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ABSTRACT

With the rapid progress of multimodal large language models (MLLMs), AI al-
ready performs well at literature retrieval and certain reasoning tasks, serving as
a capable assistant to human researchers, yet it remains far from autonomous re-
search. The fundamental reason is that current work on scholarly paper reason-
ing is largely confined to a search-oriented paradigm centered on pre-specified
targets, with reasoning grounded in relevance retrieval, which struggles to sup-
port researcher-style full-document understanding, reasoning, and verification. To
bridge this gap, we propose ScholScan, a new benchmark for scholarly paper rea-
soning. ScholScan introduces a scan-oriented task setting that asks models to read
and cross-check entire papers like human researchers, scanning the document to
identify consistency issues. The benchmark comprises 1,800 carefully annotated
questions drawn from 9 error families across 13 natural-science domains and 715
papers, and provides detailed annotations for evidence localization and reasoning
traces, together with a unified evaluation protocol. We assessed 15 models across
24 input configurations and conduct a fine-grained analysis of MLLM capabilities
across error families. Across the board, retrieval-augmented generation (RAG)
methods yield no significant improvements, revealing systematic deficiencies of
current MLLMs on scan-oriented tasks and underscoring the challenge posed by
ScholScan. We expect ScholScan to be the leading and representative work of the
scan-oriented task paradigm.

1 INTRODUCTION

Scientific papers are crystallizations of human intelligence. Enabling multimodal large language
models (MLLMs) (OpenAI, 2025; Anthropic, 2025; ByteDance Seed Team, 2025; Meta, 2025;
xAI, 2025) to conduct comprehensive understanding and generation based on academic literature
is the ultimate goal of Deep Research, and a critical milestone on the path toward artificial gen-
eral intelligence (AGI) (Ge et al., 2023; Morris et al., 2024; et al., 2025c). With rapid advances,
MLLMs are increasingly capable of supporting academic workflows through retrieval, reading, and
writing. For example, PaSa (He et al., 2025) can invoke a series of tools to answer complex aca-
demic queries with high-quality results, while Google Deep Research (et al., 2025b) is capable of
producing human-level research reports based on specific queries.

However, most of the existing work still follows a search-oriented paradigm, where models re-
trieve a few relevant passages and reason over local evidence based on prespecified targets (Gao
et al., 2023; Lou et al., 2025). Such methods are effective for tasks with clearly predefined tar-
gets, but struggle with researcher-style full-document reasoning and verification (Zhou et al., 2024).
To function as researchers, models must move beyond reactive question answering and toward
proactive discovery of implicit problems.

To fill this gap, as shown in Figure 1, we introduce a scan-oriented paradigm, where models address
queries with targets absent and are required to actively construct a document-level evidence view,
perform exhaustive scanning over the full paper, and conduct evidence-based reasoning. In
contrast to search-oriented tasks that assess a model’s ability to identify and reason over relevant
fragments, scan-oriented tasks emphasize consistency. Instead of relying on prespecified targets or
hints, models must derive all necessary concepts and inferences solely from given documents.
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Search-Oriented
target-prespecified question:

What methodological issues arise from
short-interval calcein labeling?

Retrieval

page3:...our dynamic analysis using
short-interval calcein labeling indicated

that the bone formation rate (BFR),
mineral apposition rate (MAR)...

A short-interval calcein
labeling protocol does not
allow valid measurement

of MAR or BFR. 

Scan-Oriented
target-absent question:
Assess the Methods section for

Measurement & Operationalization issues.

A one-day calcein
labeling interval cannot
validly measure MAR or
BFR, yet these values are
still reported, creating a

disconnect between
method and data.

page5:... analysis of
the BFR/BS, MAR,

and MS/BS ...

page3:...using short-
interval calcein

labeling... the bone
formation rate (BFR))...

Unanswerable
...

...

Retrieval

Figure 1: A comparison between search-oriented and scan-oriented task paradigms. Unlike the
former, the scan-oriented paradigm provides no prespecified targets, requiring the model to actively
scan the entire paper, construct a document-level evidence view.

We instantiate this setting via scientific error detection, as it naturally demands discovering non-
obvious flaws without target cues, and present ScholScan, a new multimodal benchmark for schol-
arly reasoning. ScholScan features the following key highlights:

• Scan-Oriented Task Paradigm. ScholScan receive one or more complete academic papers to-
gether with target-absent queries, presenting a rigorous challenge to their evidence-based reason-
ing capabilities. The benchmark comprises 715 papers spanning 13 natural science disciplines.

• Comprehensive Error Types. ScholScan covers 9 categories of scientific errors across the entire
research workflow. It also includes citation and referencing errors, providing a rigorous test of a
model’s cross-source reasoning ability.

• Process-Aware Evaluation Framework. ScholScan provides fine-grained annotations for both
evidence location and reasoning steps, enabling a comprehensive evaluation framework that as-
sesses model performance in terms of both process and outcome.

We evaluate 15 models across 24 input configurations and 8 retrieval-augmented generation (RAG)
frameworks. All models exhibit limited performance, and none of the RAG methods deliver sig-
nificant improvements. These results highlight the inadequacy of search-oriented frameworks when
applied to scan-oriented tasks, and underscore both the challenges and the potential of enabling
MLLMs to perform reliable, document-level reasoning over full academic papers.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

With the rapid progress of MLLMs, models have evolved beyond perception tasks (e.g., image
recognition and explanation) (Liu et al., 2024) toward deep understanding of structured, multimodal
long documents. Their strengths lie in the ability to integrate cross-modal information and per-
form multi-hop reasoning over extended contexts. These capabilities are not only valuable for
specific question answering or instruction-following tasks (Yue et al., 2024) but are particularly
well suited for simulating human thought processes and generating explainable reasoning trajecto-
ries (Zheng et al., 2023). Consequently, achieving comprehensive understanding of entire documents
has emerged as a core challenge that MLLMs are inherently equipped to address.
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2.2 DOCUMENT UNDERSTANDING BENCHMARK

Document understanding tasks challenge models to identify relevant context and perform accu-
rate reasoning grounded in that information. Progress in document understanding benchmarks
has followed two main axes. Along the input dimension, it has evolved from short to long con-
tents, from everyday to specialized domains, and from plain text to multimodal format (Chen
et al., 2021; Yang et al., 2018; Tito et al., 2021; Deng et al., 2025). Along the scenario di-
mension, it has shifted from limited-output formats to more open-ended responses (Pramanick
et al., 2024). DocMath-Eval (Zhao et al., 2024) evaluates numerical reasoning on long, special-
ized documents, revealing large performance gaps even for strong models in expert domains, while
MMLongBench-Doc (Ma et al., 2024) builds a multimodal benchmark with layout-rich documents.
However, a comprehensive benchmark that integrates all challenges above has yet to be introduced.

2.3 ACADEMIC PAPER UNDERSTANDING BENCHMARK

Compared with general documents, academic papers are distinguished by their rich domain knowl-
edge and logical rigor. Reasoning over papers has emerged as a major challenge in recent research.
Some studies ask for local elements like charts or snippets, leveraging their internal complexity, but
neglect the need for cross-source integration and domain-specific interpretation within the full doc-
ument (Wang et al., 2024; Li et al., 2024). Recent studies extend inputs to the document level and
adopt image-based formats to better simulate real-world reading scenarios. (Auer et al., 2023; Yan
et al., 2025) However, benchmarks based on the QA paradigm face inherent limitations, as they typ-
ically presuppose answer existence and embed explicit cues in the question itself, reducing the need
for comprehensive understanding and information organization. Moreover, mainstream evaluation
protocols focus on the final outcome, with limited assessment of whether intermediate reasoning is
evidentially grounded and logically valid. More examples and analysis are shown in Appendix C.

3 THE SCHOLEVAL BENCHMARK
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Benchmark Mod. Para. Eval. # Dom.

Document Understanding
DocMath-EvalCompLong T+TD Search A N/A
MMLongbench-Doc T+MD Search A N/A
LongDocURL T+MD Search A N/A
SlideVQA T+MD Search A N/A

Academic Paper Understanding
CharXiv I Search A 8
ArXivQA I Search A 10
MMCR T+MD Search A CS
AAAR-1.0 T+MD Search A CS

ScholScan (ours) T+MD Scan A+P 13

Figure 2: Left: Overview of ScholScan. Right: Comparison to related benchmarks. Mod.: Modali-
ties; Para.: Task Paradigm; Eval.: Evaluation; T: Text; I: Image; TD: Text-Form Document; MD:
Multimodal Document; A: Answer; P: Process; Dom: Number of academic domains in the dataset.

3.1 OVERVIEW OF SCHOLSCAN

We introduce ScholScan, a benchmark designed to comprehensively evaluate MLLMs’ ability to
detect scientific flaws in academic papers under scan-oriented task settings. As illustrated in Figure
2, ScholScan spans 13 disciplines across the natural sciences, including physics, chemistry, and
computer science, and spans over 100 subfields such as immunology, total synthesis, and machine
learning. The benchmark comprises 1,800 questions derived from 715 real academic papers, and
covers 9 major error categories (Figure 3) that commonly observed in real-world research scenarios.
These include issues in numerical and formulaic computation, experimental design, inference and
conclusion, and citation misuse, among others. Figure 2 also provides a comparison ScholScan with
existing benchmarks for multimodal paper understanding and long-document reasoning.
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Research Question & Definitions Design & Identifiability Sampling & Generalizability

Measurement & Operationalization Data Handling & Preprocessing

...are expected to be directly
applicable and promote
further development of
NIR-II fluorescence
imaging in the general
patient population...

Computation & Formulae

...are expected to be directly
applicable and promote
further development of
NIR-II fluorescence
imaging in the general
patient population...

Inference & Conclusions

...are expected to be directly
applicable and promote
further development of
NIR-II fluorescence
imaging in the general
patient population...

Referential & Citation Alignment

...are expected to be directly
applicable and promote
further development of
NIR-II fluorescence
imaging in the general
patient population...

Language & Expression

Explanation: The design is described as
probing both short- and long-range
interactions, yet the paper still claims
unique large-q selectivity, creating a
disconnect.

