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Abstract001

Reliably generating structured outputs has be-002
come a critical capability for modern language003
model (LM) applications. Constrained decod-004
ing has emerged as the dominant technology005
across sectors for enforcing structured outputs006
during generation. Despite its growing adop-007
tion, little has been done with the systematic008
evaluation of the behaviors and performance of009
constrained decoding. Constrained decoding010
frameworks have standardized around JSON011
Schema as a structured data format, with most012
uses guaranteeing constraint compliance given013
a schema. However, there is poor understand-014
ing of the effectiveness of the methods in prac-015
tice. We present an evaluation framework to016
assess constrained decoding approaches across017
three critical dimensions: efficiency in gener-018
ating constraint-compliant outputs, coverage019
of diverse constraint types, and quality of the020
generated outputs. To facilitate this evaluation,021
we introduce JSONSchemaBench, a bench-022
mark for constrained decoding comprising 10K023
real-world JSON schemas that encompass a024
wide range of constraints with varying complex-025
ity. We find that JSONSchemaBench presents026
a significant challenge for both LLMs and027
constrained decoding frameworks, highlight-028
ing ample room for improvement and exposing029
gaps in the existing solutions.030

1 Introduction031

The rapid advancements in LMs in recent years032

have significantly broadened their applications, ex-033

tending beyond natural language tasks to more com-034

plex challenges such as web navigation (Yao et al.,035

2023b), data extraction (Polak and Morgan, 2024),036

and tool use (Schick et al., 2023). Unlike traditional037

natural language processing (NLP) tasks where the038

output is aimed at review by humans, output in039

these applications is often consumed by machines040

such as controller and service APIs. The machine-041

oriented nature of these applications requires LMs042

Figure 1: Comparison across various constrained-
decoding frameworks by efficiency (speed of output
generation), coverage (support for JSON Schema fea-
tures), and quality (effects on underlying task accuracy).
Guidance outperforms other frameworks on these di-
mensions.

to generate structured outputs that strictly adhere to 043

predefined formats and constraints. However, the 044

LM generation process is probabilistic and does not 045

provide guarantees on the output’s structure, mak- 046

ing it challenging to deploy LMs in applications 047

requiring structured inputs and high reliability. 048

The methodology of constrained decoding, a 049

technique that integrates constraints into the decod- 050

ing process of LMs, has been developed to address 051

the need to adapt LM generations to the challenge 052

of providing structured output. Constrained decod- 053

ing intervenes in the decoding process of LMs by 054

masking out invalid tokens based on given con- 055

straints and prefix tokens. This intervention guides 056

the LM to sample only from valid tokens, ensur- 057

ing that the final output perfectly conforms to a 058

predefined structure. 059

The strong demand for structured genera- 060

tion (Liu et al., 2024) has led to the development of 061

1



various constrained-decoding frameworks1, such as062

Guidance (Guidance AI, 2023), Outlines (Willard063

and Louf, 2023), XGrammar (Dong et al., 2024)064

and the grammar module of Llamacpp (Gerganov065

and al., 2023) These frameworks provide broad066

support for different types of constraints, mini-067

mal overhead, and compatibility with various LM068

ecosystems, facilitating the adoption of constrained069

decoding in real-world applications.070

JSON Schema offers a high level, domain-071

specific way to define constraints for JSON data, a072

widely adopted data interchange format. As a re-073

sult, JSON Schema has emerged as a key specifica-074

tion language for constrained decoding. Commer-075

cial LM providers, such as OpenAI, have embraced076

constrained decoding by incorporating support for077

JSON Schema directly into their APIs. These inte-078

grations highlight the emergence of JSON Schema079

as an industry-wide standard for specifying con-080

straints on structured outputs, ensuring compatibil-081

ity across diverse applications. Despite the grow-082

ing adoption of constrained decoding for structured083

generation, several issues and questions persist:084

Q1: Efficiency: Does constrained decoding slow085

down or speed up the generation process? Which086

framework is the most efficient?087

Q2: Coverage: The JSON Schema specification088

has an evolving and expansive feature set. How089

well do existing constrained decoding frameworks090

support these features?091

Q3: Quality: While constrained decoding guaran-092

tees that LM outputs conform to a desired structure,093

does it negatively affect the semantic quality of094

outputs?095

To answer these questions, we need to study096

constrained-decoding methods with a large-scale,097

diverse, and real-world collection of user-defined098

structures. To evaluate the performance of099

constrained decoding frameworks, we introduce100

JSONSchemaBench, a collection of 10K real-101

world JSON schemas from various sources, Orga-102

nized into 10 datasets of varying complexity and di-103

versity, the benchmark spans domains such as func-104

tion signatures, service APIs, and system configura-105

tions. We evaluate six state-of-the-art constrained106

decoding frameworks, including Guidance, Out-107

lines, Llamacpp, XGrammar, OpenAI, and Gemini,108

on JSONSchemaBench. We pair this real-world109

schema dataset with the official JSON Schema Test110

1We use the terms constrained decoding framework and
grammar engine interchangeably.

Suite (JSON Schema Org, 2024) in order to extract 111

detailed insights into coverage of JSON Schema 112

functionality across these frameworks, and to fur- 113

ther evaluate them with considerations of end-to- 114

end task accuracy in the context of multiple real- 115

world tasks. Altogether, our evaluation takes three 116

aspects into consideration: efficiency, coverage, 117

and quality. We define specific metrics to mea- 118

sure these three functional aspects and evaluate 119

constrained decoding frameworks against them. 120

Through extensive experiments, we converge on 121

the following findings as illustrated in Figure 1. (1) 122

Constrained decoding can speed up the generation 123

process by 50% compared to unconstrained decod- 124

ing. (2) Frameworks demonstrate significant differ- 125

ences in their actual support for real-world JSON 126

schemas, with the best framework supporting twice 127

as many schemas as the worst. (3) Constrained 128

decoding consistently improves the performance 129

of downstream tasks up to 4%, even for tasks with 130

minimal structure like GSM8k. 131

Contributions Our contributions are three-fold: 132

• We assemble JSON schemas from various 133

sources and organize them into a benchmark, 134

JSONSchemaBench, to facilitate the evalua- 135

tion of constrained decoding frameworks on 136

JSON schema. 137

• We propose a fine-grained evaluation frame- 138

work to assess the versatility of constrained de- 139

coding frameworks in handling diverse JSON 140

schema features, including declared coverage, 141

empirical coverage, and compliance rate. 142

• We evaluate six state-of-the-art constrained 143

decoding frameworks on JSONSchemaBench, 144

uncovering their strengths and limitations in 145

generating schema-compliant JSON outputs 146

and analyzing their impact on downstream 147

tasks. 148

2 Background and Related Work 149

JSON Schema is a meta-language that describes the 150

structure of JSON data. It is capable of expressing 151

a wide variety of constraints, such as the types of 152

JSON object properties, the length of JSON arrays 153

or the pattern that a JSON string must match. The 154

syntax and capabilities of JSON Schema are de- 155

fined in the JSON Schema specification (Wright 156

et al., 2022), which defines a large number of key- 157

words, each of which may be used or combined 158

with other keywords within a schema to enforce 159
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constraints like the ones mentioned. JSON Schema160

is widely used in the software ecosystem, and pre-161

vious work has been done to collect extensive ex-162

amples of JSON Schemas with a focus both on163

real-world use as well as on overall correctness.164

Baazizi et al. (2021) collected over 6,000 JSON165

schemas from publicly available GitHub reposi-166

tories. Attouche et al. (2022) used it alongside167

additional collected JSON schemas in order to168

evaluate a witness generation algorithm for JSON169

Schema. Separately, the official JSON Schema170

Test Suite (JSON Schema Org, 2024) is a collec-171

tion of manually created test cases, maintained by172

the JSON Schema core team, which exercises a173

large portion of the functionality defined in the174

JSON Schema specification. It was originally writ-175

ten to assist implementers of JSON Schema vali-176

dation tools with testing their compliance against177

the specification, and therefore contains a wide va-178

riety of examples for each of JSON Schema’s key-179

words, including in edge case scenarios. Notably,180

Bowtie (Bowtie, 2025) leverages the test suite as181

a foundation for comparing and understanding dif-182

ferent implementations of the JSON Schema spec-183

ification across programming languages. Taken184

together, these two datasets form a large number of185

examples both of JSON Schema’s diverse feature186

set as well as its use in the wild.187

Algorithm 1 Constrained Decoding
Require: Constraint C, LLM f , Prompt x
Ensure: Output o adhering to C
1: o← []
2: loop
3: C.update(o) ▷ advance state of C
4: m← C.mask() ▷ compute mask
5: v ← f(x+ o) ▷ compute logits
6: v′ ← m⊙ v′

