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ABSTRACT

With the rapid progress of multimodal large language models (MLLMs), Al al-
ready performs well at literature retrieval and certain reasoning tasks, serving as
a capable assistant to human researchers, yet it remains far from autonomous re-
search. The fundamental reason is that current work on scholarly paper reason-
ing is largely confined to a search-oriented paradigm centered on pre-specified
targets, with reasoning grounded in relevance retrieval, which struggles to sup-
port researcher-style full-document understanding, reasoning, and verification. To
bridge this gap, we propose ScholScan, a new benchmark for scholarly paper rea-
soning. ScholScan introduces a scan-oriented task setting that asks models to read
and cross-check entire papers like human researchers, scanning the document to
identify consistency issues. The benchmark comprises 1,800 carefully annotated
questions drawn from 9 error families across 13 natural-science domains and 715
papers, and provides detailed annotations for evidence localization and reasoning
traces, together with a unified evaluation protocol. We assessed 15 models across
24 input configurations and conduct a fine-grained analysis of MLLM capabilities
across error families. Across the board, retrieval-augmented generation (RAG)
methods yield no significant improvements, revealing systematic deficiencies of
current MLLMs on scan-oriented tasks and underscoring the challenge posed by
ScholScan. We expect ScholScan to be the leading and representative work of the
scan-oriented task paradigm.

1 INTRODUCTION

Scientific papers are crystallizations of human intelligence. Enabling multimodal large language
models (MLLMs) (OpenAl 2025; |Anthropic, 2025} ByteDance Seed Teaml [2025; [Meta, 2025
xAlL |2025) to conduct comprehensive understanding and generation based on academic literature
is the ultimate goal of Deep Research, and a critical milestone on the path toward artificial general
intelligence (AGI) (Ge et al., 2023} [Morris et al., 2024} |Phan et al.l 2025). With rapid advances,
MLLMs are increasingly capable of supporting academic workflows through retrieval, reading, and
writing. For example, PaSa (He et al.,[2025) can invoke a series of tools to answer complex academic
queries with high-quality results, while Google Deep Research (Comanici et al.| |2025)) is capable of
producing human-level research reports based on specific queries.

However, most of the existing work still follows a search-oriented paradigm, where models re-
trieve a few relevant passages and reason over local evidence based on prespecified targets (Gao
et al., 2023 [Lou et al., [2025). Such methods are effective for tasks with clearly predefined tar-
gets, but struggle with researcher-style full-document reasoning and verification (Zhou et al.| [2024)).
To function as researchers, models must move beyond reactive question answering and toward
proactive discovery of implicit problems.

To fill this gap, as shown in Figure[I] we introduce a scan-oriented paradigm, where models address
queries with targets absent and are required to actively construct a document-level evidence view,
perform exhaustive scanning over the full paper, and conduct evidence-based reasoning. In
contrast to search-oriented tasks that assess a model’s ability to identify and reason over relevant
fragments, scan-oriented tasks emphasize consistency. Instead of relying on prespecified targets or
hints, models must derive all necessary concepts and inferences solely from given documents.
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Figure 1: A comparison between search-oriented and scan-oriented task paradigms. Unlike the
former, the scan-oriented paradigm provides no prespecified targets, requiring the model to actively
scan the entire paper, construct a document-level evidence view.

We instantiate this setting via scientific error detection, as it naturally demands discovering non-
obvious flaws without target cues, and present ScholScan, a new multimodal benchmark for schol-
arly reasoning. ScholScan features the following key highlights:

¢ Scan-Oriented Task Paradigm. ScholScan receive one or more complete academic papers to-
gether with target-absent queries, presenting a rigorous challenge to their evidence-based reason-
ing capabilities. The benchmark comprises 715 papers spanning 13 natural science disciplines.

¢ Comprehensive Error Types. ScholScan covers 9 categories of scientific errors across the entire
research workflow. It also includes citation and referencing errors, providing a rigorous test of a
model’s cross-source reasoning ability.