Explanation: The definition of "actionable
variants" shifts across sections (LOE 1–5
in Abstract, LOE 1–3 in Results), causing
ambiguity.

Explanation: The experiments use a
narrow diabetic mouse substrain, yet the
paper generalizes findings to all patients,
creating an invalid sample-to-population
inference.

Explanation: First-harmonic
demodulation is dominated by far-field
background and cannot produce the
reported high-quality near-field images.

Explanation: Feature selection for
NSCLC and HCC models was done on
the full dataset before splitting, causing
data leakage, while the Discussion
falsely claims unbiased validation.

Explanation: The Methods claim a 200-
fold concentration, but the 200 µL
subsample is incorrectly said to
represent ~20 mL instead of 40 mL,
creating a twofold calculation error.

Explanation: The data show PGK1
promotes EGFR degradation, yet the
Discussion claims inhibiting PGK1 as
therapy, directly contradicting the
results.

Explanation: Figure 1 report an LPS
dose of 1.5 mg/kg, but Figure 5 reports
15 mg/kg, creating a tenfold discrepancy
that makes the actual experimental dose
unclear.

Explanation: The paper swaps
C. elegans gene and protein
nomenclature (e.g., 'unc-45' vs. 'UNC-
45'), creating technically misleading
references.

Figure 3: Sampled ScholScan examples with 9 error types, covering the whole process of scientific
research, each requiring the model to perform thorough cross-source evidence-based reasoning.

3.2 DATA COLLECTION & QUESTION GENERATION

We curated papers from ICLR 2024/2025 and Nature Communications, and collected public reviews
for the former. Questions were constructed based on two dimensions, where the source is either
generated or sampled, and the context is either within-paper or cross-paper.

Generation. On high-quality accepted papers, we prompt Gemini 2.5 Pro to perform coordinated
sentence-level edits spanning multiple sections or pages. It then synthesizes composite errors and
generates the corresponding question along with an explanation grounded in the edited context.

Sampling. From rejected ICLR submissions and their public reviews, we prompt Gemini 2.5 Pro to
extract explicit, falsifiable scientific errors and convert them into questions with initial explanations.
Subjective remarks about novelty or writing quality are excluded.

Within-paper. This setting focuses on verifiable facts and internal consistency within a single paper,
and supports both Generation and Sampling.

Cross-paper. This setting examines citation consistency across papers. For each instance, Gemini
2.5 Pro receives an accepted paper and one of its cited sources, then edits the accepted paper to

4
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introduce paraphrases or reasoning errors about the citation. As public reviews mainly address
nonfalsifiable aspects such as appropriateness, all cross-paper instances are constructed exclusively
using the generation method.

3.3 QUALITY CONTROL & ANNOTATION

Despite explicit instructions, initial outputs exhibited substantial hallucinations, logical inconsis-
tencies, and low-quality questions. To ensure the quality, 10 domain experts conducted a rigorous
annotation process. Each instance underwent independent dual review, and disagreements were re-
solved by a third expert. Among the 3,500 initially generated candidates, 1,700 were discarded, and
1,541 of the remaining were revised, including 535 question rewrites, 1,207 explanation edits, and
1,141 corrections to error categories or metadata. Further details are provided in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Models. We benchmark a total of 24 input configurations by feeding academic papers as either
images or OCR text using the Tesseract (Smith, 2007) engine, covering 15 mainstream models (Yang
et al., 2025; Bai et al., 2025; et al., 2025a; Guo et al., 2025; et al., 2025d).

Evaluation Protocol. Inspired by MMLongBench-Doc (Ma et al., 2024), we prompt models to
generate necessary reasoning chains from evidence to detected anomalies without constraining the
output format, which aims to assess the ability for evidence-grounded reasoning rather than mere
instruction-following. For open-ended responses, we use GPT-4.1 (OpenAI, 2025) to extract cited
evidence and reasoning steps, and quantify alignment with annotated explanations. Human evalua-
tion confirms high agreement between our pipeline and expert annotations. Further implementation
details are provided in Appendix F.

Metrics. We define a structured evaluation framework by parsing the model response a into a tuple:
Ψ(a) ⇒

(
1exist, 1contain, Ê , R̂, n

)
. (1)

Here, 1exist and 1contain are binary indicators for whether output contains any error and includes
the annotated target error; Ê , R̂ and E∗,R∗ are the predicted and gold evidence sets and reasoning
chains; ĝ = prefix match(R̂,R∗) counts matched reasoning steps; n ∈ N is the number of unre-
lated errors. HasError(a) is 1 if the output contains any predicted error, and 0 otherwise. Based on
Ψ(a), we define an end-to-end score S(m) ∈ [0, 1] that combines all aspects of prediction quality:

(i) Existence. Sexist(a) = 1 if and only if the response includes the annotated target error.
Sexist(a) = 1{HasError(a)} · 1{ Ê ∩ E∗ ̸= ∅ } (2)

(ii) Evidence location score. Even when the target error is identified, the cited evidence may be
incomplete or noisy. We compute a Dice score with a squared penalty for over-reporting:

Slocation = max

{
0,

2
∣∣Ê ∩ E∗

∣∣+ 1
{ ∣∣Ê∣∣+ ∣∣E∗

∣∣ = 0
}

max
( ∣∣Ê∣∣+ ∣∣E∗

∣∣, 1) − 0.8

 ∣∣Ê \ E∗
∣∣

max
(∣∣Ê∣∣, 1)

2}
. (3)

(iii) Reasoning process score. Even if the target error is detected, the reasoning may diverge from
the gold chain. We use prefix match to assess reasoning completeness:

Sreasoning = 1{ gr = 0 }+ 1{ gr > 0 }
(

ĝ

gr

)2

. (4)

(iv) Unrelated-error penalty. Models may list unrelated items to inflate recall at the cost of precision.
We penalize this with a rapidly increasing function of unrelated error count:

Punrelated err(n) = 0.9min(n,2) exp
(
−0.6

[
max(n− 2, 0)

]1.5)
. (5)

(v) Overall outcome score. The final score for a is defined as:
S(m) = Sexist(a)

√
Slocation · Sreasoning · Punrelated err(n). (6)

5
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Table 1: Model performance (scaled by 100) across input configurations. RQD: Research Question
& Definitions; DI: Design & Identifiability; SG: Sampling & Generalizability; MO: Measurement
& Operationalization; DHP: Data Handling & Preprocessing; CF: Computation & Formulae; IC:
Inference & Conclusions; RCA: Referential and Citation Alignment; LE: Language & Expression.

Models Avg. RQD DI SG MO DHP CF IC RCA LE

MLLM (Image Input)

Proprietary MLLMs
Gemini 2.5 Pro 15.6 11.9 12.6 35.7 12.3 27.0 4.6 14.7 15.2 7.4
GPT-5 19.2 10.1 9.7 28.2 14.6 26.6 13.8 25.3 25.3 6.9
Grok 4 4.0 0.0 1.9 16.7 3.2 7.4 0.7 1.9 3.6 0.0
Doubao-Seed-1.6-thinking 10.2 3.4 3.5 22.3 7.5 15.1 10.2 12.2 10.9 3.3
Doubao-Seed-1.6 9.9 3.0 4.4 29.2 4.9 15.0 6.3 17.9 8.0 3.9

Open-source LLMs
Llama 4 Maverick 7.0 7.0 7.3 9.4 4.5 4.0 6.5 6.7 8.8 3.0
Gemma 3 27B 1.7 0.5 2.7 2.3 1.7 1.0 1.0 1.3 2.6 0.0
Mistral Small 3.1 3.3 0.1 2.0 2.0 1.5 0.1 1.0 2.2 8.6 1.0
Qwen2.5 VL 72B 0.1 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0

OCR + LLM (Text Input)

Proprietary LLMs
Gemini 2.5 Pro 30.3 21.5 34.2 44.3 27.6 56.6 10.3 28.8 35.6 8.1
GPT-5 22.5 16.1 21.4 26.0 20.3 36.7 4.7 29.8 30.0 2.6
Claude Sonnet 4 5.7 3.7 2.5 10.8 4.3 10.3 1.4 8.4 6.6 3.5
Grok 4 20.8 9.3 7.7 37.4 12.3 34.4 9.0 20.0 31.2 7.2
Doubao-Seed-1.6-thinking 15.3 8.2 10.1 24.3 10.1 24.2 6.4 19.2 21.0 4.2
Doubao-Seed-1.6 13.9 5.4 6.9 26.4 10.3 23.6 6.3 20.1 17.5 2.3

Open-source LLMs
Qwen3 A22B (Thinking) 17.4 8.9 16.2 31.9 15.1 23.7 5.6 22.3 21.1 2.3
Qwen3 A22B 1.7 1.2 0.0 2.7 0.4 1.0 0.1 4.3 2.5 1.1
gpt-oss-120b 7.3 6.3 5.7 18.3 4.9 14.5 1.6 12.5 5.5 0.0
DeepSeek-R1 11.4 5.1 11.9 25.4 8.7 22.5 4.7 16.3 9.8 3.5
DeepSeek-V3.1 1.7 1.2 2.0 1.7 1.0 5.8 0.5 2.2 2.1 0.0
Llama 4 Maverick 2.3 1.5 2.0 4.8 3.0 3.6 0.0 5.8 1.6 0.2
Gemma 3 27B 2.0 2.1 1.6 3.0 2.7 0.2 0.7 7.7 1.0 0.0
Mistral Small 3.1 6.9 3.0 2.7 5.5 7.0 2.0 8.5 4.0 12.2 3.0
Qwen2.5 VL 72B 0.2 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.6 0.0

4.2 MAIN RESULT

Table 1 presents our evaluation results. Our main findings are summarized as follows:

Overall performance remains unsatisfactory. GPT-5 achieves the highest average score in the
image input group (19.2), while Gemini 2.5 Pro, the best-performing model in the text input setting,
still fails to surpass the 60-point threshold on any subtask. Even in the SG category, which yields the
best performance overall, nearly half of the models receive single-digit scores. Most models perform
poorly under the scan-oriented task formulation and fail to detect any issues in many papers. This
challenge is particularly pronounced for open-source models.

