Under review as a conference paper at ICLR 2025

DOES YOUR MODEL UNDERSTAND GENES? A BENCH-
MARK OF GENE PROPERTIES FOR BIOLOGICAL AND
TEXT MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The application of deep learning for biology, including foundation models, has
increased significantly in recent years. Some models are text-based, while others
are trained on the underlying biological data, especially omics data of various
modalities. Consistently comparing the performance of deep learning models for
biology has proven challenging due to the diversity of training data and downstream
tasks. Here, we utilize the fact that many models operate on the level of genes and
propose a unifying benchmark by defining hundreds of tasks based on ground-truth
gene properties collected from professionally curated bioinformatics databases.
We collect properties of five types: (1) genomic properties, including predicting
which genes can be methylated or which are dose-dependent; (2) regulatory func-
tions, evaluating how the genes participate in cellular regulatory processes; (3)
localization, including identification of differential expression in different tissues
or sub-cellular localization; (4) biological processes, including predicting gene in-
volvement in pathways or disease prognostics; and (5) protein properties, including
prediction of functional domains or post-translational modifications. These proper-
ties are used to define binary, multi-label and multi-class classification tasks. To
create an architecture-agnostic benchmark we extract gene representation vectors
from each model, including single-cell RNA-seq (scRNA) foundation models, large
language models, protein language models, DNA foundation models, and classical
baselines, and use them to train simple predictive models on the tasks. Depending
on the model, we utilize the model’s token-level embeddings of gene symbols or
transform the gene symbol to an input appropriate for the model, i.e. a description
of the gene for text models, the gene sequence for DNA models or amino acid
sequences for the protein models. Using these embeddings on the benchmark tasks,
we create a detailed assessment of the relative performance of the different models.
In general, we find that text-based models and protein language models outperform
the expression-based models on tasks related to genomic properties and regulatory
functions, while expression-based models tend to outperform the others on local-
ization tasks. We also observe performance for the classical bag-of-words baseline
that is similar to the large language models for many tasks. By enabling broad
systematic evaluation of diverse deep learning models in biology, this benchmark
can help direct future research in artificial intelligence toward improved biological
understanding and accelerated therapeutic discoveries. The code and benchmark
data can be extended to more models and tasks and is available at GitHub.

1 INTRODUCTION

Recent successes in the application of self-supervised learning in natural language processing have
given rise to foundation models, which are trained on a large unlabeled dataset and useful on a broad
range of tasks (Bommasani et al|2021). The potential to realize similar advances in biology has
given rise to a new and rapidly growing cohort of biological foundation models, either as specialized
language models or new models trained on biological modalities such as DNA sequences (J1 et al.|
2021)), amino acid sequences (Rao et al.||2021), electronic health records (Yang et al.||2022) or other
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Figure 1: Gene Benchmark evaluation flow Diverse pretrained models are benchmarked based on
the ability of their gene representations to predict gene properties as collected in tasks. For example,
CREM is a transcription factor while KEAP1 is not. Depending on the model, gene representations
may be token embeddings (as in transcriptomics) or they may be constructed from a gene sequence
(textual, base-pair or amino acid sequence) that is encoded by the model. These vectors are then
used to train a simple configurable predictive model for the task. The model performance after
cross-validation represents the score for the pretrained model on the task. The tasks are described in
Section@ and code to run the pipeline shown above is available at GitHub.

modalities (Thieme et al.,|2023)). These models can identify functional sections of the genome, novel
cell types, disease states, and more. Many of these efforts aim to identify the genes responsible
for the various biological processes to identify future means to maintain these processes or restore
their function. The proliferation of models and the potential for significant impact on human health
gives rise to the need for robust evaluation and benchmarking. For text models, a number of
biological/medical benchmarks have been published such as MedQA (Jin et al., [2021), and been
widely adopted (Open Medical-LLM Leaderboard). Recent research provided a comparison of
foundation models in specific modalities such as single cell models (Liu et al.,|2023). However, no
benchmarks have been proposed that compare foundation models across modalities or that compare
text models against models trained on biological data directly. Part of the difficulty is that the
downstream tasks that are used to compare SCRNA FMs such as cell-type annotation, batch correction,
and perturbation prediction (Ding et al.|[2024)) are very different from the benchmarking tasks used to
evaluate NLP models, such as question-answering or sentence completion. The need for a benchmark
that can work with text models and foundation models is particularly important in light of recent works
such as Cell2Sentence (Levine et al.}[2023), GenePT (Chen & Zou} 2023)) and scInterpreter (Li et al.|
2024])), which have shown that text-models can be repurposed to work directly with transcriptomic
data.

Here we propose to use gene embeddings to create a new benchmark that enables comparison of
biological foundation models across modalities and against text models. Gene embeddings are an in-
herent component of expression-based foundation models built on Transformer architectures (Vaswani
et al.| 2017), parallel to word embeddings in text models. They can also be produced using the gene
symbol or gene description with a language model supporting text embedding. Smaller models such
as gene2vec (Du et al.,[2019) or even bag-of-words models on textual descriptions of the gene can
also produce gene embeddings. As with text embedding benchmarks, it is assumed that the models
producing better gene embeddings are learning the ground truth more faithfully (Muennighoff et al.,
2022).

