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Figure 1: Method overview. Unlike conventional world models with pixel-aligned representations,
we propose Terra as a native 3D world model that describes and generates 3D environments with
point latents. Starting with a glimpse of the environment, Terra progressively explores the unknown
regions to produce a coherent and complete world simulation.

ABSTRACT

World models have garnered increasing attention for comprehensive modeling of
the real world. However, most existing methods still rely on pixel-aligned rep-
resentations as the basis for world evolution, neglecting the inherent 3D nature
of the physical world. This could undermine the 3D consistency and diminish
the modeling efficiency of world models. In this paper, we present Terra, a na-
tive 3D world model that represents and generates explorable environments in
an intrinsic 3D latent space. Specifically, we propose a novel point-to-Gaussian
variational autoencoder (P2G-VAE) that encodes 3D inputs into a latent point rep-
resentation, which is subsequently decoded as 3D Gaussian primitives to jointly
model geometry and appearance. We then introduce a sparse point flow matching
network (SPFlow) for generating the latent point representation, which simulta-
neously denoises the positions and features of the point latents. Our Terra enables
exact multi-view consistency with native 3D representation and architecture, and
supports flexible rendering from any viewpoint with only a single generation pro-
cess. Furthermore, Terra achieves explorable world modeling through progressive
generation in the point latent space. We conduct extensive experiments on the
challenging indoor scenes from ScanNet v2. Terra achieves state-of-the-art per-
formance in both reconstruction and generation with high 3D consistency.

1 INTRODUCTION

World models have emerged as a promising research direction, with the aim of understanding and
simulating the underlying mechanics of the physical world (Ha & Schmidhuber, 2018). Unlike
Large Language Models (LLMs), which are confined to textual processing (Vaswani et al., 2017;
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Brown et al., 2020), world models integrate multimodal visual data to construct a comprehensive and
internal representation of the environment (Ha & Schmidhuber, 2018). From learning the evolution
of the real world, world models enable various downstream applications, including perception (Min
et al., 2024; Lai et al., 2025), prediction (Zheng et al., 2024a; Xiang et al., 2024; Team et al., 2025;
Agarwal et al., 2025), reasoning (Bruce et al., 2024; Assran et al., 2023; Huang et al., 2024), and
planning (Ren et al., 2025; Assran et al., 2025; Zheng et al., 2024b).

Scene representation is fundamental to world models (Wang et al., 2024c; Team et al., 2025; Zheng
et al., 2024a), forming the basis for world evolution. Conventional methods typically rely on 2D im-
age or video representations, simulating world dynamics through video prediction (Agarwal et al.,
2025; Bruce et al., 2024; Xiang et al., 2024; Assran et al., 2025). However, the generated videos
often lack consistency across frames (Wang et al., 2024c; Huang et al., 2024; Zheng et al., 2024b),
as the models do not consider explicit 3D priors and instead learn only implicit 3D cues from the
training videos. To address this limitation, a line of work simultaneously predicts RGB images and
depth maps to construct a pixel-aligned 2.5D representation (Team et al., 2025; Yang et al., 2025a;
Lu et al., 2025). While they integrate geometric constraints into the generation process, learning
the multi-view pixel correspondence remains challenging due to the ambiguity of relative camera
poses. The physical world is inherently three-dimensional, including objects and their interactions.
However, the rendering process only produces a partial 2D observation of the underlying 3D envi-
ronment, inevitably losing crucial depth and pose information (Mildenhall et al., 2021; Kerbl et al.,
2023). This poses critical challenges on the multi-view consistency of world models based on pixel-
aligned representations (Lu et al., 2025; Team et al., 2025; Yang et al., 2025a; Wang et al., 2024c).

