
Under review as submission to TMLR

Adjacency Search Embeddings

Anonymous authors
Paper under double-blind review

Abstract

In this study, we propose two novel Adjacency Search Embeddings that are inspired by the
theory of identifying s-t minimum cuts: Maximum Adjacency Search (MAS) and Threshold-
based Adjacency Search (TAS), which leverage both the node and a subset of its neighborhood
to discern a set of nodes well-integrated into higher-order network structures. This serves
as context for generating higher-order representations. Our approaches, when used in con-
junction with the skip-gram model, exhibit superior effectiveness in comparison to other
shallow embedding techniques in tasks such as link prediction and node classification. By
incorporating our mechanisms as a preprocessing technique, we show substantial improve-
ments in node classification performance across GNNs like GCN, GraphSage, and Gatv2 on
both attributed and non-attributed networks. Furthermore, we substantiate the applicability
of our approaches, shedding light on their aptness for specific graph scenarios.

1 Introduction

Node embeddings are concise numerical representations of individual nodes in a network, capturing their
structural and relational significance. These embeddings condense complex structural information into
compact vectors for facilitating efficient downstream tasks such as node classification, link prediction, and
other machine-learning applications. These embeddings place nodes in a continuous vector space, allowing us to
extract meaningful features for tasks like node classification and link prediction in machine learning. Inspired
by Natural Language Processing (NLP) techniques, node embedding methods like SkipGram-Word2Vec
Mikolov et al. (2013b;a) use algorithms to capture intricate patterns and relationships within graph structures.

These NLP algorithms excel in generating embeddings that capture semantic relationships and contextual
nuances within textual data. The SkipGram model focuses on predicting context words - those expected to
appear in close proximity given a specified target word. Shallow embedding techniques for graphs generate
sequences of nodes using methodologies like random walks Perozzi et al. (2014); Grover & Leskovec (2016)
or auto-encoding adjacency vectors Wang et al. (2016) and employ the SkipGram model to generate vector
representations. The resulting embeddings aim to encode each node in a graph into a low-dimensional vector,
where the geometric proximity of vectors reflects the similarity or relatedness of the corresponding nodes in
the network. By capturing both local and global graph structures, node embeddings prove instrumental in
enhancing the efficiency and effectiveness of downstream machine learning tasks Xu (2021). These shallow
embedding techniques, though computationally efficient, suffer from the drawback of lacking parameter
sharing during training. Each node has a unique embedding vector that is learned independently. This
lack of parameter sharing can lead to overfitting, especially when dealing with sparse graphs or limited
training data Hamilton et al. (2017b). Recently, Graph Neural Networks (GNNs) have shown great promise
in learning representations by sharing parameters across node neighborhoods for graph-structured data for
better generalization. However, training GNNs on large graphs can be computationally challenging due to
the exponential growth of node neighborhoods with increasing network depth Hamilton et al. (2017a).

Neighbor sampling approaches have emerged as a key technique to address this issue by approximating the
node neighborhoods during training. They enable scalable GNN training on large-scale graphs that would
otherwise be intractable due to memory constraints. Early works like GraphSAGE Hamilton et al. (2017a)
introduced neighborhood sampling as a way to make GNN training feasible on large graphs. Subsequent
research has explored various sampling strategies, including layer-wise sampling, importance sampling, and

1

Under review as submission to TMLR

variance reduction techniques Chen & Zhao (2018); Zou et al. (2019). Recent advancements like GraphSAINT
Zeng et al. (2019) and ClusterGCN Chiang et al. (2019) have further demonstrated the effectiveness of
neighbor sampling in achieving state-of-the-art performance on large-scale graph benchmarks. The continued
development and adoption of neighbor sampling methods are crucial for unlocking the full potential of GNNs
in real-world applications with massive graphs.

Present work in a nutshell: In this research, we introduce two methods, Maximum Adjacency Search
(MAS) and Threshold-based Adjacency Search (TAS), aimed at capturing sequences of well-connected nodes
from a given set of nodes. The TAS approach employs an extended version of the well-known Breadth First
Search (BFS) Algorithm, called Delayed-BFS. This algorithm takes a set of vertices, S, and a threshold as
input to generate a sequence of nodes that are structurally well-connected, potentially within a higher-order
network topology, to S. These sequences can be fed to the SkipGram-Word2Vec model or can be used as a
preprocessing or sampling mechanism in existing GNNs to identify structurally influential local neighborhoods
for feature aggregation around a node to generate node embeddings. The MAS approach is a dynamic
variant of TAS. Our goal in this paper is not to explicitly identify specific structures like motifs, graphlets,
or simplicial complexes Vishwanathan et al. (2010); Rossi et al. (2018); Piaggesi et al. (2022) but rather
generate sequences of tightly connected nodes in cohesive sub-structures of the network.