To evaluate the gene embeddings, we compile a wide range of ground truth biological knowledge
about genes including their genomic properties, regulatory functions, localization, their involvement
in biological processes, and their protein properties (Table [I). We connect the gene embeddings
to the relevant tasks, and evaluate their performance as illustrated in Figure[I] Though each task
captures only a small part of the biology involving the gene, collectively they offer a multi-faceted,
panoramic view of the gene. Superior performance on this collection of tasks thus implies that the
model’s learned embeddings are more inherently meaningful and thus useful for diverse downstream
tasks even without seeing labeled data for these tasks.
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We apply this benchmark to evaluate several families of models. These include text-based models,
where the embeddings utilize large language models to encode a textual description of the genes,
scRNA foundation models trained on multi-omics data, models that are based on protein or DNA
sequence, and classical ML methods to act as a baseline comparison on text and gene expression
data. Our analysis shows that text models outperform the other model families for most gene-related
tasks, even when the information is not explicitly in the text. This result underscores the need and the
potential to continue and improve knowledge integration into gene embeddings, thus improving gene
target identification and all downstream tasks.

The benchmark platform is available (under an Apache 2.0 license) at GitHub, and includes scripts
for task data downloads, as well as examples and documentation for using the benchmark on new
models.

2 BENCHMARK TASKS

Following decades of work in bioinformatics and related fields, large amounts of structured data
regarding genes have been compiled through projects such as Reactome (Milacic et al.,[2023)), Human
Protein Atlas (Uhlen et al.,2010; Human Protein Atlas)), OpenTargets (Ochoa et al.,2022) and HUGO
Gene Nomenclature Committee at the University of Cambridge (Seal et al.l [2022)). This enables us
to compile a wide variety of validated properties to use to test the quality of gene embeddings. Our
benchmarking package allows defining the tasks in general terms, which allows simple addition of
new tasks with multiple identifier types (see [S6.1I] Notably, the benchmarking package is not limited
to gene-tasks and can be easily extended to other modalities.

2.1 TASKS DESCRIPTION

We compiled 312 gene properties, which we used to define evaluation tasks. Most of the tasks are
based on single gene properties, while some are based on gene-pairs or links between genes and
diseases.

For simplicity, we sort the properties into the following five families:

Genomic properties This family of tasks evaluates the ability to predict properties inherent to the
gene sequence, including predicting which genes can be methylated, and which genes are
dose-dependent (their expression depends on the number of copies in the genome) There is
a total of 7 tasks in this family. See Table[ST]for a full description.

Regulatory functions This family of tasks evaluates how the genes interact with other genes through
the cellular regulatory processes and consists of a total of 6 tasks. These include predicting
which genes are transcription factors, the number of connections in the gene-regulatory
network, etc. See Table[S3|for a full description.

Localization This family includes tasks for identifying differential expression and activity in different
tissues or sub-cellular localization. That includes predicting protein levels found in blood,
correctly assigning genes to expression clusters derived from various tissue samples, sub-
cellular localization, etc. There are a total of 30 tasks in this family. See Table |S4|for a full
description.

Biological processes This family evaluates the biological functionality of the gene by evaluating
tasks such as involvement in pathways, being prognostic of survival, and being associated
with a disease. This family consists of 29 tasks, representing the most diverse set of questions.
See Table [S5|for a full description.

protein properties This family focuses on properties of the protein product of the gene, including
its functional domains, post-translational modifications,and its ligands.

These properties cover many of the biological roles that genes play, providing an indication of how
well a given pre-trained model has captured various aspects of gene representation, allowing for
differentiation between various types of models and training data. Users can use the performance on
different task families to select pre-trained models for their use-case.
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Table 1: A breakdown of the number of tasks per prediction type and task family. Numbers in
parenthesis represent the number of binary classification tasks that can be extracted from the multi-
label tasks.

Task family Number of tasks (and sub-tasks)

Binary Multiclass Multi-label Regression Total
Genomic properties 3 1 3 (+79) - 7 (+79)
Regulatory functions 5 - - 1 6
Localization - 21 1 (+70) 7 30 (+70)
Biological processes 3 21 3 (+91) 2 29 (+91)
Protein properties - - 3 (+53) - 3 (+53)
Total 11 43 10 (+293) 10 71 (+293)

2.2 TASK ORIGIN

To benchmark the pre-trained models, we aimed to collect properties that are as diverse as possible,
capturing the many roles that genes and the proteins they code play in biology. For reliability and
reproducibility we have opted for gene properties that are manually validated by hand and freely
available, see Section[S6.1.6|for data availability details.

Reactome The pathways tasks were curated by taking the full list of genes from the Human Genome
Nomenclature Committee (HGNC) downloadable files (including protein-coding gene, non-
coding RNA, pseudogene and other tables) (Seal et al.|[2022) and labeling each symbol by
its inclusion in a top-level pathway [S6from Reactome (Milacic et all [2023).

Human Protein Atlas Protein atlas (Human Protein Atlas)) tasks were created by compiling the
protein atlas file v23 (Protein Atlas Data v23)). We selected columns that contained features
regarding gene properties, sorting them to binary, multiclass, multi-label, or regression tasks.
We removed rows with missing data or genes that had no symbol name.

Open Targets The gene-disease association (Ochoa et al.;,[2022) task was compiled by downloading
the overall association score of genes and diseases from the open targets platform (we used
the direct file interface using the files published on 2023-09-21 version 23).

