Published in Transactions on Machine Learning Research (10/2025)

Dual Natural Gradient Descent for Scalable Training of
Physics-Informed Neural Networks

Anas Jnini anas.jnini@unitn. it
Department of Information Engineering and Computer Science

University of Trento, Trento, Italy

Flavio Vella flavio.vella@unitn.it
Department of Information Engineering and Computer Science

University of Trento, Trento, Italy

Reviewed on OpenReview: |https: //openreview. net/ forum? id= GDHVRy6SDd

Abstract

Natural-gradient methods markedly accelerate the training of Physics-Informed Neural Net-
works (PINNs), yet their Gauss-Newton update must be solved in the parameter space,
incurring a prohibitive O(n?) time complexity, where n is the number of network trainable
weights. We show that exactly the same step can instead be formulated in a generally
smaller residual space of size m = Z'v N, d.,, where each residual class v (e.g. PDE interior,
boundary, initial data) contributes N, collocation points of output dimension d,.

Building on this insight, we introduce Dual Natural Gradient Descent (D-NGD). D-NGD
computes the Gauss—Newton step in residual space, augments it with a geodesic-acceleration
correction at negligible extra cost, and provides both a dense direct solver for modest m
and a Nystrom-preconditioned conjugate-gradient solver for larger m.

Experimentally, D-NGD scales second-order PINN optimization to networks with up to
12.8 million parameters, delivers one- to three-order-of-magnitude lower final error L? than
first-order (Adam, SGD) and quasi-Newton methods, and —crucially —enables full natural
gradient training of PINNs at this scale on a single GPU.

1 Introduction

Partial Differential Equations (PDEs) Partial Differential Equations (PDEs) form the backbone of
mathematical models used to describe a wide array of physical phenomena—ranging from fluid flow and
heat transfer to the behavior of advanced materials. Conventional discretization-based techniques, such as
finite element and spectral methods, often demand highly refined meshes or basis expansions to attain the
desired level of accuracy. This refinement drives up computational costs, especially in engineering scenarios
that call for numerous simulations with varying boundary conditions or parameter sets. In recent years,
machine learning approaches—most notably those employing neural networks—have emerged as a promising
complement or substitute for these traditional solvers, offering potential gains in efficiency and flexibility
Raissi et al.| (2019)); [Li et al.| (2021)); [Jnini & Vellal

Physics-Informed Neural Networks (PINNs) PINNs are a machine learning tool to solve forward
and inverse problems involving partial differential equations (PDEs) using a neural network ansatz. They
have been proposed as early as |Dissanayake & Phan-Thien| (1994) and were later popularized by the works
Raissi et al.| (2019); [Karniadakis et al.| (2021). PINNs are a meshfree method designed for the seamless
integration of data and physics. Applications include fluid dynamics |Cai et al.| (2021)); [Jnini et al.| (2025aib)),
solid mechanics [Haghighat et al. (2021) and high-dimensional PDEs [Hu et al. (2023)) to name but a few
areas of ongoing research.


https://openreview.net/forum?id=GDHVRy6SDd

Published in Transactions on Machine Learning Research (10/2025)

Despite their popularity, PINNs are notoriously difficult to optimize \Wang et al.| (2020)) and fail to provide
satisfactory accuracy when trained with first-order methods, even for simple problems [Zeng et al.| (2022);
Muller & Zeinhofer]| (2023)). Recently, second-order methods that use the function space geometry to design
gradient preconditioners have shown remarkable promise in addressing the training difficulties of PINNs|Zeng
et al|(2022); Miller & Zeinhofer| (2023); Ryck et al.| (2024)); [Jnini et al.| (2024)); [Miiller & Zeinhofer] (2024]).
While second-order optimizers, such as those based on Gauss-Newton (GN) principles, can harness curvature
information for improved convergence, their canonical forms entail O(n?) per-iteration complexity and O(n?)
memory for n parameters, rendering them impractical for large-scale deep neural networks. Matrix-free
methods have been proposed to compute Gauss-Newton directions without explicitly forming the Hessian
Martens| (2010); [Schraudolph| (2002); Zeng et al.| (2022)); |Jnini et al.| (2024). Despite reducing computational
costs, these methods suffer from ill-conditioning, leading to slow convergence for large networks without
efficient preconditioners.

To address these challenges, this work proposes Dual Natural Gradient Descent, a novel optimization
framework incorporating the following key features:

e We propose a primal-dual viewpoint of the Gauss—Newton step: instead of solving the
usual n-dimensional normal equations in parameter space, we work with their dual in the m-
dimensional residual feature space, where m = ZA/ N,d,, with each residual class v (e.g. PDE
interior, boundary, initial data) contributing /N, collocation points of dimension d.,, and since m < n
in practical PINNs this dual system is far cheaper to assemble, store, and solve than the original
parameter-space system.

« We propose an efficient geodesic-acceleration correction within the same dual frame-
work. A second-order (geodesic) term is obtained by solving one additional linear system with the
same left-hand side and reuses the factorisation already built for the primary dual operator, adding
negligible overhead while improving step quality.

e We propose a low-rank Nystrom spectral preconditioner for large batch sizes. When
m is too large for direct factorisation, we propose using a Hessian-Free iterative method with a
preconditioned conjugate gradient, we provide an efficient Nystréom preconditioner based on column
sampling for the dual problem.

« We demonstrate scalability and accuracy on several PDE benchmarks. The resulting dual
natural-gradient method trains PINNs with tens of millions of parameters and dimensions in the
hundreds of thousands, consistently outperforming first-order and quasi-Newton baselines by more
than an order of magnitude across several representative problems. To the best of our knowledge,
our contribution is the first to extend Natural-Gradient methods to PINNs of this scale.

Related Works

Second-order Optimization in PINNs The challenge of effectively training PINNs has spurred signif-
icant research, with a growing consensus underscoring the necessity of second-order optimization methods.
Recent literature highlights this trend: approaches leveraging an infinite-dimensional perspective, for in-
stance, have demonstrated the potential to achieve near single-precision accuracy |Zeng et al.| (2022)); Miiller
& Zeinhofer| (2023); Ryck et al.| (2024); [Jnini et al.| (2024)); |Zampini et al.| (2024]); Schwencke & Furtlehner
(2024)); [Mckay et al.| (2025)). However, the practical application of these methods is often constrained by
their high per-iteration cubic computational cost, particularly when scaling to larger network architectures
due to the need to solve substantial linear systems in the parameter space. Exploration into more scalable
alternatives includes quasi-Newton methods, which [Kiyani et al.| (2025) evaluate for their efficiency and
accuracy across stiff and non-linear PDEs by leveraging historical gradient information. Complementing
this, |[Wang et al.| (2025) provide a theoretical framework for gradient alignment in multi-objective PINN
training, demonstrating how second-order information, through Hessian preconditioning, can resolve direc-
tional conflicts between different loss components, thereby demanding more sophisticated curvature-aware
approaches.



Published in Transactions on Machine Learning Research (10/2025)

Hessian-Free Curvature Approximation Matrix-free methods have been proposed to compute Gauss-
Newton directions without explicitly forming the Hessian [Martens| (2010); |Schraudolph| (2002); |Zeng et al.
(2022)); |Jnini et al.|(2024])). Despite reducing computational costs, these methods suffer from ill-conditioning,
leading to slow convergence for large networks without efficient preconditioning |Jnini et al.| (2024). Our
algorithm addresses this by proposing an efficient preconditioner for the dual system, significantly improving
the inner solver convergence. This idea of cutting large gaps within the leading eigenvalues of the Hes-
sian spectrum is also aligned with recent advances in preconditioning techniques, such as volume sampling
Rodomanov & Kropotov| (2020), polynomial preconditioning Doikov & Rodomanov| (2023), and spectral
preconditioning |Doikov et al.| (2024]); Frangella et al.| (2023).

Efficient Second-Order Methods via Primal-Dual Formalism Our work introduces a primal-dual
formalism to scalably solve the regularized Gauss-Newton (GN) least-squares problem that arises in PINN
training. This primal-dual viewpoint, which moves the main computation from the large parameter space to
a smaller dual space, has been previously linked in other fields to the push-through identity Henderson &
Searle (1981)). For instance, this connection is foundational in kernel methods and Gaussian Processes,
where it is the basis for the kernel trick. Despite its effectiveness, this approach has remained largely
unexplored within the Natural Gradient Descent (NGD) and, in particular, the PINN communities. Related
algebraic techniques have appeared, for example in the work. Benzing| (2022)), to create a scalable step for
the Fisher Information Matrix.

Geodesic Acceleration in Natural Gradient Methods Beyond the natural gradient step, higher-order
corrections can improve convergence speed and step quality. The concept of using a geodesic acceleration
term, which accounts for the curvature of the manifold along the gradient path, was notably explored by |Song
et al.| (2018)); Bonfanti et al.| (2024) and can be interpreted as an approximation of the Riemannian Euler
method. Our primary contribution in this context is to demonstrate that this acceleration term can be
computed with negligible overhead within our dual framework. By reusing the existing factorization of the
dual operator for a second linear solve, we make the geodesic correction practical and scalable, integrating
it seamlessly into our optimization workflow without significant performance penalty.