To address this, we present Terra, a native 3D world model that describes and generates explorable
environments with an intrinsic 3D representation, as shown in Figure 1. At its core, we learn a
native point latent space that employs spatially sparse but semantically compact point latents as
the basis for reconstruction and generation. Accordingly, Terra completely discards pixel-aligned
designs and directly learns the distribution of 3D scenes in its most natural form, achieving 3D con-
sistency without bells and whistles. To elaborate, we propose a novel point-to-Gaussian variational
autoencoder (P2G-VAE) that converts 3D input into the latent point representation. The asymmetric
decoder subsequently maps these point latents to rendering-compatible 3D Gaussian primitives to
jointly model geometry and appearance. The P2G-VAE effectively reduces the redundancy in the
input 3D data and derives a compact latent space suitable for generative modeling. Furthermore,
we propose a sparse point flow matching model (SPFlow) to learn the transport trajectory from the
noise distribution to the target point distribution. The SPFlow simultaneously denoises the positions
and features of the point latents to leverage the complementary nature of geometric and textural
attributes to foster their mutual enhancement. Based on P2G-VAE and SPFlow, we formulate the
explorable world model as an outpainting task in the point latent space, which we approach through
progressive training with three stages: reconstruction, unconditional generative pretrain, and masked
conditional generation. We conduct extensive experiments on the challenging indoor scenes from
ScanNet v2 (Dai et al., 2017). Our Terra achieves state-of-the-art performance in both reconstruction
and generation with high 3D consistency and efficiency.

2 RELATED WORK

2D world models. Early attempts in world models focus on image or video representations, thanks
to the exceptional performance of 2D diffusion models (Ho et al., 2020; Song et al., 2020; Rombach
et al., 2022; Blattmann et al., 2023; Peebles & Xie, 2023). DriveDreamer (Wang et al., 2024c) and
Sora (OpenAI, 2024) represent pioneering image-based and video-based world models, respectively,
both leveraging diffusion models to achieve view-consistent and temporally coherent world model-
ing. Subsequent research efforts focus primarily on enhancing the temporal consistency (Henschel
et al., 2025; Huang et al., 2024; Yin et al., 2023), spatial coherence (Yu et al., 2024b; Wu et al., 2025;
Chen et al., 2025a), physical plausibility (Assran et al., 2023; Agarwal et al., 2025; Assran et al.,
2025), and interactivity (Xiang et al., 2024; He et al., 2025; Wang et al., 2025b) of generated videos.
Several studies also explore integrating the language modality with conventional methods to train
multimodal world models (Zheng et al., 2024b; Kondratyuk et al., 2023). Recently, Genie-3 (Bruce
et al., 2024) has emerged as one of the most successful video world models, which enables excellent
photorealism, flexible interaction, and real-time generation. Despite the promising advancements,
2D world models learn the evolution of the real world solely from image or video data, overlooking
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the inherent 3D nature of the physical environments. This lack of sufficient 3D priors often results
in failures to maintain 3D consistency in the generated outputs. Moreover, 2D world models require
multiple generation passes to produce results with different viewing trajectories.

2.5D world models. To incorporate explicit 3D clues into world models, and also leverage the
generative prior from 2D diffusion networks, a line of work (Hu et al., 2025; Gu et al., 2025; Chen
et al., 2025b; Yang et al., 2025b; Huang et al., 2025; Yu et al., 2025) proposes to jointly predict depth
and RGB images as a pixel-aligned 2.5D representation. ViewCrafter (Yu et al., 2024b) employs an
off-the-shelf visual geometry estimator (Wang et al., 2024a) to perform depth and pose prediction,
which is then used in novel view reprojection. Prometheus (Yang et al., 2025a) trains a dual-modal
diffusion network for joint generation of depth and RGB images conditioned on camera poses.
Furthermore, several work (Team et al., 2025; Lu et al., 2025) converts camera poses to 2D Plücker
coordinates, in order to consider camera poses, depth and RGB images in a unified framework. In
general, these methods try to learn the joint distribution of depth, poses and texture to improve 3D
consistency. However, these factors are deeply coupled with each other by the delicate perspective
transformation, which is often challenging for neural networks to learn in an implicit data-driven
manner. We propose a native 3D world model that represents and generates explorable environments
with a native 3D latent space, and guarantees multi-view consistency with 3D-to-2D rasterization.