7: t← decode(α′) ▷ sample
8: if t = EOS then
9: break

10: end if
11: o.append(t)
12: end loop
13: return o ▷ output

Constrained decoding (Deutsch et al., 2019; Shin188

et al., 2021; Scholak et al., 2021; Poesia et al., 2022;189

Wang et al.; Geng et al., 2023) refers to methods190

that guide the generation process of language mod-191

els (LMs) by masking out tokens that do not adhere192

to predefined constraints at each step. Recently,193

highly optimized grammar-constrained decoding194

frameworks (Guidance AI, 2023; Beurer-Kellner195

et al., 2023; Willard and Louf, 2023; Kuchnik et al.,196

2023; Zheng et al., 2024; Dong et al., 2024) have 197

been developed to improve the efficiency and us- 198

ability of constrained decoding. 199

The evaluation of constrained decoding remains 200

an under-explored topic, with no consensus on 201

what defines the effectiveness of constrained de- 202

coding. While some research has pursued compar- 203

isons of constrained decoding with unconstrained 204

LMs (Roy et al., 2024; Tang et al., 2024; Yao et al., 205

2023a), the studies to date fail to provide compar- 206

isons across different constrained decoding frame- 207

works. The benchmarks employed have either nar- 208

rowly focused on specific tasks or rely on formal- 209

grammar–based artificial setups, that have unclear 210

relevance to real-world use cases. 211

3 The JSONSchemaBench 212

Our goal is to design a benchmark that is (1) diverse 213

enough to cover the most common constraint types 214

encountered in real-world applications, (2) large 215

enough to provide a reliable evaluation, and (3) 216

equipped with fair and multidimensional metrics 217

to ensure comprehensive assessments. 218

3.1 Data Collection 219

We start with the 6K JSON schemas collected 220

by (Baazizi et al., 2021) from publicly available 221

GitHub repositories, and with the set of schemas 222

from the JSON Schema Test Suite (JSON Schema 223

Org, 2024). We further collect JSON schemas 224

from other sources, such as the JSON Schema 225

Store (Schema Store Org, 2014), the GlaiveAI 226

function calling dataset V2 (GlaiveAI, 2024), and 227

from Kubernetes configuration files (Kubernetes, 228

2022). We filter out invalid schemas and standard- 229

ize the schemas to ensure that they conform to 230

the version of JSON Schema declared2 in each 231

schema The GitHub JSON schemas collection 232

from (Baazizi et al., 2021) contains schemas of 233

varying complexity and diversity, ranging from 234

simple type constraints to complex constraints with 235

nested objects and arrays. For more fine-grained 236

evaluation, we split the data into five collections 237

based on the schema size: trivial, small, medium, 238

large, ultra. The suites finalized after all collection 239

and processing are listed in Table 1. We excluded 240

GitHub-Trivial and GitHub-Ultra from the experi- 241

ments as they were too easy or too hard. However, 242

we retained these datasets in the benchmark, with 243

2The $schema keyword, defined in the JSON Schema spec-
ification, allows any schema to self-identify which version of
JSON Schema it is written for.
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Dataset Category Count

GlaiveAI-2K Function Call 1707
Github-Trivial Misc 444
Github-Easy Misc 1943
Snowplow Operational API 403
Github-Medium Misc 1976
Kubernetes Kubernetes API 1064
Washington Post Resource Access API 125
Github-Hard Misc 1240
JSONSchemaStore Misc 492
Github-Ultra Misc 164

Total 9558

Table 1: Schema collection metadata.

GitHub-Ultra serving as an aspirational target for244

future advancements. For more information on245

post-processing and dataset splitting, we refer the246

reader to Appendix A.247

4 Efficiency248

Naïve implementations of constrained decoding249

add overhead to the standard LM inference pro-250

cess, including a per-step mask computation and251

an optional one-time grammar compilation. How-252

ever, several optimizations can significantly reduce253

this overhead. For instance, mask computation can254

run in parallel with the LM’s forward pass, and255

grammar compilation can be performed concur-256

rently with pre-filling computations (Guidance AI,257

2023; Dong et al., 2024). Other optimizations such258

as grammar caching and constraint-based specula-259

tive decoding (GuidanceAI, 2024a; Beurer-Kellner260

et al., 2023; Kurt, 2024a) can further reduce over-261

head.262

Metrics We break down the efficiency evaluation263

into the following components:264

• Grammar Compilation Time (GCT): The265

time spent on grammar compilation.266

• Time to First Token (TTFT): Time from the267

start of generation to the production of the268

first token.269

• Time per Output Token (TPOT): Average270

time to generate each token after the first.271

4.1 Setup272

The efficiency experiment depends on both the273

size of the model and the tokenizer’s vocabulary274

size. We used Llama-3.1-8B-Instruct with the275

Llamacpp inference engine as backend for Out-276

lines, Guidance, and Llamacpp. As XGrammar277

doesn’t support Llamacpp as backend , we add278

an additional experiment with the Hugging Face 279

Transformers inference engine for XGrammar. 280

All experiments are conducted on a single NVIDIA 281

A100-SXM4-80GB GPU with AMD EPYC 7543 282

(12 cores) CPU. The batch size is set to 1 for all 283

experiments. Additional details about setup are pro- 284

vided in the Appendix E. We also provide a snippet 285

of how we call each engine in the Appendix G. 286

Addressing coverage bias. The efficiency met- 287

rics are meaningful only for instances that a gram- 288

mar engine can process. Different engines exhibit 289

varying levels of schema coverage, with some en- 290

gines handling a wider range of schemas than oth- 291

ers. Engines with lower coverage often process sim- 292

pler, shorter schemas, which naturally compile and 293

generate faster. As a result, averaging efficiency 294

metrics across covered instances can introduce bias 295

favoring engines with lower coverage. For a more 296

detailed discussion on coverage, see Section 5. To 297

ensure fairness, we calculate efficiency metrics on 298

the intersection of covered instances across all en- 299

gines. 300

Dataset Framework GCT
(s)

TTFT
(s)

TPOT
(ms)

GlaiveAI LM only NA 0.10 15.40
Guidance 0.00 0.24 6.37
Llamacpp 0.05 0.20 29.98
Outlines 3.48 3.65 30.33

GitHub LM only NA 0.10 15.83
Easy Guidance 0.00 0.34 7.44

Llamacpp 0.05 0.18 27.22
Outlines 3.71 3.97 39.78

Snowplow LM only NA 0.11 16.23
Guidance 0.00 0.28 6.55
Llamacpp 0.05 0.20 28.90
Outlines 3.91 4.14 42.66

GitHub LM only NA 0.20 16.68
Medium Guidance 0.01 0.54 7.57

Llamacpp 0.06 0.30 29.08
Outlines 8.05 8.38 46.57

Kubernetes LM only NA 0.16 15.32
Guidance 0.01 0.45 9.47
Llamacpp 0.05 0.28 28.04
Outlines 5.29 5.55 46.10

Table 2: Efficiency metrics for different engines with
LlamaCpp as the inference engine. GCT: Grammar
Compilation Time, TTFT: Time to First Token, TPOT:
Time Per Output Token. Bold values indicate the small-
est in each column for GCT, TTFT, and TPOT. All val-
ues are median of the samples. Results for the GitHub
Hard and Washington Post datasets are provided in Ap-
pendix E.