Connection to Operator Learning While our work focuses on single-instance PDE solutions learned
through PINNS, the scalability of D-NGD is also highly relevant to the more general task of operator learning.
Architectures like Physics-Informed Neural Operators (PINOs) [Li et al.| (2021) and PIDeepONets Wang et al.
(2021) learn mappings between function spaces and often require models with vast parameter dimensions
(n), rendering traditional O(n3) second-order methods impractical. Crucially, these frameworks incorporate
a PDE residual term, creating a nonlinear least-squares objective analogous to that of standard PINNs.
Because D-NGD’s complexity scales with the residual dimension (m) rather than the parameter count (n),
it provides a practical pathway to apply curvature-aware optimization to these large-scale models, a domain
that has thus far been largely reliant on first-order methods.

2 Preliminaries

2.1 Physics-Informed Neural Networks

For a given domain Q C R? (or Q7 = I x Q for time-dependent problems, where I is a time interval), consider
a general PDE of the form

Lu=f inQ,

subject to initial and boundary conditions, collectively denoted as u = g on 9§ (where 02 here generally
refers to the spatio-temporal boundary). PINNs approximate the solution u of the PDE using a neural
network ansatz ug, parameterized by 6. The loss function is defined as:

1 No 1 Noa
L(@) = m ; (£U0(.%‘n) - f(xn))Q + 2NBQ nz::l (UQ(xn) - g(mn))Q ) (1)



Published in Transactions on Machine Learning Research (10/2025)

where {z,, € Q}Y2 are the collocation points in the interior of the domain and {z,, € 9Q}"9

on which initial and boundary conditions are enforced.

are the points

2.2 Gauss—Newton method for PINNs

Residuals and Jacobian. Let i = 1,...,Ng and j = 1,..., Ngq. Define the discrete residual map to
r:(0) = R™ to be

r(0) = (ra(0), raa()) € R™, m = Nqdq + Noadaq,
with 1
ﬁ(ﬁ ug(x;) — f(xl)) € R, roa(0); = (ue(ﬂc;’) — g(a:?)) € R%9,
Its Jacobian is J(6) = 9pr(6) € R™*™ and the loss is

L) = 3l O3

ra(0); =

Gauss—Newton natural gradient descent. First-order optimizers, such as gradient descent and Adam,
often fail to provide satisfactory results due to the ill-conditioning and non-convexity of the loss landscape, as
well as the complexities introduced by the differential operator £|Wang et al.| (2020). Instead, function-space-
inspired second-order methods have lately shown promising results |Zeng et al.| (2022)). For the remainder of
this paper, we adopt Gauss—Newton Natural Gradient Descent (GNNG) [Jnini et al.| (2024). Linearizing the
residual map in function space and pulling the resulting Gauss—Newton operator onto the tangent space of
the ansatz yields the Gauss—Newton Gramian:

G(6) = J(0)" (), (2)
and update rules at iteration k:
Ok+1 :Hk—G(Gk)T VoL(0k), k=0,1,2,.... (3)

It was shown that the Gauss—Newton direction in function space corresponds exactly to the Gauss—Newton
step for L(0) = 2||7(A)||3 in parameter space when the same quadrature points are employed |Jnini et al.
(2024); Miiller & Zeinhofer| (2024).

Least—squares characterisation.

Equivalently, the Gauss—Newton increment is the solution of the linearized problem

AO* = arg mm H (Ok) + J(Ok)

whose first-order optimality conditions give the normal equations
J(O) " T (O) A6 = —J(6)) "r(0k), (5)

Given that VyL(0x) = J(0%)"7(0%),we recover the update equation

3 Optimization in the Residual Space

In this section we propose a primal-dual viewpoint on Gauss—Newton updates for PINNs: the same parameter
update can be cast either as an n X n linear system in parameter space or as an m X m system in residual
space (where in typical cases m < n), allowing the residual-space system—which can be solved by a dense
factorization or a matrix-free iterative method—to scale to problems with large batch sizes. In Section [3.3] we
detail the iterative solver and the low-rank Nystrom preconditioner that accelerates it. We incorporate the
classic Levenberg-Marquardt damping A > 0 |Levenberg) (1944])); [Marquardt| (1963) into the Gauss—Newton
model equation [ defining the Tikhonov-regularised problem

min F,\(Agk): H (9}@)+J(9k Agk

2| A0||3.
Jmin 2 110,13

o+



Published in Transactions on Machine Learning Research (10/2025)

Proposition 3.1 (Primal normal equations). For any parameter vector 0), € R™, define the primal Gramian
G(0x) = J(0k)" J(Or).
The unique minimiser Af; € R" of the damped least-squares subproblem then satisfies
(G(6r) + AI,) Aby = —VoL(0y).
Here, VoL (0y) = J(0x) " r(0)) is the gradient of the unweighted least-squares loss 1 ||r(6)||3.

Proof Outline: The proof follows by standard differentiation of the objective function F)(A6) with respect
to A6, and setting the result to zero. The objective is strictly convex for A > 0, guaranteeing a unique
minimizer. The detailed derivation is provided for completeness in Appendix

The linear system given in Proposition [3.1] corresponds to the classical Levenberg-Marquardt update in
the n-dimensional parameter space. Forming and factorizing the matrix J ()" J(0) + Al,, in equation
requires O(mn? + n?) time and O(n?) memory, which becomes impractical when n is large.

3.1 Dual Formulation via KKT in Residual Space

An alternative formulation to the system equation [3.1] can be derived by working in the m-dimensional
residual space.

Definition 3.1 (Residual Gramian). Let the residual Gramian matriz be defined as

Ky = J(@k) J(@k)T e R™*™,

We introduce an auxiliary variable y; := J(0) Afr € R™ and enforce the constraint y, = J(0)) Aby
using Lagrange multipliers v, € R™. The Lagrangian for the subproblem of minimizing F)(A6f) (from
Proposition becomes

L(AOk, g, vie) = 3Ir(0k) + yell3 + 31140115 + vy (yx — J(0k) Aby).

Applying the Karush-Kuhn-Tucker (KKT) conditions for optimality provides the dual formulation.

Theorem 3.1 (Dual Normal Equations). Let yi := J(0;) Ab,, € R™ be the predicted residual decrement
associated with a parameter step Ay, € R™. Applying the KKT conditions to the minimization of Fx(A6y)
yields the dual linear system for the optimal y;;:

(Kk + M) yie = — J(0k) Vo L(0k). (6)

The parameter update can then be recovered by

A0 = 5 (J00) vk + VoL (00). (7

Conversely, any pair (A, yx) satisfying equation@ and equationl] constitutes the unique primal—-dual opti-
mum of the Levenberg-Marquardt subproblem.

Proof Outline: The KKT conditions are derived by setting the partial derivatives of the Lagrangian
L (A, yr, vi) with respect to Ay, yi, and vy, to zero. Algebraic manipulation of these conditions yields the
dual system and the recovery formula for the parameter update. The full proof is available in Appendix[A1.2]

Primal vs Dual Perspectives. We have derived two equivalent formulations for the LM step: the primal
system in the n-dimensional parameter space, involving the n x n primal Gramian G + \I,, (with G = J".J),
and the dual system in the m-dimensional residual space, involving the m x m matrix KCx + AL, (with
Kr = J(0x)J(0x)T). In practice one solves the smaller system directly—using the primal when n < m
(cost O(n?)) or the dual when m < n (cost O(m?))—or resorts to an iterative, matrix-free Preconditioned
Conjugate Gradient solver with preconditioning for large-scale problems.



Published in Transactions on Machine Learning Research (10/2025)

3.2 Geodesic Acceleration

When interpreting the Levenberg-Marquardt step as a velocity vy along a geodesic in parameter space, one
can improve the update by adding a second-order correction that accounts for an acceleration aj, along that
same geodesic:

Or+1 = Ok + v + L ay,

where a;, satisfies
J(Ok) ar = — fous

and
2

d m
fov = ﬁr(ek—i—tvk) - e R

is the second directional derivative of the residual along vi. Computing f,, involves two Jacobian-vector
products, capturing curvature beyond the standard LM step. Below we show that this geodesic-acceleration
term can also be computed using our proposed primal-dual formalism.

Definition 3.2 (Geodesic-Acceleration Subproblem). At iteration k, the acceleration correction ay is the
minimiser of the damped system

min 3 J(0) a+ fu|l; + 3llall3. (8)

where fo, is defined above.

Proposition 3.2 (Primal and Dual GA Characterizations). Let Ky = J(0)J(0x)". The unique solution
ay, of equation[§ admits both a primal and a dual formulation:

(Primal)  (J(65) " J(01) + ALn) ar = — J(0x) " fou, 9)
(Dual)  (Ky, + M) Yok = — Kk foor @t = =2 J00) " (Yark + foo)- (10)

Remark 3.1 (Implementation Cost of GA). Solving for ay, via the dual system equation reuses the same
operator K, + A, as the primary LM step. Hence, once a factorization or preconditioner for the dual solve
is available, the only extra costs are for computing f,., (one Hessian—vector product or two JVPs) and solving
one additional linear system with the existing operator. If using an iterative solver, the preconditioner may
be shared; with a direct method, only an extra back-substitution is needed.

3.3 Hessian-Free Solution of the Dual System

We aim to solve the dual linear system, previously stated in equation[f] For moderate residual dimension m,
one can assemble K| and solve equation [6| with a dense Cholesky factorisation. When the total number of
residual evaluations m (which can be thought of as batch size in this context) is very large, however, building
Ky explicitly is not tractable. In such cases, we turn to the Conjugate-Gradient (CG) method (Hestenes &
Stiefel, |1952; Shewchukl (1994} |Saad, 2003)). CG only requires repeated applications of the linear operator
v = (K + AL, )v and the right-hand side vector.