Reasoning-enhanced models demonstrate clear advantages. Across both input configurations,
reasoning-enhanced variants consistently achieve higher scores. Almost all top-performing models,
measured by both subtask-specific and overall metrics, fall into this category. Notably, Qwen3-
Thinking and Deepseek-R1 outperform their base versions by more than 10% in average scores,
with substantial gains observed across all error types. These results indicate that reasoning-enhanced
models are better able to simulate the iterative process of extraction followed by reasoning, which is
essential for effectively handling scan-oriented tasks and producing higher-quality responses.

MLLMs face significant bottlenecks in handling long multimodal inputs. Across most evalu-
ation metrics, text inputs outperform image inputs. Among the nine MLLMs tested, the average
performance gap between text and image inputs reaches 4.81 points, highlighting visual processing
as a key limitation in current MLLM capabilities.

6
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In most evaluation metrics, text inputs consistently outperform image inputs. Among the nine
MLLMs evaluated, the average performance gap between text and image inputs is 4.81 points, un-
derscoring visual processing as a key limitation in current MLLM capabilities.

Although overall performance is generally weaker, multimodal input remains indispensable.
In certain categories such as CF, where OCR-based text extraction leads to substantial loss of formu-
laic or tabular content, image inputs outperform their text counterparts. This highlights the essential
role of multimodal reasoning and the irreplaceable value of visual information in addressing specific
types of errors.

4.3 FINE-GRAINED ANALYSIS

RQD DI SG MO DHP CF IC RCA LE

RQD

DI

SG

MO

DHP

CF

IC

RCA

LE
0.5

1.0

Figure 4: Spearman correlation matrix
among the 9 error types.

Capability Dimensions. We compute pairwise
Spearman correlations between error types across two
input configurations (text and image) for the eight
evaluated MLLMs excluding Qwen2.5-VL-72B, as
shown in Figure 4. We derive the following insights:

(i) With image input, CF exhibits consistently low cor-
relations with other error categories, suggesting that
the skills required for mathematical reasoning are rel-
atively distinct. In contrast, with text input, CF shows
moderate correlation with LE, indicating that OCR-
flattened formulas lose their structural specificity and
are interpreted by models in a manner more akin to
natural language. Combined with the overall poor
performance on CF tasks, this underscores the unique
challenges of this category and the need for targeted
improvements.

(ii) Although DI is also related to experimental set-
tings, it does not exhibit strong correlations with SG,
MO, or DHP. This indicates that DI primarily emphasizes causal framing and variable identifiability,
rather than the procedural understanding of experimental operations.

(iii) OCR severely degrades structured content such as figures and formulas, making questions that
depend on multimodal information unanswerable. This diminishes the expression of multimodal
reasoning capabilities and artificially inflates inter-category correlations under text input.

Based on the above analysis, we consolidate the original 9 error categories, each defined by its objec-
tive target, into 5 core latent skill dimensions evaluated by ScholScan under the image input setting.
While each dimension highlights the primary competence emphasized by its corresponding error
types, they are not mutually exclusive, as many questions involve overlapping reasoning abilities.

RQD and DI correspond to research concept comprehension, which requires models to identify the
scope and definition of research objectives by integrating contextual cues and prior knowledge.
SG, MO, and DHP fall under experimental process modeling, which tests a model’s ability to
reconstruct procedural workflows such as sampling, measurement, and data handling. CF captures
formal reasoning and symbolic computation, focusing on syntactic parsing and numerical logic. IC
evaluates causal inference, where models must synthesize dispersed causal evidence to reach sound
conclusions. RCA and LE reflect referential alignment and linguistic consistency, which assess the
ability to verify citations and maintain coherent expression throughout the document.

Hidden Complexity in Scan-Oriented Tasks. We analyze the reasoning traces of GPT-5 and Gem-
ini 2.5 Pro under both input configurations, focusing on the number of evidence pieces scanned and
the reasoning steps performed. As illustrated in Figure 5, even the most advanced models often scan
up to 8 times more evidence and execute 3.5 times more reasoning steps than the reference answers,
merely to approximate a correct response, yet they still frequently fail. This highlights the substan-
tial hidden complexity inherent in scan-oriented tasks, which significantly amplifies the challenge
of successful task completion.

7
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Figure 6: Performance trends across varying reasoning depths and evidence counts.

4.4 ERROR ANALYSIS

Omission and Hallucination. Most zero-score cases fall into two categories: either the model fails
to detect any errors in the paper, or it becomes overwhelmed by hallucinations and entirely overlooks
the actual errors present in the reference answer. We analyze the number of zero-score questions
and the proportion of these two failure modes across models, as shown in Figure 5. Stronger models
tend to have fewer zero-score cases overall, but are more prone to overconfident hallucinations.

Fragile Reasoning under Complex Evidence. Figure 6 shows how top-performing models behave
under different numbers of reasoning steps and evidence locations. As reasoning steps increase, both
reasoning and overall scores steadily decline, revealing a clear bottleneck in MLLMs’ ability to con-
struct long causal chains. In contrast, variation in evidence count has a weaker and less consistent
impact. However, this does not imply that multi-evidence questions pose only marginal difficulty.
Since the evaluation metric allows partial evidence omissions, more evidence items do not necessar-
ily incur large score penalties. Still, heavier evidence loads often require longer reasoning chains,
which substantially affect the coherence and completeness of inferred logic. These results highlight
the persistent challenge for MLLMs in integrating evidence and maintaining logical structure as task
complexity grows.

4.5 RAG ANALYSIS

We evaluated 8 RAG methods under both input configurations (Robertson et al., 1994; Chen et al.,
2024; Lee et al., 2025; Faysse et al., 2025; Yu et al., 2025; Wang et al., 2025; Izacard et al., 2022).
Key findings are presented below, with detailed results shown in Tables 2 and 3.

Oracle Condition Yields Significant Accuracy Gains. Providing gold-standard images alleviates
the scanning burden in long-context inputs, increasing the chances of generating correct answers.
While overall performance improves, gains are limited for CF errors and minimal for LE errors. For
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Table 2: Scores of RAG methods across the 9 error types (scaled by 100).

Models Avg RQD DI SG MO DHP CF IC RCA LE

Text Input (Base Model: Qwen3 Thinking)
Baseline 17.4 8.9 16.2 31.9 15.1 23.7 5.6 22.3 21.1 2.3
Oracle 24.5 20.6 27.9 43.6 21.3 40.8 7.4 26.9 26.0 1.9
bm25 16.7 9.7 13.7 33.0 17.3 23.8 6.8 25.4 16.5 3.0
BGE-M3 11.3 8.6 7.5 24.8 9.1 15.4 5.3 15.6 11.4 1.0
Contriever-msmacro 16.6 9.7 18.2 33.7 10.7 20.8 6.4 18.5 19.8 1.8
nv-embed-v2 6.8 4.0 4.0 9.4 6.1 4.9 5.5 5.7 10.0 2.0

Image Input (Base Model: Llama4 Maverick)
Baseline 7.0 7.0 7.3 9.4 4.5 4.0 6.5 6.7 8.8 3.0
Oracle 6.5 3.0 4.5 15.6 8.2 9.4 4.9 10.0 4.4 1.4
ColPali-v1.3 0.8 1.5 0.0 0.5 0.0 0.9 0.5 1.3 1.4 0.0
ColQwen2.5 1.2 2.1 0.7 0.5 0.0 1.2 0.2 2.7 2.0 0.0
VisRAG 1.0 2.0 0.0 1.0 0.0 1.0 1.6 1.3 1.2 0.0
VRAG-RL 10.9 9.8 11.6 17.8 8.2 11.0 6.8 13.1 10.8 8.1

CF, sparse formulaic content means gold images offer slight help. For LE, dense text distribution
makes even direct access to target regions insufficient to reduce complexity for current models.

Table 3: Summary of retrieval perfor-
mance for RAG methods.

Models MRR@5 Recall@5

Text Input (Base Model: Qwen3 Thinking)
bm25 0.41 0.48
BGE-M3 0.16 0.21
Contriever-msmacro 0.31 0.39
nv-embed-v2 0.30 0.38

Image Input (Base Model: Llama4 Maverick)
ColPali-v1.3 0.26 0.31
ColQwen2.5 0.30 0.35
VisRAG 0.41 0.46

In consistency-centric scan-oriented tasks, most
retrieval-based enhancement methods show mini-
mal effectiveness. All embedding models exhibit poor
retrieval accuracy. None achieves recall of 50% within
the top-5 retrieved items. More critically, performance
deteriorates after retrieval, especially for multimodal
embedding models, where post-retrieval responses are
almost entirely incorrect and scores approach 0.

Complex embedding model architectures do not
yield better performance. Providing gold-standard
images alleviates the scanning burden in long-context
inputs, increasing the chances of retrieving correct an-
swers. While overall performance improves, gains are
limited for CF and minimal for LE errors. For CF,
sparse formulaic content means gold images offer only
slight localization help. For LE, dense error distribution makes even direct access to target regions
insufficient to reduce task complexity for current models.

Reinforcement learning frameworks with a visual-centric focus have distinguished themselves
as leading approaches. Despite being built on a compact 7B model, VRAG-RL consistently de-
livers improved performance and is the only method that achieves gains in the image-input setting
following RL optimization. Its enhanced retrieval sharpens evidence selection, while strong reason-
ing provides effective guidance during document scanning. The retrieval and reasoning components
are interleaved in design, with each stage informing the other in an iterative loop. This tightly
coupled interaction contributes to the method’s superior performance potential.

5 CONCLUSION

In this paper, we introduce ScholScan, a benchmark designed to evaluate the performance of
MLLMs on scan-oriented tasks that require detecting scientific errors across entire academic pa-
pers. We conduct a comprehensive evaluation and in-depth analysis of mainstream MLLMs and
RAG methods. The results demonstrate that current MLLMs remain far from capable of reliably
addressing such tasks, and that existing RAG approaches provide little to no improvement. This
highlights the complexity, integrative demands, and originality of the ScholScan benchmark. Look-
ing ahead, we aim to develop scan-oriented task paradigms suited to diverse academic scenarios and
explore new techniques for enhancing model performance on target-suppressed inputs. These direc-
tions support the broader goal of advancing MLLMs from passive assistants to active participants in
scientific research.
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6 ETHICS STATEMENT

All data used in this paper were constructed by the authors and do not include any external public or
proprietary datasets. The included academic papers and author names are publicly available through
arXiv and OpenReview and can be freely accessed.