Grammar compilation time. There are notable 301

differences in grammar compilation times between 302
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the engines. Both Guidance and Llamacpp dynam-303

ically compute their constraints during token gen-304

eration, leading to minimal grammar compilation305

time. In the middle, XGrammar does include a non-306

trivial compilation step, but they are able to largely307

mitigate its impact by running it concurrently with308

prompt pre-filling. Finally Outlines, which con-309

verts JSON schemas into regular-expression based310

constraints, has significantly higher compilation311

time.312

Time per output token. While Outlines and Lla-313

macpp demonstrate substantially lower throughput314

than the LM-only approach, Guidance achieves315

even higher efficiency, which it accomplishes by316

fast-forwarding 3 certain generation steps with317

its guidance acceleration (GuidanceAI, 2024a).318

Comparing Guidance and XGrammar with the HF319

Transformers backend shows that Guidance has a320

significantly better TPOT.

Dataset Framework GCT
(s)

TTFT
(s)

TPOT
(ms)

GlaiveAI Guidance 0.01 0.36 36.92
XGrammar 0.12 0.30 66.78

GitHub Guidance 0.01 0.37 42.03
Easy XGrammar 0.11 0.33 65.57

GitHub Guidance 0.01 0.55 44.21
Medium XGrammar 0.20 0.48 65.51

GitHub Guidance 0.01 0.73 35.88
Hard XGrammar 0.30 0.65 65.20

Table 3: As XGrammar doesn’t support llama.cpp, we
add an additional experiment with the Hugging Face
Transformers inference engine for XGrammar and
Guidance. All values are median of the result sam-
ples.

321

5 Coverage322

Each constrained decoding framework has limita-323

tions when it comes to translating JSON schemas324

into a set of constraints that can reliably guaran-325

tee the validity of LM outputs. To systematically326

evaluate the effectiveness of these frameworks, we327

define three notions of coverage:328

Definition 5.1 (Declared Coverage) A schema is329

considered declared covered if the framework pro-330

cesses the schema without explicitly rejecting it or331

encountering runtime errors such as exceptions or332

crashes.333

3See Tables12 and 13 for the number of tokens fast-
forwarded.

Definition 5.2 (Empirical Coverage) A schema 334

is considered empirically covered if our experi- 335

ments show that the constraints generated by the 336

framework result in LM outputs that are schema- 337

compliant. 338

Definition 5.3 (True Coverage) A schema is con- 339

sidered truly covered if the framework produces 340

constraints that are precisely equivalent to the orig- 341

inal JSON Schema definition, i.e., permitting all 342

schema-compliant generations while rejecting all 343

schema-noncompliant generations. 344

The most ideal coverage metric is the true cover- 345

age, denoted as CTrue. However, due to the infinite 346

number of JSON instances that could be validated 347

against a schema, it is difficult to measure in prac- 348

tice without a formal verification method that is 349

capable of exhaustively comparing the schema’s 350

semantics against the framework’s implementa- 351

tion. CEmpirical is an approximation of CTrue as 352

it only checks whether the finitely many outputs 353

seen during our experiments conform to a given 354

schema4. While CDeclared is not an estimate of CTrue 355

per se, it is an upper-bound of both CEmpirical and 356

CTrue and is useful in deriving an additional metric 357

from the coverage evaluation: Compliance Rate 358

= CEmpirical/CDeclared. The Compliance Rate esti- 359

mates the reliability of the constrained decoding 360

framework in guaranteeing compliance given it ac- 361

cepts a given schema. 362

5.1 Setup 363

To measure empirical coverage, we conduct all ex- 364

periments using the Llama-3.2-1B-Instruct model 365

as it is small enough to run efficiently while still 366

producing high-quality outputs. The prompt con- 367

sists of a simple instruction with two-shot examples 368

(Figure 3), and validation is performed using the 369

jsonschema Python library (Berman, 2025) (using 370

JSON Schema Draft2020-12) with string-format 371

checks enabled. We use greedy decoding with zero- 372

temperature, performing a single generation run, 373

and enforce a 40-second timeout for grammar com- 374

pilation and an additional 40 seconds for genera- 375

tion. Exceeding these limits is treated as a schema 376

processing failure. Additional details are provided 377

in Appendix B. 378

4Additionally, we define theoretical coverage as the pro-
portion of schemas whose features are fully supported by the
grammar engine, with details provided in Appendix C.
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5.2 Results379

Empirical Coverage Guidance shows the high-380

est empirical coverage on six out of the eight381

datasets, with Llamacpp taking the lead on the re-382

maining two: the domain-specific Washington Post383

and notably hard JSON Schema Store. On the other384

hand, closed-source grammar engines consistently385

have the lowest coverage; they came in last on all386

but one dataset. We note that while empirical cov-387

erage is a reasonable indicator of a framework’s388

real-world performance, it is influenced by factors389

such as the LM being used and the sampling meth-390

ods employed.391

Compliance Rate Among open-source engines,392

guidance consistently demonstrates the highest393

compliance rate across all datasets, making it the394

most reliable option for ensuring schema compli-395

ance. Outlines has a comparatively lower compli-396

ance rate, primarily due to timeouts during gen-397

eration. Our analysis reveals that JSON Schema398

features like minItems , maxItems , enum , and399

Array , while supported, often take 40 seconds to400

10 minutes for Outlines to process. While closed-401

source implementations have low empirical cover-402

age, they have very high compliance rates, indicat-403

ing that their providers have taken a more conserva-404

tive strategy, implementing only a subset of JSON405

Schema features that they can reliably support.406

5.3 JSON Schema Test Suite: Complementary407

Evaluation408

Originally designed to test the correctness and com-409

pliance of JSON Schema validation implementa-410

tions, the official JSON Schema Test Suite (JSON411

Schema Org, 2024) is a comprehensive collection412

of test cases spanning the many features of the413

JSON Schema specification. We believe that the414

test suite is an ideal tool for assessing the correct-415

ness of grammar engines.416

The test suite organizes its test cases into 45 cat-417

egories, each of which corresponds to a feature of418

JSON Schema, typically a specific keyword such419

as required or group of tightly related keywords420

such as if-then-else. A small number of addi-421

tional categories test broader behaviors, such as422

infinite-loop-detection. Each test case con-423

tains a single schema paired with a collection of424

JSON instances that are marked as either valid or425

invalid under that schema. For the purpose of eval-426

uating coverage, we assert that an engine must suc-427

cessfully generate each valid instance and block428

Dataset Framework Declared Empirical Compliant
Rate

GlaiveAI Guidance 0.98 0.96 0.98
Llamacpp 0.98 0.95 0.97
Outlines 0.99 0.95 0.96
XGrammar 1.00 0.93 0.93

OpenAI 0.89 0.89 1.00
Gemini 0.86 0.86 1.00

GitHub Guidance 0.90 0.86 0.96
Easy Llamacpp 0.85 0.75 0.88

Outlines 0.86 0.59 0.83
XGrammar 0.91 0.79 0.87

OpenAI 0.30 0.29 0.97
Gemini 0.08 0.07 0.88

Snowplow∗ Guidance 0.87 0.82 0.94
Llamacpp 0.92 0.74 0.81
Outlines 0.95 0.36 0.61
XGrammar NA NA NA

