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Lossy Image Compression with Conditional Diffusion Models
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Abstract

This paper outlines an end-to-end optimized lossy
image compression framework using diffusion
generative models. The approach relies on the
transform coding paradigm, where an image is
mapped into a latent space for entropy coding
and, from there, mapped back to the data space
for reconstruction. In contrast to VAE-based neu-
ral compression, where the (mean) decoder is a
deterministic neural network, our decoder is a con-
ditional diffusion model. Our approach thus intro-
duces an additional “content” latent variable on
which the reverse diffusion process is conditioned
and uses this variable to store information about
the image. The remaining “texture” variables
characterizing the diffusion process are synthe-
sized at decoding time. We show that the model’s
performance can be tuned toward perceptual met-
rics of interest. Our extensive experiments in-
volving multiple datasets and image quality as-
sessment metrics show that our approach yields
stronger reported FID scores than the GAN-based
model, while also yielding competitive perfor-
mance with VAE-based models in several distor-
tion metrics. Furthermore, training the diffusion
with X -parameterization enables high-quality re-
constructions in only a handful of decoding steps,
greatly affecting the model’s practicality.

1. Introduction
With visual media vastly dominating consumer internet traf-
fic, developing new efficient codecs for images and videos
has become evermore crucial (Cisco, 2017). The past few
years have shown considerable progress in deep learning-
based image codecs that have outperformed classical codecs
in terms of the inherent tradeoff between rate (expected
file size) and distortion (quality loss) (Ballé et al., 2018;
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Figure 1: Overview of our proposed compression architec-
ture. A discrete “content” latent variable ẑ contains infor-
mation about the image. Upon decoding, this variable is
used for conditioning a denoising diffusion process. The
involved ”texture” variables x̄1:N are synthesized on the fly.

Minnen et al., 2018; Minnen & Singh, 2020; Zhu et al.,
2021; Yang et al., 2020; Cheng et al., 2020; Yang et al.,
2023). Recent research promises even more compression
gains upon optimizing for perceptual quality, i.e., increasing
the tolerance for imperceivable distortion for the benefit of
lower rates (Blau & Michaeli, 2019). For example, adding
adversarial losses (Agustsson et al., 2019; Mentzer et al.,
2020) showed good perceptual quality at low bitrates.

Most state-of-the-art learned codecs currently rely on trans-
form coding and involve hierarchical “compressive” varia-
tional autoencoders (Ballé et al., 2018; Minnen et al., 2018;
Cheng et al., 2020). These models simultaneously trans-
form the data into a lower dimensional latent space and use
a learned prior model for entropy-coding the latent repre-
sentations into short bit strings. Using either Gaussian or
Laplacian decoders, these models directly optimize for low
MSE/MAE distortion performance. Given the increasing fo-
cus on perceptual performance over distortion, and the fact
that VAEs suffer from mode averaging behavior inducing
blurriness (Zhao et al., 2017) suggest expected performance
gains when replacing the Gaussian decoder with a more
expressive conditional generative model.

This paper proposes to relax the typical requirement of
Gaussian (or Laplacian) decoders in compression setups and
presents a more expressive generative model instead: a con-
ditional diffusion model. Diffusion models have achieved re-
markable results on high-quality image generation tasks (Ho
et al., 2020; Song et al., 2021b;a). By hybridizing hierarchi-
cal compressive VAEs (Ballé et al., 2018) with conditional
diffusion models, we create a novel deep generative model
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with promising properties for perceptual image compression.
This approach is related to but distinct from the recently pro-
posed Diff-AEs (Preechakul et al., 2022), which are neither
variational (as needed for entropy coding) nor tailored to
the demands of image compression.