A team of 10 domain experts was assembled to comprehensively review all task instances initially
generated by Gemini 2.5 Pro. All annotators gave informed consent to participate. To ensure the ac-
curacy and neutrality of both model-generated and human-verified content, we employed a rigorous
multi-stage validation process involving cross-review and third-party adjudication.

Evaluation across 15 mainstream models and 24 input configurations was conducted via legally
authorized API access through the VolcEngine, Alibaba Cloud’s LLM services, and OpenRouter.

ScholScan is fully open-sourced and freely available for academic and non-commercial research pur-
poses. We provide the complete download link and documentation through an anonymous GitHub
repository. All personally identifiable information has been removed from the dataset, and its col-
lection and release comply with the ethical and legal requirements in place at the time of data acqui-
sition.

7 REPRODUCIBILITY STATEMENT

All results presented in this paper are fully reproducible. To facilitate verification and ex-
tension, we provide an anonymous repository (https://anonymous.4open.science/r/
ScholScan-6657/) that contains the complete dataset, source code, and detailed documentation.
The repository also includes step-by-step instructions and the exact hyperparameter configurations
used in our experiments, ensuring that other researchers can replicate our findings with minimal
effort.

The retrieval components in all retrieval-augmented generation (RAG) experiments were executed
on a server equipped with 8 NVIDIA A40 GPUs.
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A USE OF LLMS

Large language models (LLMs) were used solely to assist in language editing and stylistic refinement
during manuscript preparation. All technical content, experiments, dataset construction, evaluation
protocols, and analysis were conceived, implemented, and validated entirely by the authors. No
LLMs were involved in the generation of benchmark data, research methodology design, or result
interpretation. The use of LLMs did not influence the scientific conclusions of this paper.
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B PROMPTS

B.1 WITHIN-GENERATE PROMPT

Within-Generate Prompt

You will receive a high-quality, already accepted scientific
paper as a PDF. Working only with the PDF itself (and any
appendix embedded in the same PDF), edit specific
textual spans to inject one or more errors chosen only
from the taxonomy below, such that the errors are hard
yet clearly identifiable by a professional reviewer
reading the PDF alone.

Error Type (fixed):
Research Question & Definitions

Definition: The core construct/hypothesis/variable is
insufficiently or inconsistently defined (conceptual
vs operational), leaving the estimand ambiguous.

Design & Identifiability
Definition: Given a clear estimand, the design violates

structural identification conditions so the effect is
not identifiable even with infinite data and perfect
measurement.

Sampling & Generalizability
Definition: The sampling frame/process/composition or

cluster/power setup does not support valid or stable
sample→population claims.

Measurement & Operationalization
Definition: Measures/manipulations lack feasibility/

reliability/validity/timing, so observed variables
systematically diverge from the intended construct/
treatment.

Data Handling & Preprocessing
Definition: Pipeline choices in missing handling, joins/

keys, temporal splitting, feature construction, or
partitioning introduce bias (incl. leakage or unit/
scale conflicts).

Computation & Formulae
Definition: Arithmetic/algebra/notation errors (totals/

ratios, unit conversion, CI vs point estimate, p-value
vs label, symbol reuse, undefined variables,

dimension mismatch).
Inference & Conclusions

Definition: Interpretations or causal statements exceed
what methods/data support, or contradict the shown
statistics/tables/captions.

Referential and Citation Alignment
Definition: Contradictions about the same quantity/term

across text, tables, captions, or appendix within the
paper.

Language & Expression
Definition: Terminology/capitalization/grammar ambiguities

that affect meaning or domain-critical term
consistency (not cosmetic typos).
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Within-Generate Prompt (Continued)

Global constraints (must comply)
1. Each error must map to exactly one primary category in the

taxonomy. Do not mix causes.
2. Each error must involve more than 2 micro-edits (each edit

≤ 20 English words) spread across distinct pages or
paragraphs.

3. If an edit would create an immediate contradiction in the
same sentence/paragraph/caption, you may add shadow patch
(es) for the same error to keep the text natural (still
counted as edit locations).

4. Independence across errors (per-copy generation)
Generate each error on a separate copy of the original PDF

. Different errors must be logically and operationally
independent:

No progression or variant relations: an error must not be
a stricter/looser version, superset/subset, or minor
wording variant of another error.

No anchor reuse: do not target the same sentence/caption/
table cell or reuse the same old_str (or a near-
duplicate paraphrase) across different errors.

Applying any single error in isolation to the original PDF
must still yield a detectable, clearly categorizable

error according to the taxonomy.
5. Every error must be supportable using text inside the PDF.

Do not rely on external supplementary files or prior
knowledge.

6. Design as difficult as possible but clean errors. Prefer
edits that force cross-checking between two spots (e.g.,
Methods vs Results). Avoid trivialities. Edits must
remain locally plausible and not advertise themselves via
obviously artificial phrases (e.g., avoid contrived
tokens purely added to be detectable).

7. ‘‘No cosmetic issues’’ applies except for I (Language &
Expression). For I, edits must affect meaning or domain-
critical terminology (e.g., ambiguous phrasing,
inconsistent technical terms). Pure typos, punctuation
tweaks, or layout nits are not allowed.

8. Do not edit titles, author lists, bibliography entries,
equation numbering, figure images, or add new figures/
tables/references.

9. Frame each question as a neutral imperative that asks for
a decision about a specific condition, using (but not
limited to) Decide/Determine/Judge/Evaluate/Assess
whether.... Do not presuppose an outcome or use
suggestive intensifiers (e.g., clearly/obviously/likely/
suspicious as examples).
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Within-Generate Prompt (Continued)

10. Output English-only and strictly follow the JSON schema
below. Do not include any additional text outside the
JSON:

[
{
"id":"1-based integer as string",
"modify":[
{
"location":"Page number + short unique nearby quote (

≤15 tokens).",
"old_str":"Exact original text from the PDF (verbatim)

.",
"new_str":"Edited text after your change."

}
/* Add 1-2 more locations; each location ≤ 20 words

changed.
Shadow patches for local coherence count as locations.

*/
],
"question":"One neutral audit-style task (1-25 words).",
"explanation":"Explain in 2-4 sentences why a reviewer can

detect this error from the edited PDF alone.",
"Type":"Name the primary category (e.g., Inference &

Conclusions).",
}
/* More Errors */

]
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B.2 WITHIN-SAMPLE PROMPT

Within-Sample Prompt

You will receive a paper PDF and the weaknesses mentioned in
its peer-review comments. Your task is, based only on the
content of that PDF, to sample from the review comments
and verify possible errors related to the categories
below, and for each confirmed or highly plausible error,
generate one question and one explanation.

Error Type (fixed):
Research Question & Definitions

Definition: The core construct/hypothesis/variable is
insufficiently or inconsistently defined (conceptual
vs operational), leaving the estimand ambiguous.

Design & Identifiability
Definition: Given a clear estimand, the design violates

structural identification conditions so the effect is
not identifiable even with infinite data and perfect
measurement.

Sampling & Generalizability
Definition: The sampling frame/process/composition or

cluster/power setup does not support valid or stable
sample→population claims.

Measurement & Operationalization
Definition: Measures/manipulations lack feasibility/

reliability/validity/timing, so observed variables
systematically diverge from the intended construct/
treatment.

Data Handling & Preprocessing
Definition: Pipeline choices in missing handling, joins/

keys, temporal splitting, feature construction, or
partitioning introduce bias (incl. leakage or unit/
scale conflicts).

Computation & Formulae
Definition: Arithmetic/algebra/notation errors (totals/

ratios, unit conversion, CI vs point estimate, p-value
vs label, symbol reuse, undefined variables,

dimension mismatch).
Inference & Conclusions

Definition: Interpretations or causal statements exceed
what methods/data support, or contradict the shown
statistics/tables/captions.

Referential and Citation Alignment;
Definition: Contradictions about the same quantity/term

across text, tables, captions, or appendix within the
paper.

Language & Expression
Definition: Terminology/capitalization/grammar ambiguities

that affect meaning or domain-critical term
consistency (not cosmetic typos).
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Within-Sample Prompt (Continued)

Global constraints (must comply)
Output only the specified categories; even if other error

types appear in the reviews, do not output them.
Sample first, then verify: extract candidates from the review

comments, then confirm them in the PDF. If you cannot
locate supporting anchors in the PDF (page number plus
phrase/label), do not output that candidate.

Questions must be neutral and non-leading: use an "audit task
+ decision" style, avoiding yes/no bias.

Independence: each question must target a different figure or
different textual anchor; no minor variants of the same
issue.

Evidence first: the explanation must cite locatable anchors
in the PDF (page number + original phrase/caption). You
may mention a key short phrase from the review as a clue,
but write the question and explanation in your own words

Language & format: both question and explanation must be in
English; output JSON only, with no extra text.

Quantity: sort by evidence strength and output up to 5 items;
if none qualify, output an empty array [].

Example output
[
{
"id": "1",
"question": "Audit y-axis baselines and possible axis

breaks in Figure 2; decide presence/absence and cite
evidence.",

"explanation": "The review flags possible exaggeration in
Fig.2. In the PDF (p.6, caption ’Performance vs
baseline’), the y-axis starts at 0.85 with a break,
magnifying small differences; panels use different
ranges."
"Type":"Visualization & Presentation Bias"

}
]

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.3 EXTRACTOR PROMPT

Extractor Prompt

You will receive three inputs:
Q: the open-ended question;
E: the gold explanation (describes exactly one error; extra

details still belong to the same single error);
A: the model’s answer to be evaluated.
Your job is to extract counts only and output a single JSON

object with the exact schema below. Do not compute any
scores. Do not add fields.

Core selection rule (multiple errors in A)
1. Parse E into a single gold error (the "target error").
2. From A, identify how many distinct error claims are made.