* Process-Aware Rvaluation Framework. ScholScan provides fine-grained annotations for both
evidence location and reasoning steps, enabling a comprehensive evaluation framework that as-
sesses model performance in terms of both process and outcome.

We evaluate 15 models across 24 input configurations and 8 retrieval-augmented generation (RAG)
frameworks. All models exhibit limited performance, and none of the RAG methods deliver sig-
nificant improvements. These results highlight the inadequacy of search-oriented frameworks when
applied to scan-oriented tasks, and underscore both the challenges and the potential of enabling
MLLMs to perform reliable, document-level reasoning over full academic papers.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

With the rapid progress of MLLMs, models have evolved beyond perception tasks (e.g., image
recognition and explanation) (Liu et al.,2024) toward deep understanding of structured, multimodal
long documents. Their strengths lie in the ability to integrate cross-modal information and per-
form multi-hop reasoning over extended contexts. These capabilities are not only valuable for
specific question answering or instruction-following tasks (Yue et al., 2024) but are particularly
well suited for simulating human thought processes and generating explainable reasoning trajecto-
ries (Zheng et al.||2023). Consequently, achieving comprehensive understanding of entire documents
has emerged as a core challenge that MLLMs are inherently equipped to address.
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2.2 DOCUMENT UNDERSTANDING BENCHMARK

Document understanding tasks challenge models to identify relevant context and perform accu-
rate reasoning grounded in that information. Progress in document understanding benchmarks
has followed two main axes. Along the input dimension, it has evolved from short to long con-
tents, from everyday to specialized domains, and from plain text to multimodal format (Chen
et all 2021} [Yang et al. [2018; [Tito et al. |2021; Deng et al. 2025). Along the scenario di-
mension, it has shifted from limited-output formats to more open-ended responses (Pramanick
et al., 2024). DocMath-Eval (Zhao et al., [2024) evaluates numerical reasoning on long, special-
ized documents, revealing large performance gaps even for strong models in expert domains, while
MMLongBench-Doc (Ma et al.,[2024) builds a multimodal benchmark with layout-rich documents.
However, a comprehensive benchmark that integrates all challenges above has yet to be introduced.

2.3 ACADEMIC PAPER UNDERSTANDING BENCHMARK

Compared with general documents, academic papers are distinguished by their rich domain knowl-
edge and logical rigor. Reasoning over papers has emerged as a major challenge in recent research.
Some studies ask for local elements like charts or snippets, leveraging their internal complexity, but
neglect the need for cross-source integration and domain-specific interpretation within the full doc-
ument (Wang et al.| [2024; [Li et al.,|2024). Recent studies extend inputs to the document level and
adopt image-based formats to better simulate real-world reading scenarios. (Auer et al., 2023} |Yan
et al.| [2025) However, benchmarks based on the QA paradigm face inherent limitations, as they typ-
ically presuppose answer existence and embed explicit cues in the question itself, reducing the need
for comprehensive understanding and information organization. Moreover, mainstream evaluation
protocols focus on the final outcome, with limited assessment of whether intermediate reasoning is
evidentially grounded and logically valid. More examples and analysis are shown in Appendix

3 THE SCHOLEVAL BENCHMARK
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Figure 2: Left: Overview of ScholScan. Right: Comparison to related benchmarks. Mod.: Modali-
ties; Para.: Task Paradigm; Eval.: Evaluation; T: Text; I: Image; TD: Text-Form Document; MD:
Multimodal Document; A: Answer; P: Process; Dom: Number of academic domains in the dataset.

3.1 OVERVIEW OF SCHOLSCAN

We introduce ScholScan, a benchmark designed to comprehensively evaluate MLLMs’ ability to
detect scientific flaws in academic papers under scan-oriented task settings. As illustrated in Figure
ScholScan spans 13 disciplines across the natural sciences, including physics, chemistry, and
computer science, and spans over 100 subfields such as immunology, total synthesis, and machine
learning. The benchmark comprises 1,800 questions derived from 715 real academic papers, and
covers 9 major error categories (Figure [3)) that commonly observed in real-world research scenarios.
These include issues in numerical and formulaic computation, experimental design, inference and
conclusion, and citation misuse, among others. Figure[2]also provides a comparison ScholScan with
existing benchmarks for multimodal paper understanding and long-document reasoning.
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Figure 3: Sampled ScholScan examples with 9 error types, covering the whole process of scientific
research, each requiring the model to perform thorough cross-source evidence-based reasoning.