OpenAI 0.21 0.21 1.00

GitHub Guidance 0.79 0.69 0.87
Medium∗ Llamacpp 0.77 0.57 0.74

Outlines 0.72 0.29 0.40
XGrammar 0.79 0.52 0.66

OpenAI 0.13 0.12 0.92

Kubernetes∗ Guidance 0.98 0.91 0.92
Llamacpp 0.98 0.76 0.78
Outlines 0.98 0.57 0.58
XGrammar 0.12 0.07 0.58

OpenAI 0.21 0.21 1.00

Washington Guidance 0.86 0.86 1.00
Post∗ Llamacpp 0.97 0.94 0.97

Outlines 0.97 0.22 0.23
XGrammar 0.85 0.64 0.75

OpenAI 0.13 0.13 1.00

GitHub Guidance 0.60 0.41 0.69
Hard∗ Llamacpp 0.61 0.39 0.63

Outlines 0.47 0.03 0.06
XGrammar 0.69 0.28 0.41

OpenAI 0.09 0.09 1.00

JsonSchema Guidance 0.35 0.30 0.88
Store∗ Llamacpp 0.54 0.38 0.69

Outlines 0.38 0.09 0.24
XGrammar 0.76 0.33 0.43

OpenAI 0.06 0.06 1.00

Table 4: Coverage of all the frameworks on JSON-
SchemaBench. Empirical coverage between Open
Source engines and OpenAI/Gemini are not directly
comparable due to differences in the underlying model
(Llama 3.2-1B vs. proprietary models).
∗ Gemini results are ommitted for dataset suites with < 1%
support.

generation of each invalid instance to “pass” a test 429

case. In addition to compilation failures, we de- 430

fine two failure modes that a grammar engine can 431

exhibit: 432

Definition 5.4 (Over-constrained) A framework 433

is over-constrained if it rejects JSON instances that 434

are vsalid according to a given JSON Schema. This 435

means the engine is too strict and excludes outputs 436
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Framework Compile-
Error

Over-
constrained

Under-
constrained

Outlines 42 16 8
Llamacpp 37 18 7
XGrammar 3 5 38
Guidance 25 7 1

Table 5: Number of categories for which each failure
type occurred at least once. Rows do not necessarily
sum to the total number of categories, as some cate-
gories may have more than one failure type or no fail-
ures at all. Bold numbers indicate the framework with
the fewest number of failures of a given type.

that should be allowed.437

Definition 5.5 (Under-constrained) A frame-438

work is under-constrained if it allows JSON439

instances that are invalid according to a given440

JSON Schema. This means the engine is overly441

permissive and allows outputs that should be442

rejected.443

An illustration is given in Figure 5 in Appendix D.444

Over-constrained grammar engines risk limiting445

the expressive power of LMs, potentially prevent-446

ing the generation of valid responses and negatively447

impacting downstream task performance. Con-448

versely, under-constrained engines cannot guaran-449

tee that all responses will be valid, often necessitat-450

ing additional post-processing or retry logic.451

5.3.1 Results452

Coverage Analysis For each grammar engine453

and category in the test suite, we calculate test454

coverage as the proportion of passing test cases,455

reported in Figure 6 in Appendix D Additionally,456

Table 6 aggregates these metrics, counting cate-457

gories with minimal coverage (> 0%), partial cov-458

erage (> 25%), moderate coverage (> 50%), high459

coverage (> 75%), and full coverage (100%). We460

indicate the number of categories for which each461

framework achieves the highest test coverage (ei-462

ther as the single highest or as the sole leader) as463

well as the number of categories for which each464

framework is the sole leader.465

• Overall Performance: Guidance outper-466

forms other engines at all coverage levels,467

achieving full coverage on 13 categories and468

moderate coverage on 21. In comparison, Lla-469

macpp and XGrammar have full coverage on470

only one category and moderate coverage on471

five and three categories, respectively, while472

Outlines has no full coverage on any category 473

and moderate coverage on two categories. 474

• Single Highest: Guidance has the single high- 475

est coverage in 19 categories, followed by 476

XGrammar with 10, and Outlines with one, 477

and Llamacpp with none. 478

Failure Analysis Table 5 provides a breakdown 479

of failure modes for each framework across the 480

test suite, detailing the number of categories with 481

compilation errors, failures to generate positive in- 482

stances (over-constrained), and failures to block 483

negative instances (under-constrained). Overall, 484

Guidance demonstrates the fewest total failures, 485

in particular minimizing under-constrained errors. 486

Outlines, Llamacpp, and Guidance follow a consis- 487

tent failure pattern, with most errors occurring dur- 488

ing compilation and over-constrained failures be- 489

ing more frequent than under-constrained ones. In 490

contrast, XGrammar minimizes compilation errors 491

but shows the highest number of under-constrained 492

failures, indicating a trade-off favoring permissive- 493

ness. 494

We acknowledge that there is no straightforward 495

correspondence between test suite performance and 496

empirical coverage. One reason for this is that not 497

all features are equally represented in real-world 498

schemas. As a result, strong or weak performance 499

on specific features can have disproportionate im- 500

pacts depending on their prevalence. Another rea- 501

son is under-constraining effectively delegates re- 502

sponsibility to the LM, which may produce valid 503

output despite a lack of strict constraints. We em- 504

phasize that while under-constraining can be a legit- 505

imate strategy, it requires careful implementation 506

and transparency to ensure reliability. 507

6 Quality 508

In principle, constrained decoding should not affect 509

the quality of the generated output as it only filters 510

out the invalid tokens. However, things become 511

more complicated due to ambiguity of tokeniza- 512

tion (Vivien, 2024; GuidanceAI, 2024b; Geng et al., 513

2024) and the distributional shifts caused by the 514

intervention (Geng et al., 2023; Tam et al., 2024). 515

As a hypothetical toy example, an LM might an- 516

swer 89,000 instead of the correct 89000 in a 517

GSM8K question. Constrained decoding can block 518

the invalid token , , enforcing structural compli- 519

ance but potentially may cause the LM to go out of 520

distribution and generate 890000 instead. (Kurt, 521
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Coverage Outlines Llamacpp XGrammar Guidance

Minimal coverage (>0%) 20 21 28 30
Partial coverage (>25%) 11 11 16 25
Moderate coverage (>50%) 2 5 3 21
High coverage (>75%) 0 2 1 17
Full coverage (100%) 0 1 1 13

Tied for highest (>0%) 4 6 14 25
Single highest 1 0 10 19

Table 6: Number of categories with a given level of coverage. Each row represents a cumulative coverage threshold,
with higher thresholds indicating stricter levels of success. Bold numbers indicate the framework with the highest
value in that row.

2024b) argued that the performance decline ob-522

served in previous studies (Tam et al., 2024) comes523

from inadequate prompting, insufficient contextual524

information, and poorly crafted schemas.525

6.1 Setup526

Kurt (2024b); Tam et al. (2024) have introduced a527

series of tasks to investigate potential quality con-528

cerns in constrained decoding, which we leverage529

and extend in this benchmark. Specifically, we530

adopt the three reasoning tasks from these studies531

to evaluate the impact of constrained decoding on532

task accuracy, as detailed in Table 14. The sim-533

ple output structure of these tasks was designed534

to isolate the effects of constrained decoding on535

reasoning, as outlined by (Tam et al., 2024). For536

our experiments, we use the Llama-3.1-8B-Instruct537

model to measure task performance. We follow the538

original setup and prompt specifications from (Kurt,539

2024b), with full details provided in Appendix F.540

We implement the following constraints for the541

first three tasks: (1) Last Letter the output needs to542

be a concatenation of letters from a-z; (2) Shuffle543

Objects the output needs to be a single letter from544

A-E enclosed in parentheses; (3) GSM8K the out-545

put is an valid integer or float number. The outputs546

for all three tasks are structured as JSON objects547

with two fields: "reasoning" and "answer", for-548

matted as {"reasoning": <reasoning about549

the answer>, "answer": <final answer>}.550

6.2 Results551

The results in Table 7 show that the constrained552

decoding, regardless of the framework, achieves553

higher performance than the unconstrained setting.554

Among the frameworks evaluated, Guidance con-555

sistently delivers the best performance across all556

tasks, with approximately a 3% improvement over557

the LM-only approach in every task. We believe558

this may be attributed to its token-healing imple- 559

mentation (GuidanceAI, 2024b). 560

Last Letters Shuffle Objects GSM8K

LM only 50.7% 52.6% 80.1%
XGrammar 51.2% 52.7% 83.7%
Llamacpp 52.0% 52.6% 82.4%
Outlines 53.3% 53.0% 81.6%
Guidance 54.0% 55.9% 83.8%

Table 7: Accuracy on the quality tasks.

