is no numerical experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: There is no numerical experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: There is no numerical experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have checked that the research conforms with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is purely theoretical paper and no immediate societal impact is
expected.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a purely theoretical paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development and theoretical analyses in this research do not
involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminary
	Discrete diffusion modeling
	Technical assumptions and theoretical tools for the error analysis

	Naive estimation error bound of discrete diffusion models
	State size independent error analysis with continuous space embedding
	Assumpitons
	State space size independent error bound

	Numerical experiment
	Conclusion
	Construction of Neural Networks
	Composition and Combination Lemmas
	Approximations of rational functions

	Poisson Random Measures with evolving intensity
	Proof of Theorem 1
	Approximation error analysis
	Generalization Error Analysis

	Proof of continue:hellinger
	Approximation thoery in anisotropic Besov spaces
	Approximation error bound
	Proof of the statement

	Proof of cor:Hypercube
	Proof of lem:spgap
	Main proof

	Proof of cor:GraphLapConv