Cluster together mentions that support the same error (
multiple locations for one error are still one error).

3. Existence decision (binary correctness only):
Let the gold existence be 1 if E asserts an error exists,

else 0.
Let the predicted existence be 1 if A asserts any error, else

0 (e.g., states no error).
Set existance = 1 if predicted existence equals gold

existence; otherwise set existance = 0.
4. If existance = 0: set contains_target_error = 0; set all

location and reasoning counts to 0; and set
unrelated_errors to the total number of distinct error
claims in A. Then output the JSON.

5. If existance = 1:
If the gold existence is 1: determine whether A contains the

target error (match by the main error idea in E: category
/intent/scope; treat E’s subpoints as the same error).
If yes, set contains_target_error = 1 and compute location

and reasoning only for the target error. Count all
other error claims in A as unrelated_errors.

If no, set contains_target_error = 0; set all location and
reasoning counts to 0; set unrelated_errors to the

total number of distinct error claims in A.
If the gold existence is 0: set contains_target_error = 0;

set all location and reasoning counts to 0; set
unrelated_errors to the total number of distinct error
claims in A. (These negative items are for binary
accuracy only; they are not used for detailed scoring.)

Matching guidance (A error ↔ target error): match by the
main error idea in E (category/intent/scope), not by
wording. Treat E’s subpoints as part of the same single
error. Prefer the best-matching cluster in A; if ties,
choose the one with stronger alignment to E’s core claim.
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Extractor Prompt (Continued)

Counting rules
Location (for the target error only when existance=1 and

contains_target_error=1):
gold_steps: number of unique error locations described in E (

after normalization and deduplication).
hit_steps: number of predicted locations in A that match any

gold location for the target error.
extra_steps: number of predicted locations in A for the

target error that do not match any gold location.

Reasoning (for the target error only when existance=1 and
contains_target_error=1):

Convert E into a canonical set or ordered chain of reasoning
steps for the target error.

gold_steps: total number of such steps.
reached_steps:

single-chain tasks: length of the longest valid prefix of
A along the gold chain;

multi-path/parallel tasks: size of the intersection
between A’s steps and the gold step set (or the
maximum across gold paths if multiple are defined).

missing_steps: gold_steps - reached_steps (non-negative
integer).

Unrelated errors:
unrelated_errors: number of distinct error claims in A that

are not the target error (0 if none).
Output schema (return exactly this JSON; integers only)
{
"existance": 0,
"contains_target_error": 0,
"location": {
"gold_steps": 0,
"hit_steps": 0,
"extra_steps": 0

},
"reasoning": {
"gold_steps": 0,
"reached_steps": 0,
"missing_steps": 0

},
"unrelated_errors": 0

}
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B.4 SYSTEM PROMPT

System Prompt

You are a neutral, careful academic reviewer. You will
receive an open-ended question and the paper content. The
paper may or may not have issues related to the question
Do not assume there are errors. If the question is about
citations, you will be given a citing paper and a cited
paper; evaluate only the citing paper for possible issues
and use the cited paper only as the reference for
comparison. Write in natural prose with no fixed template

Rules:
Speak only when sure. State an error only if you are

confident it is a real error (not a mere weakness).
Stay on scope. Discuss only what the question asks about.
Evidence completeness. For every error you state, list all

distinct evidence cues you are confident about from the
PDF. Include plain identifiers (figure/table/section/
equation/citation) or quotes. Avoid redundant repeats of
the exact same instance; include all distinct locations
needed to support the error.

Be clear and brief. Use short, direct sentences.
No metaphors. No fancy wording.No guesses or outside sources.

Do not invent figures, tables, equations, citations, or
results.

Report as many distinct, well-supported errors as you can
within scope. If none are clear, write exactly: "No clear
issue relevant to the question." and nothing else.
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C EXAMPLES FROM EXISTING DATASETS

C.1 EXAMPLE FROM DOCMATH-EVAL

One Example from DocMath-Eval

Question ID: complong-testmini-30
Question: What is the percentage of total offering cost on the total amount raised in the IPO if the
total offering cost is $14,528,328 and each unit sold is $10?

Context Modalities: Texts Documents
1. Offering costs consist of legal, accounting and other costs incurred through the balance sheet date that
are directly related to the Initial Public Offering. Offering costs amounting to $14,528,328 were charged to
shareholders’ equity upon the completion of the Initial Public Offering.
2. Pursuant to the Initial Public Offering on July 20, 2020, the Company sold 25,300,000 Units, which
includes the full exercise by the underwriter of its option to purchase an additional 3,300,000 Units, at a
purchase price of $10.00 per Unit. Each Unit consists of one Class A ordinary share and one-half of one
redeemable warrant (“Public Warrant”). Each whole Public Warrant entitles the holder to purchase one
Class A ordinary share at an exercise price of $11.50 per whole share (see Note 7).

NO Multi-Modal Documents Context

Covered areas:
Focus Only On the Field of Mathematics

Cross-evidence Reasoning:
Focusing on solving mathematical problems requires integrating evidence such as mathematical formulas,
question stem conditions, and chart data from different positions in the document.

Task Paradigm: search

Search-oriented
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C.2 EXAMPLE FROM SLIDEVQA

One Example from SlideVQA

Question ID: 1
Question: How much difference in INR is there between the average order value of CY2013 and that
of CY2012?

Context Modalities: Multi-Modal Documents and Texts

Covered areas:
The documents cover core technical research fields such as visual question answering and machine reading
comprehension, as well as industry application fields including education and scientific research, finance
and commerce, and healthcare (with derivative adaptation to pathological slice analysis), and also involves
derivative technical fields like retrieval-augmented generation.

Cross-evidence Reasoning:
Simple question types only require a single piece of evidence

Not Cross-evidence Reasoning

Task Paradigm: search

Search-oriented
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C.3 EXAMPLE FROM MMLONGBENCH-DOC

One Example from MMLongBench-Doc

Question ID:
Question: How much higher was the proposed dividend paid (Rupees in lacs) in 2002 compared to
2001?

Context Modalities: Multi-Modal Documents and Texts

Unclaimed Dividend

Unclaimed dividend for the years  prior to and including the financial year  1998-99  has  been transferred to the General 
Revenue Account  of the  Central  Government  / the  Investor  Education  and  Protection  Fund  established  by  the  Central 
Government (IEPF), as applicable.

Shareholders who have not encashed their dividend warrants relating to financial year(s) up to and including 1993-94 may 
claim such dividend (transferred to the General Revenue Account) from the Registrar of Companies, West Bengal, Government 
of India, Nizam Palace, II MSO Building, 2nd Floor, 234/4 A.J.C. Bose Road, Kolkata 700 020, in the prescribed form. This 
form can be furnished by the Investor Service Centre of the Company (ISC) on request or can be downloaded from the 
Company’s corporate website www.itcportal.com under the section ‘Investor Relations ’.

The dividend for the undernoted years, if unclaimed for 7 years, will be transferred by the Company to IEPF in accordance 
with the schedule given below. Attention is drawn that the unclaimed dividend for the financial year 1999-2000 will be due 
for transfer to IEPF later this year. Communication has been sent by the Company to the concerned Shareholders advising 
them to lodge their claims with respect to unclaimed dividend.

Once unclaimed dividend is transferred to IEPF, no claim shall lie in respect thereof.

ITC Limited

* It will not be possible to entertain claims received by ISC after 9th October, 2007.

Bank Details

Shareholders  holding Shares in the  physical form are  requested to  notify / send the following to  ISC to facilitate  better 
servicing:-

i)   any  change in their address / mandate / bank details, and

ii)   particulars of the bank account in which they wish their dividend to be credited, in case the same have not been furnished 
earlier.

Shareholders are advised that respective bank details and addresses as furnished by them or by NSDL / CDSL to the Company, 
for Shares held in the physical form and in the dematerialised form respectively, will be printed on dividend warrants as a 
measure of protection against fraudulent encashment.

Financial
Year

Dividend
Identification

No.

Date of Declaration       
of Dividend

Total Dividend
(Rs.)

Unclaimed Dividend
as on 31/03/2007

Due for
transfer to IEPF

on(Rs.) %
1999-00 70th 28th July, 2000 1,84,06,11,780.00 1,26,32,087.00 0.69 15th September, 2007*
2000-01 71st 3rd August, 2001 2,45,41,49,040.00 2,06,42,133.00 0.84 9th September, 2008
2001-02 72nd 26th July, 2002 3,34,14,27,743.00 2,56,63,749.00 0.77 31st August, 2009
2002-03 73rd 25th July, 2003 3,71,26,78,290.00 2,38,48,718.00 0.64 30th August, 2010
2003-04 74th 30th July, 2004 4,95,35,77,020.00 3,35,88,620.00 0.68 4th September, 2011
2004-05 75th 29th July, 2005 7,73,24,56,356.00 5,07,52,301.00 0.66 3rd September, 2012
2005-06 76th 21st July, 2006 9,95,12,91,267.00 7,38,87,332.00 0.74 26th August, 2013

Financial Date of Declaration Total Dividend Unclaimed Dividend Due for
Year of Dividend (Rs.) as on 31/03/2007 transfer to IEPF

on(Rs.) %
1999-00 25th August, 2000 3,02,16,492.00 3,19,648.00 1.06 10th October, 2007*
2000-01 17th August, 2001 3,02,16,492.00 3,04,552.00 1.01 20th September, 2008

2003-04 14th July, 2004 6,04,32,984.00 6,99,704.00 1.16 18th August, 2011

* It will not be possible to entertain claims received by ISC after 14th September, 2007.

Erstwhile ITC Hotels Limited

SHAREHOLDER REFERENCER

30

Covered areas:
The documents cover 7 diverse fields such as scientific research reports, business financial reports, and
technical manuals.

Cross-evidence Reasoning:
33% of the questions are cross-page questions, which require integrating different types of evidence such
as texts, tables, and charts from multi-page documents

Task Paradigm: search

Search-oriented
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C.4 EXAMPLE FROM LONGDOCURL

One Example from LongDocURL

Question ID: free gemini15 pro 4061601 47 71 8
Question: What was the total fair value of options that vested in 2016, 2015, and 2014, in millions of
Canadian dollars?