Definition 3.3 (Kernel-Vector Product). For v € R™ the action of the operator is obtained in three
automatic-differentiation passes:

1. Reverse mode: u:=J"v e R".
2. Forward mode: W :=Ju=JJ veR™.

3. Tikhonov shift: w:=w+ Av.

We denote this composite map by w = kvp(v).

A CG iteration therefore invokes kvp(-) once, allowing us to solve equation |§| Hessian-free: neither J nor K
is ever formed explicitly, yet the exact solution is recovered through operator evaluations alone.



Published in Transactions on Machine Learning Research (10/2025)

3.3.1 Low-Rank Nystrom Spectral Preconditioner for the Dual System

Both the primal and residual Gramians share the same eigenvalues. In typical PINN application, they often
show rapidly decaying spectra and a large spread between the top and bottom eigenvalue [Ryck et al.| (2024),
which leads to severe ill-conditioning. To address this, we propose a spectral preconditioner. Inspired by
the Nystrom ideas of |Frangella et al| (2023]); [Martinsson & Tropp| (2020), we approximate the kernel I
through a rank-truncated eigendecomposition K ~ U AUT. Here, the columns of U € R™*¢ are approximate
eigenvectors and A € RY*?" contains the corresponding approximate eigenvalues, where ¢’ is the effective
rank determined by the Nystrom procedure (typically ¢ < ¢, the initial number of landmarks). We then
build the operator

P*::UM+AMYﬂf—%§Um—UUU, (11)
which damps the leading Nystrom modes by the regularised factors (5\1 + A)~! and acts as A7'1 on the
orthogonal complement. We employ P~! as a left preconditioner in Conjugate Gradient, one application of
the preconditioner requires only two dense matrix-vector products with U or U'. Empirically, this spectral
preconditioner compresses the spread of eigenvalues and reduces CG iterations.

4 Algorithmic Implementation

This section outlines the implementation of the dense and iterative dual solvers. Detailed algorithms are
provided in Appendix

4.1 Dense Dual Solver

For problems where the residual dimension m is considerably smaller than the parameter dimension n
(m < n), a direct approach to solving the dual system (Equation equation @ is feasible. This involves
explicit formation of the regularized residual Kernel, I, and a Cholesky decomposition.

Residual-Kernel Assembly Let the residual vector introduced in Sestion 2:2] be

r(0) = (ra(0), T69(9))T7 m = Nqdq + Naadsa,

with Jacobian split J(6) = (Jq; Jsq). The Gramian required by the dual formulations (Sections 3.3)) is

Koa Kooan T
K=JJ = . Koga = Kbaq-
(K o0a  Koooo 000 200

The Kernel K = JJ T is built on-the-fly, block-wise, and in parallel (Algs. . Vector-Jacobian products
(VJIPs) provide Jacobian components for K entries; these components are then discarded, avoiding storage
of the full m x n Jacobian J. Through Jax Bradbury et al.| (2018) just-in-time compilation, The Accelerated
Linear Algebra (XLA) compiler optimizes these on-the-fly computations; its operator fusion capabilities en-
hance speed and reduce memory overhead by preventing the explicit materialization of complete intermediate
Jacobian arrays before their consumption. Moreover, symmetry is exploited for diagonal blocks. The final
matrix used by the dense solver is the regularized residual Gramian Ky = Ky + AL,.

Dense Dual Solver Steps With the fully assembled and regularised Gramian I/Cvk in hand, we perform a
single Cholesky factorisation and two back-substitutions to obtain both the Gauss—Newton velocity and its
geodesic correction. The procedure is detailed in Algorithm [4] .

Overall cost. Assembly is O(m?n) (assuming JVPs/VJPs for kernel entries), Cholesky £m?, and each
triangular solve O(m?); memory is O(m?). This remains efficient for m up to a few thousand.



Published in Transactions on Machine Learning Research (10/2025)

4.2 Iterative Dual Solver

When the residual dimension m becomes too large for the dense solver outlined in Section [£.1] forming and
factorizing the m x m residual Gramian X (Definition becomes computationally prohibitive. In such
scenarios, we resort to an iterative method to solve the dual linear system presented in equation[6] Specifi-
cally, we employ the Preconditioned Conjugate Gradient (PCG) algorithm. For efficient PCG convergence,
we employ the Nystrom-based spectral preconditioner detailed in Section This approach relies on
the approximation K ~ UAUT and was proposed in |Arcolano| (2011), the practical construction of which is
outlined next. First, a small subset of ¢ < m residual components are selected as landmarks. In the context
of PINNs, a landmark corresponds to a specific scalar residual value, evaluated at a single col-
location point and for a single output dimension of the residual map. Let I = {i,...,4,} denote
the set of indices for these ¢ landmark residuals.

Using these landmarks, we form two key submatrices of the full Gramian XC:

o K1 € RYL: The Gramian matrix computed between the landmark residual components themselves.

o Koy € Rm=0OxE: The Gramian matrix computed between the non-landmark residual components
(indexed by C' = {1,...,m} \ I) and the landmark residual components.

An eigendecomposition is performed on the (typically small) landmark Gramian: K;; = QAgQ", where
Q € RY*" contains r orthonormal eigenvectors corresponding to the r positive eigenvalues in the diagonal
matrix Ag € R™" (where r < £ is the effective rank of KCry).

An extended, non-orthogonal basis U € R™*" for the Nystrom approximation is then constructed. The rows
of U corresponding to the landmark indices are set to ¢ (i.e., Ur + @), while the rows corresponding to
non-landmark indices are computed as Ugs < ICCIQA(_Ql. The Nystrom approximation of the Gramian is

then given by K = UAQUT.

To obtain an orthonormal eigendecomposition U AUT for this approximation IQ which is beneficial for
constructing the preconditioner, we proceed as follows. Define M = U Ag 2 e Rmxr, Performing a Singular

Value Decomposition (SVD) on M yields M = VEW T, where V' € R™*" has orthonormal columns, ¥ € R"*"
is diagonal with singular values, and W € R"*" is orthogonal. Then, the Nystrom approximation can be
expressed as K = MMT = (VEWT)(VEWT)T = V2V T, Thus, the desired orthonormal eigenvectors are
U <V, and the corresponding eigenvalues are A+ ¥2. The complete procedure for constructing U and A
is detailed in Algorithm

This Nystrom-based spectral approximation K ~ UAUT is then utilized to build the preconditioner P~1
(as defined in Equation equation for the PCG algorithm. The full PCG-based solution of the dual
system, incorporating this preconditioner and relying on kernel-vector products (Definition , is outlined
in Algorithm [6]

4.3 Optimization Workflow

Given a partial differential equation (PDE) and a neural network ansatz ug, we minimize the loss equation
using the described Dual Natural Gradient Descent Framework. The overall procedure, including step
computation via either DENSEDUALSOLVE or PCGSTEP and a line search, is detailed in Algorithm [T}



Published in Transactions on Machine Learning Research (10/2025)

Algorithm 1 Dual Natural-Gradient Descent (D-NGD) Workflow

1: Input: initial parameters 6p; residual function r¢,; collocation sets (X, Xoq) ; loss L(6); time budget
Tmax; Levenberg-Marquardt rule for Ax; Nystrom rank ¢; CG tolerance e; max CG its mca max; dense
threshold Caense thresh; flag use_dense_GA_flag.
to < now()
while now() — tg < Tynax do
g + VgL(0) {Compute J 7 at all points}
Let A6* be the computed parameter step.
m <« |Xal| + | Xogl
if m < Cyense_thresh then
AG* +— DENSEDUALSOLVE(Q, g, T, (Xa, Xoq), A, use_dense_GA_flag)
else
AG* — PCGSTEP(G, gy T,y {5} A, 4, €, mc(}imax)
end if
n <= argmin, e (o, L(G + UAH*)
13: 0+ 0+ nAf*
14: end while
15:
16: return 6

© % N> g kN

=
e

4.4 Time and Space Complexity

We summarize per-step time/memory for the primal, dense dual, and dual PCG solvers.

Primal (parameter-space GN/LM). The primal approach forms G = J'.J and factors an n x n system;
per-step time O(mn? + n?) and memory O(n?). This is preferable when m > n and n is small enough to
factor.

Dense dual (residual-space). The dense dual approach forms K = JJ " and factors an m x m system;
per-step time O(m?n + m3) and memory O(m?). This is preferable when n > m and m is small enough to
factor; as a rule of thumb, if the hardware can hold m? entries at the target precision, use the dense dual
Cholesky, otherwise use the iterative solver below.

Dual PCG (Hessian-free). The dual PCG approach avoids forming K. Each inner iteration costs =
O(mn)+O(m¥), so a solve with ¢ iterations costs O(t(mn+mf)) and uses memory linear in m,n plus O(¢?).
The Nystrom preconditioner is built once per epoch and reused within that epoch’s inner PCG solves. Total
wall-time is the per-step cost times the number of outer steps s, and both s and ¢ grow with the effective
conditioning « (typically t = O( /keft), reduced by good preconditioning).

5 Applications

To comprehensively assess the capabilities of Dual Natural Gradient Descent (D-NGD), we conduct a series
of experiments across a diverse suite of benchmark partial differential equations. All solvers are implemented
in JAX0.5.0, we compute the derivatives using an in-house implementation of th Taylor-mode Automatic-
Differentiation |[Bettencourt et al.| (2019) unless specified.