Native 3D generative models. Most relevant to our work are native 3D generative models that also
employ 3D representations. Pioneering work in this field focuses on point cloud generation. Luo
& Hu (2021) proposes the first diffusion probabilistic model for 3D point cloud generation. Vahdat
et al. (2022) later extend this paradigm to support latent point diffusion, followed by advancements
in architecture (Ren et al., 2024b), frequency analysis (Zhou et al., 2024) and flow matching (Vogel
et al., 2024; Hui et al., 2025). However, these methods are confined to object or shape level gen-
eration and are unable to synthesize textured results, which greatly restricts their application. To
integrate texture, Lan et al. (2025) and Xiang et al. (2025) adopt Gaussian splatting as the 3D repre-
sentation, but they are still limited to object generation. Zheng et al. (2024a) and Ren et al. (2024a)
extend to scene-level 3D occupancy generation, but the occupancy is coarse in granularity and does
not support rendering applications. In summary, existing methods are restricted to either object-level
fine-grained or scene-level coarse geometry generation. In contrast, we construct the first native 3D
world model with both large-scale and rendering-compatible 3D Gaussian generation.

3 PROPOSED APPROACH

3.1 LATENT POINT REPRESENTATION

We present Terra as a native 3D world model that represents and generates explorable environments
with an intrinsic 3D representation. Figure 2 outlines the overall pipeline. Formally, we formulate
explorable world models as first generating an initial scene S0 and progressively expanding the
known regions to produce a coherent and infinite world simulation S:

S0 = g(∅,C0;θ), Si = g(Si−1,Ci;θ), Si = {S0,S1, ...,Si}, (1)

where subscripts denote exploration steps, and g(Si−1,Ci;θ) represents the model with learnable
parameters θ that generates the next-step exploration result Si based on the set of previously known
regions Si−1 and the current conditional signal Ci. Conventional world models with pixel-aligned
representations instantiate Si with colors R, depths D and poses T from different viewpoints:

Si = [(R
(n)
i ,D

(n)
i ,T

(n)
i )|Nn=1], (2)

where N denotes the number of views in a single generation step and the superscript (n) is the view
index. On the other hand, multi-view consistency for Lambert’s model can be formulated as:

R(n)|x(n) = R(m)|x(m) , d(n)x(n) = T (n)x, n,m = 1, 2, ..., N, (3)

where x, x(n), d(n), R(n)|x(n) denote the 3D coordinates of a visible point, the image coordinates of
x in the n-th view, the depth of x in the n-th view, and sampling R(n) at x(n), respectively. Eq. (3)
requires that different pixels on separate views should share the same color if they are the projections
of the same visible 3D point. Therefore, the ideal representation for conventional world models
should be the combination of Eq. (2) and (3), i.e. the multi-view colors, depths and poses satisfying
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Figure 2: Overall pipeline. Terra consists of a point-to-Gaussian VAE and a sparse point flow
matching model. The P2G-VAE effectively learns the transformation from input RGB point cloud
to point latents, and then to 3D Gaussian primitives. The SPFlow learns the joint distribution of
geometry and appearance. Both P2G-VAE and SPFlow adopt native sparse 3D architectures.

the reprojection constraint. Unfortunately, it is often challenging for neural networks to learn this
constraint in an implicit data-driven manner, leading to multi-view inconsistency. ViewCrafter (Yu
et al., 2024b) bypasses this problem by taking smaller steps (N = 1) in every generation and
explicitly projects previous contexts onto the novel view to enforce reprojection consistency. While
effective, this approach significantly compromises the efficiency of exploration.

Different from the pixel-aligned counterparts, we propose latent point representation P as a native
3D descriptor of the environment: Si = Pi ∈ RMi×(3+D), where Mi and 3+D denote the number
of point latents for the i-th exploration step and the sum of the dimensions for 3D coordinates and
features, respectively. The latent point representation is similar to the actual point cloud, located
sparsely on the surface of objects, but limited in number and with semantically meaningful latent
features. It also supports adapting Mi according to the complexity of different regions and inte-
grating historical contexts by simply concatenating previous Pis. This design completely discards
the view-dependent elements (Eq. (2)) and the reprojection constraint (Eq. (3)) from the exploration
process and instead models the environment with 3D points x directly. These point latents can be
transformed into 3D Gaussian primitives for rasterization, naturally satisfying 3D consistency and
enabling flexible rendering from any viewpoint without rerunning the generation pipeline.