Context Modalities: Multi-Modal Documents and Texts

year ended December 31, 2016

(millions of Canadian $)
Before Tax    

Amount

Income Tax    
Recovery/     
(Expense)

Net of Tax  
Amount

Foreign currency translation gains on net investment in foreign operations 3 — 3

Change in fair value of net investment hedges (14) 4 (10)

Change in fair value of cash flow hedges 44 (14) 30

Reclassification to net income of gains and losses on cash flow hedges 71 (29) 42
Unrealized actuarial gains and losses on pension and other post-retirement benefit     
plans (38) 12 (26)

Reclassification to net income of actuarial loss on pension and other post-                   
retirement benefit plans 22 (6) 16

Other comprehensive loss on equity investments (117) 30 (87)

Other Comprehensive Loss (29) (3) (32)

year ended December 31, 2015

(millions of Canadian $)
Before Tax    

Amount

Income Tax     
Recovery/     
(Expense)

Net of Tax  
Amount

Foreign currency translation gains on net investment in foreign operations 798 15 813

Change in fair value of net investment hedges (505) 133 (372)

Change in fair value of cash flow hedges (92) 35 (57)

Reclassification to net income of gains and losses on cash flow hedges 144 (56) 88
Unrealized actuarial gains and losses on pension and other post-retirement benefit     
plans 74 (23) 51

Reclassification to net income of actuarial loss and prior service costs on pension        
and other post-retirement benefit plans 41 (9) 32

Other comprehensive income on equity investments 62 (15) 47

Other Comprehensive Income 522 80 602

As at December 31, 2016, the aggregate intrinsic value of the total options exercisable was $86 million and the total intrinsic value    
of options outstanding was $130 million.

21. PREFERRED SHARES

In March 2014, TCPL redeemed all of the 4 million outstanding Series Y preferred shares at a redemption price of $50 per share 
for   a gross payment of $200 million.

22. OTHER COMPREHENSIVE (LOSS)/INCOME AND ACCUMULATED OTHER COMPREHENSIVE LOSS

Components of Other comprehensive (loss)/income, including the portion attributable to non-controlling interests and related tax       
effects, are as follows:

year ended December 31

(millions of Canadian $, unless otherwise noted) 2016 2015 2014

Total intrinsic value of options exercised 31 10 21

Fair value of options that have vested 126 91 95

Total options vested 2.1 million 2.0 million 1.7 million

The following table summarizes additional stock option information:

155    TCPL Consolidated financial statements 2016

Covered areas:
The document types of LongDocURL cover 8 major categories such as research reports, user manuals, and
books.

Cross-evidence Reasoning:
Most questions require integrating evidence across chapters and elements

Task Paradigm: search

Search-oriented
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C.5 EXAMPLE FROM ARXIVQA

One Example from ArXivQA

Question ID: physics-8049
Question: Based on the top-right graph, how would you describe the behavior of P(z) as z approaches
zero?

Context Modalities: Images

Covered areas:
The document includes arXiv academic papers in various fields such as physics and mathematics.

Covers Few Areas

Cross-evidence Reasoning:
Only focus on a single element.

Not Cross-evidence Reasoning

Task Paradigm: search

Search-oriented
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C.6 EXAMPLE FROM CHARXIV

One Example from Charxiv

Question ID: 2004.10956
Question: Which model shows a greater decline in accuracy from Session 1 to Session 9 in the 5-way
full-shot scenario?

Context Modalities: Images

Covered areas:
The document type consists of multi-type charts and graphs from 2323 papers in 8 disciplines, namely
physics, computer science, mathematics, biology, chemistry, statistics, engineering, and economics, which
are derived from the arXiv platform.

Cross-evidence Reasoning:
Only focus on a single element.

Not Cross-evidence Reasoning

Task Paradigm: search

Search-oriented
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C.7 EXAMPLE FROM AAAR

One Example from AAAR

Question ID: 1902.00751
Question: What experiments do you suggest doing? Why do you suggest these experiments?

Context Modalities: Multi-Modal Documents

Covered areas:
The document types cover two core categories: one is the AAAR-1.0 benchmark dataset documents, which
are used to evaluate the research capabilities of LLMs and contain annotated data for 4 types of research
tasks such as equation inference; the other is the documents related to the academic organization operation
of the American Association for Aerosol Research (AAAR).

Covers Few Areas

Cross-evidence Reasoning:
It is necessary to integrate textual evidence across paragraphs and chapters.

Task Paradigm: search

Search-oriented
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C.8 EXAMPLE FROM MMCR

One Example from MMCR

Question ID: 1
Question: Which module’s weights are frozen?

Context Modalities: Multi-Modal Documents and Texts

Covered areas:
Its document type focuses on multimodal information fusion and clinical semantic understanding in medical
scenarios.

Focus Only On the Field of Medicine

Cross-evidence Reasoning:
It is necessary to forcibly integrate medical imaging evidence (such as abnormal areas in CT images) with
clinical report text evidence

Task Paradigm: search

Search-oriented
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C.9 EXAMPLE FROM DOCVQA

One Example from DocVQA

Question ID: 24581
Question: What is name of university?

Context Modalities: Multi-Modal Documents

Covered areas:
Including invoices, resumes, academic papers, financial reports, manuals, etc. in formats such as scanned
copies, PDFs, and screenshots.

Cross-evidence Reasoning:
Simple question types (such as ”invoice amount”) only require evidence from a single location, while
complex question types (such as ”judging device compatibility based on parameter tables and explanatory
texts across multiple pages of a manual”) require integrating evidence across elements and locations.

Not All Cross-evidence Reasoning

Task Paradigm: search

Search-oriented
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C.10 EXAMPLE FROM SPIQA

One Example from SPIQA

Question ID: 1611.04684v1
Question: What is the role of the knowledge gates in the KEHNN architecture?

Context Modalities: Multi-Modal Figures and Charts

Covered areas:
The document type of SPIQA originates from academic papers in fields such as computer science and
physics.

Covered Few Areas

Cross-evidence Reasoning:
Only focus on a single element.

Not Cross-evidence Reasoning

Task Paradigm: search

Search-oriented
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D DATASET ANNOTATION AND CONSTRUCTION

D.1 HUMAN ANNOTATOR GUIDELINES

The defective academic papers in our dataset are curated from three primary sources: (1) We syn-
thetically inject 9 types of errors into papers accepted at ICLR and Nature Communications. (2)
For the papers rejected by ICLR, we identified the shortcomings in the papers based on the review-
ers’ comments and categorized them into 9 error types.(3) For accepted ICLR papers, we generate
consistency-related errors by cross-referencing their content against cited literature. To ensure the
quality of each error, all entries undergo a rigorous, multistage validation protocol executed by hu-
man annotators. For synthetically generated errors, annotators manually embed them into the source
papers following this protocol:

• Credibility Validation: Each error must be logically sound and verifiable. For generated
errors, annotators first confirm their logical coherence and unambiguity. Flawed error de-
scriptions are revised whenever possible; only irrepairable cases are discarded.

• Evidence Verification: All evidence substantiating an error must be either directly trace-
able to the source document or grounded in established domain-specific knowledge. An-
notators are required to meticulously verify the origin and accuracy of all supporting data
and background information.

• Category Classification: Each error must be accurately classified into one of the 9 prede-
fined categories according to their formal definitions. Annotators verify the correctness of
the assigned category and reclassify it if necessary.

• Paper Revision: Upon successful validation, annotators embed the generated error into the
original manuscript by adding, deleting, or modifying relevant text segments as dictated by
the error’s specification.

This unified and standardized annotation protocol enables the creation of a high-quality dataset of
academic papers with curated errors, providing a robust benchmark for evaluating the document
sacnning and error detection capabilities of Large Multimodal Models.

D.2 ANNOTATION STATISTICS

Initially, we generated or sampled a pool of 3,500 academic paper instances containing potential
errors. During the manual annotation phase, following the protocol described above, we discarded
1,700 instances to ensure the logical rigor of the errors, the accuracy of the evidence, and a balanced
distribution of categories.

Of the remaining 1,800 instances, 1,541 (85.6%)underwent manual revision. The distribution of
these modifications is as follows:

• 535 questions were rewritten to eliminate ambiguity or to increase their retrieval and rea-
soning difficulty.

• 1,207 explanations were revised to correct erroneous evidence references and resolve log-
ical flaws.

• 1,141 instances underwent category reclassification or manual paper editing. This pro-
cess served to fix classifications that were inconsistent with our definitions and, for errors
generated, to manually inject them into the source papers to create the flawed documents.
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D.3 EXAMPLES OF ANNOTATION

D.3.1 CASE 1: DISCARD DIRECTLY

Example

Question: Assess whether the conclusions drawn about the protein’s functional state and therapeutic
applicability are supported by the presented methods and results.
Explanation: Edits in the abstract and discussion claim the paper presents an active-state structure
that reveals the activation mechanism and provides a roadmap for drug design. This overstates the
findings, as the paper repeatedly describes solving the ‘apo’ (unbound) structure and explicitly states
the activating ligand is unknown (p.6). To make the error subtle, a contradictory sentence was added
to the methods (p.9) claiming a stabilizing agonist was used, but this is falsified by the numerous,
unmodified mentions of the ‘apo GPR179’ structure throughout the results and methods.
Error Type: IC (Inference & Conclusions)

Decision: Discard

Analysis: Based on the modifications, the revised abstract and conclusion claim that the paper elucidates
the protein’s ‘active-state’ structure and provides a roadmap for drug design. However, the original text
repeatedly states (e.g., on pages 5 and 9) that it is the ‘apo’ (inactive) structure that was resolved, and crit-
ically notes on page 6 that the ’activating ligand is still unknown’.This constitutes a clear RCA-type error,
defined by the inconsistent description of a concept within the article. Yet, the large model misclassifies this
as an IC-type (Inference & Conclusions) error, which is a significant mistake.Considering that the incon-
sistency regarding the ‘active-state’ description is overly superficial and obvious—a type of error almost
never encountered in actual academic literature—it lacks practical value. Even reclassifying it as an H-type
question would be of little significance. Therefore, we have decided to delete this instance.
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D.3.2 CASE 2: MODIFY QUESTION

Example

Question: Judge whether the mathematical description of the scTab model architecture presents any
dimensional mismatches.
Explanation: The Methods section on page 11 (and the Figure 1b caption) now states that the model’s
feature transformer creates an embedding of dimension nd. However, the same paragraph then
describes splitting this embedding into two components of dimension nd and nd respectively. This is
algebraically impossible for any non-zero na, and the hyperparameter table on page 12 confirms that
na is set to 64, creating a fundamental dimensional mismatch in the model’s description.
Error Type: CF (Computation & Formulae)

Before:
question: Judge whether the mathematical description of the scTab model architecture presents any dimen-
sional mismatches.