We evaluate our new compression model on four datasets
and investigate a total of 16 different metrics, ranging from
distortion metrics, perceptual reference metrics, and no-
reference perceptual metrics. We find that the approach
yields the best reported performance in FID and is other-
wise comparable with the best available compression models
while showing more consistent behavior across the differ-
ent tasks. We also show that making the decoder more
stochastic vs. deterministic offers a new possibility to
steer the tradeoff between distortion and perceptual qual-
ity (Blau & Michaeli, 2019). Crucially, we find that a certain
parameterization–X -prediction (Salimans & Ho, 2022)–can
yield high-quality reconstructions in only a handfull of dif-
fusion steps.

In sum, our contributions are as follows:

• We propose a novel transform-coding-based lossy com-
pression scheme using diffusion models. The approach
uses an encoder to map images onto a contextual latent
variable; this latent variable is then fed as context into
a diffusion model for reconstructing the data. The ap-
proach can be modified to enhance several perceptual
metrics of interest.

• We derive our model’s loss function from a variational
upper bound to the diffusion model’s implicit rate-
distortion function. The resulting distortion term is
distinct from traditional VAEs in capturing a richer de-
coding distribution. Moreover, it achieves high-quality
reconstructions in only a handful of denoising steps.

• We provide substantial empirical evidence that a vari-
ant of our approach is, in many cases, better than the
GAN-based models in terms of perceptual quality, such
as FID. Our base model also shows comparable rate-
distortion performance with MSE-optimized baselines.
To this end, we considered four test sets, three base-
line models (Wang et al., 2022; Mentzer et al., 2020;
Cheng et al., 2020), and up to sixteen image quality
assessment metrics.

2. Method
2.1. Conditional Diffusion Model for Compression

The basis of our compression approach is a new latent vari-
able model: the diffusion variational autoencoder. This
model has a “semantic” latent variable z for encoding the
image content, and a set of “texture” variables x1:N describ-

ing residual information,

p(x0:N , z) = p(x0:N |z)p(z). (1)

As detailed below, the decoder will follow a denoising pro-
cess conditioned on z. We use a neural encoder e(z|x0) to
encode the image. The prior p(z) is a two-level hierarchical
prior (commonly used in learned image compression) and
is used for entropy coding z after quantization (Ballé et al.,
2018). Next, we discuss the novel decoder model.

Decoder and training objective We construct the con-
ditional denoising diffusion model in a similar way to the
non-variational diffusion autoencoder of Preechakul et al.
(2022). We introduce a conditional denoising diffusion pro-
cess for decoding the latent z,

pθ(x0:T |z) = p(xN )
∏

pθ(xn−1|xn, z)

= p(xN )
∏

N (xn−1|Mθ(xn, z, n), βnI).

(2)
Since the texture latent variables x1:N are not compressed
but synthesized at decoding time, the optimal encoder and
prior should be learned jointly with the decoder’s marginal
likelihood p(x0|z) =

∫
p(x0:N |z)dx1:N while targeting a

certain tradeoff between rate and distortion specified by
a Lagrange parameter λ. We can upper-bound this rate-
distortion (R-D) objective by invoking Jensen’s inequality,

Ez∼e(z|x0)[− log p(x0|z)− λ log p(z)] ≤
Ez∼e(z|x0) [Lupper(x0|z)− λ log p(z)] ,

where Lupper(x0|z) = −Ex1:N∼q(x1:N |x0)

[
log p(x0:N |z)

q(x1:N |x0)

]
is the variational upper bound to the diffusion model’s neg-
ative data log likelihood (Ho et al., 2020). We realize that
Lupper(x0|z) corresponds to a novel image distortion met-
ric induced by the conditional diffusion model (in analogy to
how a Gaussian decoder induces the MSE distortion). This
term measures the model’s ability to reconstruct the image
based on z. In contrast, − log p(z) measures the number of
bits needed to compress z under the prior. As in most other
works on neural image compression (Ballé et al., 2018; Min-
nen et al., 2018; Yang et al., 2023), we use a box-shaped
stochastic encoder e(z|x0) that simulates rounding by noise
injection at training time.