Main Contributions:

• Novel sampling Approaches: We propose two variants of Adjacency search-based methods,
Maximum Adjacency Search(MAS) and Threshold-based Adjacency search (TAS) embeddings,
which are efficient, effective, and highly scalable algorithms for feature learning on graphs. These
approaches involve constructing sequences as neighborhood contexts, capturing nodes within the
cohesive sub-structures in the network topology.

• Non-random walk techniques: Our approach involves executing Breadth-First Search (BFS)
not from a single node but rather from a subset of nodes simultaneously based on certain threshold
criteria to determine when a node can be marked as visited. This unique methodology enables the
generation of node sequences that inherently capture complex topological patterns such as triads,
quads, simplicial complexes, and motifs. Our path-based approaches differ from the random walk
approaches and can be considered as specific instances of k-th order random walks for any k ∈ N 1.

• Empirical Performance: Our proposed algorithms significantly enhance link prediction accuracy
when integrated with the SkipGram model, outperforming the best results of other shallow embedding
techniques by an average of 6.97%. Furthermore, our approach serves as an effective local neighborhood
sampling technique for message aggregation in GNNs, leading to improved performance across various
architectures, including GCN, GraphSage, and GATv2, for both attributed and non-attributed graphs.
Notably, in non-attributed networks, our sampling mechanism demonstrates up to 12.1% efficiency
improvement compared to trainable node embeddings 2 in GNNs, highlighting its effectiveness in
identifying structurally influential neighborhoods for aggregation.

• Applicability: We discuss the applicability of our approach and identify scenarios where it may not
be well-suited for downstream tasks in Appendix D.

Preliminaries Here, we present a brief overview of Maximum Adjacency Search (MAS), an effective
method for determining s-t minimum cuts. MAS Stoer & Wagner (1997) is a widely used algorithm in graph
theory, particularly for identifying minimum cuts and analyzing flow networks. In the context of an s-t
minimum cut, the goal is to partition the graph into two disjoint sets: one containing the source vertex s,
and the other containing the target vertex t. The objective is to minimize the total weight of the edges that

1A higher-order random walk typically retains some memory of previous steps, as opposed to a first-order Markov process.
While our approaches are not directly a memory-based walk in the strictest sense, its choice of nodes (based on maximum
adjacency or threshold) implicitly reflects past choices. This makes them behave similarly to a higher-order random walk, where
past decisions influence the current selection

2trainable node embeddings refer to the node embeddings which can be initialized with any randomly-initialization methods
(https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html)

2

Under review as submission to TMLR

connect these two sets. MAS works by selecting vertices based on their adjacency to already-selected vertices.
Specifically, in each iteration, a vertex v with the highest adjacency among the unselected vertices is added
to the current set. This iterative process continues greedily, including the vertex with the most adjacent
neighbors already in the set and ensuring that critical vertices and edges are efficiently identified for the
partition. This heuristic not only facilitates efficient identification of the minimum cut but also tends to form
tightly connected communities around the seed set S. The likelihood of selecting a cut-edge is minimized
at each iteration by choosing a highly connected vertex, which helps avoid cutting through critical edges
prematurely and promotes the formation of cohesive vertex groupings.

Motivation Our approaches are motivated by Maximum Adjacency Search, which is a well-known s-t
minimum cut approach. They are built on the assumption that the probability of future connections between
two different nodes is higher in well-connected structures. Thus our methods are based on the assumption that
the likelihood of future connections between two distinct nodes is higher within well-connected substructures.
Unlike random walks, which sample sequences across the entire graph, our approaches leverage MAS and its
generalized variants to generate targeted sequences that capture well-connected local neighborhoods around
each node. This approach reduces training time, as fewer sequences are generated compared to random
walk-based methods. Furthermore, in contrast to existing higher-order techniques, our methods efficiently
identify these well-connected regions without explicitly searching for combinatorial structures, such as cliques.

2 Related Work

Over the years, various algorithms and techniques have been proposed for generating node embeddings, each
with its strengths and applications. These can be broadly classified into three major categories: Matrix
Factorization Approaches, Random Walk Approaches, and Graph Neural Networks (GNNs). This section
briefly overviews various embedding approaches specifically tailored for non-attributed graphs.