3.2 DATA COLLECTION & QUESTION GENERATION

We curated papers from ICLR 2024/2025 and Nature Communications, and collected public reviews
for the former. Questions were constructed based on two dimensions, where the source is either
generated or sampled, and the context is either within-paper or cross-paper.

Generation. On high-quality accepted papers, we prompt Gemini 2.5 Pro to perform coordinated
sentence-level edits spanning multiple sections or pages. It then synthesizes composite errors and
generates the corresponding question along with an explanation grounded in the edited context.

Sampling. From rejected ICLR submissions and their public reviews, we prompt Gemini 2.5 Pro to
extract explicit, falsifiable scientific errors and convert them into questions with initial explanations.
Subjective remarks about novelty or writing quality are excluded.

Within-paper. This setting focuses on verifiable facts and internal consistency within a single paper,
and supports both Generation and Sampling.

Cross-paper. This setting examines citation consistency across papers. For each instance, Gemini
2.5 Pro receives an accepted paper and one of its cited sources, then edits the accepted paper to
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introduce paraphrases or reasoning errors about the citation. As public reviews mainly address
nonfalsifiable aspects such as appropriateness, all cross-paper instances are constructed exclusively
using the generation method.

3.3 QUALITY CONTROL & ANNOTATION

Despite explicit instructions, initial outputs exhibited substantial hallucinations, logical inconsis-
tencies, and low-quality questions. To ensure the quality, 10 domain experts conducted a rigorous
annotation process. Each instance underwent independent dual review, and disagreements were re-
solved by a third expert. Among the 3,500 initially generated candidates, 1,700 were discarded, and
1,541 of the remaining were revised, including 535 question rewrites, 1,207 explanation edits, and
1,141 corrections to error categories or metadata. Further details are provided in Appendix D]

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Models. We benchmark a total of 24 input configurations by feeding academic papers as either
images or OCR text using the Tesseract (Smith},|2007) engine, covering 15 mainstream models (Yang
et al.,[2025; Bai et al., [2025} |DeepSeek-Al et al., [2025; |Guo et al., 2025} |OpenAl et al., 2025)).

Evaluation Protocol. Inspired by MMLongBench-Doc (Ma et al., |2024), we prompt models to
generate necessary reasoning chains from evidence to detected anomalies without constraining the
output format, which aims to assess the ability for evidence-grounded reasoning rather than mere
instruction-following. For open-ended responses, we use GPT-4.1 (OpenAll 2025) to extract cited
evidence and reasoning steps, and quantify alignment with annotated explanations. Human evalua-
tion confirms high agreement between our pipeline and expert annotations. Further implementation
details are provided in Appendix[F

Metrics. We define a structured evaluation framework by parsing the model response a into a tuple:

\I/(CL) = ( Lexisty leontains €, Ry 1 ) (1
Here, 1exist and 1.ontain are binary indicators for whether output contains any error and includes
the annotated target error; £, R and £*, R* are the predicted and gold evidence sets and reasoning

chains; g = preﬁx,match(ﬁ, R*) counts matched reasoning steps; n € N is the number of unre-
lated errors. HasError(a) is 1 if the output contains any predicted error, and 0 otherwise. Based on
U (a), we define an end-to-end score S(m) € [0, 1] that combines all aspects of prediction quality:

(i) Existence. Sexist(a) = 1 if and only if the response includes the annotated target error.
Sexist(a) = H{HasError(a)} - {ENE* # 0} 2)

(ii) Evidence location score. Even when the target error is identified, the cited evidence may be
incomplete or noisy. We compute a Dice score with a squared penalty for over-reporting:

{ 218ne|+1{ €]+ e =0} B\ e 2}
Slocation = max: 0; — —-0.8 —_— . (3)
max( |&] + [£*], 1) max(|€], 1)

(iii) Reasoning process score. Even if the target error is detected, the reasoning may diverge from
the gold chain. We use prefix match to assess reasoning completeness:

AN\ 2
Sreasoning = 1{ gr = O} + 1{ gr > O} <;> . (@)

(iv) Unrelated-error penalty. Models may list unrelated items to inflate recall at the cost of precision.
We penalize this with a rapidly increasing function of unrelated error count:

min(n 1.5
Panetated.err(n) = 0.9min(:2) exp(—0.6 [max(n — 2,0)] ) 5)
(v) Overall outcome score. The final score for a is defined as:
S(m) = Sexist (a) \/Slocation * Sreasoning : Punrelated,err(n)~ (6)
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Table 1: Model performance (scaled by 100) across input configurations. RQD: Research Question
& Definitions; DI: Design & Identifiability; SG: Sampling & Generalizability; MO: Measurement
& Operationalization; DHP: Data Handling & Preprocessing; CF: Computation & Formulae; IC:
Inference & Conclusions; RCA: Referential and Citation Alignment; LE: Language & Expression.

Models Avg. RQD DI SG MO DHP CF IC RCA LE
MLLM (Image Input)

Proprietary MLLMs
Gemini 2.5 Pro 156 119 126 357 123 27.0 4.6 147 152 74
GPT-5 19.2  10.1 9.7 282 146 266 138 253 253 69
Grok 4 4.0 0.0 1.9 16.7 32 7. 0.7 1.9 3.6 0.0
Doubao-Seed-1.6-thinking ~ 10.2 34 35 22.3 7.5 151 102 122 109 33
Doubao-Seed-1.6 9.9 3.0 44 292 49 15.0 63 179 8.0 39

Open-source LLMs
Llama 4 Maverick 7.0 7.0 73 94 4.5 4.0 6.5 6.7 8.8 3.0
Gemma 3 27B 1.7 0.5 2.7 23 1.7 1.0 1.0 1.3 2.6 0.0
Mistral Small 3.1 33 0.1 2.0 2.0 1.5 0.1 1.0 22 8.6 1.0
Qwen2.5 VL 72B 0.1 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0

OCR + LLM (Text Input)

Proprietary LLMs
Gemini 2.5 Pro 30.3 215 342 443 276 566 103 288 356 8.1
GPT-5 225 161 214 260 203 36.7 47 298 300 26
Claude Sonnet 4 5.7 3.7 2.5 10.8 43 10.3 1.4 8.4 6.6 3.5
Grok 4 20.8 9.3 77 374 123 344 9.0 200 312 72
Doubao-Seed-1.6-thinking  15.3 8.2 10.1 243 10.1 242 6.4 192 210 42
Doubao-Seed-1.6 13.9 54 69 264 103 23.6 6.3 20.1 17.5 23

Open-source LLMs
Qwen3 A22B (Thinking) 17.4 8.9 162 319 151 237 56 223 211 2.3

Qwen3 A22B 1.7 1.2 0.0 2.7 0.4 1.0 0.1 4.3 2.5 1.1
gpt-0ss-120b 7.3 6.3 5.7 183 49 14.5 1.6 12.5 5.5 0.0
DeepSeek-R1 11.4 5.1 119 254 8.7 22.5 4.7 16.3 9.8 35
DeepSeek-V3.1 1.7 1.2 2.0 1.7 1.0 5.8 0.5 2.2 2.1 0.0
Llama 4 Maverick 23 1.5 2.0 4.8 3.0 3.6 0.0 5.8 1.6 0.2
Gemma 3 27B 2.0 2.1 1.6 3.0 2.7 0.2 0.7 1.1 1.0 0.0
Mistral Small 3.1 6.9 3.0 2.7 5.5 7.0 2.0 8.5 4.0 122 3.0
Qwen2.5 VL 72B 0.2 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.6 0.0

4.2 MAIN RESULT

TableI] presents our evaluation results. Our main findings are summarized as follows:

Overall performance remains unsatisfactory. GPT-5 achieves the highest average score in the
image input group (19.2), while Gemini 2.5 Pro, the best-performing model in the text input setting,
still fails to surpass the 60-point threshold on any subtask. Even in the SG category, which yields the
best performance overall, nearly half of the models receive single-digit scores. Most models perform
poorly under the scan-oriented task formulation and fail to detect any issues in many papers. This
challenge is particularly pronounced for open-source models.