Every run is executed on a single NVIDIA A100-80GB GPU. Unless stated otherwise, we track the relative
L? error with respect to an analytic or DNS reference solution and report the median value over ten
independent weight initializations. Instead of counting iterations, unless specified otherwise each optimizer
is allocated a fixed wall-clock budget of 3000 seconds for all experiments.

We compare the following Optimizers.



Published in Transactions on Machine Learning Research (10/2025)

o ApaM (Kingma & Bal [2017) with learning rate n = 1072, (81, f2) = (0.9,0.999), € = 10~%, and no
weight decay.

e SGD with Nesterov momentum 0.9 and the one-cycle schedule of [Smith & Topin| (2018), using a
peak learning rate of 1072 and initial /final learning rates of 1074

o L-BFGS (Jaxopt [Blondel et al.| (2021) implementation) with history size 300, tolerance 10~%, max-
imum 20 iterations per line-search step, and a strong-Wolfe backtracking line search.

e Dense D-NGD — the Dense Dual-Newton natural gradient solved by a dense Cholesky factorisa-
tion (Algorithm [4]), with and without geodesic acceleration (suffix “+GA”).

o PCGD-NGD — the matrix-free CG variant (Algorithm @, preconditioned by a Nystrom approx-
imation (Algorithm [5).

Across all benchmarks, we employ standard Multi-Layer Perceptron (MLP) architectures with tanh activation
functions. This choice is motivated by our primary goal to develop an architecture-agnostic optimization
framework and opt to use one of the most commonly used architectures in the PINN literature Wang et al.
(2023). While specialized architectures can undoubtedly improve the conditioning of the loss landscape and
may lead to even lower final errors |[Jnini et al.| (2025al), our results demonstrate that a powerful, curvature-
aware optimizer can achieve state-of-the-art accuracy even with a vanilla network structure.

For the dense NGD solver, we report results both with and without the second-order geodesic correction (the
former denoted by the “+GA” suffix). All hyperparameter settings are listed in Appendix Below, we
introduce our PDE benchmark and experimental setups used for the selected test cases.

5.1 The 104+1-Dimensional Heat Equation

We consider a heat equation in a 10-dimensional spatial domain plus time, defined for € Q := [0, 1]'° and
t € [0,1], with a diffusion coefficient £ = %. The temperature field u(t, ) evolves according to:

10
Opu(t, x) — kAgu(t,z) =0, u(0,z) = Zsin 2mw;, ulpa = 0. (12)
i=1

The analytic solution uey(t,z) = e—dmnt Z}Ql sin 2mx; serves as ground truth. The PINN employs a tanh-
MLP with layer widths 11 — 256 — 256 — 128 — 128 — 1, amounting to 118,401 parameters (n ~ 118k).
Each optimiser step uses No = 10* interior collocation points and Nyq = 102 boundary and initial condition
collocation points, resulting in a residual dimension m = 6k.

The performance of D-NGD on this problem is illustrated in Figure [1| (Left) and summarized in Table|l] As
observed, Dense D-NGD+GA achieves the lowest median relative L? error of 8.52 x 107, closely followed by
Dense D-NGD at 1.24 x 10~°. These results represent a substantial improvement over the best-performing
baseline, L-BFGS (9.82 x 107%), by more than an order of magnitude. Compared to Adam (1.45 x 1073)
and SGD (3.48 x 1073), the D-NGD variants are over two orders of magnitude more accurate.

5.2 Logarithmic Fokker—Planck in 9+1 dimensions

The Fokker—Planck equation governs the evolution of probability densities under stochastic dynamics. We
map the density p to its logarithm ¢ = log p and study:

d 1 1
Og—5 =5 Ver—5Ag—[IVal* =0, ¢(0,2) =logpo(w), (13)

on te [0,1], x € [-5,5]%. PINN formulations for this type of problem have been explored in [Dangel et al.

(2024); Sun et al. (2024); [Hu et al| (2024); Schwencke & Furtlehner| (2024). For a drift 4 = —4a and

diffusion 0 = /21, the exact density remains Gaussian, and ¢*(t,z) = logp*(t,z) is available in closed
form. The PINN uses a tanh-MLP (10 — 256 — 256 — 128 — 128 — 1; 118,145 parameters). The

10



Published in Transactions on Machine Learning Research (10/2025)

initial condition ¢(0,z) = go(x) is satisfied by construction using the transformation ug(t,z) = g(t,x) —
g (0, 1) + qo(), where 1 : R x R — R is the core MLP output. Consequently, training focuses on the PDE
residual, using Ng = 3000 space-time interior points sampled per iteration. Figure [1] (Right) and Table
summarize the performance on the Logarithmic Fokker-Planck equation. Dense D-NGD+GA again leads
with a median error of 2.47 x 1073, followed by Dense D-NGD at 3.27 x 10~3. These D-NGD methods
significantly outperform Adam (4.80 x 10~2) and SGD (5.48 x 10~2) by more than an order of magnitude.
To the best of our knowledge, this sets a new benchmark for PINNs in forward mode for this problem.

—— DNGD —— Adam —— L-BFGS —— DNGD —— Adam —— L-BFGS
—— DNGD GA _—— SGD —— DNGD GA _—— SGD
5 1004 5 104
— —
= =
10° 4
N — N
=107 3
E ER
= s =
~ 1077 1 o) -2
Q Q 4
° ° 10
0 1000 2000 3000 0 1000 2000 3000
Simulation Time (s) Simulation Time (s)

Figure 1: Left: Heat equation in 10+1d; Right: Logarithmic Fokker—Planck in 9+1d. We plot
the median relative L? error across all runs, with shaded bands indicating the interquartile range (25th—75th
percentiles) for all solvers.

5.3 Kovasznay flow at Re = 40

The steady two-dimensional Kovasznay solution is a classic benchmark for incompressible flow solvers

(1948). On the domain = [—0.5,1.0] x [—0.5, 1.5], we solve:

(u-V)u+ Vp — vAu = 0, V-u=0, V=1 (14)

Boundary conditions are prescribed from the known analytic solution. The PINN employs a tanh-MLP with
four hidden layers, each with fifty neurons (7,953 parameters), similar to |Jnini et al|(2024)). For training,
400 interior and 400 boundary collocation points are sampled per iteration. Performance for the Kovasznay
flow is depicted in Figure [2[ (Left) and Table[l] Dense D-NGD achieves an exceptionally low median error of
5.23x 1077, with Dense D-NGD+GA performing similarly at 5.49 x 10~7, L-BFGS reached 9.48 x 10~°, while
Adam and SGD achieved errors of 4.50 x 1072 and 6.94 x 1072 respectively. To the best of our knowledge,
this sets a new benchmark for PINNs in forward mode for this problem.

5.4 Allen—Cahn Reaction—Diffusion

The Allen-Cahn equation models phase separation and is a challenging benchmark due to its stiff reaction
term and potential for sharp interface development, often causing difficulties for standard PINN training.
We consider the equation on (¢,z)€ [0,1] x [—1,1]:
uy — 10" gy + 5u® — 5u =0, (15)
u(0,z) = 22 cos 7,
u(tafl) :u(tv 1); uz(tafl) :uz(tvl)'
This involves a diffusion coefficient of 10™%, a cubic reaction term, and periodic boundary conditions. The

neural network is an MLP with an input layer (3 features: ¢, and x after periodic embedding with period
2.0), four hidden layers (100 neurons each), and one output neuron with tanh activation leading to

11



Published in Transactions on Machine Learning Research (10/2025)

30,801 trainable parameters. Each training step uses No = 4,500 PDE interior points and Npg = 900
boundary /initial condition points. Results for the Allen-Cahn equation are shown in Figure [2| (Right) and
Table |1l Dense D-NGD+GA achieves the best performance with a median error of 9.13 x 1079, followed by
Dense D-NGD at 1.21 x 1072, This problem particularly highlights the deficiency of first-order methods and
L-BFGS, which all failed to converge to recover the physical solution in the allocated time budged. Geodesic
acceleration led to a noticeably faster convergence for this problem.

—— DNGD —— Adam —— L-BFGS —— DNGD GA  =—— Adam  -*** L-BFGS

—— DNGD GA __=—— SGD —— DNGD —— SGD
55 55 100 1
Z 107! =
= =
N N 10—2 4
— 10-3 A —
[ [
2 2
= = 4
< _ < 107
< 107° 1 <
~ ~

T T T 107¢ 4 T T
0 1000 2000 3000 0 1000 2000 3000
Simulation Time (s) Simulation Time (s)

Figure 2: Left: Kovasznay flow at Re = 40; Right: Allen-Cahn reaction-diffusion. We plot the
median relative L? error across all runs, with shaded bands indicating the interquartile range (25th-75th
percentiles) for all solvers.