Matrix Factorization Approaches: Early techniques for learning representations through matrix factor-
izations draw significant inspiration from dimensionality reduction methods Belkin & Niyogi (2001); Kruskal
(1964). Methods falling within this category construct a high-order proximity matrix using transition proba-
bilities and subsequently engage in factorization processes to derive node embeddings. Notable approaches,
such as Laplacian Eigen Maps Belkin & Niyogi (2001) and Locally Linear Embeddings (LLE) Rowes (2000),
operate based on this foundational principle. HOPE (High-Order Proximity preserved Embedding) Ou et al.
(2016) strives to maintain higher-order proximity information within the learned embeddings. It achieves
this objective by performing a matrix factorization strategy to capture higher-order proximities in the form
of a similarity matrix. By decomposing this matrix, HOPE generates embeddings that preserve first and
higher-order relationships within the graph. The HOPE algorithm supports general similarity measures,
distinguishing it from other approaches. For instance, the Graph Factorization algorithm Ahmed et al. (2013)
considers the first-order neighborhood as a similarity measure, while GraRep Cao et al. (2015) operates with
higher-order similarity, such as k-th length shortest paths between two nodes (Ak). It’s important to note
that these approaches may not be suitable for large graphs because their loss functions rely on the entire
adjacency matrix Xu (2021).

Random Walk Approaches: A significant number of recent successful methodologies utilize random
walk statistics to learn node embeddings. The underlying concept is to ensure similar embeddings for nodes
that co-occur during random walks Goyal & Ferrara (2018). The DeepWalk algorithm Perozzi et al. (2014),
for instance, utilizes random walks to explore the graph and subsequently applies skip-gram or continuous
bag-of-words models for generating embeddings. Node2Vec Grover & Leskovec (2016) extends DeepWalk by
incorporating second-order random walks. Notably, Node2Vec introduces flexible parameters, the “return
parameter" and the“in-out parameter," allowing for a trade-off between exploration and exploitation during
the generation of sentences of nodes through random walks. Fine-tuning these parameters enables Node2Vec
to produce embeddings that emphasize either local neighborhood structures (homogeneous neighborhoods) or
more extensive structural information (heterogeneous neighborhoods). Various extensions to these shallow
embedding methods have been proposed in the literature Chen et al. (2018a); Perozzi et al. (2017); Chamberlain
et al. (2017). LINE Tang et al. (2015) is another approach often compared with the performance of DeepWalk

3

Under review as submission to TMLR

and Node2Vec. LINE aims to discover a d-dimensional representation for each node by considering first and
second-order graph proximities. It is similar to DeepWalk when the size of the vertices context is set to one
Qiu et al. (2018). Recently, Pimentel et al. (2019) proposed neighborhood-based node embeddings (NBNE)
that used ego-centric representations of nodes instead of random walks for learning node representations.
Their approach attains superior performance compared to Node2Vec and SDNE Wang et al. (2016) on
prediction and classification tasks. The approaches Node2Vec, DeepWalk, and NBNE can be considered
neighborhood search-based embedding approaches for a node.

Further related work pertinent to GNNs tailored for non-attributed networks is provided in Section 5.1.

3 Adjacency Search Based Embeddings

Within graphs, approximating a node’s context often involves constructing or sampling sequences. For
example, Node2Vec employs second-order biased random walks Grover & Leskovec (2016), while DeepWalk
utilizes uniform random walks Perozzi et al. (2014) for generating these sequences. In this section, we
introduce two novel mechanisms for generating sequences to serve as contexts for nodes. Before delving into
our approaches, we present the relevant notation used in this paper. We represent the graph by G(V, E)
where V and E are the sets of vertices and edges, respectively. For ease of notation, let n and m represent
the cardinality of the vertex and edge sets, respectively. The open and closed neighborhoods of a vertex
v are denoted by N(v) and N [v]. We denote the set of positive integers by Z+. We use node and vertex
interchangeably in this paper.

3.1 Maximum Adjacency Search (MAS)-Embeddings

This approach draws inspiration from the Maximum Adjacency/Cardinality search technique, which is
employed for identifying an s-t minimum cut in a graph Stoer & Wagner (1997); Cai & Matula (1993). It is a
recursive algorithm where, at each iteration, the objective is to identify a tightly connected vertex to the set
of well-connected vertices and perform a merge operation to identify the s-t minimum cut. Incorporating
the vertex with the highest degree of connectivity into the existing set of vertices reduces the likelihood of
encountering an edge belonging to the minimum cut.