Uniprot Three protein properties tasks were created using data from the Universal Protein Knowl-
edgebase (UniProt) by assigning binary labels to gene symbols if a given keyword value is
present for any of the protein products of that gene symbol. The keyword categories used
were Domain, Ligand and Post-transcriptional modification (Consortium) 2022).

Publications Since several papers have used gene properties to evaluate pretrained models, we
included those tasks in our benchmark (Chen & Zou, 2023} |[Fang et al., 2024; |[Lambert et al.,
2018). There are 9 tasks derived directly from publications.

These tasks cover a wide variety of gene roles and provide a well-grounded assessment of gene
representation quality. Because research in this domain evolves quickly, we have provided the ability
to extend our benchmark with more tasks, at GitHub.

2.3 TASK DEFINITION

Independent of the task family, each task evaluates a specific outcome type: a) a binary , or b) a
multi-label assignment, or c) a multiclass, or d) a regression task. We used gene properties to define
tasks only if at least 1% of the covered entities had the label. Binary sub-tasks were derived from
multi-label tasks by selecting specific labels. For all tasks, we used the gene symbol as an identifier;
ensemble stable IDs were converted into symbols using MyGenelnfo (Wu et al.l 2012)). To simplify
comparisons between models we limited the scope of each task to the gene symbols shared by all
encoding models.



Under review as a conference paper at ICLR 2025

Table 2: Description of the prediction models, evaluation metrics, and cross validation scheme used
for each of the four task types

Task Type Prediction Model Metric Cross-validation

Binary Logistic regression AUC-ROC, Fl1, Precision, Stratified cross-validation
Recall, Accuracy

Multiclass Logistic regression AUC-ROC one versus rest, Stratified cross-validation
F1, Precision, Recall, Accu-
racy

Multi-label ~ Multiple output logis- AUC-ROC, Hamming, F1, K-fold

tic regression Precision, Recall, Accuracy
Regression  Linear regression R-squared, RMSE, mean ab- K-fold

solute error

2.4 TASK EVALUATION

In contrast to text embedding benchmarks such as MTEB (Muennighoff et al.| [2022) where the
quality of the model is assessed by its ability to generate similar embeddings for known similar
texts, evaluating the biological properties of genes embeddings requires a slightly different approach.
Because the genes have many biological properties, we cannot assess the model quality by similarity
alone. For this reason, we have primarily adopted classification metrics: the embeddings are provided
as inputs to a simple logistic or linear regression model to predict the ground truth properties, and
evaluated with 5-fold cross-validation. The benchmark can also be defined using non-linear models,
which could detect information in the representation vectors more successfully than a linear model,
we discuss this and assess the differences in Section[3

This setup enables us to evaluate whether the correct information is encoded in the vector without
making a-priori assumptions about the underlying information properties of the embedding space.

3 ENCODING MODELS

We selected several publicly available models for comparison from five major families: Large
language models trained on text, deep-learning models trained on gene expression data, deep learning
models trained on base pair sequences of genes, deep learning models train on amino acid sequences
and classical machine-learning models. We used models that were openly available with weights.
When available, we used top-performing models according to independent leaderboards. Table [3]
provides a summary table of model properties, and the following is a brief description of each model.
The gene-benchmark allows for simple integration of additional models and tasks (see Supplementary

text [S6.1))

3.1 TEXT BASED MODELS

For text embedding models, we create an embedding for a gene by extracting the standard sym-
bol, full name, and description of the gene from the NCBI Entrez Gene database (Maglott et al.,
2010). This information is packed into a textual description that is given to the model as a
prompt in the format "Gene symbol <symbol> full name <full name> with the
summary <summary description>", and this prompt is embedded using a sentence em-
bedding model. As a result, the benchmark that we have defined works seamlessly with any
model supported by sentence_transformers (Reimers & Gurevych, 2019). For this as-
sessment, we selected the top performing models from the leading embedding benchmark, the
MTEB leaderboard (MTEB Leaderboard)) and from the sentence transformers leaderboard (Sen-
tence Transformers Leaderboard). For simplicity and ease of replication, we limited ourselves to
models that did not require to trust remote code as defined by the sentence_transformers
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API (trust_remote_code set to false). In addition to compare performance with a simpler
non-parametric method, we used a Bag-of-words encoder

MTEB-L A variant of Mistral 7B (Meng et al., [2024) called SFR-Embedding-Mistral, which is a
transformer based generative LLM with 7.11B parameters. Chosen as the top performing
open model on MTEB (MTEB Leaderboard) as of May 2024.

MTEB-S A compact sentence-embedding model with 335M Parameters (Lee et al.,[2024) called
mxbai-embed-large-vI. Chosen as the top performing small open model (<1B parameters)
on MTEB (MTEB Leaderboard)) as of May 2024.

MPNet A transformer-based textual LLM (Song et al.l [2020), pre-trained on over 160GB text
corpora. Pretraining was done using masked and permuted language modeling learning.
It was chosen since it was the top performing model on sentence transformers (Sentence
Transformers Leaderboard) as of May 2024.

Bag-of-words A statistical word-based text model which does not take into account the order of
words in the text. The presence of each word is used as an independent feature. We used
CountVectorizer from scikit-learn (Pedregosa et al.,[2011), with default parameters to
select the top informative 1024 words, and used the word counts vector as the embedding
for each description. The model was fitted to the text of the gene descriptions.