We simplify the training objective by using the denoising
score matching loss,

Lupper(x0|z) ≈ Ex0,n,ϵ||ϵ− ϵθ(xn, z,
n

Ntrain
)||2 =

Ex0,n,ϵ
αn

1− αn
||x0 −Xθ(xn, z,

n

Ntrain
)||2

(3)

n and αn are noise scheduling parameters. Instead of con-
ditioning on n, we condition the model on the pseudo-
continuous variable n

Ntrain
which offers additional flexibility
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in choosing the number of denoising steps for decoding (e.g.,
we can use a Ntest smaller than Ntrain). The right-hand-side
equation describes an alternative form of the loss function,
where Xθ directly learns to reconstruct x0 instead of ϵ (Sal-
imans & Ho, 2022). We can easily derive the equivalence
with ϵθ(xn, z,

n
N ) =

xn−
√
αnXθ(xn,z,

n
N )√

1−αn
.

Decoding process Once the model is trained, we entropy-
decode z using the prior p(z) and conditionally decode
the image x0 using ancestral sampling. We consider two
decoding schemes: a stochastic one with xN ∼ N (0, γ2I)
(where γ > 0) and a deterministic version with xN = 0 (or
γ = 0), both following the DDIM sampling method:

xn−1 =
√
αn−1Xθ(xn, z,

n
N ) +

√
1− αn−1ϵθ(xn, z,

n
N )
(4)

Since the variables x1:N are not stored but generated at
test time, these “texture” variables can result in variable
reconstructions upon stochastic decoding (see Figure 5 for
decoding with different γ).

Fast decoding using X -prediction In most applications
of diffusion models, the iterative generative process is a
major roadblock towards fast generation. Although various
methods have been proposed to reduce the number of itera-
tions, they often require additional post-processing methods,
such as progress distillation (Salimans & Ho, 2022) and
parallel denoising (Zheng et al., 2022).

Surprisingly, in our use case of diffusion models, we found
that the X -prediction model with only a handfull of decod-
ing steps achieves comparable compression performance to
the ϵ-model with hundreds of steps, without the need of any
post-processing. This can be explained by closely inspect-
ing X -prediction objective from Eq. 3 that almost looks like
an autoencoder loss, with the modification that n and xn

are given as additional inputs. When n is large, xn looks
like pure noise and doesn’t contain much information about
x0; in this case, X will ignore this input and reconstruct
the data based on the content latent variable z. In contrast,
if n is small, xn will closely resemble x0 and hence carry
more information than z to reconstruct the image. This is
to say that our diffusion objective inherits the properties of
an autoencoder to reconstruct the data in a single iteration;
however, successive decoding allows the model to refine
this estimate and arrive at a reconstruction closer to the data
manifold, with beneficial effects for perceptual properties.

Optional Perceptual Loss While Eq. 3 already describes
a viable loss function for our conditional diffusion compres-
sion model, we can influence the perceptual quality of the
compressed images by introducing additional loss functions
similar to (Mentzer et al., 2020).

First, we note that the decoded data point can be under-

stood as a function of the low-level latent xn, the latent
code z, and the iteration n, such that x̄0 = Xθ(xn, z, n/N)

or xn−
√
1−αnϵθ(xn,z,n/N)√

αn
. When minimizing a perceptual

metric d(·, ·), we can therefore add a new term to the loss:

Lp = Eϵ,n,z∼e(z|x0)[d(x̄0,x0)] (5)

Lc = Ez∼e(z|x0)[Lupper(x0|z)−
λ

1− ρ
log p(z)] (6)

L = ρLp + (1− ρ)Lc. (7)

This loss term is weighted by an additional Lagrange multi-
plier ρ ∈ [0, 1), resulting in a three-way tradeoff between
rate, distortion, and perceptual quality (Yang et al., 2023).