Our MAS-Embeddings approach provided in Algorithm 1 works similarly by constructing sequences of
well-connected and cohesive nodes for every vertex v, together with a subset of its neighborhood, S ∈ N [v].
This is attained by iteratively adding a vertex u ∈ V that is tightly connected (maximally connected) to the
sequence set S (line 11 in Algorithm 1). This process is repeated until the desired Walk Length is attained.
The MAS-Embeddings approach relies on the following parameters (all the parameters are in Z+):

• Number of Neighbors (k): k denotes the cardinality of the selected neighborhood of v ∈ V .
• Number of Permutations (p): This parameter assists in capturing diversified immediate neighborhoods

of a vertex v, which in turn facilitates the identification of a cohesive subset of nodes.
• Walk Length (l): This parameter refers to the sequence length that is generated for every vertex in

the graph.
• Window Size (w): This refers to the context window size used by the SkipGram model.
• Dimensions (d): This parameter represents the dimension of feature representations.

3.2 Threshold-based Adjacency Search (TAS)-Embeddings

Here, we present the TAS embeddings, a generalized variant of the MAS embeddings approach. Let θ ∈ Rn

be a vector of thresholds, where each element θv denotes the threshold for vertex v ∈ V , and θv ∈ Z+. The
transition state of a vertex v from non-visited to visited occurs when at least θv of its neighbors are already
visited. A sequence for node v is the set of vertices visited by v together with a subset of its neighbors
S ⊆ N [v]. For the rest of the paper, we consider θ to be a constant, i.e., all vertices have uniform thresholds.

4

Under review as submission to TMLR

Algorithm 1 MAS-Embeddings
1: Input: Graph G, Walk Length l, Window size w, Dimension d, #Neighbors k, #Permutations p
2: for all v in graph.nodes() do
3: repeat p times
4: neighbors← permute(v.neighbors()) ▷ random permutation of the neighbors of a vertex
5: num_sequences← len(neighbors)/k
6: for i← 1....num_sequences do
7: S ← ∅
8: S.insert(v)
9: S.insert(neighbors[l · k...l · (k + 1)]) ▷ insert k neighbors of node v into the set S

10: repeat
11: find the maximally adjacent u to S
12: S.insert(u)
13: until (len(S) = l)
14: sequences.insert(S)
15: end
16: f = train(w, d, sequences) ▷ train the sequences using skip-gram model
17: return f

3.2.1 Generation of Sequences

The Delayed-BFS approach, outlined in Algorithm 3, takes a vertex v, a subset of its neighborhood S ∈ N [v],
and threshold θ as the input to produce a sequence of nodes that are cohesive and well-connected to S. The
thresholds of all u ∈ V \ S are set to the minimum of their degree and θ. This is because the maximum
threshold at which u can be visited is θu = degree(u). The threshold parameter ensures that the vertex
visit is delayed till it acquires sufficient reinforcement from its neighbors. When θ = 1, Delayed-BFS(S)
behaves similarly to traditional BFS(S), encompassing immediate neighbors and their subsequent neighbors
in the sequence. The distinction from traditional BFS becomes apparent when θ ≥ 2. For θ = 2, every
vertex needs reinforcement from at least 2 visited neighbors for it to be visited. To illustrate the operation of
Algorithm 3, consider Figure 1, where for θ = 3, Delayed-BFS(1, 2, 3) does not visit any nodes. In contrast,
Delayed-BFS(2, 4, 6) will visit {5, 3, 7}. Similarly, Delayed-BFS(1, 3) with θ = 2 will visit the set of vertices
{2, 4, 5, 6, 7, 8, 9}. The set of sequences of nodes generated for different thresholds adheres to the following
hierarchy:

sequenceθ=1 ⊇ sequenceθ=2 ⊇ sequenceθ=3 · · ·

Thus, the generated sequences are constrained to visit specific cohesive structures (including higher-order
structures such as motifs, etc) with an increase in thresholds θ. Notice that the MAS Embeddings approach
(Algorithm 1) can be interpreted as a dynamic threshold-based adjacency search embedding where the
threshold of the node u that is being added to the sequence S is equal to the cardinality of the set of edges
between u and S, i.e., |E(u, S)|. As illustrated, TAS-Embeddings (Algorithm 2) produces distinct sequences

3

2 4

7

6

5

1

8

9

Figure 1: An example network to demonstrate the functioning of Delayed-BFS approach (3)

by employing the Delayed-BFS approach for various subsets of a node and its neighborhood. Apart from the

5

Under review as submission to TMLR

set of parameters mentioned in Section 3.1, the Algorithm 2 relies on the threshold parameter, which is a
constant in our experiments.