3.2 GENE EXPRESSION AND TRANSFORMER-BASED MODELS

Inspired by the success of transformer-based LLMs in NLP, these models aim to learn biology as
a “language” over scRNA-seq readings, fitting an embedding to each gene as if it were a "word’
in an NLP model, and the transformer based architectures integrate the gene expressions into cell-
level embeddings. We made use of a recent survey and benchmark to highlight the three best
performing open scRNA foundation models (Liu et al., 2023). The gene embeddings were extracted
from the publicly available model weights. Gene names were taken from the supplementary model
configuration files.

CellPLM A transformer-based foundation model for single-cell biology with over 80M parame-
ters (Wen et al.| 2023). Trained on scRNA-seq and spatially resolved transcriptomic (SRT),
adding tissue level information. Trained using MLM variant, on 9 million scRNA-seq cells
and 2 million SRT cells. Embedding extracted from the embedder.feat_enc.emb
layer in the model downloaded (Wen et al.), with the gene names from the matching
configuration file.

Geneformer A transformer based foundation model for single cell biology with 10.3M parameters.
(Theodoris et al.l 2023a). This model represents the sScCRNA expression using a list of genes
ranked by their normalized expression levels. This is intended to make the order significant,
and allows the use of context-aware attention mechanisms similar to these that work well in
NLP. The model is trained on about 30M scRNA-seq readings. Embedding extracted from
the embeddings.word_embeddings layer from (Theodoris et al.,[2023b)

ScGPT A generative foundation model for single-cell transcriptomics utilizing a self-attention, with
53M parameters (Cui et al.,2024). Pretrained using masked language model (MLM) training.
Explicitly encoded genes, expression levels and conditions, concatenated to represent each
gene in context. Training is performed using a masked language modeling variant, where
masking is done with attention masking to accommodate for the non-sequential nature of
the data. Embedding extracted from (Cui et al.| |b) following the instructions in (Cui et al.,
a), steps 1 and 2. We used two variants, blood (designated ScGPT-B) trained on 10.3 million
blood and bone marrow cells and the human model (designated ScGPT-H) trained on 33
million normal human cells.

Gene2vec A 200 dimensional concept embedding of the human genes (Du et al.l 2019), based on
the concept of Word2Vec (Mikolov et al.,[2013) and learned from co-expression patterns,
shared Gene Ontology (GO) annotation, tissue-specific genes, and functional gene sets.
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Table 3: Summary descriptions of the gene-encoding models

Model Input type Model type Num of params  Output size
MTEB-L Text Transformer 7.1B 4,096
MTEB-S Text Transformer 109M 1024
MPNET Text Transformer 420 M 768
Bag-of-words  Text Non-parametric - 1,024
CellPLM ScRNA-seq Transformer 85M 1024
Geneformer ScRNA-seq Transformer 10.3M 256
ScGPT-H ScRNA-seq Transformer 51M 512
ScGPT-B ScRNA-seq Transformer 39M 512
Gene2Vec Bulk RNA-seq Word2Vec M 200
DNABERT-2  Base pair sequence  Transformer 117M 768
ESM-2 Protein sequence Transformer 3B 2560

3.3 BASE-PAIR MODELS

Every gene can be mapped to its DNA sequence. There have been numerous recent advances in
foundation models trained on DNA. Though not trained specifically to represent genes, by representing
DNA they can generate gene representations as well. DNABERT-2 A BERT based genome foundation
model (Zhou et al.,[2024)) trying to decode a linguistic representation of the genome. In this method
they replaced the common k-mer tokenization with a Byte Pair Encoding (BPE) tokenization. This
model performed well in a recent DNA model benchmark (Liu et al., 2024).

3.4 PROTEIN LANGUAGE MODELS

Representing the protein products of a gene, may be considered a representation of the gene itself.
Following the approach of SATURN (Rosen et al., [2024) and UCE (Rosen et al., [2023)), we have
represented the gene symbol as the mean of its protein product representation vectors.

Evolutionary Scale Modeling-2 (ESM-2) SOTA general-purpose protein language model. A
transformer model trained on sequences of natural proteins (Lin et al.| |2023)) which is able to generate
novel proteins. The model was trained using the ESM Metagenomic Atlas that contains >617
million metagenomic protein sequences. We took the model e sm2_t 36_3B_UR50D with 3 billion
parameters.

4 RESULTS

We report our gene-benchmarks on eleven models, evaluated on all tasks. The benchmark results
demonstrate that the various models exhibit different performance patterns on different tasks. When
grouping the performance measures by family tasks and averaging across tasks we find that the four
text-based models exhibit better performance for the genomic properties and regulatory function
families, while the sScRNA-based models performed better at the localization and biological process
tasks (Figure[2). These trends are consistent when using other evaluation metrics such as F1 (see
Figure [ST). The calculation time for the benchmark varies depending on the model size. For the
largest model, with 7B parameters and embedding size 4096 (Table 3)), creating the gene embeddings
took approximately 40 minutes on a single NVIDIA A100 80GB. The calculation time for fitting the
predictive models is highly dependent on the embedding size, with the smaller embeddings requiring
less than an hour to calculate all the benchmarks and the largest requiring 15+ hours on a 48-core
Xeon ES.