3.2 POINT-TO-GAUSSIAN VARIATIONAL AUTOENCODER

We design the P2G-VAE to effectively generate the latent point representation from the input scene
and decode it into 3D Gaussian primitives. We suppose the input scene is described by a colored
point cloud Q ∈ RB×6 to provide necessary 3D information, where B and 6 represent the number of
points and the sum of dimensions for 3D coordinates and color, respectively. We build our P2G-VAE
based on the point transformer architecture (Zhao et al., 2021) for efficiency. Apart from removing
the residual connections in the original PTv3 (Wu et al., 2024a), we include the following novel
designs for a robust latent space and effective Gaussian decoding, as shown in Figure 3.

Robust position perturbation. In conventional VAEs (Kingma & Welling, 2014), it is common
to regularize the latent features with a Kullback-Leibler Divergence loss LKL to align the feature
distribution with a standard normal distribution. However, it is nontrivial to generalize this practice
to unstructured point latents where 3D coordinates themselves contain crucial geometry information.
Directly regularizing the coordinates to approximate Gaussian noise would have an adverse effect
on the locality of point latents and the associated local structures. To this end, we propose a robust
position perturbation technique which perturbs the coordinates of point latents with a predefined
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Figure 3: Method details. LAP, Pos. Res., Feat. Res. and NN. denote linear assignment problem,
position residual, feature residual and nearest neighbor, respectively.
Gaussian noise n ∼ N (0, σ2I3) where σ is a hyperparameter for noise intensity:

P = [(p(m) ∈ R3,f (m) ∈ RD)|Mm=1], p = p̂+ n, f ∼ N (mean(f̂), diag(var(f̂))), (4)

where we split point latents P into M position-feature pairs (p,f) and omit the exploration step for
simplicity. The p̂ and f̂ denote the positions and features of points as input to the VAE bottleneck,
and mean(·), var(·) are the functions to calculate the mean and variance of the latent features f .
The robust position perturbation enhances the robustness of the VAE decoder against slight pertur-
bations over the positions of point latents. Further, it greatly improves the generation quality since
generated samples inevitably contain a certain level of noise, similar to our perturbation process.

Adaptive upsampling and refinement. Given point latents after downsampling and perturbation,
the VAE decoder should upsample them to an appropriate number and restore the dense structure. To
achieve this, we introduce the adaptive upsampling and refinement modules. The adaptive upsam-
pling module splits each point (p,f) into K child points (p(k),f (k))|Kk=1 with K learnable queries
q(k)|Kk=1. These queries first interact with each point for contexts, and then each query predicts a
relative displacement disp(·) and a residual feature resf(·) for the corresponding child point:

q̂(k)|Kk=1 = ups(f , q(k)|Kk=1), p(k) = p+ disp(q̂(k)), f (k) = f + resf(q̂(k)), (5)

where ups(·) denotes the point-query interaction module. This design enables controllable upsam-
pling and avoids the complex mask-guided trimming operation in conventional methods (Ren et al.,
2024a). Similar to the upsampling module, the adaptive refinement module further adjusts the point
positions with offsets predicted from the point features: p′ = p + refine(f). These two modules
progressively densify and refine the point positions, restoring a dense and meaningful structure.

Comprehensive regularizations. To supervise the output Gaussian primitives, we employ the con-
ventional rendering supervisions including L2, SSIM and LPIPS (Zhang et al., 2018) losses. In
addition, we also incorporate other losses to improve the reconstructed geometry and regularize
the properties of Gaussians for better visual quality. 1) We optimize the chamfer distances Lcham

between the input point cloud and intermediate point clouds as the outputs of upsampling and re-
finement modules, which provides explicit guidance for the prediction of position offsets. 2) We use
the normal Lnorm and effective rank Lrank (Hyung et al., 2024) regularizations to regularize the
rotation and scale properties of Gaussians. 3) We propose a novel explicit color supervision Lcolor,
which directly aligns the color of each Gaussian with the color of the nearest point in the input point
cloud. This loss bypasses the rasterization process and thus is more friendly for optimization. The
overall loss function for our P2G-VAE can be formulated as:

Lvae = Ll2 + λ1Lssim + λ2Llpips + λ3Lcham + λ4Lnorm + λ5Lrank + λ6Lcolor + λ7Lkl. (6)

3.3 NATIVE 3D GENERATIVE MODELING

We use flow matching (Lipman et al., 2022) for generative modeling of the latent point representa-
tion. Formally, we gradually add noise N ∼ N (0, I) to both the positions and features of point
latents P ∈ RM×(3+D) with a schedule t ∈ [0, 1] in the diffusion process, and predict the velocity
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Table 1: Reconstruction performance. RGB PC. and Rep. Range represent colored point cloud
and representation range of the output Gaussian, respectively. We select 20 random scenes from the
validation set to reconstruct offline Gaussians as input to Can3Tok∗.

Method Input Type Rep. Range PSNR↑ SSIM↑ LPIPS↓ Abs. Rel.↓ RMSE↓ δ1↑
PixelSplat RGB Partial 18.165 0.686 0.493 0.094 0.287 0.832
MVSplat RGB Partial 17.126 0.621 0.552 0.139 0.326 0.824
Prometheus RGBD Partial 17.279 0.644 0.448 0.087 0.251 0.901
Can3Tok∗ Gaussian Complete 19.578 0.733 0.514 0.031 0.151 0.973
Terra RGB PC. Complete 19.742 0.753 0.530 0.026 0.137 0.978

vector V ∈ RM×(3+D) given noisy latents Pt in the reverse process:

Pt = tP + (1− t)N , V = F(Pt, t;ϕ), (7)

where F(·, ·;ϕ) denotes a UNet (Peng et al., 2024) with learnable parameters ϕ based on 3D sparse
convolution. The training objective can now be formulated as:

Lflow = Et∼U [0,1],P∼P,N∼N (0,I)||F(Pt, t;ϕ)− (P −N)||2, (8)

where P denotes the ground truth distribution of point latents P . During inference, we start from
sampled Gaussian noise and progressively approach clean point latents along the trajectory deter-
mined by the predicted velocity vector. Note that we simultaneously diffuse the positions and fea-
tures to learn the joint distribution of geometry and texture and facilitate their mutual enhancement.

Distance-aware trajectory smoothing. Conventional flow matching applied to grid-based latents
naturally matches noises and latents according to their grid indices. However, it would complicate
the velocity field and the denoising trajectory if we simply match the point positions with noise
samples based on their indices in the sequence (Hui et al., 2025). Intuitively, it is unreasonable to
denoise a leftmost noise sample to a rightmost point. To address this, we propose a distance-aware
trajectory smoothing technique that effectively straightens the transport trajectory and facilitates
convergence for unstructured point flow matching. Since it is more reasonable to choose a closer
noise sample as the diffusion target than a farther one, we optimize the matching M between point
positions and noise samples to minimize the sum of distances between point-noise pairs:

M∗ = argminM

M∑
m=1

||p(m) −NMm,:3||2, M = reorder([1, 2, ...,M ]), (9)

where NMm,:3 denotes the position of the noise sample assigned to the m-th point latent. We apply
the Jonker-Volgenant algorithm (Jonker & Volgenant, 1987) to efficienty solve Eq. (9).

Simple conditioning mechanism. For an explorable model, we employ multi-stage training that
consists of reconstruction, unconditional generative pretraining, and masked conditional generation.
For masked conditions, we introduce three types of conditions to support different exploration styles:
cropping, uniform sampling, and their combinations. We randomly crop a connected 3D region from
the point latents as the cropping condition to unlock the ability to imagine and populate unknown
regions. We uniformly sample some of the point latents across the scene as the uniform sampling
condition to enable the model to refine known regions. We also use their combinations and first crop
a connected 3D region and then apply uniform sampling inside it to simulate RGBD conditions.
We concatenate the conditional point latents with the noisy ones and fix the condition across the
diffusion process to inject conditional guidance even at the early denoising stage.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We conduct extensive experiments on the challenging indoor scenes from the ScanNet v2 (Dai et al.,
2017) dataset, which is widely adopted in embodied perception (Yu et al., 2024a; Wu et al., 2024b)
and visual reconstruction (Wang et al., 2024a; 2025a). The dataset consists of 1513 scenes in total,
covering diverse room types and layouts. Each scene is recorded by an RGBD video with semantic
and pose annotations for each frame. We unproject the color and depth maps into 3D space using
the poses to produce colored point clouds as input to our P2G-VAE. In the generative training,
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Rendered RGB RGB GT Rendered Depth Depth GT Rendered Gaussian Input RGB PC.