Reasoning-enhanced models demonstrate clear advantages. Across both input configurations,
reasoning-enhanced variants consistently achieve higher scores. Almost all top-performing models,
measured by both subtask-specific and overall metrics, fall into this category. Notably, Qwen3-
Thinking and Deepseek-R1 outperform their base versions by more than 10% in average scores,
with substantial gains observed across all error types. These results indicate that reasoning-enhanced
models are better able to simulate the iterative process of extraction followed by reasoning, which is
essential for effectively handling scan-oriented tasks and producing higher-quality responses.

MLLMs face significant bottlenecks in handling long multimodal inputs. Across most evalu-
ation metrics, text inputs outperform image inputs. Among the nine MLLMs tested, the average
performance gap between text and image inputs reaches 4.81 points, highlighting visual processing
as a key limitation in current MLLM capabilities.
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In most evaluation metrics, text inputs consistently outperform image inputs. Among the nine
MLLMs evaluated, the average performance gap between text and image inputs is 4.81 points, un-
derscoring visual processing as a key limitation in current MLLM capabilities.

Although overall performance is generally weaker, multimodal input remains indispensable.
In certain categories such as CF, where OCR-based text extraction leads to substantial loss of formu-
laic or tabular content, image inputs outperform their text counterparts. This highlights the essential
role of multimodal reasoning and the irreplaceable value of visual information in addressing specific
types of errors.

4.3 FINE-GRAINED ANALYSIS

Capability Dimensions. @ We compute pairwise
Spearman correlations between error types across two
input configurations (text and image) for the eight ReP
evaluated MLLMs excluding Qwen2.5-VL-72B, as oI
shown in Figure[d We derive the following insights:
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the skills required for mathematical reasoning are rel-
atively distinct. In contrast, with text input, CF shows  cr
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DHP

natural language. Combined with the overall poor L
performance on CF tasks, this underscores the unique
challenges of this category and the need for targeted Figure 4: Spearman correlation matrix
improvements. among the 9 error types.

(ii) Although DI is also related to experimental set-

tings, it does not exhibit strong correlations with SG,

MO, or DHP. This indicates that DI primarily emphasizes causal framing and variable identifiability,
rather than the procedural understanding of experimental operations.

(iii) OCR severely degrades structured content such as figures and formulas, making questions that
depend on multimodal information unanswerable. This diminishes the expression of multimodal
reasoning capabilities and artificially inflates inter-category correlations under text input.

Based on the above analysis, we consolidate the original 9 error categories, each defined by its objec-
tive target, into 5 core latent skill dimensions evaluated by ScholScan under the image input setting.
While each dimension highlights the primary competence emphasized by its corresponding error
types, they are not mutually exclusive, as many questions involve overlapping reasoning abilities.

RQD and DI correspond to research concept comprehension, which requires models to identify the
scope and definition of research objectives by integrating contextual cues and prior knowledge.
SG, MO, and DHP fall under experimental process modeling, which tests a model’s ability to
reconstruct procedural workflows such as sampling, measurement, and data handling. CF captures
Jformal reasoning and symbolic computation, focusing on syntactic parsing and numerical logic. IC
evaluates causal inference, where models must synthesize dispersed causal evidence to reach sound
conclusions. RCA and LE reflect referential alignment and linguistic consistency, which assess the
ability to verify citations and maintain coherent expression throughout the document.