We stress that different variations of perceptual losses for
compression have been proposed (Yang et al., 2023). While
this paper uses the widely-adopted LPIPS loss (Zhang et al.,
2018), other approaches add an adversarial term that seek
to make the reconstructions indistinguishable from recon-
structed images. In this setup, Blau & Michaeli (2019) have
proven mathematically that it is impossible to simultane-
ously obtain abitrarily good perceptual qualities and low
distortions. In this paper, we observe a similar fundamental
tradeoff between perception and distortion.

3. Experiments
We conducted a large-scale compression evaluation involv-
ing multiple image quality metrics and test datasets. Besides
metrics measuring the traditional distortion scores, we also
consider metrics that can reflect perceptual quality. While
some of these metrics are fixed, others are learned from
data. We will refer to our approach as “Conditional Diffu-
sion Compression” (CDC). We selected sixteen metrics for
image quality evaluations, of which we present eight most
widely-used ones in the main paper.

3.1. Baseline Comparisons

Baselines and Model Variants We showed two variants
of our X -prediction CDC model. Our first proposed model
is optimized in the presence of an additive perceptual re-
construction term at ρ = 0.9, which is the largest ρ-value
we chose. For this variant, we used xN ∼ N (0, γ2I) with
γ = 0.8 to reconstruct the images. The other proposed
version is the base model, trained without the additional
perceptual term (ρ = 0) and using a deterministic decod-
ing with xN = 0. As discussed below, this base version
performs better in terms of distortion metrics, while the
stochastic and LPIPS-informed version performs better in
perceptual metrics.

We compare our method with several neural compression
methods. The best reported perceptual results were obtained
by HiFiC (Mentzer et al., 2020). This model is optimized
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Figure 2: Tradeoffs between bitrate (x-axes, in bpp) and different metrics (y-axes) for various models tested on DIV2K.
We consider both perceptual (red frames) and distortion metrics (blue frames). Arrows in the plot titles indicate whether
high (↑) or low (↓) values indicate a better score. CDC (proposed) in its basic version (deterministic, without finetuning to
LPIPS) compares favorably in distortion metrics, while CDC with stochastic decoding and added LPIPS losses performs
favorably on perceptual metrics.

by an adversarial network and employs additional percep-
tual and traditional distortion losses (LPIPS and MSE). In
terms of rate-distortion performance, two VAE models are
selected: DGML (Cheng et al., 2020) and NSC (Wang et al.,
2022). Both are the improvements over the MSE-trained
Mean-Scale Hyperprior (MS-Hyper) architecture (Minnen
et al., 2018). For a fair comparison, we did not use the
content-adaptive encoding for NSC model. For compar-
isons with classical codecs, we choose BPG as a reference.

Figure 2 illustrates the tradeoff between bitrate and image
quality using the DIV2K dataset. We only employ 17 steps
to decode the images with X -prediction model, which is
much more efficient than ϵ-prediction model that requires
hundreds of steps to achieve comparable performance (see
Appendix I for results on other datasets and comparison
with ϵ-prediction). In the figure, dashed lines represent the
baseline models, while solid lines depict our proposed CDC
models. The eight shown plots present two different types
of metrics, distinguished by their respective frame colors.

• Perceptual Metrics (red). The red subplots depict per-
ceptual metrics that assess the compression for real-
ism. Our findings reveal that our proposed CDC model
(ρ = 0.9) achieves the best performance in three out of
four metrics. The closest competitor is the HiFiC baseline.
Notably, HiFiC demonstrates the highest score in LPIPS
but exhibits suboptimal performance in all other metrics.

• Distortion Metrics (blue). The blue subfigures present
distortion-based metrics. We note that the CDC model
with ρ = 0 produces relatively favorable results in distor-
tion metrics, excluding PSNR. It shows on-par scores with
the best baselines in FSIM, SSIM, and MS-SSIM scores,
despite none of the shown models being specifically op-
timized for these three metrics. In contrast, ”classical”
neural compression models (Minnen et al., 2018; Wang
et al., 2022; Cheng et al., 2020) directly target MSE dis-
tortion by minimizing an ELBO objective with Gaussian
decoders, resulting in better PSNR scores.