Figure 4: Visualization for reconstruction. Terra achieves photorealistic rendering quality for RGB
and depth, and learns to complete the partial objects caused by the sensor failure in dark regions.
Table 2: Generation Performance. CD and EMD denote Chamfer and earth mover’s distances,
respectively. Terra achieves exceptional geometry generation quality compared with other methods.

Method Repr. Unconditional Image Conditioned
P-FID↓ P-KID(%)↓ FID↓ KID(%)↓ CD↓ EMD↓ FID↓ KID(%)↓

Prometheus RGBD 32.35 12.481 263.3 10.726 0.374 0.531 208.3 12.387
Trellis 3D Grid 19.62 7.658 361.4 23.748 0.405 0.589 314.9 24.713
Terra Point 8.79 1.745 307.2 18.919 0.217 0.474 262.4 20.283

we preprocess the point latents from the VAE encoder by randomly cropping a smaller rectangular
region in the x-y plane and filtering out overly sparse and noisy samples. We follow Wang et al.
(2024b) and split the dataset into 958 and 243 scenes for training and validation, respectively.

We evaluate Terra on the reconstruction, unconditional, and image-conditioned generation tasks. For
reconstruction, we compare Terra with three lines of methods: PixelSplat (Charatan et al., 2024) and
MVSplat (Chen et al., 2024) with RGB input, Prometheus (Yang et al., 2025a) with RGBD input,
and Can3Tok (Gao et al., 2025) with offline reconstructed Gaussians as input. We use PSNR, SSIM,
and LPIPS metrics for visual quality, and Abs. Rel., RMSE, and δ1 metrics for depth accuracy. For
generative tasks, we compare Terra with Prometheus using RGBD (Yang et al., 2025a) represen-
tation, and Trellis (Xiang et al., 2025) using 3D grid representation. We retrain these baselines on
ScanNet v2 using their official code for a fair comparison. For unconditional generation, we adopt
point cloud FID (P-FID) and point cloud KID (P-KID) for geometry quality, and FID and KID for
visual quality. Regarding image-conditioned generation, we adopt the Chamfer distance and earth
mover’s distance for geometry quality, and FID and KID for visual quality.

4.2 IMPLEMENTATION DETAILS

We construct the P2G-VAE based on PTv3 (Wu et al., 2024a), removing all residual connections
and integrating the designs proposed in Section 3.2. We perform downsampling with stride 2 for 3
times in the encoder, reducing the number of points from 1 million to around 5000. In the decoder,
we upsample the points also for 3 times with K = 7, 3, 3, respectively. We train the P2G-VAE for
36K iterations with an AdamW (Loshchilov & Hutter, 2017) optimizer. Regarding the SPFlow, we
employ the OA-CNNs (Peng et al., 2024) as the UNet backbone. We crop a random region with a
size of 2.4×2.4 m2 from a complete scene as the input sample. We train the SPFlow for 100K and
40K iterations for unconditional pretrain and conditional generation, respectively.

4.3 MAIN RESULTS

Reconstruction. We report the results in Table 1. PixelSplat (Charatan et al., 2024) and MVS-
plat (Chen et al., 2024) do not include 3D geometry information as input, and thus they might
perform worse compared with others using depth or Gaussian input. Prometheus (Yang et al.,
2025a) achieves the best LPIPS because it is pretrained with a 2D diffusion model, which excels
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Figure 5: Visualization for unconditional generation. Only Terra is able to generate diverse and
reasonable scenes while Prometheus and Trellis lack consistent geometry and texture, respectively.
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Figure 6: Visualization for image conditioned generation. Both Terra and Prometheus are able to
produce plausible images while the geometry consistency is far better than Prometheus.
at image quality. Our Terra achieves the best results for all metrics except LPIPS, even better than
Can3Tok (Gao et al., 2025) using offline reconstructed Gaussians, demonstrating the effectiveness
of our P2G-VAE. Furthermore, Terra is able to reconstruct the whole scene in a single forward pass
and also complete partial objects with incorrect depth measurement as shown by Figure 4.