Interestingly, text-based models using transformer architecture only slightly outperform the bag-
of-words model in most tasks. Furthermore, we do not see an advantage to the model size, where
the MTEB-L model exhibits comparable performance to the smaller MTEB-S and MPNet models.
Similarly, in the scRNA-based models the transformers usually slightly outperform the older gene2vec
model, which is based on word2vec architecture and trained on bulk RNA expression data. ScGPT-H
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1.0
Genomic properties SRS E)} 0.80 (0.12) 0.80 (0.14) 0.81 (0.14) 0.76 (0.13) 0.79 (0.14) 0.67 (0.16) 0.80 (0.17) 0.73 (0.15) 0.85 (0.13) 0.79 (0.17)
0.9

Protein properties SUEIR(RIE)} 0.79 (0.05) 0.73 (0.04) 0.77 (0.05) 0.61 (0.03) 0.60 (0.04) 0.58 (0.03) 0.63 (0.04) 0.59 (0.02) 0.84 (0.06) 0.54 (0.02)

Regulatory functions SRR ER(R IS} 0.81(0.10) 0.77 (0.13) 0.74 (0.06) 0.68 (0.06) 0.77 (0.06) 0.73 (0.10) 0.81(0.12) 0.66 (0.11)

Task Family

ROC AUC score (std)

Biological processes - 0.64 (0.13) 0.64 (0.13) 0.65 (0.11) 0.63 (0.13) 0.69 (0.11) 0.69 (0.11) 0.61 (0.10) 0.66 (0.11) 0.67 (0.11) 0.66 (0.11) 0.59 (0.09)

Localization - 0.67 (0.06) 0.71 (0.07) 0.72 (0.08) 0.69 (0.07) 0.85 (0.10) 0.86 (0.10) 0.84 (0.10) 0.82 (0.10) 0.72 (0.09)

MTEB-L MTEB-S MPNet Bag of Words cellPLM Geneformer ScGPT-B ScGPT-H Gene2vec ESM-2-3B DNABert-2

Text Description RNA-sequencing Protein Base pair
sequence  sequence

Figure 2: The performance of each model on the task families as measured by average area under
the ROC curve. Parentheses show the corresponding standard deviation across all tasks of the same
family.

was the top performer in two different families of tasks. Here, too, we do not see a clear advantage
for larger models, with cellPLM exhibiting comparable performance to the smaller ScGPT-H and
even smaller Geneformer. SCGPT-H outperformed ScGPT-B significantly, which is likely due to the
larger, more diverse, training data. Indeed, it is to be expected that a model trained on expression data
from a single tissue would not perform well on tissue localization tasks related to other tissues.

A closer examination of the mean AUC per task (Figure[S2] Figures[S3][S4] [S3] [S6l[S7} [S8} [SI) reveals
a more complex picture, where within each task family some tasks are dominated by text-based

models and others by expression-based models or protein language models. This can also be seen by
the high cosine similarity observed between overall task performance amongst models from the same

type, as exhibited in Figure [STO0}

The protein models perform best at protein properties, but less so for biological processes and
localization. DNABert-2 performs worse than the other models for all but the genomic properties,
where it is comparable to the other model families.

The tasks themselves also show a clustering in performance, as shown in Figure[STI] but also show a
large range of dissimilarity, suggesting that the benchmark tasks correspond to distinct biological
phenomena.

Above we used linear models for predicting gene properties from vectors. We consider the possibility
that a more expressive model could perform better by training a multilayer perceptron model (MLP)
on the binary tasks, comparing the MTEB-L and MTEB-S embeddings. We find that the performance
is closely correlated to logistic regression, as seen in Figure[S12] For this reason, we prefer the linear
models which are not sensitive to hyperparameter selections and thus enable robust comparisons
across many thousands of combinations of models and tasks. Nevertheless, the benchmark package
code at GitHubsupports the use of any scikit-learn model.

One notable result is that text models outperform the sScRNA models in most disease involvement tasks
except in the Pathology tasks, chromosome, and N1 Network, indicating that there are exceptions to
the general rules of model performance we outlined. Similarly, expression-based models outperform
in cell-type localization tasks, but under-perform in sub-cellular localization tasks. This is in line
with our expectations, given the close relation between cell-type, tissue-type and single cell RNA
expression levels.

5 SUMMARY AND DISCUSSION

We present a gene-centric benchmark that includes hundreds of tasks, sorted into functional families.
We designed this benchmark to evaluate the gene embeddings provided by pretrained models applied
to biology, thus suggesting a common ground for evaluating the potential of the models to provide
useful, and potentially novel insights on gene involvement in biological and medical questions.

We applied the benchmark to a representative set of models trained on text, gene-expression data,
protein sequences and DNA sequences and compared their performance. We observed that each family
of models exhibits superiority for a different set of tasks, hinting that combining the knowledge
that comes from multiple modalities may provide additional benefits. It should be pointed out,
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however, that our analysis is not intended to be a comprehensive comparison of all text models and
all gene-expression models and that our results may not be generalizable to all such models.