Our proposed versions CDC (ρ=0) and CDC (ρ=0.9) show
qualitative differences in perceptual and distortion metrics.
Setting ρ = 0 only optimizes a trade-off between bitrate
and the diffusion loss; compared to ρ = 0.9, this results in
better performance in model-based distortion metrics (i.e.,
except PSNR). Fig. 3 qualitatively shows that the resulting
decoded images show fewer over-smoothing artifacts than
VAE-based codecs (Cheng et al., 2020). In contrast, CDC
(ρ=0.9) performs the best in perceptual metrics. These are
often based on extracted neural network features, such as
Inception or VGG (Szegedy et al., 2016; Simonyan & Zis-
serman, 2014), and are more susceptible to image realism.
By varying ρ, we can hence control a three-way trade-off
among distortion, perceptual quality, and bitrate (See Ap-
pendix F for results with other ρ values).
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(a) Ground Truth (b) CDC(ρ = 0.9) (bpp=0.205) (c) HiFiC (bpp=0.207)

(d) Ground Truth (e) CDC(ρ = 0.9) (bpp=0.398) (f) HiFiC (bpp=0.456)

Figure 3: Reconstructed Kodak images (cropped images, see full images in Appendix G). 1st row: compared to HiFiC under
similar bitrate, our model retains more details around the eyes of the parrot. 2nd row: our model still gets slightly better
visual reconstruction than HiFiC while using less bitrate.

A. Supplemental Experiment Details
Metrics We selected sixteen metrics for image quality evaluations, of which we present eight most widely-used ones
in the main paper and the remaining eight in the appendix. Specifically, several more recently proposed learned metrics
(Heusel et al., 2017; Zhang et al., 2018; Prashnani et al., 2018; Ding et al., 2020) capture perceptual properties/realism better
than other non-learned methods; we denote these metrics as perceptual metrics and the others as distortion metrics. It is
important to note that when calculating FID, we follow Mentzer et al. (2020) by segmenting images into non-overlapping
patches of 256× 256 resolution.

Test Data To support our compression quality assessment, we consider the following datasets with necessary preprocessing:
1. Kodak (Franzen, 2013): The dataset consists of 24 high-quality images at 768× 512 resolution. 2. Tecnick (Asuni &
Giachetti, 2014): We use 100 natural images with 600× 600 resolutions and then downsample these images to 512× 512
resolution. 3. DIV2K (Agustsson & Timofte, 2017): The validation set of this dataset contains 100 high-quality images. We
resize the images with the shorter dimension being equal to 768px. Then, each image is center-cropped to a 768 × 768
squared shape. 4. COCO2017 (Lin et al., 2014): For this dataset, we extract all test images with resolutions higher than
512× 512 and resize them to 384× 384 resolution to remove compression artifacts. The resulting dataset consists of 2695
images.

Model Training We use the Vimeo-90k (Xue et al., 2019) dataset to train our model, consisting of 90,000 clips of 7-frame
sequences at 448x256 resolution collected from vimeo.com. This dataset is widely used for video compression research. We
select one frame from each clip and crop the frame randomly to 256 × 256 resolution. At the beginning of training, we
warm up the model by setting λ = 10−5 and keep it running for around 500,000 steps. Then, we increase λ to match the
desired bitrates and keep the model running for another 1,000,000 steps until the model converges. We use Ntrain = 20000
for ϵ-prediction model and Ntrain = 8000 for X -prediction model. The batch size is set as 4, and the Adam (Kingma & Ba,
2014) optimizer is used. The learning rate is initialized as lr = 5× 10−5 and then declines by 20% every 100,000 steps
until lr = 2× 10−5.