Decision: Modify

After:
question: Assess the Methods section for Computation & Formulae issues.

Analysis: Based on the error information and the text, the modified model description states that a vec-
tor of dimension nd is split into two parts: one of dimension nd and another of dimension na. This is
algebraically impossible, as the total dimension (nd) cannot equal the dimension of one of its parts (nd)
plus another non-zero part (na is set to 64). This constitutes a clear dimensional mismatch, rendering the
model’s architectural description logically invalid.The original question was overly specific, as it explicitly
prompted an assessment of whether the mathematical description of the scTab model architecture contained
‘any dimensional mismatches’. This hint was too detailed, reducing the analytical difficulty for the model.
To increase the difficulty, we have revised the question’s phrasing to ask only whether the mathematical
description of the scTab model architecture presents any problems.
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D.3.3 CASE 3: MODIFY EXPLANATION

Example

Question: Evaluate if the composition of the SNAPcmini construct is consistently defined through-
out the paper.
Explanation: The results on page 4 state that the assembled SNAPcmini construct includes the
SNAPC2 subunit. However, the methods on page 12 describe the construction of SNAPcmini
using only SNAPC4, SNAPC3, and SNAPC1, with SNAPC2 explicitly removed from the cloning
description. A third conflicting statement on page 6 implies SNAPC2 was expected to be part of
the minimal core, creating conceptual and operational inconsistency regarding this key experimental
complex.
Error Type: RQD (Research Question & Definitions)

Before:
Explanation: ...with SNAPC2 explicitly removed from the cloning description. A third conflicting state-
ment on page 6...

Decision: Modify

After:
Explanation: ...with SNAPC2 explicitly removed from the cloning description.

Analysis: Based on the modifications, the revised abstract and conclusion claim that the paper elucidates
the protein’s ‘active-state’ structure and provides a roadmap for drug design. However, the original text
repeatedly states (e.g., on pages 5 and 9) that it is the ‘apo’ (inactive) structure that was resolved, and crit-
ically notes on page 6 that the ‘activating ligand is still unknown’.This constitutes a clear RCA-type error,
defined by the inconsistent description of a concept within the article. Yet, the large model misclassifies this
as an IC-type (Inference & Conclusions) error, which is a significant mistake.Considering that the incon-
sistency regarding the ‘active-state’ description is overly superficial and obvious—a type of error almost
never encountered in actual academic literature—it lacks practical value. Even reclassifying it as an H-type
question would be of little significance. Therefore, we have decided to delete this instance.
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D.3.4 CASE 4: MODIFY CATEGORY

Example

Question: Assess whether the conclusions drawn about the protein’s functional state and therapeutic
applicability are supported by the presented methods and results.
Explanation: Edits in the abstract and discussion claim the paper presents an active-state structure
that reveals the activation mechanism and provides a roadmap for drug design.This overstates the
findings, as the paper repeatedly describes solving the ‘apo’ (unbound) structure and explicitly states
the activating ligand is unknown (p.6). To make the error subtle, a contradictory sentence was added
to the methods (p.9) claiming a stabilizing agonist was used, but this is falsified by the numerous,
unmodified mentions of the ‘apo GPR179’ structure throughout the results and methods.
Error Type: MO (Measurement & Operationalization)

Before:
Error Type: MO (Measurement & Operationalization)

Decision: Modify

After:
Error Type: RCA (Referential and Citation Alignment)

Analysis: The introduced error systematically changes the laser wavelength used in the experiment to
532.0 nm. However, the calculation of a key physical quantity (birefringence) continues to use material
constants (the electro-optic coefficient) that are only valid at the old wavelength of 632.8 nm. Because the
optical properties of materials are wavelength-dependent, this systematic mismatch between experimental
conditions and calculation parameters creates a significant contradiction in a core part of the paper. Com-
pared to a Measurement & Operationalization (MO) error, this error is more accurately described as an
internal inconsistency. Therefore, we are reclassifying this question from MO to RCA.
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E COMMON FAILURE CASES OF MLLMS

E.1 RQD (RESEARCH QUESTION & DEFINITIONS)

Example1: 1001

Question: Assess the Methods section for Research Question & Definitions issues.
Explanation: The definition of a ‘promoter region’, a key analytical construct, is inconsistent across
the paper, making the estimand ambiguous. The RNA-seq methods (page 12) define it as +/-1kb from
the TSS, the ATAC-seq analysis methods (page 11) define it as +/-500bp from the TSS, and the Results
section (page 4) defines it as +/-2kb from the TSS. These three conflicting operational definitions
mean that analyses involving ‘promoters’ are not comparable and the construct is insufficiently
defined.
Error Type: RQD (Research Question & Definitions)
Type: Within-Generate
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Example2: 816

Question: Scrutinize the Methods section for Research Question & Definitions issues.
Explanation: Lemma 3.1, which is a cornerstone of the paper’s theoretical contribution for low-rank
Hessian approximation, relies on a strong and insufficiently justified assumption. The lemma states:
“Assume that each column of the sample gradient ... is independent and identically distributed random
vector with zero mean under the distribution p(y|x, θ)”. The paper provides only a brief, hand-wavy
justification (p.5, lines 230-232), suggesting it “could stand” in an “ideal case” of model convergence.
These critical i.i.d. and zero-mean conditions are not rigorously established or empirically validated
for the contexts in which the method is applied. This leaves a core hypothesis of the paper ambigu-
ously defined and justified, which is an error of type Research Question & Definitions.
Error Type: RQD (Research Question & Definitions)
Type: Within-Sample
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E.2 DI (DESIGN & IDENTIFIABILITY)

Example1: 1006

Question: Assess the Experiments section for Design & Identifiability issues.
Explanation: The paper’s core argument is that it identifies a specific ‘dynamic coupling’ pathway as
essential for RTP, distinct from a ‘static coupling’ pathway. The edits state that the key experiment
(excitation-phosphorescence mapping) cannot distinguish between these two pathways, as the final
phosphorescence shows spectral signatures of originating from both. This introduces a structural
identification problem: with two potential causal pathways leading to the same outcome and no way to
isolate their effects, the claim that the dynamic pathway is the definitive mechanism is not identifiable
from the data presented.
Error Type: DI (Design & Identifiability)
Type: Within-Generate
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Example2: 724

Question: Assess the Methods section for Design & Identifiability issues.
Explanation: A reviewer points out a flaw in the experimental design for the pruning experiments.
The paper states on page 9, “We then removed one of the singular value deciles from a specific matrix
type in all layers”. The reviewer argues this “coarse intervention” constitutes a design flaw because
by modifying all layers simultaneously, it becomes impossible to attribute performance changes to
specific layers. This confounds the effects, making it difficult to identify where in the model the
removed information was critical. This directly undermines the paper’s stated goal of “locating
information.” The design choice violates the conditions for identifying layer-specific contributions,
which is an error of type Design & Identifiability.
Error Type: DI (Design & Identifiability)
Type: Within-Sample
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E.3 SG (SAMPLING & GENERALIZABILITY)

Example1: 1014

Question: Assess the Methods section for Sampling & Generalizability issues.
Explanation: The Methods section is edited to state that the experiments used a “specific substrain
of diabetic” mice, a highly specialized sample. However, the Abstract and Discussion make broad,
unsupported claims of generalizability to ”all patients” and the “general patient population.” This
constitutes an invalid sample-to-population inference.
Error Type: SG (Sampling & Generalizability)
Type: Within-Generate
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Example2: 935

Question: Evaluate the Experiments section for Sampling & Generalizability problems.
Explanation: The reviewer correctly points out that all experiments are based on synthetic preference
drift. The paper’s experimental setup, described on pages 7-8 and in Appendix D, involves taking
existing datasets (e.g., UltraFeedback) and artificially generating non-stationarity. For instance,
preferences are generated by “two different reward models, PAIRRM and ARMORM” (p. 18),
and a switch occurs at a predefined change point ‘tcp’. Because the core phenomenon being
studied—preference drift—is entirely simulated rather than observed organically, the experimental
sample does not represent real-world conditions. This limits the generalizability of the paper’s
findings, as the model’s performance on synthetic drift may not translate to its performance on natural,
complex preference drift. This is a Sampling & Generalizability (C) issue.
Error Type: SG (Sampling & Generalizability)
Type: Within-Sample
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E.4 RCA (REFERENTIAL AND CITATION ALIGNMENT)

Example1: 0

Question: Scan the errors in cited reference Chen et al.(2021)
Explanation: The edited P contains a Type H error by misrepresenting the performance of the
cited model. P (p. 8) claims that the NSTPP model from Chen et al. (2021) ‘reported performance
comparable to a standard Hawkes process baseline’. This contradicts the results in S, where the
proposed models (i.e., NSTPP) consistently outperform the Hawkes process baseline, often by a large
margin. For example, S (p. 9, Table 1) shows on the BOLD5000 dataset that the ’Attentive CNF’
model achieves a temporal log-likelihood of 5.842 ± 0.005, which is substantially better than the
Hawkes Process at 2.860 ± 0.050.
Error Type: RCA (Referential and Citation Alignment)
Type: Cross-Generate
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Example2: 570