The embeddings that we chose to use for the text models were based on a detailed description of
the genes, rather than using the gene symbol, which could have evaluated whether the LLM has
sufficient useful information on genes from its general training on text. However, while virtually
all coding genes have literature in PubMed, the coverage is highly skewed, with the most popular
10% of genes accounting for over 60% of the publication (Lee et al.,|2019), suggesting that language
model pretraining may be skewed towards the more widely studied genes. Instead, in our evaluation
of text models, we included a bag-of-words model that can serve as a baseline of sorts, allowing us to
examine the ability of LLMs to generalize and contextualize. We find that in most tasks the LLMs
provide a modest improvement in performance, indicating that additional work may be needed to
create LLMs that are useful for basic biology.

We point out that most of the models we evaluated here were not designed to provide useful gene
embeddings. Some were trained to perform textual tasks, while others were trained to predict
properties at the whole-cell level. However, utilizing pretrained gene embeddings from a foundation
model to improve performance of a more specialized model has become an active research area
with numerous promising results produced in the last year. For example, scFoundation (Hao et al.,
2023) showed improvement on gene perturbation prediction by injecting their gene embeddings
into GEARS (Roohani et al.,[2023)), SATURN (Rosen et al., 2024} has used ESM (Lin et al., [2023))
protein embeddings to enable cross-species cell label propagation and GNN based models such as
Otter-Knowledge (Lam et al.,[2023)) and BioBridge (Wang et al.|2023) have proposed comprehensive
biomedical models built on embeddings across multiple domains. Given the interest and promise of
this technology, our benchmark can help guide researchers toward more successful application of
deep learning to biology.

5.1 LIMITATIONS AND FUTURE WORK

We gathered the benchmark tasks from actively maintained professionally curated sources and we
have relied on their quality control processes. For many reasons, the entire genome is not studied
evenly (Lee et al.,2019) and when genes are studied, the full diversity of human ancestry is not
evenly reflected (Fairley et al.l 2019). As biological research improves in performance and fairness,
we look forward to updating our benchmark tasks accordingly. We used only open source models
with released weights excluding models that did not (Zrimec et al.,2022). Though we have explored
the benchmark tasks using gene embeddings, the tasks could be utilized in other ways, such as by
defining fine-tuning objectives for deep learning models or even as the basis for question answering
in text models. Such a strategy, while not applicable for all models, may uncover predictive power
that is specific to each model.
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6 APPENDIX

S6.1 THE GENE-BENCHMARK PACKAGE

This freely available package was developed to facilitate easy access to the tasks and efficient use
of them for benchmarking. It includes three main modules as well as notebooks and scripts that
demonstrate the package’s usability. The main flow of task evaluation using the package is described
in Figure[I] Below we review the main modules used in the package, which is available at GitHub.

S6.1.1 TASKS

This module contains two main parts. The first is the means to load the task definition according to
task name in a generic format into a designated, easy-to-use object. The class allows easy access
to the entity identifiers (usually gene symbols) and their outcomes. They will usually be a single
columned data frame, but if the task includes multiple genes per instance (for example, gene-to-gene
interaction), it will include multiple entities in a column structure. In the multi-label case, the output
is also a multi-columned data frame. The second part is a pipeline class that manages the process
from a task name to description (in the case of text-based models) to encoding, training a simple
prediction model in a cross-validation fashion, and creating a report. Adding additional tasks is
designed to be simple, all it requires is saving the task descriptions in a specific format.

S6.1.2 DESCRIPTOR

The module manages the transition from an entity identifier into a text description. For gene
symbols, we retrieve the description fields from NCBI using the MyGene.Info services and construct
a description sentence. We allow predefined descriptions by creating a descriptor that loads the
descriptions from a CSV file. This feature enabled us to download the disease description from
open targets without needing to integrate with their service and facilitate easy introduction of new
descriptions. We are also able to construct multi identifier types descriptors, thus enabling the creation
of a descriptor that can describe tasks with different identifiers, such as in gene-disease association.

S6.1.3 ENCODER

This module manages the encoding of either the entity identifier or its textual summary. We enable
encoding using any HuggingFace sentence transformer supporting module. In addition, we enable
encoding using a pre-computed encoder by loading the encodings from a precomputed CSV file.
This enables us to pre-compute the encoding from scRNA-based models. In addition, we enable
the creation of a multi-entity type encoder that enables encoding each type of entity differently. For
example, in the case of Gene-Disease association, we can encode the genes using pre-computed
encoding and the disease using a sentence transform encoder.

S6.1.4 BASE MODELS

The package supports any scikit-learn model. For the manuscript, we explored linear and logistic
regression with the default scikit-learn parameters, and an MLP with three hidden layers of size 100
and 500 max iterations.

S6.1.5 SCRIPTS AND NOTEBOOKS

To efficiently create benchmarks the package includes a command line interface. Enabling benchmark-
ing multiple models (described in YAML format) on multiple tasks (supplied in the command line or
in YAML) and output a single report in CSV format. An additional script is supplied that can extract
the embedding of the given identifiers list. The package also includes a notebook demonstrating how
the package can be used and how to create figures, as displayed in this manuscript.