Distortion vs. Perception Our experiments revealed the aforementioned distortion-perception tradeoff in learned
compression (Blau & Michaeli, 2019). In contrast to perceptual metrics, distortions such as PSNR are very sensitive
to imperceptible image translations (Wang et al., 2005). The benefit of distortions is that they carry out a direct comparison
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Figure 4: Compression performance with different numbers of decoding step. We use γ = 0 (deterministic decoding) to plot
distortion curves and γ = 1 for perceptual quality curves.

between the reconstructed and original image, albeit using a debatable metric (Dosovitskiy & Brox, 2016). The question of
whether distortion or perceptual quality is more relevant may ultimately not be easily solvable; yet it is plausible that most
compression gains can be expected when targeting a combination of perception/realism and distortion, rather than distortion
alone (Mentzer et al., 2020; Yang et al., 2023). Especially, our method’s strong performance in terms of FID, one of the
most widely-adopted perceptual evaluation schemes (Ho et al., 2020; Song & Ermon, 2019; Mentzer et al., 2020; Brock
et al., 2019; Song et al., 2021a;b), seems promising in this regard.

A.1. Ablation Studies

Influence of decoding steps In the previous section, we demonstrated that the CDC X -prediction model can achieve
decent performance with a small number of decoding steps. In Figure 4, we further investigate the compression performance
of the X -prediction(ρ = 0) model using different decoding steps. Our findings reveal that when employing stochastic
decoding, the model consistently produces better perceptual results as the number of decoding steps increases. However, in
the case of deterministic decoding, more decoding steps do not lead to a substantial improvement in distortion.

Our findings show that the X -prediction model can behave similarly to a Gaussian VAE decoder. In this scenario, the latent
code z becomes the primary determinant of the decoding outcome, enabling the model to reconstruct the original image x0

with a single decoding step. However, even a single decoding step has a tendency to reconstruct data closer to the data mode,
only guaranteeing an acceptable distortion score. To effectively improve perceptual quality, it is crucial to incorporate more
iterative decoding steps, particularly when utilizing stochastic decoding. Thus, we further explore the impact of stochastic
decoding through the following ablation experiment.

Stochastic Decoding By adjusting the noise level parameter, denoted as γ, during the image decoding process, we can
achieve different decoding outcomes. In order to investigate the impact of the noise on the decoding results, we present
Figure 5, which provides both quantitative and qualitative evidence for 4 candidates γ values. Our findings indicate that
larger values lead to improved perceptual quality and higher distortion, as evidenced by lower LPIPS and lower MS-SSIM.
Values of γ greater than 0.8 not only increase distortion but also diminish perceptual quality. In terms of finding the
optimal balance, a γ value of 0.8 offers the lowest LPIPS and the best qualitative outcomes as shown in Figure 5. From a
qualitative standpoint, we notice that the noise introduces plausible high-frequency textures. Although these textures may
not perfectly match the uncompressed ones (which is impossible), they are visually appealing when an appropriate γ is
chosen. For additional insights into our decoding process, we provide visualizations of the decoding steps in Appendix H.
These visualizations showcase how “texture” variables evolve during decoding.
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(a) Ground Truth (b) γ = 0
MS-SSIM=0.979
LPIPS=0.078

(c) γ = 0.6
MS-SSIM=0.977
LPIPS=0.064

(d) γ = 0.8
MS-SSIM=0.973
LPIPS=0.054

(e) γ = 1
MS-SSIM=0.964
LPIPS=0.058

Figure 5: Qualitative comparison of deterministic and stochastic decoding methods. Deterministic decoding typically results
in a smoother image reconstruction. By increasing the noise γ used upon decoding the images, we observe more and more
detail and rugged texture on the face of the sculpture. (γ = 0.8) show the best agreement with the ground truth image. All
the images share the same bpp.

B. Pretrained Baselines
We refer to Bégaint et al. (2020) for pretrained MS-Hyper and DGML models. For HiFiC model, we use the pretrained
models implemented in the publicly available repositories1. Both models were sufficiently trained on natural image
datasets (Xue et al., 2019; Kuznetsova et al., 2020). For NSC (Wang et al., 2022) baseline, we use the official codebase2 and
DIV2k training dataset to train the model.