Unconditional generation. We report the results in Table 2. Our method achieves better P-FID
and P-KID than Prometheus with 2.5D representation and Trellis (Xiang et al., 2025) with 3D grid
representation, validating the superiority of point latents in modeling the geometry distribution.
However, Terra performs worse compared to Prometheus in image quality metrics FID and KID,
because Prometheus, with 2D diffusion pretrain, is able to synthesize plausible images even though
the underlying 3D structures could be corrupted. We provide visualization results in Figure 5, where
only Terra generates both reasonable and diverse 3D scenes while the results of other methods either
lack accurate 3D structure or vivid textures.

Image conditioned generation. We report the results in Table 2 and Figure 6. Given a conditional
image, we first unproject it into 3D space with depth and intrinsics to produce a colored point
cloud. Then we can formulate the image conditioned generation task as outpainting in the point
latent space. Our Terra achieves better performance in chamfer distance and earth mover’s distance,
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Step 1 Step 2 Step 3 Step 4 Step 5 Overview

Figure 7: Visualization for explorable world model. Terra is able to generate both coherent and
diverse room layouts with plausible textures from step-by-step exploration.

Table 3: Ablation Study to validate the effectiveness of our design choices.

Method Reconstruction Unconditional Generation
PSNR↑ SSIM↑ Abs. Rel.↓ RMSE↓ P-FID↓ P-KID(%)↓ FID↓ KID(%)↓

w.o. Robust Position Perturbation 20.487 0.783 0.023 0.132 15.28 5.218 349.3 21.884
w.o. Adaptive Upsampling and Refine 18.749 0.711 0.042 0.157 12.48 4.764 341.8 21.760
w.o. Explicit Color Supervision 19.582 0.739 0.030 0.144 10.61 3.142 327.9 19.418
w.o. Dist.-aware Trajectory Smoothing 19.742 0.753 0.026 0.137 24.84 11.387 401.8 27.482
Terra 19.742 0.753 0.026 0.137 8.79 1.745 307.2 18.919

demonstrating better geometry quality. Prometheus still achieves better FID and KID even though
the visualizations show evident multi-view inconsistency.

Explorable world model. We visualize the results for explorable world model in Figure 7. We start
from a single step generation, and progressively extend the boundary to explore the unknown re-
gions. In each step, we choose a random direction for exploration, take a step forward, and generate
the next-step result with part of the known regions as condition. Our Terra is able to synthesize both
coherent and diverse room layouts with plausible textures, validating the effectiveness of Terra.

4.4 ABLATION STUDY

We conduct comprehensive ablation study to validate the effectiveness of our designs in Table 3.
Although position perturbation for point latents degrades reconstruction performance, it is crucial
for the generative training because it significantly improves the robustness of the VAE decoder
against positional noise. Both adaptive upsampling and refinement and explicit color supervision
enhance the reconstruction performance and also the generation quality. Distance-aware trajectory
smoothing takes effect in the generative training and is critical for the convergence of the model.

5 CONCLUSION

In this paper, we propose Terra as a native 3D world model that describes and generates explorable
3D environments with point latents. The point latents naturally satisfy the 3D consistency constraint
crucial to world models as a native 3D representation, and support flexible rendering from any given
viewpoint with a single generation process. To learn the intrinsic distribution of 3D data with point
latents, we design the P2G-VAE and SPFlow networks for dimensionality reduction and generative
modeling, respectively. We conduct experiments on ScanNet v2 with reconstruction, unconditional
generation and image conditioned generation tasks, and Terra achieves the best overall performance
both quantitatively and qualitatively. Furthermore, Terra is able to explore the unknown regions in a
progressive manner and produce a large-scale and coherent world simulation.

9
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