S6.1.6 DATA AVAILABILITY AND LICENSING

All of the data is from publicly available sources and the steps required to download and prepare the
tasks for benchmarking are implemented in our GitHub repository. We did not produce the task data
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[EULIGIJGIEN R 0.63 (0.29)  0.63 (0.27)  0.61(0.29) 0.65(0.28) = 0.57 (0.28)  0.57 (0.29) " UuEH(UeEils 0.59 (0.30) | (WiyA(Uerii 0.70 (0.29) | 0.60 (0.35)

Protein properties SUVER(EV:) RV PRGN PR (O BRCER(O0E 0.43 (0.06) 0.42 (0.07) 0.40 (0.06) 0.47 (0.06) 0.39 (0.05) EONER(NYIM 0.27 (0.09)

LELVEIGLRTLIGIER 0.72 (0.19)  0.72(0.15) | 0.62(0.32) 0.68 (0.20) 0.65(0.22) 0.63 (0.18) 0.59 (0.16) 0.67 (0.15) 0.63 (0.16) 0.63 (0.28) [NuEt:N(i¥i:)]

Task Family
F1 score (std)

IGIGEIICING IR 0.80 (0.16)  0.81(0.15)  0.79 (0.19) 0.80(0.17) 0.75(0.28) 0.75(0.28) 0.72(0.29) 0.75(0.27) 0.74(0.29) 0.80(0.18) = 0.69 (0.33)

Localization - 0.45 (0.24) (PSR (P19] ] 0.58 (0.24)  0.60 (0.25) + 0.51(0.26) 0.58 (0.25) | 0.55(0.27) | 0.49 (0.27) | (IunX(v)))

MTEB-L MTEB-S MPNet Bag of Words cellPLM Geneformer ScGPT-B ScGPT-H Gene2vec ESM-2-3B DNABert-2

Text Description RNA-sequencing Protein Base pair
sequence  sequence

Figure S1: The performance of each model on the task families as measured by average f1 score.
Parentheses show the corresponding standard deviation across all tasks of the same family.

and do not redistribute the data used for the benchmark tasks. To reproduce the results shown here,
we provide code to populate the benchmark task directly from the public sources. We do not own the
task data and refer the users to the licenses of the data owners.

* Reactome - The current task retrieval code downloads that pathway directly from reactome’s
current server, Reactome data is robustly backed at third party servers. Reactome content
is readily accessible for download from its website, GitHub, and various aggregators like
NCBI and EMBL-EBI with data availability path in case of of funding loss. see Reactome
digital preservation for further details.

* The human protein atlas - Tasks are created using files saved at the human protein atlas,
the data is accessible using programmatic access as well. Previous versions of the data files
are accessible as well.

* Open Targets - open targets is committed to open source and supporting open access
research. with multiple data download and retrieval options see data access| for further
details provides data from community contributions, with the original data owners retaining
ownership and rights. There are no additional restrictions on the use or redistribution of
this data, Open Targets allow does not guarantee the accuracy or suitability of the data or
services provided

* Uniprot tasks UniProt conforms with EMBL-European Bioinformatics Institute’s data
preservation policies. Uniprot has applied a CC-BY-4.0 license to the copyrightable parts of
their database. For more info see |Uniprot license.

* Publication tasks - The data used for the creation of these tasks comes from the cited
publications. For the HLA task we the data was derived from the HGNC web site. For the
Tf vs non-tf task the data was derived from the The Human Transcription Factors web-site.
That made the data publicly available via files but did not make clear data availability
commitment. Scripts detailing exactly how to obtain these datasets and to construct the
tasks as utilized here are provided at GitHub.
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Table S1: Detailed description of the genomic tasks used for benchmarking
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Table S2: Detailed description of the protein structural tasks used for benchmarking
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Table S3: Detailed description of the regulatory tasks used for benchmarking
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Table S4: Detailed description of the localization tasks used for benchmarking
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Table S5: Detailed description of the biological tasks used for benchmarking
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Table S6: The list of top level reactome pathway names and unique identifiers

Pathway name

Pathway identifier

Autophagy

Cell Cycle

Cell-Cell communication
Cellular responses to stimuli
Chromatin organization
Circadian Clock
Developmental Biology
Digestion and absorption
Disease

DNA Repair

DNA Replication

Drug ADME

Extracellular matrix organization
Gene expression (Transcription)
Hemostasis

Immune System

Metabolism

Metabolism of proteins
Metabolism of RNA

Muscle contraction

Neuronal System

Organelle biogenesis and maintenance
Programmed Cell Death
Protein localization
Reproduction

Sensory Perception

Signal Transduction

Transport of small molecules
Vesicle-mediated transport

R-HSA-9612973
R-HSA-1640170
R-HSA-1500931
R-HSA-8953897
R-HSA-4839726
R-HSA-400253
R-HSA-1266738
R-HSA-8963743
R-HSA-1643685
R-HSA-73894
R-HSA-69306
R-HSA-9748784
R-HSA-1474244
R-HSA-74160
R-HSA-109582
R-HSA-168256
R-HSA-1430728
R-HSA-392499
R-HSA-8953854
R-HSA-397014
R-HSA-112316
R-HSA-1852241
R-HSA-5357801
R-HSA-9609507
R-HSA-1474165
R-HSA-9709957
R-HSA-162582
R-HSA-382551
R-HSA-5653656
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1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
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Genomic properties

bivalent vs non-methylated ot mo.eg 0.94 0.94
Chromosome - 0.59 0.59 0.53 0.62 0.64 0.65 0.69

dosage sensitive vs insensitive TF -JK<l0)
Lys4-only-methylated vs non-methylated -JoKES
Protein class 0.54
Protein properties
WR:HE 0.62 0.60 0.58 0.64 0.59 NKIM 0.53
WAl 0.56 0.55 0.55 0.57 0.56 BOR:ES 0.52
0.67 0.70 0.64 0.64 0.61 0.67 0.61 [WFA 0.57