7 Conclusion 561

We have proposed a comprehensive evaluation 562

framework for constrained decoding frameworks 563

with JSON schemas, focusing on efficiency, cov- 564

erage, and output quality. We introduced JSON- 565

SchemaBench, a benchmark comprising 10K real- 566

world JSON schemas, to enable robust assessment 567

under realistic conditions. Our evaluation high- 568

lights both the advancements and limitations of 569

current state-of-the-art constrained decoding frame- 570

works. We hope our findings and benchmark guide 571

future research in structured generation, helping 572

the community identify effective tools and extend 573

capabilities with constrained decoding. 574

8 Limitations 575

1. Short-Circuited Generation In the exper- 576

iments, the LM sometimes produces minimal, 577

schema-compliant JSON objects that are trivially 578

correct but lack semantic depth. On most datasets, 579

the average output size is 50 tokens, occasionally 580

as low as 20 tokens (e.g., Kubernetes’ and Wash- 581

ington Post’), far below the expected 100 tokens. 582

Such outputs often contain only a few key-value 583

pairs or even empty dictionaries, might inflating 584

the evaluation of constraint compliance. To address 585

this, we propose: 586
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• Contextual Prompts: Enrich prompts with587

contextual information to guide the model in588

generating more meaningful outputs.589

• Longer Few-Shot Examples: Include longer,590

more detailed examples as few-shot to encour-591

age generation of long and non-trivial JSON592

objects.593

2. Lack of Semantic Evaluation Our current594

evaluation emphasizes schema compliance but595

overlooks the semantic accuracy of the generated596

JSON objects. While output quality is assessed597

in Section 6, the tasks primarily involve reasoning598

tasks with minimal structure. Future work should599

include semantic evaluation in more complex tasks,600

such as function calls within LLM agents, to pro-601

vide a holistic understanding of output quality.602
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GitHub are of various complexities, total-800

ing 6,000 schemas. We split the collec-801

tion into trivial (fewer than 10 fields), easy802

(10–30 fields), medium (30–100 fields), hard803

(100–500 fields), and ultra (more than 500804

fields), based on the total number of fields in805

each JSON schema to reflect increasing com-806

plexity and scale.807

• Snowplow (Analytics, 2022): Sourced from808

event-based analytics frameworks, showcas-809

ing schemas tailored for event-driven data810

structures.811

• Kubernetes (Kubernetes, 2022): Schemas812

defining configurations for container orches-813

tration systems, highlighting schemas with814

intricate hierarchical structures.815

• WashingtonPost (Post, 2022): Schemas for816

The Washington Post’s ANS specification.817

• GlaiveAI2K (GlaiveAI, 2024): 2,000818

schemas extracted from a function-calling819

dataset. Each schema represents a function820

signature.821

• JSON Schema Store (Schema Store Org,822

2014): The largest collection of independent823

JSON schemas in the world.824

A.1 Data Processing825

To ensure the quality and reliability of JSON-826

SchemaBench, we applied the following prepro-827

cessing steps:828

1. Validation829

• Verified schemas conform to the JSON830

Schema specification using the jsonschema831

library in Python, specifically targeting832

the Draft2020-12 version. Drop invalid833

schemas.834

• Identified additional invalid schemas using835

validators from Rust and JavaScript libraries.836

2. Cleaning837

• Deduplicate: Removed duplicate schemas to838

eliminate redundancy and maintain a diverse839

dataset. Key ordering within schemas was840

ignored when determining duplicates.841

• Empty Schema: Excluded schemas that were 842

lacking meaningful constraints, effectively 843

“empty.” 844

• Unresolved References: Removed schemas 845

containing unresolved $ref references to ex- 846

ternal URLs. 847

• Schema Version Fixes: Corrected mis- 848

matched or missing draft versions. 849

• Extraneous Field Removal: Eliminated un- 850

related fields such as command, config, path, 851

and controls. 852

• Regex Escaping: Fixed escaping issues in 853

regular expressions to ensure validity. 854

• Schema Extraction: Extracted schemas em- 855

bedded within non-root levels of JSON files. 856

A.2 Draft versions 857

A.3 Feature Distribution 858

We count the appearance of each feature (keyword) 859

in the 10K schemas and show the most frequent 860

features in Figure 2a. We separately plot usage 861

of the format keyword, which is used to specify 862

format of string such as date-time, email, uri. 863

This is worth highlighted because each of these 864

formats can be quite complex to implement on its 865

own. The distribution of formats used is shown in 866

Figure 2b. 867

B Coverage Experiment Details 868

The prompting template used for the coverage ex- 869

periment is shown in Figure 3. 870

Decoding Method We use greedy decoding with 871

no top P or top K sampling for all the experiments. 872

We only get one output from the model, which we 873

will use to validate the schema compliance. It’s 874

totally plausible to sample more outputs and val- 875

idate them all, and it might detect more schema 876

violations. The fact that we only sample the top 1 877

output may quantify our empirical coverage as Top 878

1 Empirical Coverage. 879

Validation We use the jsonschema library with 880

the Draft-2020-12 version of the JSON Schema 881

standard to validate the generated JSON object. 882

We turn on the ‘format’ checks, which are not 883

enabled by default in Python. Strictly speaking, 884

the jsonschema library doesn’t guarantee the val- 885

idation of all the schema constraints, even with 886
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Dataset Count Size (KB) Field Count Max Fan-Out Schema Depth
Med / Max Med / Max Med / Max Med / Max

GlaiveAI-2K 1707 0.5 / 1.2 21 / 44 4 / 7 5 / 8
Github-Trivial 444 0.2 / 10.8 6 / 9 4 / 9 2 / 6
Github-Easy 1943 0.5 / 20.3 18 / 29 5 / 19 4 / 10
Snowplow 403 0.9 / 15.6 37 / 450 7 / 131 3 / 13
Github-Medium 1976 1.5 / 58.3 51 / 99 8 / 42 6 / 15
Kubernetes 1064 2.7 / 818.6 41 / 11720 5 / 600 5 / 7
Washington Post 125 1.7 / 81.1 44 / 2093 7 / 84 4 / 10
Github-Hard 1240 5.1 / 136.1 175 / 498 18 / 133 8 / 25
JSONSchemaStore 492 5.9 / 2934.8 155 / 108292 14 / 6543 6 / 22
Github-Ultra 164 25.8 / 359.6 694 / 6919 37 / 412 8 / 23

Table 8: Baisc statistics of the datasets used in the experiments.

draft-04 draft-06 draft-07 2019-09 2020-12 unknown

Github-easy 1310 54 136 0 5 438
Github-hard 841 30 87 0 23 259
Github-medium 1221 80 140 0 7 528
JsonSchemaStore 199 5 268 5 11 4
Kubernetes 0 0 0 0 0 1087
Snowplow 0 0 0 0 0 408
WashingtonPost 125 0 0 0 0 0
Glaiveai2K 0 0 0 0 0 1707
total 4097 193 706 5 50 5155