C. Architectures
The design of the denoising module follows a similar U-Net architecture used in DDIM (Song et al., 2021a) and DDPM (Ho
et al., 2020) projects. Each U-Net unit includes two ResNet blocks (He et al., 2016), one attention block and a convolutional
up/downsampling block. We use six U-Net units for both downsampling and upsampling process. The channel dimension
for each downsampling unit is 64 × j, where j is the index of the layer range from 1 to 6; the upsampling units follow
the reverse order. Each encoder module consists of one ResNet block and one convolutional downsampling block. For
conditioning with embedding, we use ResNet blocks and transposed convolution to upscale z to the same spatial dimension
as the inputs of the beginning four U-Net downsampling units, so that we can perform conditioning by concatenating the the
output of the embedder and the input of the corresponding U-Net unit.

Figure 6 also describes our design choice of the model. We list the additional detailed specifications that we did not clarify
in the main paper as follow:

• The hyper prior structure shares the same design as Minnen et al. (2018). The channel number of the hyper latent y is
set as 256.

• We use 3x3 convolution for most of the convolutional layers. The only exceptions are the 1st conv-layer of the first DU
component and the 1st layer of the 1st ENC component, where we use 7x7 convolution for wider receptive field.

• inN is embedded by a linear layer, which expand the 1-dimensional scalar to the same channel size as the corresponding
DU/UU units. We then add the expanded tensor to the intermediate ResBlock of each DU/UU unit.

1https://github.com/Justin-Tan/high-fidelity-generative-compression
2https://github.com/Dezhao-Wang/Neural-Syntax-Code
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Figure 6: Visualization of our model architecture

D. Compute
We provide information on the model parameter size of the proposed model and baselines, and the corresponding time cost
of running a full forward pass in Table 1. We run benchmarking on a server with a RTX A6000. We decode 24 images from
Kodak dataset and calculate the average neural decoding time, which does not include entropy-coding process.

CDC (1 step) CDC (17 steps) HiFiC MS-hyper DGML
Number of Parameters 53.8M 53.8M 181.47M 17.5M 26.5M
Decoding Time (Seconds) 0.015 1.04 0.0051 0.0011 0.0025

Table 1: Model and decoding time.

Our model exhibits superior memory efficiency compared to HiFiC. However, diffusion models suffer from slow decoding
speed owing to their iterative denoising process. In the benchmark model utilized in our main paper, the decoding of an
image takes approximately 1 second. Although this is slower than the baselines, it remains within an acceptable time range.
Further optimization of the neural network module, such as the removal of the attention module, holds the potential to
enhance efficiency even further.
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E. Additional explanation on experiment metrics
FID, as the most popular metric for evaluating the realism of images, measures the divergence (Fréchet Distance) between
the statistical distributions of compressed image latent features and ground truth ones. The model extracts features from
Inception network and calculates the latent features’ corresponding mean and covariance. LPIPS measures the l2 distance
between two latent embeddings from VGG-Net/AlexNet. Likewise, PieAPP provides a different measurement of perceptual
score based on a model that is trained with the pairwise probabilities. DISTS measures the structural and textural similarities
based on multiple layers of network feature maps and an algorithm inspired by SSIM. CKDN leverages a distillation method
that can extract a knowledge distribution from reference images, which can help calculate the likelihood of the restored
image under such distribution. Both MUSIQ and DBCNN are non-reference metrics, as they both use deep network models
(transformer and CNN, respectively) that are pre-trained on labeled image data with Mean Opinion Score. For non-learned
metrics (model-based methods), FSIM uses the phase congruency and the color gradient magnitude of two images to
calculate the similarity. The (CW/MS-)SSIM family uses insights about human perception of contrasts to construct a
similarity metric to mimic human perception better. GMSD evaluates the distance between image color gradient magnitudes.
NLPD means normalized Laplacian pyramid distance, which derives from a simple model of the human visual system and
is also sensitive to the contrast of the images. VSI reflects a quantitative measure of visual saliency that is widely studied by
psychologists and neurobiologists. MAD implements a multi-stage algorithm also inspired by the human visual system for
distortion score calculation.