Regulatory functions

UniProt keyword Domain
UniProt keyword Ligand -85}
UniProt keyword PTM

Gene2Gene 0.69
long vs short range TF - 0.60 Wyas 0.67 0.70 0.50
N1 network - 0.63 d 0.77 0.80 | 0.75
N1 targets 0.67 0.58
TF vs non-TF -JeKel9) 2 0274 1075 0.96 [0.77

Biological processes
Biological process JIEZIIEL FF 0.55 0.56 0.54 0.58 0.55 [0.71] 0.52

CCD Protein - 0.57 0.59 0.61 0.60 0.56 0.56 0.54 0.53 0.56 0.63 0.54
CCD Transcript - 0.66 0.64 0.70 0.66 [UEERCEIN 0.72 [LEENNEEN 0.71 0.56
Disease involvement - 0.69 0.67 0.62 0.64 0.55 0.55 0.54 0.56 0.54 0.59 0.50
HLA class | vs class Il 0.64 0.65
Molecular function 0.53 0.54 0.56 0.53 0.52
Pathology prognostics - Breast cancer - 0.55 0.55 0.59 0.53 0.66 0.64 0.55 0.64 0.60 0.56 0.55
Pathology prognostics - Cervical cancer- 0.55 0.56 0.57 0.52 0.70 0.67 0.59 0.69 0.66 0.59 0.59
Pathology prognostics - Colorectal cancer - 0.52 0.50 0.54 0.50 0.64 0.65 0.54 0.59 0.61 0.56 0.59
Pathology prognostics - Endometrial cancer - 0.52 0.54 0.53 0.52 0.65 0.64 0.56 0.62 0.63 0.54 0.58
Pathology prognostics - Glioma - 0.53 0.51 0.56 0.56 0.65 0.65 0.57 0.63 0.57 0.57 0.57
Pathology prognostics - Head and neck cancer - 0.58 0.54 0.57 0.52 0.69 0.65 0.59 0.64 0.66 0.56 0.56
Pathology prognostics - Liver cancer - 0.59 0.66 0.68 0.65 0.69 0.70
Pathology prognostics - Lung cancer - 0.55 0.54 0.58 0.54 - 0.65 0.54 0.65 0.68 0.53 0.53
Pathology prognostics - Melanoma - 0.59 0.60 0.66 0.57 0.69 0.68 0.57 0.62 0.68 0.67 0.61
Pathology prognostics - Ovarian cancer - 0.52 0.53 0.55 0.55 0.67 0.64 0.56 0.60 0.64 0.59 0.56
Pathology prognostics - Pancreatic cancer - 0.55 0.55 0.56 0.53 [ el7a oA 0.60 - 0.70 0.58 0.59
Pathology prognostics - Prostate cancer - 0.60 0.59 0.68 0.60 0.67 0.69 0.61 0.60 - 0.65 0.61
Pathology prognostics - Renal cancer - 0.55 0.59 0.61 0.59 [0.74 0.73 0.64 [0.74 0.70 0.60 0.58
Pathology prognostics - Stomach cancer - 0.52 0.54 0.59 0.54 0.68 0.68 0.59 0.59 0.64 0.57 0.56

Pathology prognostics - Testis cancer - 0.61 0.58 ' 0.70 0.58 0.53 0.56 0.68 0.70 0.71
Pathology prognostics - Thyroid cancer - 0.55 0.53 0.57 0.49 0.62 0.55 0.52 0.56 0.56 0.55 0.53
Pathology prognostics - Urothelial cancer - 0.54 0.55 0.57 0.54 0.68 0.67 0.60 0.66 0.66 0.59 0.54
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Figure S2: Mean AUC per model and task
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Figure S3: Model performance measured by mean AUC for binary tasks derived from the multi label
task ‘protein class*
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Figure S4: Model performance measured by mean AUC for binary tasks derived from the multi label
task ‘biological process®
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Figure S6: Model performance measured by mean AUC for binary tasks derived from the multi label
task ‘molecular location*
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Figure S7: Model performance measured by mean AUC for binary tasks derived from the multi label

task ‘pathways*
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Figure S8: Model performance measured by mean AUC for binary tasks derived from the multi label
task ‘RNA tissue cell type enrichment*
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Figure S9: Model performance measured by mean AUC for binary tasks derived from the multi label
task ‘sub cellular location’
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Figure S10: Similarity of performance across models. We construct vectors of the average AUC ROC
for every model and task and then use 1 - cosine distance vectors to calculate their proximities, which
are then re-scaled to the interval (0,1).
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Figure S11: Similarity of performance across tasks. We construct vectors of the average AUC ROC
for every model and task and then use 1 - cosine distance vectors to calculate their proximities, which
are then re-scaled to the interval (0,1).
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Figure S12: The prediction performance as measured by the 5-fold mean AUC-ROC score (with
standard deviation in red) of a multiplayer perceptron (MLP) model versus a logistic regression model
using the embeddings of MTEB-S and MTEB-L. We can see that in both cases the correlation is high
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(Pearson’s coefficient of 0.92 and 0.97) and significant (p-value<0.001).
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