Table 9: JSON Schema Draft Version Counts

the ‘format’ checks enabled. It is possible, though887

very rare, for a schema-noncompliant output to be888

validated as compliant by the jsonschema library,889

leading to a slight overestimation of empirical cov-890

erage. However, such occurrences are corner cases891

and happen infrequently.892

C Theoretical Coverage Details893

Definition C.1 (Theoretical Coverage) A894

schema is considered theoretically covered895

if all of its features are supported by the grammar896

engine.897

The theoretical coverage, noted as CTheoretical,898

measures the proportion of JSON schemas that a899

grammar engine supports based on its implemen-900

tation. It doesn’t involve any model inference or901

experiments and is solely based on the grammar902

engine’s implementation. CTheoretical is an upper903

bound of the true coverage, which cannot be em-904

pirically measured due to the infinite number of905

possible generations under the schema constraints.906

Overall, the theoretical coverage provides a good907

indication of the grammar engine’s capability to908

support a wide range of schema constraints.909

In our experiment, the theoretical coverage for910

each framework was determined based on the doc- 911

umentation and resources listed in Table 10. 912

The theoretical support for each feature in JSON 913

Schema is summarized in Figure 4 914

The theoretical coverage of each grammar en- 915

gine is summarized in Table 11. 916

D JSON Schema Test Suite Experiment 917

Details 918

We evaluated each constrained decoding frame- 919

work’s performance on the JSON Schema Test 920

Suite using the following criteria: a framework 921

is considered to pass a test case if it permits 922

generating every valid instance in the test case 923

while preventing the generation of every invalid 924

instance. Some test cases consist exclusively of 925

invalid instances, such as those involving unsatis- 926

fiable schemas, i.e., schemas for which no valid 927

instances exist. In these cases, engines raising 928

compile-time errors were allowed to pass. 929

Cleaning We removed the ’format’ category of 930

tests, as the current JSON Schema standard man- 931

dates that this keyword be ignored entirely by de- 932

fault. The test suite comes bundled with an ’op- 933

tional’ set of tests, including tests for each officially 934
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(a) Feature Count in the 10K Schemas (b) Format keyword distribution

Figure 2: Feature and Format constraint distribution.

Prompt Template for JSON Generation

System Message:
You need to generate a JSON object that matches the schema below.

Demo Examples:
## Input Schema: [JSON schema]
## Expected Output: [JSON object matching the schema]
...

Figure 3: Prompt template used to generate JSON objects in the coverage experiment.

recognized value of the ’format’ keyword. We hope935

to extend this work to include these optional tests936

in a follow-up.937

Furthermore, some tests require external re-938

sources in the form of JSON schemas available939

at a remote URL. We dropped these tests from940

the analysis, as the constrained decoding libraries941

discussed in the current work do not fetch these942

resources by default. After filtering out these tests,943

we are left with 43 of the original 45 test categories.944

Implementation To check whether a given945

framework accepts or blocks the generation of946

a particular JSON instance, we tokenize5 JSON-947

serialized form of the instance and walk the frame-948

work’s constraints forward one token at a time,949

essentially simulating the generation process of an950

LLM attempting to produce the given token se-951

quence:952

• XGrammar directly expose an interface for up-953

dating the token mask after inserting a token954

and checking validity.955

5The particular choice of tokenizer is not particularly im-
portant, but we use the Llama 3.1 tokenizer for consistency
with our other experiments.

• Outlines does not expose a public interface 956

for interacting with the token mask, but 957

outlines-core, which outlines is built on 958

top of, is easily adapted for this purpose. 959

• Similarly, Guidance does not expose a public 960

interface for interacting with the token mask, 961

but llguidance, which guidance is built on 962

top of, is easily adapted for this purpose. 963

• Llamacpp does not expose this interface, but it 964

shares a common grammar-specification lan- 965

guage with XGrammar. We use llamacpp 966

to generate GGML BNF and check token- 967

sequence validity using xgrammar’s interface. 968

We provide code snippets that show the use of 969

the JSON Schema Test Suite to assess the test cov- 970

erage of each constrained decoding framework. For 971

each framework, we implemented a ‘test harness’ 972

according to the base classes showed in listing 1. 973

Listing 2 shows the criteria for a test case to 974

pass, which depends on all tests in the case to pass 975

(listing 3). We show the definition of TestCase 976

and Test in listing 4. 977

Concrete implementations of the test harness for 978

each framework are reported in listings 5, 6, 7, and 979

13



Frameworks Lib Version Release Date JSON Schema Support Documentation

Guidance 0.2.0rc 2024.11.26 LLGuidance Documentation
Llamacpp 0.3.2 2024.11.16 llama.cpp JSON Schema to gbnf Conversion
XGrammar 0.1.6 2024.12.07 XGrammar JSON Schema to gbnf Conversion
Outlines 0.1.8 2024.12.06 Outlines JSON Schema to Regex Conversion
OpenAI UNK UNK OpenAI Structured Output API
Gemini 0.8.3 2024.10.31 Gemini Structured Output Content Types

Table 10: Grammar Engine Documentation and Resources

Dataset LM only Guidance Llamacpp Outlines XGrammar OpenAI Gemini

GlaiveAI 0.00 0.96 0.95 0.95 0.87 0.87 0.87
GitHub Easy 0.00 0.87 0.83 0.75 0.65 0.31 0.31
Snowplow 0.00 0.80 0.74 0.58 NA 0.29 NA
GitHub Medium 0.00 0.73 0.69 0.57 0.49 0.22 NA
Kubernetes 0.00 0.58 0.58 0.58 0.58 0.40 NA
Washington Post 0.00 0.70 0.64 0.63 0.62 0.29 NA
GitHub Hard 0.00 0.54 0.49 0.38 0.33 0.00 NA
JsonSchemaStore 0.00 0.31 0.24 0.20 0.13 0.00 NA

Table 11: Theoretical coverage across datasets.

8.980

E Efficiency Experiment Details981

For efficiency experiments, the results depend on982

both the size of the model and the tokenizer’s vo-983

cabulary size. We used Llama-3.1-8B-Instruct984

(quantized to Q8bit) with a 128K token vocabu-985

lary to achieve a balance between computational986

efficiency and model capability.987

Below, we outline specific considerations related988

to grammar and prefix caching:989

• Grammar Cache (Compilation): Since each990

schema in the dataset is unique, caching gram-991

mar compilations does not offer any benefits.992

• Prefix Cache (LLM Inference): We imple-993

ment prefix caching during LLM inference994

for all cases to enhance efficiency by reusing995

computed results where applicable.996

F Quality Experiment Details997

Prompt and JSON Schema For the task of Shuf-998

fle Objects, and GSM8K, we use the same prompt999

and JSON schema from the dottxt’s "let me speak1000

freely" rebuttal.1001

For the task of Last Letter, we make a slight1002

modification because the original prompt used was1003

a bad example as pointed out by (Kurt, 2024b). We1004

also put it into a JSON format to better align with1005

the other tasks.1006

Figure 8 reveals non-empty exclusive regions1007

for each engine, indicating that no single engine1008

outperforms the others across all instances.1009

G Engine calling Snippet 1010

We provide a snippet of the engine code used 1011

in our experiments. The generation method 1012

of each engine has two main components: 1013

“compile_grammar” and “call_engine”. 1014

We use the Listing 10 to validate the generated 1015

JSONs against the schema. The validation is done 1016

by the jsonschema library with format checking 1017

enabled. 1018

We provide a snippet of how the engines are 1019

called in our experiments in Listings 11, 12, 13, 1020

and 14. 1021

14

https://github.com/guidance-ai/llguidance/blob/a7b69d6c57ac514b32afbed52a9c292cb4b4b3bd/parser/src/json/README.md
https://github.com/ggerganov/llama.cpp/blob/66c2c93082289325199ae1f773f3b0ab2e399a47/common/json-schema-to-grammar.cpp
https://github.com/mlc-ai/xgrammar/blob/5e141f6ff1ca02bc31f9e512e68b61f2a8ae88e5/cpp/json_schema_converter.cc
https://github.com/dottxt-ai/outlines/blob/e4f96fbce45593222e40805ca614ace251728ef2/outlines/fsm/json_schema.py
https://platform.openai.com/docs/guides/structured-outputs#supported-schemas
https://github.com/google-gemini/generative-ai-python/blob/bcb7cf968ed3b3b858e66ac85b08ba9925ba8e97/google/generativeai/types/content_types.py


Figure 4: Feature checklist for different structured output engines
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Figure 5: Illustration of over-constrained and under-constrained.