Hidden Complexity in Scan-Oriented Tasks. We analyze the reasoning traces of GPT-5 and Gem-
ini 2.5 Pro under both input configurations, focusing on the number of evidence pieces scanned and
the reasoning steps performed. As illustrated in Figure[5] even the most advanced models often scan
up to 8 times more evidence and execute 3.5 times more reasoning steps than the reference answers,
merely to approximate a correct response, yet they still frequently fail. This highlights the substan-
tial hidden complexity inherent in scan-oriented tasks, which significantly amplifies the challenge
of successful task completion.
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Figure 6: Performance trends across varying reasoning depths and evidence counts.

4.4 ERROR ANALYSIS

Omission and Hallucination. Most zero-score cases fall into two categories: either the model fails
to detect any errors in the paper, or it becomes overwhelmed by hallucinations and entirely overlooks
the actual errors present in the reference answer. We analyze the number of zero-score questions
and the proportion of these two failure modes across models, as shown in Figure[5] Stronger models
tend to have fewer zero-score cases overall, but are more prone to overconfident hallucinations.

Fragile Reasoning under Complex Evidence. Figure[6]shows how top-performing models behave
under different numbers of reasoning steps and evidence locations. As reasoning steps increase, both
reasoning and overall scores steadily decline, revealing a clear bottleneck in MLLMs’ ability to con-
struct long causal chains. In contrast, variation in evidence count has a weaker and less consistent
impact. However, this does not imply that multi-evidence questions pose only marginal difficulty.
Since the evaluation metric allows partial evidence omissions, more evidence items do not necessar-
ily incur large score penalties. Still, heavier evidence loads often require longer reasoning chains,
which substantially affect the coherence and completeness of inferred logic. These results highlight
the persistent challenge for MLLMs in integrating evidence and maintaining logical structure as task
complexity grows.

4.5 RAG ANALYSIS

We evaluated 8 RAG methods under both input configurations (Robertson et al., |1994; |Chen et al.|
2024; Lee et al.l 2025} [Faysse et al.| 2025} [Yu et al., |2025; [Wang et al.l 2025} [Izacard et al., [2022).
Key findings are presented below, with detailed results shown in Tables 2| and

Oracle Condition Yields Significant Accuracy Gains. Providing gold-standard images alleviates
the scanning burden in long-context inputs, increasing the chances of generating correct answers.
While overall performance improves, gains are limited for CF errors and minimal for LE errors. For
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Table 2: Scores of RAG methods across the 9 error types (scaled by 100).

Models Avg RQD DI SG MO DHP CF IC RCA LE
Text Input (Base Model: Qwen3 Thinking)
Baseline 17.4 8.9 16.2 31.9 15.1 23.7 5.6 22.3 21.1 2.3
Oracle 24.5 20.6 27.9 43.6 21.3 40.8 7.4 26.9 26.0 1.9
bm25 16.7 9.7 13.7 33.0 17.3 23.8 6.8 25.4 16.5 3.0
BGE-M3 11.3 8.6 7.5 24.8 9.1 15.4 53 15.6 11.4 1.0
Contriever-msmacro 16.6 9.7 18.2 33.7 10.7 20.8 6.4 18.5 19.8 1.8
nv-embed-v2 6.8 4.0 4.0 9.4 6.1 4.9 5.5 5.7 10.0 2.0
Image Input (Base Model: Llama4 Maverick)
Baseline 7.0 7.0 7.3 94 4.5 4.0 6.5 6.7 8.8 3.0
Oracle 6.5 3.0 4.5 15.6 8.2 9.4 4.9 10.0 4.4 14
ColPali-v1.3 0.8 1.5 0.0 0.5 0.0 0.9 0.5 1.3 1.4 0.0
ColQwen2.5 1.2 2.1 0.7 0.5 0.0 1.2 0.2 2.7 2.0 0.0
VisRAG 1.0 2.0 0.0 1.0 0.0 1.0 1.6 1.3 1.2 0.0
VRAG-RL 10.9 9.8 11.6 17.8 8.2 11.0 6.8 13.1 10.8 8.1

CF, sparse formulaic content means gold images offer slight help. For LE, dense text distribution
makes even direct access to target regions insufficient to reduce complexity for current models.