5.5 Lid-driven cavity at Re = 3000

High Reynolds number lid-driven cavity flow is a demanding benchmark where standard PINNs often strug-
gle to achieve high accuracy beyond Re = 1000 Karniadakis et al.| (2023). We consider the steady-state
incompressible Navier-Stokes equations in the domain = [0,1]? with a kinematic viscosity v = ﬁ,
corresponding to Re = 3000. The flow is driven by a lid moving with the profile:

cosh[Co(z — 1]

1)=1- 2075/
u(@ 1) cosh(3Cp)

v(z,1) =0, Cp=10. (16)

No-slip boundary conditions (u = 0,v = 0) are applied on the other three stationary walls. To stabilize
training at this high Reynolds number, for our D-NGD method, we adopt the curriculum learning strategy
described by [Wang et al| (2023), involving training at progressively increasing Reynolds numbers (Re =
100, 400, and 1000) for 50 iterations each before transitioning to the target Re = 3000; this approach was
shown to help avoid getting stuck in poor local minima. For the baseline optimizers, we employ a standard
curriculum approach involving 50,000 warmup iterations. The network contains about 6.6 x 10* parameters.
At each step we sample 10* interior collocation points and 2 x 10% boundary points, resampling every
iteration. Each run is limited to 9000 s of wall-clock time. On this problem PCGD-NGD attains a median
error of 3.59 x 1073, over two orders of magnitude below L-BFGS at 3.85 x 10~! and far better than Adam
at 6.93 x 107! or SGD at 1.10. which fail to accurately reconstruct the solution field. To the best of our
knowledge, this sets a new benchmark for PINNs in forward mode at this Reynolds number.

5.6 Poisson Equation in 10 Dimensions

We consider a 10D Poisson equation, —Au(z) = f(x) for z € [0,1]°. The source f(x) is from the analytical
solution u*(z) = 22:1 Zok—1 - Tak, S0 the problem becomes —Awu(z) = 0 with Dirichlet boundary conditions
from u*(z) on 9([0,1]!°). The PINN is an MLP (10 inputs; four hidden layers, 100 neurons each;
1 output; Tanh; ~41,501 parameters). Training uses m = 10,000 residual points (Ng = 8,000 interior,
Noa = 2,000 boundary). Due to the large residual dimension m = 10,000, the iterative PCGD-NGD is

12



Published in Transactions on Machine Learning Research (10/2025)

employed. As shown in Figure [3| (Right) and Table [1, PCGD-NGD achieves a median error of 2.74 x 107
This is approximately twice as good as L-BFGS (5.47x 10~%) and significantly better than Adam (3.51x1072)
and SGD (6.26 x 10~2) by about two orders of magnitude.

PCG-DNGD == SGD PCG-DNGD  =—— SGD
10! —— Adam —— L-BFGS 10! —— Adam —— L-BFGS

—~

= 1004 — 10° 5

£a) -

o 1071 4 g 10-!

[ & \

= 1072 4 o 1072 4

;:_é ~

g 1072 5 1072 5

107* 4 T T T T 1074 4 T T
0 2000 4000 6000 8000 0 1000 2000 3000

Simulation Time (s) Simulation Time (s)

Figure 3: Left: Lid-driven cavity at Re = 3000; Right: Poisson Equation in 10 Dimensions (with
PCGD-NGD). We plot the median relative L? error across all runs, with shaded bands indicating the
interquartile range (25th—75th percentiles) for all solvers.

5.7 Poisson Equation in d = 10° Dimensions

To gauge the large-scale behaviour of dual-NGD we embed the inseparable two-body test function

d—1
Uex (T) = 1 — |lz|I? ch sinl l‘l—l—CObJ}H_l) + xig1 cosxi}, ci ~N(0,1), (17)
=1
into the unit ball BX*" and pose
—Au=f mBY,  ulypes =0, fi= —Auey. (18)

A tanh-MLP with four hidden layers of 128 neurons (= 12.8M parameters) outputs ¢(z), and we define
ug(z) = (1 — ||z]|?) ¢(x), which enforces the homogeneous Dirichlet boundary by construction.

To address the prohibitive cost of evaluating every second derivative we adopt the Stochastic Taylor
Derivative Estimator (STDE) |Shi et al| (2025): for each interior collocation point = a random index set
J C {1,...,d} is drawn and the Laplacian is estimated as \J\ deJ u(z)(e;,0). Each term 6%u(x)(ej,0)
is obtained in a single Taylor-mode AD pass with the 2-jet (z,e;,0). Training proceeds with 100 Monte-
Carlo interior points per step. For this 10°-D Poisson problem, the performance is detailed in Figure 4| and
Table The GA-enhanced varian tachieved a median error of 1.14 x 10~%. This result, benefiting from
an approximate 3x improvement due to geodesic acceleration over Dense D-NGD (3.30 x 107%), is nearly
16x better than the best-performing baseline (Adam, 1.87 x 10~%) and substantially lower than errors from
L-BFGS and SGD. Figure[d To the best of our knowledge, our work is the first to extend Natural-Gradient
methods to PINNs of this scale.

13



Published in Transactions on Machine Learning Research (10/2025)

Relative L2 Error

= DNGD = Adam = L-BFGS
= DNGD GA — SGD
102 _
10° 4
1072 1
10—4 _
0 1000 2000 3000

Simulation Time (s)

Figure 4: Poisson Equation in d = 10> Dimensions We plot the median relative L? error across all runs,
with shaded bands indicating the interquartile range (25th—75th percentiles) for all solvers.

Quantitative comparison

Table |I| collects the final median relative L? errors for all six benchmarks.

Table 1: Median relative L? error after the task budget (ten seeds). Best performance for each experiment
is highlighted in bold.

Method Heat Kov. Poisson Fokker—P. A.—Cahn Cavity Poisson
(10+1d) (2d) (10d) (9+1d) (1+1d) (2d) (105d)
n~118k n~~8k n~~42k n~118k n~31k n~66k n~13M

m=06k m=0.8k m=10k m=3k m=>5.6k m=50k m=100

SGD 348 x 1073 | 6.94x 1073 | 6.26 x 1072 | 548 x 1072 | 9.93 x 10~ T 1.10 3.67 x 1073

Adam 1.45 %1072 | 450x 1072 | 351 x 1072 | 4.80x 1072 | 4.92x 10" | 6.93x 10" | 1.87 x10~*

L-BFGS 0.82x107° | 948 x 1075 | 547x107% | 9.30x 1071 | 9.92x 107! | 3.85x 107! | 1.78 x 1073

Dense D-NGD 1.24 x107° | 5.23 x 107 — 3.27 x 1073 | 1.21 x 10~° — 3.30 x 107°

Dense D-NGD+GA | 8.52x 1076 | 549 x 107 — 2.47 x 1073 | 9.13 x 106 — 1.14 x 107°

PCGD-NGD — — 2.74 x 1074 — — 3.59 x 103 —

Discussion Across all seven benchmarks (Table |1 Figures the different variants of our D-NGD
delivers the highest accuracy and the most reliable convergence and achieve state of the art accuracies for
PINNs in several of the considered benchmarks. By swapping the intractable n x n Gauss—Newton solve in
parameter space for an m x m solve in residual space, the method keeps the per-step cost proportional to
the number of residuals rather than the number of weights. This single design choice lets us run many more
curvature-informed iterations within the fixed budget and, equally important, frees practitioners to employ
wider and deeper networks whose expressivity would otherwise be impossible to exploit. Furthermore, we
have shown that geodesic acceleration (GA) provides a consistent refinement at negligible extra cost. By
reusing the existing factorization and adding only one Hessian—vector product per step, GA yields 25-65%
lower final errors on four of the five dense benchmarks and can speed up convergence speed without degrading
performance.

6 Conclusion

Training high-fidelity PINNs at scale has long been hamstrung by the prohibitive cost of second-order
optimisation. By revisiting the Gauss—Newton step through a primal-dual lens, Dual Natural Gradient
Descent moves the heavy linear algebra into residual space, where it is dramatically cheaper to assemble,
store, and precondition. A single Cholesky factorisation—or a handful of preconditioned CG iterations—now
suffices to deliver curvature-informed updates even for networks with tens of millions of parameters. The
same dual operator supports a geodesic-acceleration term at negligible extra cost, further boosting step

14



Published in Transactions on Machine Learning Research (10/2025)

quality without hyper-parameter tuning. Future work will explore adaptive residual sampling driven by
curvature information, automated damping strategies based on stochastic spectral estimates.

Acknowledgments

A.J. acknowledges support from a fellowship provided by Leonardo S.p.A.

References

Nicholas Francis Arcolano. Approzimation of Positive Semidefinite Matrices Using the Nystrém Method.
PhD thesis, Harvard University, 2011. UMI Number: 3462777.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimization, 2022.
URL https://arxiv.org/abs/2201.12250.

Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Taylor-mode automatic differentiation for
higher-order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS 2019, 2019.
URL https://openreview.net/forum?id=SkxEF3FNPH.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-Lépez,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. arXiv preprint
arXiv:2105.15183, 2021.

Andrea Bonfanti, Giuseppe Bruno, and Cristina Cipriani. The challenges of the nonlinear regime for physics-
informed neural networks, 2024. URL https://arxiv.org/abs/2402.03864.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed
neural networks (PINNs) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):1727-1738, 2021.

Felix Dangel, Johannes Miller, and Marius Zeinhofer. Kronecker-factored approximate curvature for physics-
informed neural networks, 2024. URL https://arxiv.org/abs/2405.15603|

M.W.M.G. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving partial dif-
ferential equations. Communications in Numerical Methods in Engineering, 10(3):195-201, 1994.

Nikita Doikov and Anton Rodomanov. Polynomial preconditioning for gradient methods. In 40th Interna-
tional Conference on Machine Learning (ICML), number 40, 2023.

Nikita Doikov, Sebastian U. Stich, and Martin Jaggi. Spectral preconditioning for gradient methods on
graded non-convex functions, 2024. URL https://arxiv.org/abs/2402.04843.