Dataset Framework GCT (s) TTFT (s) TPOT (ms) TGT (s) Output Tokens (FF)

GlaiveAI LLM only NA 0.10 15.40 1.08 64.94 (00.00)
Guidance 0.00 0.24 6.37 0.50 41.56 (15.70)
Llamacpp 0.05 0.20 29.98 1.47 43.18 (00.00)
Outlines 3.48 3.65 30.33 4.84 40.39 (00.00)

GitHub Easy LLM only NA 0.10 15.83 0.95 53.91 (00.00)
Guidance 0.00 0.34 7.44 0.60 34.92 (10.02)
Llamacpp 0.05 0.18 27.22 1.10 33.93 (00.00)
Outlines 3.71 3.97 39.78 5.29 34.19 (00.00)

Snowplow LLM only NA 0.11 16.23 1.01 55.31 (00.00)
Guidance 0.00 0.28 6.55 0.51 36.77 (14.50)
Llamacpp 0.05 0.20 28.90 1.24 37.21 (00.00)
Outlines 3.91 4.14 42.66 5.65 35.65 (00.00)

GitHub Medium LLM only NA 0.20 16.68 2.56 142.10 (00.00)
Guidance 0.01 0.54 7.57 1.29 99.66 (31.42)
Llamacpp 0.06 0.30 29.08 2.85 87.71 (00.00)
Outlines 8.05 8.38 46.57 12.23 84.64 (00.00)

Kubernetes LLM only NA 0.16 15.32 0.84 44.38 (00.00)
Guidance 0.01 0.45 9.47 0.71 28.75 (04.40)
Llamacpp 0.05 0.28 28.04 1.06 28.09 (00.00)
Outlines 5.29 5.55 46.10 6.56 22.26 (00.00)

Table 12: Efficiency metrics for different engines with LlamaCpp as the inference engine. GCT: Grammar
Compilation Time, TTFT: Time to First Token, TPOT: Time Per Output Token, TGT: Total Generation Time, FF:
Fast-Forwarded output tokens. Bold values indicate the smallest in each column for GCT, TTFT, TPOT, and TGT.
All values are median of the samples.
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Figure 6: JSON Schema test suite coverage by category. Each cell represents the proportion of passing tests
for a given category-framework pair, with darker shades indicating higher coverage. A single asterisk (*) marks
frameworks tied for the highest (non-zero) coverage, while a double asterisk (**) marks the framework with the
single highest coverage in the category.
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class Compiler:
def __init__(self, model_id: str):

"""
Builds a Compiler, taking a huggingface model_id to provide
configuration information about the model and/or tokenizer.
"""

def compile(self, schema: str) -> Masker:
"""
Compiles a schema into a masker used to validate a stream of
tokens according to the schema.

Raises an exception if the framework cannot compile the schema.
"""

class Masker:
def advance(self, token: int):

"""
Advances the masker by one token.

Raises an exception if the token is not allowed by the mask.
"""

def assert_done(self):
"""
Asserts that the masker is either in a terminal state or will
accept an EOS token, after which it will be in a terminal state.

Raises an exception if otherwise.
"""

Listing 1: Abstract test harness

Dataset Framework GCT (s) TTFT (s) TPOT (ms) TGT (s) Output Tokens (FF)

GlaiveAI Guidance 0.01 0.36 36.92 1.87 41.45(16.76)
XGrammar 0.12 0.30 66.78 2.87 39.47(00.00)

GitHub Easy Guidance 0.01 0.37 42.03 1.60 27.67(06.75)
XGrammar 0.11 0.33 65.57 4.07 59.45(00.00)

GitHub Medium Guidance 0.01 0.55 44.21 4.84 96.31(26.93)
XGrammar 0.20 0.48 65.51 6.53 92.93(00.00)

GitHub Hard Guidance 0.01 0.73 35.88 10.25 211.40(101.40)
XGrammar 0.30 0.65 65.20 14.99 221.40(00.00)

Table 13: Efficiency metrics for different engines with Hugging Face Transformers as the inference engine. All
values are median of the samples.
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def do_test_case(test_case: TestCase, compiler: Compiler, tokenizer: Tokenizer) ->
bool:↪→

try:
masker = compiler.compile(json.dumps(test_case.schema))

except:
if all(not test.valid for test in test_case.tests):

# Pass: compile error on a case with only invalid test data
return True

else:
# Fail: compile error but schema has at least one valid test datum
return False

for test in test_case.tests:
passed = do_test(test, tokenizer, masker.copy())
if not passed:

# Fail: a test failed
return False

# Pass: all tests passed
return True

Listing 2: Running a test case

def do_test(test: Test, tokenizer: Tokenizer, masker: Masker) -> bool:
tokens = tokenizer(json.dumps(test.data),

add_special_tokens=False)["input_ids"]↪→

try:
for token in tokens:

masker.advance(token)
masker.assert_done()

except:
if test.valid:

# Fail: valid data was rejected
return False

else:
# Pass: invalid data was rejected
return True

else:
if test.valid:

# Pass: valid data was accepted
return True

else:
# Fail: invalid data was accepted
return False

Listing 3: Running a test
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from pydantic import BaseModel
from typing import Any, Union

class TestCase(BaseModel):
schema: Union[bool, dict]
tests: list[Test]

class Test(BaseModel):
data: Any
valid: bool

Listing 4: TestCase specification

import outlines
import outlines_core

class OutlinesCompiler(Compiler):
def __init__(self, model_id: str):

self.tokenizer = outlines.models.transformers(model_id).tokenizer

def compile(self, schema: str) -> "OutlinesMasker":
regex = build_regex_from_schema(schema)
guide = outlines.fsm.guide.RegexGuide.from_regex(

regex, self.tokenizer
)
return OutlinesMasker(guide, eos_token_id=self.tokenizer.eos_token_id)

class OutlinesMasker(Masker):
def __init__(self, guide, eos_token_id=None):

self.guide = guide
self.state = self.guide.initial_state
self.eos_token_id = eos_token_id

def advance(self, token: int):
assert token in self.guide.get_next_instruction(self.state).tokens
self.state = self.guide.get_next_state(self.state, token)

def assert_done(self):
if not self.guide.is_final_state(self.state):

assert self.eos_token_id in
self.guide.get_next_instruction(self.state).tokens↪→

self.advance(self.eos_token_id)
assert self.guide.is_final_state(self.state)

Listing 5: Concrete test harness for Outlines
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import guidance
import llguidance

class GuidanceCompiler(Compiler):
def __init__(self, model_id: str):

self.gtokenizer =
guidance.models.transformers.TransformersTokenizer(model_id, None)↪→

self.lltokenizer =
llguidance.LLTokenizer(llguidance.TokenizerWrapper(self.gtokenizer))↪→

def compile(self, schema: str) -> GuidanceMasker:
grammar = guidance.json(schema=schema)
llinterpreter = llguidance.LLInterpreter(

tokenizer=self.lltokenizer,
llguidance_json=json.dumps(grammar.ll_serialize()),
enable_backtrack=False,
enable_ff_tokens=False,