In consistency-centric scan-oriented tasks, most
retrieval-based enhancement methods show mini- Table 3: Summary of retrieval perfor-
mal effectiveness. All embedding models exhibit poor mance for RAG methods.

retrieval accuracy. None achieves recall of 50% within

the top-5 retrieved items. More critically, performance Models MRR@5 Recall@5
deterlorgtes after retrieval, espec1al'1y for multimodal ~ Input (Base Model: Qwen3 Thinking)
embedding models, where post-retrieval responses are 5 0.41 0.48
almost entirely incorrect and scores approach 0. BGE-M3 0.16 021

. . Contriever-msmacro 0.31 0.39
Complex embedding model architectures do not nv-embed-v2 030 0.38

yield better performance. Providing gold-standard
images alleviates the scanning burden in long-context  Image Input (Base Model: Llama4 Maverick)
inputs, increasing the chances of retrieving correct an- ColPali-v1.3 0.26 0.31
swers. While overall performance improves, gains are C0lQwen2.5 0.30 0.35
limited for CF and minimal for LE errors. For CF, VisRAG 0.41 0.46
sparse formulaic content means gold images offer only

slight localization help. For LE, dense error distribution makes even direct access to target regions
insufficient to reduce task complexity for current models.

Reinforcement learning frameworks with a visual-centric focus have distinguished themselves
as leading approaches. Despite being built on a compact 7B model, VRAG-RL consistently de-
livers improved performance and is the only method that achieves gains in the image-input setting
following RL optimization. Its enhanced retrieval sharpens evidence selection, while strong reason-
ing provides effective guidance during document scanning. The retrieval and reasoning components
are interleaved in design, with each stage informing the other in an iterative loop. This tightly
coupled interaction contributes to the method’s superior performance potential.

5 CONCLUSION

In this paper, we introduce ScholScan, a benchmark designed to evaluate the performance of
MLLMs on scan-oriented tasks that require detecting scientific errors across entire academic pa-
pers. We conduct a comprehensive evaluation and in-depth analysis of mainstream MLLMs and
RAG methods. The results demonstrate that current MLLMs remain far from capable of reliably
addressing such tasks, and that existing RAG approaches provide little to no improvement. This
highlights the complexity, integrative demands, and originality of the ScholScan benchmark. Look-
ing ahead, we aim to develop scan-oriented task paradigms suited to diverse academic scenarios and
explore new techniques for enhancing model performance on target-suppressed inputs. These direc-
tions support the broader goal of advancing MLLMs from passive assistants to active participants in
scientific research.
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6 ETHICS STATEMENT

All data used in this paper were constructed by the authors and do not include any external public or
proprietary datasets. The included academic papers and author names are publicly available through
arXiv and OpenReview and can be freely accessed.

A team of 10 domain experts was assembled to comprehensively review all task instances initially
generated by Gemini 2.5 Pro. All annotators gave informed consent to participate. To ensure the ac-
curacy and neutrality of both model-generated and human-verified content, we employed a rigorous
multi-stage validation process involving cross-review and third-party adjudication.

Evaluation across 15 mainstream models and 24 input configurations was conducted via legally
authorized API access through the VolcEngine, Alibaba Cloud’s LLM services, and OpenRouter.

ScholScan is fully open-sourced and freely available for academic and non-commercial research pur-
poses. We provide the complete download link and documentation through an anonymous GitHub
repository. All personally identifiable information has been removed from the dataset, and its col-
lection and release comply with the ethical and legal requirements in place at the time of data acqui-
sition.

7 REPRODUCIBILITY STATEMENT

All results presented in this paper are fully reproducible. To facilitate verification and ex-
tension, we provide an anonymous repository (https://anonymous.4open.science/r/
ScholScan-6657/)) that contains the complete dataset, source code, and detailed documentation.
The repository also includes step-by-step instructions and the exact hyperparameter configurations
used in our experiments, ensuring that other researchers can replicate our findings with minimal
effort.

The retrieval components in all retrieval-augmented generation (RAG) experiments were executed
on a server equipped with 8 NVIDIA A40 GPUs.
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