Zachary Frangella, Joel A. Tropp, and Madeleine Udell. Randomized nystrém preconditioning. SIAM
Journal on Matriz Analysis and Applications, 44(3):1181-1212, 2023. doi: 10.1137/21M1466244.

Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-informed
deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in
Applied Mechanics and Engineering, 379:113741, 2021.

H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of matrices. STAM Review, 23(1):53-60,
1981.

Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards, 49(6):409-436, 1952.

15


https://arxiv.org/abs/2201.12250
https://openreview.net/forum?id=SkxEF3FNPH
https://arxiv.org/abs/2402.03864
http://github.com/google/jax
https://arxiv.org/abs/2405.15603
https://arxiv.org/abs/2402.04843

Published in Transactions on Machine Learning Research (10/2025)

Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of dimen-
sionality with physics-informed neural networks. arXiv preprint arXiv:2307.12306, 2023.

Zheyuan Hu, Zhongqiang Zhang, George Em Karniadakis, and Kenji Kawaguchi. Score-based physics-
informed neural networks for high-dimensional fokker-planck equations, 2024. URL https://arxiv.org/
abs/2402.07465.

Anas Jnini and Flavio Vella. Taylor mode neural operators: Enhancing computational efficiency in physics-
informed neural operators.

Anas Jnini, Flavio Vella, and Marius Zeinhofer. Gauss-newton natural gradient descent for physics-informed
computational fluid dynamics, 2024. URL https://arxiv.org/abs/2402.10680.

Anas Jnini, Lorenzo Breschi, and Flavio Vella. Riemann tensor neural networks: Learning conservative sys-
tems with physics-constrained networks. In Forty-second International Conference on Machine Learning,
2025a. URL https://openreview.net/forum?id=cPMhMoJLAx.

Anas Jnini, Harshinee Goordoyal, Sujal Dave, Flavio Vella, Katharine H Fraser, and Artem Korobenko.
Physics-constrained deeponet for surrogate cfd models: a curved backward-facing step case. arXiv preprint
arXiv:2503.11196, 2025b.

George Karniadakis, Zhicheng Wang, and Xuhui Meng. Solution multiplicity and effects of data and eddy
viscosity on navier-stokes solutions inferred by physics-informed neural networks. Bulletin of the American
Physical Society, 2023.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422-440, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2017.

Elham Kiyani, Khemraj Shukla, Jorge F. Urban, Jérome Darbon, and George Em Karniadakis. Which
optimizer works best for physics-informed neural networks and kolmogorov-arnold networks?, 2025. URL
https://arxiv.org/abs/2501.16371.

L. I. G. Kovasznay. Laminar flow behind a two-dimensional grid. Mathematical Proceedings of the Cambridge
Philosophical Society, 44(1):58-62, 1948. doi: 10.1017/S0305004100023999.

K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied
Mathematics, 2(2):164-168, 1944.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Boren Liu, Kamyar Azizzadenesheli,
and Anima Anandkumar. Physics-informed neural operator for learning partial differential equations.
arXiv preprint arXiv:2111.03794, 2021.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on
Applied Mathematics, 11(2):431-441, 1963.

James Martens. Deep learning via hessian-free optimization. pp. 735-742, 08 2010.

Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear algebra: Foundations and algo-
rithms. Acta Numerica, 29:403-572, 2020. doi: 10.1017/50962492920000047.

Maricela Best Mckay, Avleen Kaur, Chen Greif, and Brian Wetton. Near-optimal sketchy natural gradients
for physics-informed neural networks. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=bKsZomnmqn.

Johannes Miiller and Marius Zeinhofer. Achieving high accuracy with PINNs via energy natural gradient
descent. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 256471-25485. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/muller23b.html.

16


https://arxiv.org/abs/2402.07465
https://arxiv.org/abs/2402.07465
https://arxiv.org/abs/2402.10680
https://openreview.net/forum?id=cPMhMoJLAx
https://arxiv.org/abs/2501.16371
https://openreview.net/forum?id=bKsZomnmqn
https://proceedings.mlr.press/v202/muller23b.html

Published in Transactions on Machine Learning Research (10/2025)

Johannes Miiller and Marius Zeinhofer. Position: Optimization in sciml should employ the function space
geometry, 2024. URL https://arxiv.org/abs/2402.07318.

Magziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686-707, 2019.

Anton Rodomanov and Dmitry Kropotov. Volume sampling in optimization. STAM Journal on Optimization,
30(3):1878-1904, 2020.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator preconditioning
perspective on training in physics-informed machine learning, 2024. URL https://arxiv.org/abs/2310.
05801.

Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2 edition, 2003.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
computation, 14(7):1723-1738, 2002.

Nilo Schwencke and Cyril Furtlehner. Anagram: a natural gradient relative to adapted model for efficient
pinns learning. arXiv preprint arXiv:2412.10782, 2024.

Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing pain,
1994. Technical Report, Carnegie Mellon University.

Zekun Shi, Zheyuan Hu, Min Lin, and Kenji Kawaguchi. Stochastic taylor derivative estimator: Efficient
amortization for arbitrary differential operators, 2025. URL https://arxiv.org/abs/2412.00088.

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large
learning rates, 2018. URL https://arxiv.org/abs/1708.07120.

Yang Song, Jiaming Song, and Stefano Ermon. Accelerating natural gradient with higher-order invariance,
2018. URL https://arxiv.org/abs/1803.01273.

Jingtong Sun, Julius Berner, Lorenz Richter, Marius Zeinhofer, Johannes Miiller, Kamyar Azizzadenesheli,
and Anima Anandkumar. Dynamical measure transport and neural pde solvers for sampling, 2024. URL
https://arxiv.org/abs/2407.07873.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies in physics-
informed neural networks, 2020. URL https://arxiv.org/abs/2001.04536.

Sifan Wang, Han Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential
equations with physics-informed deeponets. STAM Journal on Scientific Computing, 43(5):A3055-A3081,
2021.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training physics-
informed neural networks, 2023.

Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient alignment in physics-
informed neural networks: A second-order optimization perspective, 2025. URL https://arxiv.org/
abs/2502.00604.

Stefano Zampini, Umberto Zerbinati, George Turkiyyah, and David Keyes. Petscml: Second-order solvers for
training regression problems in scientific machine learning, 2024. URL https://arxiv.org/abs/2403.
12188.

Qi Zeng, Spencer H Bryngelson, and Florian Tobias Schaefer. Competitive physics informed networks. In
ICLR 2022 Workshop on Gamification and Multiagent Solutions, 2022. URL https://openreview.net/
forum?id=rMz_scJ61lcl

17


https://arxiv.org/abs/2402.07318
https://arxiv.org/abs/2310.05801
https://arxiv.org/abs/2310.05801
https://arxiv.org/abs/2412.00088
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1803.01273
https://arxiv.org/abs/2407.07873
https://arxiv.org/abs/2001.04536
https://arxiv.org/abs/2502.00604
https://arxiv.org/abs/2502.00604
https://arxiv.org/abs/2403.12188
https://arxiv.org/abs/2403.12188
https://openreview.net/forum?id=rMz_scJ6lc
https://openreview.net/forum?id=rMz_scJ6lc

Published in Transactions on Machine Learning Research (10/2025)

A Appendix

A.1 Proofs of Propositions and Theorems
A.1.1 Proof of Proposition [3.1] (Primal normal equations)
The objective function is
-
F\(A0y) = 3(r(0k) + J(0k) AOk) (r(0k) + J(0k) AOy) + 5 AG; Aby.
To find the minimizer A}, we compute the gradient of F)(A#f)) with respect to Afj and set it to zero.

Let’s expand the first term:

L(r(6k) + J(0k) A6k) " (r(61) + J(6x) AG) =

S(r(0k) (k) + 20 (01) " T (0r) Ay + NG T(01)" T (0x) Aby)
Lr(0k) r(0k) +7(0k)" J(Ok) A + A0, T(01)" T (0)) Aby.
The gradient of this term with respect to Afy is:
Vo, (37(0k) 7(0k) +7(0k)" J(01) b + 2A0],T(01)" T (0k) AO)) = J(0k) 7(0k) + T (0k)" T (Ok) Aby.
The gradient of the regularization term % AO—,EAG;C with respect to A6y, is:
Vao, (3 A0 AOL) = X Aby.
Combining these, the gradient of F\(Ady) is:
Va0, Fa(Ay) = J(0r) 7(0k) + J(01)" J(0x) Ay, + X Aby,.
Setting the gradient to zero for the optimal Afj:
J(01) r(0k) + J(0k)" J(0r) AOF + N, AO; = 0.

Rearranging the terms, we get:

(J(0)" T(Or) + AL,) A = —J(0k) " 7(6%).

Given that VyL(0y) is defined as J () 7(6;) in this context (representing the gradient of the unweighted
least-squares loss 3|7(6%)||3), we have:

(J(0r)" J(0r) + AI,,) AGf = —VoL(6y).

The matrix J(6;)"J(0x) is positive semi-definite. For A > 0, the matrix J(0x)"J(0x) + A, is positive
definite, ensuring that F)\(A6y) is strictly convex and thus has a unique minimizer. This completes the proof
of Proposition [3.1]

A.1.2 Proof of Theorem [3.1] (Dual Normal Equations)
The Lagrangian is given by:
LDk, g vie) = 311 (0x) + il + SNAG]S + vyl (ye — T(0x) Aby).