)
return GuidanceMasker(llinterpreter, self.gtokenizer.eos_token_id)

class GuidanceMasker(Masker):
def __init__(self, llinterpreter, eos_token_id):

self.llinterpreter = llinterpreter
self.eos_token_id = eos_token_id

def advance(self, token: int):
bytemask, _ = self.llinterpreter.compute_mask()
assert bytemask[token] > 0
self.llinterpreter.commit_token(token)

def assert_done(self):
if self.llinterpreter.stop_reason() == "NotStopped":

bytemask, _ = self.llinterpreter.compute_mask()
if bytemask is not None:

assert bytemask[self.eos_token_id] > 0
self.llinterpreter.commit_token(self.eos_token_id)
bytemask, _ = self.llinterpreter.compute_mask()
assert bytemask is None

assert self.llinterpreter.stop_reason() in {"NoExtension", "EndOfSentence"}

Listing 6: Concrete test harness for Guidance

Task Example Structure Metric
Last Letter Input: Ian Peter Bernard Stephen

Output: nrdn
CoT reasoning + an-
swer in a− z

Case-sensitive ex-
act match

Shuffle Objects Input: Sequence of exchanges among indi-
viduals + choices
Output: A-E

CoT reasoning + an-
swer in A− E

Exact match

GSM8K Input: Basic calculation problems
Output: Number, e.g., 8

CoT reasoning + an-
swer as integer

Number exact
match

Table 14: Task Descriptions and Structures
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import xgrammar as xgr
from transformers import AutoConfig, AutoTokenizer

class XGrammarCompiler(Compiler):
def __init__(self, model_id: str):

tokenizer = AutoTokenizer.from_pretrained(model_id)
config = AutoConfig.from_pretrained(model_id)
self.eos_token_id = tokenizer.eos_token_id
self.tokenizer_info = xgr.TokenizerInfo.from_huggingface(

tokenizer, vocab_size=config.vocab_size
)
self.compiler = xgr.GrammarCompiler(

tokenizer_info=self.tokenizer_info,
)

def compile(self, schema: str) -> "XGrammarMasker":
compiled_grammar = self.compiler.compile_json_schema(schema,

strict_mode=False)↪→

xgr_matcher = xgr.GrammarMatcher(compiled_grammar)
return XGrammarMasker(xgr_matcher, self.eos_token_id)

class XGrammarMasker(Masker):
def __init__(self, xgr_matcher, eos_token_id):

self.matcher = xgr_matcher
self.eos_token_id = eos_token_id

def advance(self, token: int):
assert self.matcher.accept_token(token)

def assert_done(self):
if not self.matcher.is_terminated():

self.advance(self.eos_token_id)
assert self.matcher.is_terminated()

Listing 7: Concrete test harness for xGrammar

from llama_cpp import LlamaGrammar
import xgrammar as xgr

class LlamacppCompiler(XGrammarCompiler):

def compile(self, schema) -> XGrammarMasker:
grammar_bnf = LlamaGrammar.from_json_schema(schema)._grammar
compiled_grammar = self.compiler.compile_grammar(grammar_bnf)
xgr_matcher = xgr.GrammarMatcher(compiled_grammar)
return XGrammarMasker(xgr_matcher, self.eos_token_id)

Listing 8: Concrete test harness for Llamacpp, inheriting from the XGrammar harness for all functionality after
using llamacpp to convert the schema to GGML BNF.
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import time
import stopit
class BaseModel:

@stopit.threading_timeoutable(timeout=40)
def compile_grammar(self, json_schema):

status = "unknown"
try:

compiled_grammar = self._compile_grammar(json_schema)
status = "success"

except Exception as e:
# Any exception in this block will be caught and considered as schema

not supported↪→

compiled_grammar = None
status = "schema_not_supported"

return compiled_grammar, status

def generate(self, prompt, json_schema=None):
compile_start_time = time.time()
compiled_grammar = self.compile_grammar(json_schema)
compile_end_time = time.time()
# GCT (Grammar Compilation Time)
gct = compile_end_time - compile_start_time

gen_start_time = time.time()
output, first_tok_arr_time = self._call_engine(prompt, compiled_grammar)
# TTFT (Time to First Token)
ttft = first_tok_arr_time - gen_start_time
gen_end_time = time.time()
# TGT (Total Generation Time)
tgt = gen_end_time - gen_start_time
return output, gct, ttft, tgt

def _call_engine(self, prompt, compiled_grammar):
raise NotImplementedError

Listing 9: Abstract BaseModel interface defining the calling of structured generation, including grammar compilation
and text generation timing metrics.
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import jsonschema
from jsonschema import Draft202012Validator, FormatChecker, ValidationError

format_checker = FormatChecker()

def is_json_schema_valid(schema: dict):
try:

jsonschema.Draft202012Validator.check_schema(schema)
return True

except jsonschema.SchemaError as e:
return False

def validate_json_against_schema(json_obj, json_schema):
if not is_json_schema_valid(json_schema):

raise ValidationError("The JSON schema is invalid.")
validator = Draft202012Validator(json_schema, format_checker=format_checker)
return validator.validate(json_obj)

Listing 10: Validation of the generated JSONs against the schema.

import guidance

class GuidanceModel(BaseModel):
def compile_grammar(self, json_schema):

return guidance.json(
schema=json_schema,

)
def _call_engine(self, prompt, compiled_grammar):

generator = self.guidance_model.stream() + prompt + compiled_grammar
for i, state in enumerate(generator):

if i == 0:
first_state_arr_time = time.time()

output = state
return output, first_state_arr_time

Listing 11: Invocation of the guidance engine.
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import llama_cpp

class LlamaCppModel(BaseModel):

def compile_grammar(self, json_schema):
return llama_cpp.llama_grammar.LlamaGrammar.from_json_schema(json_schema)

def _call_engine(self, prompt, compiled_grammar):
generator = self.llama_cpp_model.create_chat_completion(prompt,

grammar=compiled_grammar, stream=True)↪→

output = ""
for i, token in enumerate(generator):

if i == 0:
first_tok_arr_time = time.time()

output += token
return output, first_tok_arr_time

Listing 12: Invocation of the LlamaCpp engine.

import outlines

class OutlinesModel(BaseModel):
def compile_grammar(self, json_schema):

return outlines.generate.json(
schema_object=json_schema

)
def _call_engine(self, prompt, compiled_grammar):

generator = self.generator.stream(prompt)
output = ""
for i, token in enumerate(generator):

if i == 0:
first_tok_arr_time = time.time()

output += token
return output, first_tok_arr_time

Listing 13: Invocation of the Outlines engine.
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import xgrammar

class TimingLogitsProcessor(LogitsProcessor):
def __init__(self):

super().__init__()
self.timestamps = []

def __call__(self, input_ids, scores):
current_time = time.time()
self.timestamps.append(current_time)
return scores

class XGrammarModel(BaseModel):
def compile_grammar(self, json_schema):

return xgrammar.GrammarCompiler().compile_json_schema(json_schema)

def _call_engine(self, prompt, compiled_grammar):
output = self.hf_model.generate(prompt, logits_processor=[compiled_grammar,

timeit_logit_processor])↪→

first_tok_arr_time = timeit_logit_processor.timestamps[0]
return output, first_tok_arr_time

Listing 14: Invocation of the XGrammar engine.
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Prompt Template for GSM8K

System Message:
You are an expert in solving grade school math tasks. You will be presented with a grade-school
math word problem and be asked to solve it. Before answering, you should reason about the
problem (using the "reasoning" field in the JSON response format described below). Always
respond with JSON in the format: {"reasoning": <reasoning about the answer>,
"answer": <final answer>}. The "reasoning" field contains your logical explanation, and the
"answer" field contains the final numeric result.

Demo Examples:

## Input: "[example question]"
## Output: "reasoning": "[example reasoning]", "answer": [example answer]

...

Figure 7: Prompt template for solving GSM8K with
JSON responses.
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Figure 8: Overlap of Correct Instances Across Models on GSM8K
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