Question: Evaluate the Results section for Internal Consistency problems.
Explanation: A reviewer points out that the paper’s reported performance on FB15k-237 is lower
than a state-of-the-art method. The paper’s main text makes a claim that is directly contradicted by its
own table. Specifically, the text states that on the FB15k-237 dataset, their model “still outperforms
rule-based and text-based methods” (page 7, ‘On the FB15k-237 dataset...methods’). However, Table
1 on the same page presents results for KRACL, a method listed under the ”Text-based Methods”
category, which achieves higher scores than the proposed model on both MRR (36.0 vs. 35.5) and
Hit@1 (26.6 vs. 26.4). This discrepancy between the narrative claim and the tabular data constitutes a
clear internal consistency error.
Error Type: RCA (Referential and Citation Alignment)
Type: Within-Sample
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E.5 MO (MEASUREMENT & OPERATIONALIZATION)

Example1: 1015

Question: Assess the Figures/Tables section for Measurement & Operationalization issues.
Explanation: The figure captions on pages 3 and 4 have been edited to specify that the background
for Signal-to-Background Ratio (SBR) calculations was defined as the single minimum pixel intensity
in the image. This is not a valid or reliable operationalization of the “background” construct, as it’s
highly susceptible to single-point noise or detector artifacts. This flawed measurement procedure
systematically undermines all conclusions based on the SBR metric.
Error Type: MO (Measurement & Operationalization)
Type: Within-Generate
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Example2: 1090

Question: Assess the Methods section for Measurement & Operationalization issues.
Explanation: The Results section and the Figure 1 caption define the CRT boundary using a
chlorophyll-a (Chl) concentration of 0.15 mg/m³. The Methods section also uses this 0.15 mg/m³
threshold for the western boundary. However, the same Methods section then defines the northern
and southern boundaries using a different threshold of 0.1 mg/m³, creating an inconsistent operational
definition for the paper’s primary construct.
Error Type: MO (Measurement & Operationalization)
Type: Within-Generate
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E.6 DHP (DATA HANDLING & PREPROCESSING)

Example1: 528

Question: Assess the Methods section for Data Handling & Preprocessing issues.
Explanation: The reviewer correctly identifies that the authors tuned hyperparameters on the
test set. The paper’s “Implementation Details” section on page 5 states: “For hyperparameter
tuning, we employed Bayesian optimization with the wandb sweep tool (Biewald, 2020), aiming to
minimize MPJPE for the S9 and S11 in the H36M dataset and PA-MPJPE for the S8 in the H3WB
dataset, following the convention of prior works.” According to standard protocols for the H36M
dataset, subjects S9 and S11 constitute the test set. Tuning hyperparameters directly on the test set
introduces data leakage, leading to an optimistic bias in the reported results and invalidating claims
of generalization. This is a critical violation of machine learning best practices and fits the Data
Handling & Preprocessing (E) category, as a pipeline choice introduces bias.
Error Type: DHP (Data Handling & Preprocessing)
Type: Within-Sample
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Example2: 1566

Question: Assess the Methods section for Data Handling & Preprocessing issues.
Explanation: The modified text on page 3 states that data for the COVID-19 lockdown period were
imputed using pre-pandemic averages. This data handling choice is highly problematic, as it smooths
over a major, non-random structural break in the time series rather than modeling or excluding
it. The imputation method introduces significant bias and data leakage, as a simple average does
not accurately reflect the known, drastic reduction in elective surgeries during that specific period,
compromising the validity of the causal model.
Error Type: DHP (Data Handling & Preprocessing)
Type: Within-Generate
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E.7 CF (COMPUTATION & FORMULAE)

Example1: 350

Question: Check the Methods section for Computation & Formulae errors.
Explanation: The Problem Definition section introduces core variables for the mathematical setup,
including N and M for the sizes of the labeled and unlabeled datasets. On page 4, line 183, these
are defined with the sentence: “And N or M is the total number of image samples.” This statement
is ambiguous and fails to clearly define N and M individually. A reader cannot determine from this
phrase that N is the number of labeled samples and M is the number of unlabeled samples. This
notational ambiguity in the definition of variables that are fundamental to the subsequent equations
and problem formulation constitutes a Computation & Formulae error, as key variables are left
undefined or poorly defined.
Error Type: CF (Computation & Formulae)
Type: Within-Sample
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Example2: 1909

Question: Scan the Methods section for Computation & Formulae errors.
Explanation: Algorithm 1 on page 5 uses the parameter T’ in the loop definition on line 5: for
t = 1 to T’ do. This parameter determines the number of iterations for the Randomized Global
Initialization phase. However, the value of T’ is never specified anywhere in the paper, including
the “Hyper-parameters” section (Section 4.1 on page 7). An algorithm cannot be implemented or
reproduced with an undefined critical parameter. This fits the Computation & Formulae category as
an “undefined variable”.
Error Type: CF (Computation & Formulae)
Type: Within-Sample
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E.8 IC (INFERENCE & CONCLUSIONS)

Example1: 1017

Question: Assess the Discussion section for Inference & Conclusions issues.
Explanation: The paper’s evidence is based entirely on preclinical models (simulations, mice, rabbits,
ex vivo porcine tissue). The edits in the Abstract and Discussion make strong, unhedged claims about
setting a “new standard for clinical bioimaging” that is “ready for immediate adoption” in “human
surgery.” These conclusions are a gross overstatement, as the preclinical data do not support such
direct and immediate claims of clinical efficacy and adoption.
Error Type: IC (Inference & Conclusions)
Type: Witin-Generate
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Example2: 875

Question: Evaluate Abstract, Introduction and Experiment section for issues in Inference &
Conclusions.
Explanation: The paper’s claims of generality are not supported by its evidence. The title and
abstract introduce “FedGraph: A New Paradigm for Federated Graph Learning” (page 1), suggesting a
broadly applicable framework. However, the methodology is heavily tailored to, and the experiments
are exclusively focused on, the single downstream task of anomaly detection. For example, a stated
contribution is “Broad application,” but this is immediately qualified with “the models are successfully
transferred to FEDGRAPH framework in anomaly detection tasks” (page 2). Furthermore, Section
5, “EXPERIMENTS”, exclusively reports results on anomaly detection tasks. This discrepancy
represents an issue of Inference & Conclusions, as the broad conclusion of having created a new
“paradigm” for FGL is an overstatement that exceeds what the narrow experimental results can
support.
Error Type: IC (Inference & Conclusions)
Type: Within-Sample
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E.9 LE (LANGUAGE & EXPRESSION)

Example1: 1785

Question: Assess the Methods section for Language & Expression issues.
Explanation: The paper introduces a key contribution, the ‘load-compute-store-finish’ template, and
its acronym ‘LCSF’. This error introduces inconsistencies in this critical term: it’s defined as ‘LCS-F’
on page 6, called ‘LCFS’ in a figure title on page 7, and written out in full in the conclusion on page
10, while the original ‘LCSF’ acronym remains elsewhere. This terminological inconsistency for a
central, paper-defined concept creates ambiguity and undermines the paper’s precision.
Error Type: LE (Language & Expression)
Type: Within-Generate
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Example2: 293

Question: Review the Abstract and Methods sections for Language & Expression problems.
Explanation: The paper uses the phrase “gene expressions” ambiguously, creating confusion about
the size and composition of the dataset. The abstract mentions integrating a dataset with “30, 000
gene expressions” (page 1, line 016), which is repeated on page 2 (contains 30, 000 gene expressions).
This phrasing could be misinterpreted as 30,000 unique genes being measured. The Data Collection
section later clarifies that the dataset actually consists of “30K mouse neuron cells” (page 4, line
181). This inconsistent terminology affects the meaning of a critical domain quantity (the number of
samples), making it a Language & Expression error.
Error Type: LE (Language & Expression)
Type: Within-Sample
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F HUMAN-MACHINE CONSISTENCY EVALUATION

As described in Section 4.1, we employ GPT-4.1 to extract detailed information (e.g. evidence sets,
reasoning chains) from the responses generated by the models under evaluation . Subsequently,
based on the formulas presented in Section 4.1, we calculate Slocation and Sreasoning, which are then
used to derive Stotal for each model’s response to the given question.

To evaluate whether GPT-4.1 accurately extracts detailed information from the model responses,
we conduct a human-Machine consistency evaluation. We first randomly sampled 200 questions
from the dataset. Then, we invited human experts to analyze the corresponding model-generated
responses for these questions and to manually extract key information, including evidence sets,
reasoning chains, and the number of unrelated errors.

Stotal Slocation Sreasoning Punrelated err

Spearman’s correlation coefficients 0.841 0.806 0.842 0.954

Table 4: Spearman’s correlation coefficients for: Stotal, Slocation, Sreasoning, and Punrelated err.

Using the information extracted by the human experts, we perform the following calculations:

(1) The S⃗location vector for the 200 questions is calculated based on the evidence sets and Equa-
tion 3.

(2) The S⃗reasoning vector is computed from the reasoning chains and Equation 4.

(3) The P⃗unrelated err vector is obtained from the count of unrelated errors.
(4) The S⃗total vector is calculated for the 200 questions using Equation 6.

Subsequently, these human-derived vectors (S⃗location, S⃗reasoning, P⃗unrelated err, and S⃗total) are compared
against their counterparts generated by GPT-4.1. Spearman’s correlation coefficient is then calcu-
lated for these four metrics. The results are presented in Table 4.

Among the four Spearman correlation coefficients, the metric Punrelated err exhibits the highest corre-
lation. This indicates that GPT-4.1’s extraction of unrelated errors closely aligns with that of human
experts, making it the most precise among the three types of extracted information(i.e. evidence
sets, reasoning chains, and unrelated errors).

Although the correlation coefficients for the evidence location score and reasoning process score
are relatively lower than Punrelated err, they still fall within the range of strong positive correlation.
This demonstrates a high degree of consistency in the numerical trends of the scores calculated from
GPT-4.1 and human expert extractions, respectively, proving that GPT-4.1 is capable of extracting
the majority of effective evidence sets and reasoning chains.

The correlation for the total score also lies within the strong positive range and slightly surpasses
the correlations for the evidence location score. This also reflects a high level of agreement between
GPT-4.1 and human experts.

In summary, GPT-4.1 can extract relevant evidence and reasoning steps with considerable accuracy,
leading to precise evaluation scores. This validates the effectiveness of our methodology, which uses
GPT-4.1 to parse the responses of the models under evaluation.
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