Setting the partial derivatives of -Z (A6, yk, i) with respect to Aby, yr, and vg to zero yields the KKT
system:

Vao,L: NAO — J(0) vp =0, (19)
VL (k) tyk +vp =0, (20)
Vyk.iﬂ oYk — J(Gk) A@k =0. (21)

18



Published in Transactions on Machine Learning Research (10/2025)

From equation v = —r(0) — yk. Substituting into equation |19 gives
AAb, = J(0k) vk = = J(0k) " (r(6k) + k).

Using VoL (0y) = J(6x) r(0x) (gradient of the unweighted least-squares loss 1|7(6))[3), this becomes
AAO, = —VoL(0r) — J(0x) " yx, which rearranges to Equation equation

MG = (100 vi + VoL(6).
Substituting this expression for Af} into equation [21|yields for the optimal y;:
yi = J(O0k) A0 = —L J(0) (J(0k) "y + VoL(6r)) .
Multiplying by A and expanding gives:
Ay = —J(0x) T (01) "yi — J(0k) Vo L(O)-
Using the definition Ky = J(6;)J(0x) " (Definition , we have:
Ay = =Ky — J(0k) Vo L(0).

Rearranging gives (IC, + ALy, )yr = —J (0k) Vo L(6k), which is Equation equation @ The equivalence between
the primal system equation [3.I] and this dual formulation can be confirmed by substitution.Because the
objective is strictly convex and the equality constraints are affine with a non-empty feasible set, the KKT
conditions are necessary and sufficient and strong duality holds. This completes the proof of Theorem

A.1.3 Proof of Proposition (Primal and Dual GA Characterizations)

First, the primal condition follows by differentiating 1||.J(6x)a + fuool* + 3 |lal®* w.r.t. a:
Va(31700a+ full + 3lal?) = J00)(JO)a + fu) + Aa,

and setting this to zero yields equation [0}
(J(0r) T T(01) + M) ar, = — T (0k) " foo.

To derive the dual formulation, we introduce the auxiliary variable y = J(0x)a and enforce the constraint
y = J(0r)a via Lagrange multiplier v € R™. The Lagrangian for the minimization problem in equation [8|is
Lla,y,v) = 5lly + fooll3 + 3llalz + v (y — J(0r)a).

The KKT conditions are obtained by setting the partial derivatives to zero:

Vol :da — J(6;) v =0,
VyLl:y+ foo+v =0,
VoL :y—J(0)a=0.

From V£ = 0, we get v = —(y + fyp). Substituting this into V£ = 0 gives Aa = fJ(t‘)k)T(y + fm,),
which, for the optimal aj;, and corresponding y, i, matches the expression for a; in equation @

ar=—%JO0k) " (Yar + foo)-
Meanwhile, from V, £ = 0, we have y = J(6x)a. Substituting the expression for a:
y=J0:) (-3 00T (u+ fn) ) = =1 (TONTO)T) (w + Fo):
Using Ky = J(0x)J(0;) 7, this becomes

Yy = —% ’Ck (y + fvv)~

Rearranging gives A\y = —Kry — K fuu, 50 (Kg + Al) y = — Ky fuy. For the optimal y, j, this is the first
part of equation [I0] This completes the proof of Proposition [3:2}

19



Published in Transactions on Machine Learning Research (10/2025)

A.2 Algorithmic Implementations

This section provides the detailed algorithms referenced in the main text.

Algorithm 2 KernelEntry via double VJP

1: Input: collocation points x;, z;, parameters 6, residual fn. rg,
2: Define f;(0) = rm(z4,60), fij(0) = rm(z;,0)

3: (yj, vip;) < jax.vip(f;,0)

4 (yla VJpz) <_.]aXV.]p(fivo)

5: Initialize B < Oyxq {d = dim of each residual}

6: for k=1 to d do

7: u < vjp,(ex) {backprop seed e, through f;}

8: v < vjp,;(u) {backprop u through f;}

9:  B.j < v {column k of B}

10: end for

—_
—_

: return B {J; J;}

A.2.1 Algorithm: Assemble Residual Gramian K

Algorithm 3 Assemble residual Gramian IC

1: Input: collocation points {z;}7 ;, parameters 6, residual fn. rg,

2: np < Nqdg, n9 + Naadsa {type Split}
3: IC < Ome
4: for i + 1 tom do

5 for j + 1tomdo

6 if((<mAj<nmAj<i)V (i>niAj>niAj<i)then
7 continue

8 end if

9: B < KERNELENTRY(x;, ;, 0, )

10: IC,J +~— B

11: ifiZjor(i<niAj>ni)or (i>n; Aj<np)then
12: ’Cji + BT

13: end if

14:  end for

15: end for

16: return

20



Published in Transactions on Machine Learning Research (10/2025)

A.2.2 Algorithm:Dense Dual Solve

Algorithm 4 Dense dual solver step (DENSEDUALSOLVE)

Input: 6, g9 = VyL(0), re, collocation sets (Xq, Xoq), damping A, flag use_geodesic_acceleration
K + AsSEMBLEGRAMIAN(all points, 6, r,)
K+ K+ X,
Lchol — ChOl(’C)
b+ 7](9) 9o
Solve Lenory = b then Ll—holy* =y
v =AHI(O) v + go)
if use_geodesic_acceleration then
Jov % rem (points, 6 + tv
b < —J(0)J(O)T foo
Solve Lehol Yo = bg then L:holyg = Ya
a <= _A_l(J(e)T(y; + fvv))
Af v
if ||v]|2 > €norm then
r < 2lall2/[[v]
if » < 0.5 then
Al +— AO+0.5a
end if
end if
else
21:  Af+wv
22: end if
23: return Af

Mo

I e e S e e e e

A.3 Algorithm:Preconditioned Conjugate Gradient

Algorithm 5 Nystrom construction of U, A

Input: 6, residual pts. {xs}7", 7, landmarks ¢

Choose landmark index set I, |I| =¢;let C={1,...,m}\ [
Form K;; and K¢y via KERNELENTRY

Eigendecompose Kr; = QAQ" {r positive eigenpairs}
Ur+Q; Uc + KerQAg'

SVD UAy? = veEwT

U«V; A 32

return (U, A)

21



Published in Transactions on Machine Learning Research (10/2025)

Algorithm 6 Pre-conditioned CG step (PCGSTEP)

Input: 6, g = VyL(0), ram, {xs}, A, rank £, tol. &, mypax
(U, A) < BUILDNYSTROMAPPROXIMATION (6, {5}, 7, £)
Build preconditioner P! using (U, A, \)

Ap < Kp + Ap {two JVP/VIP calls}

1:

2:

3:

4: b+ —=J0)g; y«<0; r«d
5 2 P7lrs pez; pe(r,2)
6: for j < 0 to my.x — 1 do

T

8. if (p, Ap) ~ 0 then

9: break

10:  end if

11:  a < p/(p, Ap)

122 y<+y+ap; r<r—adp
13:  if ||r|]2 < €|b||2 then

14: break

15:  end if

16: 24 P75 prew < (1, 2)
17: if p~ 0 then

18: break

19: end if

200 [ 4 prew/P; P2+ PP P Pnew

21: end for

22: AG+ —A"1(J(0) 'y +g)

23: return A6

A.3.1 Algorithm: Dual Natural-Gradient Descent Workflow

A.4 Hyperparameters for Allen—Cahn Reaction—Diffusion Experiment

Table 2: 1 + 1-D Allen-Cahn, (t,z) € [0,1] x [—1, 1], diffusion 107*.

Category Setting

PDE ug — 10~ %, + 5u — 5u = 0; periodic BCs; u(0, z) = 22 cos(rx)

Network MLP, tanh; layers [3,100, 100, 100, 100, 1]; ~ 30801 params

Training Nq = 4500, Nyg = 900; budget 3 000 s; 10 seeds

Dense D-NGD | Dense Cholesky; A\, = min(loss, 10~°); 31-pt line search; with/without GA
Adam n=10"%; (B, f2) = (0.9,0.999); ¢ = 1073

SGD One-cycle (peak 5 x 1073, final 10~%); momentum 0.9

L-BFGS Jaxopt; history 300; strong-Wolfe; tol 10~°

A.5 Hyperparameters for 10+1-Dimensional Heat Equation Experiment

Table 3: Heat on [0,1]'% x [0,1], k = §.

Network MLP, tanh; [11, 256,256, 128,128, 1]; 118401 params
Training Nqg = 10000, Nyn = 1000; budget 3 000 s; 10 seeds
Dense-DNGD | A\ = min(loss, 10~3); 31-pt line search; GA variant identical
Baselines Adam / SGD / L-BFGS as in Table

22




Published in Transactions on Machine Learning Research (10/2025)

A.6 Hyperparameters for Logarithmic Fokker—Planck Experiment

Table 4: Eq. equation [13|on z € [-5,5]7, t € [0, 1].

Network MLP, tanh; [10, 256,256, 128,128, 1]; 118 145 params
Training Interior residuals only, No = 3000; budget 3 000 s; 10 seeds
Dense-DNGD | A\, = min(loss, 107°); 31-pt line search; GA variant identical
Baselines Adam / SGD / L-BFGS as in Table

A.7 Hyperparameters for Kovasznay Flow Experiment

Table 5: Steady 2-D Kovédsznay benchmark (Re = 40).