F. Supplemental Ablation Study
By varying the trade-off term ρ, we can train a model either prefer perceptual quality or traditional distortion performance.
Figure 7 shows the rate-distortion curves for COCO dataset with the same decoding scheme. We consider four values in the
study (0, 0.32, 0.64, 0.9). The result shows that larger ρ leads to better perceptual quality but worse distortions in most cases.
We also note that ρ > 0.9 is not available as perceptual quality can not be perceivably improved and there is also a risk that
the training may fail.

G. Additional visualization of the compressed images and decoding variability visualization



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Lossy Image Compression with Conditional Diffusion Models

0.2 0.4 0.6 0.8

10

20

30

40
FID↓

0.2 0.4 0.6 0.8

0.605

0.610

0.615

CKDN↑

0.2 0.4 0.6 0.8

0.85

0.90

0.95

SSIM↑

0.2 0.4 0.6 0.8

0.02

0.04

0.06

GMSD↓

0.2 0.4 0.6 0.8

0.4

0.6

0.8

PIEAPP↓

0.2 0.4 0.6 0.8

55

60

65

MUSIQ↑

0.2 0.4 0.6 0.8

0.96

0.97

0.98

0.99

MS-SSIM↑

0.2 0.4 0.6 0.8

0.10

0.15

0.20

0.25

NLPD↓

0.2 0.4 0.6 0.8

0.05

0.10

0.15

0.20

LPIPS↓

0.2 0.4 0.6 0.8
40

45

50

55

DBCNN↑

0.2 0.4 0.6 0.8

0.98

0.99

1.00
CW-SSIM↑

0.2 0.4 0.6 0.8

0.985

0.990

0.995

VSI↑

0.2 0.4 0.6 0.8

0.10

0.15

DISTS↓

0.2 0.4 0.6 0.8

0.95

0.96

0.97

0.98

0.99

FSIM↑

0.2 0.4 0.6 0.8

25

30

35
PSNR↑

0.2 0.4 0.6 0.8

20

40

60

80

100

MAD↓

CDC ρ = 0 (ours) CDC ρ = 0.32 (ours) CDC ρ = 0.64 (ours) CDC ρ = 0.9 (ours)

Figure 7: rate-distortion curves with different ρ values
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Figure 8: Ground Truth
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Figure 9: CDC Xθ(ρ = 0.9), bpp=0.205
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Figure 10: HiFiC bpp=0.207
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Figure 11: Ground Truth



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Lossy Image Compression with Conditional Diffusion Models

Figure 12: CDC Xθ(ρ = 0.9), bpp=0.398
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Figure 13: HiFiC bpp=0.456
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Figure 14: We stochastically decode the same latent variable z and γ = 0.8 but different random seed for xN ∼ N (0, γ2I).
Different random seeds may yield low-level textural distinction.
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H. Visualizations of the Decoding Process

(a) A deterministic decoding scheme

(b) A stochastic decoding scheme

Figure 15: Comparing two decoding schemes with ϵθ parameterization for decoding the same image. The visualization
showcases the texture variable xn at five different time steps (n = {0%N, 30%N, 60%N, 90%N, 100%N}) using N
decoding steps.
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I. Additional Rate-Distortion(Perception) Results
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Figure 16: Rate-Distortion(Perception) for COCO dataset. We use 500 decoding steps for ϵθ model.
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Figure 17: Rate-Distortion(Perception) for Tecnick dataset. We use 500 decoding steps for ϵθ model.
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Figure 18: Rate-Distortion(Perception) for Kodak dataset. We use 500 decoding steps for ϵθ model.
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Figure 19: Rate-Distortion(Perception) for DIV2K dataset. We use 500 decoding steps for ϵθ model.. The complete 16
metrics.