Network MLP, tanh; [2, 50,50, 50, 50, 3]; 7953 params

Training Nq = 400, Ny = 400; budget 3 000 s; 10 seeds
Dense-DNGD | A\ = min(loss, 10~°); 31-pt line search; GA variant identical
Baselines Adam / SGD / L-BFGS as in Table

A.8 Hyperparameters for Lid-Driven Cavity Experiment

Table 6: Steady lid-driven cavity (Re = 3000; budget 9 000 s).
Network MLP, tanh; [2, 128, 128, 128, 128, 128, 3]; ~ 66 000 params
Training Nq = 10000, Ngo = 2000; 10 seeds
Curriculum (DNGD) Re = 100,400, 1000 (50 it. each) — Re = 3000
Curriculum (baselines) | 50 000 warm-up iterations at each Re = 100, 400, 1000 (per[Wang et al.[(2023)) |

— Re = 3000

Iterative PCGD-NGD | Nystrom rank 2500; CG tol 10~1°; max 500; A; = min(loss, 107°); 31-pt line
search

Baselines Adam (exp-decay LR), SGD (one-cycle), L-BFGS (history 300)

A.9 Hyperparameters for 10-Dimensional Poisson Experiment

Table 7: Laplace on [0, 1]*° with analytic Dirichlet BCs.
Network MLP, tanh; [10, 100, 100, 100, 100, 1]; 41 501 params
Training Nq = 8000, Ngn = 2000; budget 3 000 s; 10 seeds
Iterative PCGD-NGD | Nystrém rank 2500; CG tol 10~1%; max 500; A\ = min(loss, 10~°); 31-pt line
search; no GA
Baselines Adam / SGD / L-BFGS as in Table 2|

A.10 Hyperparameters for 10°-Dimensional Poisson Experiment

Table 8: Poisson on B’

Network MLP, tanh; [100000, 128,128,128,128, 1]; ~ 12.8 M params
Training Nq = 100 (STDE, re-sample each step); budget 3 000 s; 10 seeds
Dense-DNGD Dense Cholesky; Ay = min(loss, 10%); 5-pt line search
Dense-DNGD +GA | Same with geodesic acceleration

Baselines Adam / SGD / L-BFGS as in Table [2|

23



Published in Transactions on Machine Learning Research (10/2025)

A.11 Navier-Stokes (m x n) Sweep: Primal GN vs. Dual D-NGD (500 iters)

We report the wall-time required to complete 500 optimizer iterations for the steady Navier—Stokes setup
across a grid of residual counts m and parameter counts n. Two solvers are compared: (i) Primal Gauss—
Newton/Levenberg-Marquardt in parameter space; (ii) Dual D-NGD, which computes the same step in
residual space. All experiments in this section were run on an NVIDIA A100 GPU.

Experimental note. Each cell in the following two tables shows the average time per iteration in seconds,
calculated from a total run of 500 iterations for the given (m,n).

Table 9: Primal (parameter-space) Gauss—Newton: time per iteration (seconds) across (m,n).

m n=303 n=2853 n=5403 n=7953 n=10503 n=13053 n =15603 n = 18153
m = 300 0.0012 0.0054 0.0146 0.0294 0.0480 0.0824 0.1226 0.1681
m = 1800 0.0039 0.0210 0.0419 0.0676 0.1062 0.1554 0.2138 0.2868
m = 3300 0.0045 0.0556 0.0969 0.1496 0.2121 0.2898 0.3857 0.4917
m = 4800  0.0060 0.1031 0.1805 0.2705 0.3734 0.4913 0.6278 0.7791
m = 6300 0.0084 0.1732 0.2985 0.4389 0.5950 0.7675 0.9606 —

Table 10: Dual D-NGD: time per iteration (seconds).

m n=303 mn=2853 n=5403 n=7953 n=10503 n =13053 n =15603 n = 18153
m = 300 0.0015 0.0025 0.0035 0.0043 0.0053 0.0061 0.0069 0.0078
m = 1800  0.0059 0.0072 0.0098 0.0127 0.0138 0.0164 0.0188 0.0213
m = 3300 0.0069 0.0120 0.0179 0.0232 0.0266 0.0307 0.0325 0.0418
m = 4800  0.0099 0.0194 0.0290 0.0344 0.0440 0.0466 0.0511 0.0657
m = 6300 0.0161 0.0308 0.0416 0.0591 0.0639 0.0726 0.0807 —

Table 11: Primal vs. Dual regime map (empirical): winner at each (m,n) based on measured time per
iteration. Green = Dual faster; Orange = Primal faster.

m n=303 n=2853 n=5403 n="7953 n =10503 n =13053 n =15603 n = 18153
m = 300 Primal Dual Dual Dual Dual Dual Dual Dual
m = 1800 Primal Dual Dual Dual Dual Dual Dual Dual
m = 3300 Primal Dual Dual Dual Dual Dual Dual Dual
m = 4800 Primal Dual Dual Dual Dual Dual Dual Dual
m = 6300 Primal Dual Dual Dual Dual Dual Dual —

A.12 Effect of the Number of Landmarks on the Nystrom Preconditioner

The efficiency of the Preconditioned Conjugate Gradient (PCG) solver hinges on the quality of the precon-
ditioner. Our choice of a Nystrom-based spectral preconditioner is motivated by the empirical observation
that the PINN Gramian matrix, K, often exhibits a rapidly decaying eigenspectrum. This property implies
that a low-rank approximation can effectively capture the dominant spectral information responsible for
ill-conditioning.

To substantiate this, we conducted an analysis on the Lid-driven cavity benchmark at Re=3000, where
the number of residuals is large (m = 50,000). Figure [5| plots the eigenvalues of the Gramian matrix at
different stages of training, clearly illustrating the rapid spectral decay where a small fraction of eigenvalues
contains most of the spectral energy. The analysis in Table further demonstrates the practical benefit
of this property, showing a sharp decrease in the number of PCG iterations required for convergence as the

24



Published in Transactions on Machine Learning Research (10/2025)

number of landmarks (/) in the Nystrom approximation increases. A relatively small [ < m is sufficient to
significantly accelerate the solver, confirming the effectiveness and efficiency of our preconditioning strategy.

Eigenvalue Spectrum Evolution (First 5000 Eigenvalues)

Iteration 0 Iteration 50

Magnitude (log scale)
=
Magnitude (log scale)

0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Eigenvalue Index Eigenvalue Index

<

Iteration 100 Iteration 250
10%
1 —
) B)
E T
g H
& 100 g
= 2 gt
< <
£107? =t
= = -3
S ESU
= =
107 10-
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Eigenvalue Index Eigenvalue Index
Iteration 350 Iteration 450
10° 10°
o) =
£ 10! 10t
Z 2
g g
=107t =107
v o
g ]
£10% Z10°
& Ed
“10- 107
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Eigenvalue Index Eigenvalue Index

Figure 5: Evolution of the first 5000 eigenvalues of the Gramian matrix at different training iterations for
the Lid-driven cavity problem. The plots show that the spectrum decays rapidly in the earlier stages of
training.

Table 12: Convergence of the Preconditioned Conjugate Gradient (PCG) solver as a function of training
iteration and the number of landmarks () used in the Nystrém approximation. Each cell shows the number
of iterations required to reach the convergence tolerance. A value of 500 indicates that the solver did not
converge within the maximum allowed iterations, highlighting the necessity of a sufficiently large rank for
the preconditioner, particularly in later, more challenging stages of training.

Epoch | CG Iterations for Number of Landmarks ([)
500 | 1000 | 2500 | 4000 5000

0 10 10 10 10 10

50 500 172 11 10 10
100 500 337 20 11 11
250 500 | 500 230 38 17
350 500 | 500 338 60 23
450 500 500 457 80 31

25



	Introduction
	Preliminaries
	Physics‐Informed Neural Networks
	Gauss–Newton method for PINNs

	Optimization in the Residual Space
	Dual Formulation via KKT in Residual Space
	Geodesic Acceleration
	Hessian-Free Solution of the Dual System
	Low-Rank Nyström Spectral Preconditioner for the Dual System


	Algorithmic Implementation
	Dense Dual Solver
	Iterative Dual Solver
	Optimization Workflow
	Time and Space Complexity

	Applications
	The 10+1–Dimensional Heat Equation
	Logarithmic Fokker–Planck in 9+1 dimensions
	Kovásznay flow at Re=40
	Allen–Cahn Reaction–Diffusion
	Lid-driven cavity at Re 3000
	Poisson Equation in 10 Dimensions
	Poisson Equation in 100000 Dimensions

	Conclusion
	Appendix
	Proofs of Propositions and Theorems
	Proof of Proposition 3.1 (Primal normal equations)
	Proof of Theorem 3.1 (Dual Normal Equations)
	Proof of Proposition 3.2 (Primal and Dual GA Characterizations)

	Algorithmic Implementations
	Algorithm: Assemble Residual Gramian K tilde
	Algorithm:Dense Dual Solve

	Algorithm:Preconditioned Conjugate Gradient
	Algorithm: Dual Natural-Gradient Descent Workflow

	Hyperparameters for Allen–Cahn Reaction–Diffusion Experiment
	Hyperparameters for 10+1-Dimensional Heat Equation Experiment
	Hyperparameters for Logarithmic Fokker–Planck Experiment
	Hyperparameters for Kovásznay Flow Experiment
	Hyperparameters for Lid-Driven Cavity Experiment
	Hyperparameters for 10-Dimensional Poisson Experiment
	Hyperparameters for 105-Dimensional Poisson Experiment
	Navier–Stokes (mn) Sweep: Primal GN vs. Dual D-NGD (500 iters)
	Effect of the Number of Landmarks on the Nyström Preconditioner