Algorithm 2 TAS-Embeddings
1: Input: Graph G, Threshold θ, Walk Length l, Window size w, Dimension d, #Neighbors k, #Permutations

p
2: for all v in graph.nodes() do
3: for threshold← 1...θ do
4: repeat p times
5: neighbors← permute(v.neighbors()) ▷ random permutation of the neighbors of a vertex
6: num_sequences← len(neighbors)/k
7: for i← 1...num_sequences do
8: S ← ∅
9: S.insert(v)

10: S.insert(neighbors[l · k...l · (k + 1)]) ▷ insert k neighbors of node v into the set S
11: sequence← Delayed-BFS(G, S, θ, l) ▷ generate the threshold based sequences
12: sequences.insert(sequence)
13: end
14: f = train(w, d, sequences) ▷ train the sequences using skip-gram model
15: return f

Algorithm 3 Delayed-BFS
1: Input: Graph G, sequence S, threshold θ, Walk Length l
2: Initialization: Queue I; ∀u /∈ S : T [u] = min(degree(u), θ); T [v ∈ S] = 0
3: enqueue(I, S)
4: repeat
5: vertex i← dequeue(I)
6: sequence.insert(i)
7: for all u ∈ N [i] do
8: if u /∈ I then
9: decrement T [u]

10: if T [u] == 0 then
11: enqueue(I, u)
12: until (I is empty) or (len(sequence) = l)
13: return sequence

3.3 Shallow Embedding Learning Framework

Let f : V → Rd be the function that maps nodes to d-dimensional feature representations that we intend
to learn for downstream tasks. Let S denote the set of sequences generated by Algorithm 2. We adopt the
standard feature learning framework where the representations are trained by maximizing the log probability
of predicting a node occurrence in a sequence s ∈ S conditional on another node and its representation
Hamilton et al. (2017b). This is expressed as:

max
f

1
|S|

∑
v∈V

log Pr(s|f(v)) (1)

where Pr is the probability measure. under the standard assumptions of conditional independence to ensure
tractability, we get

Pr(s|f(v)) =
∑
u∈s

Pr(u|f(v))

6

Under review as submission to TMLR

Modeling the conditional likelihood as softmax parametrized by feature vectors:

Pr(i ∈ s|f(v)) = e⟨f(i),f(v)⟩∑
u∈V \v e⟨f(u),f(v)⟩

where ⟨f(i), f(v)⟩ represents the dot product between the feature representation of nodes i and v. By
optimizing the log probability equation 1, the algorithm maximizes the predictability of a node i in the
generated sequence given another node j, thereby creating node embeddings in which nodes co-occurring in
sequences have similar representations. This optimization is accomplished using stochastic gradient descent
with negative sampling Mikolov et al. (2013b).

3.4 Time Complexity

In this section, we assess the time complexity of our proposed embedding approaches. Consider a graph G
with n and m representing the cardinalities of the vertex and edge sets. Let E(v) denote the cardinality
of the set of edges associated with the vertex v. The maximum degree in the graph is denoted by ∆. Let
S be the set comprising of the node and a subset of its neighborhood for which a sequence is generated
(Algorithm 1). We create ∆ buckets where vertices are distributed in these buckets according to the count of
their adjacencies with N [S]. Notice that, under this construction, adding a vertex u to set S necessitates at
most E(u) updates (moving a vertex from one bucket to another) and identifying the next maximum adjacent
vertex to N [S] involves a constant look-up (from the highest bucket). The time complexity for generating
O(n) sequences using Algorithm 1 is given by:

O
(n∑

i=1

(p∑
x=1

(deg(v)
k∑

m=1

[
E(S) +

l−|S|∑
j=1

E(uj)
])))

(2)

where uj is the jth vertex added to the set S (sequence). The equation 2 evaluates to O(n + m) (since
{l, p, k} ∈ O(1)). The time complexity of SkipGram-Word2Vec is linear on the number of sentences and
logarithmic on the size of vocabulary (i.e., on the vertex set |V | = n) Mikolov et al. (2013a); Pimentel et al.
(2018). Thus, the overall time complexity of the Maximum Adjacency Search embeddings (Algorithm 1) is
bounded by O((n + m) log n). A similar analysis applies to Threshold-based Adjacency Search Embeddings
(see Algorithm 2). In practice, MAS outperforms TAS in computational efficiency due to its significantly
smaller set of hyperparameters, which results in a reduced number of generated sequences. Since walk lengths
are bounded by a constant, the space complexity is linear in the number of vertices. Further details on the
scalability of MAS and TAS approaches are provided in the Appendix A.

4 Empirical Evaluation with other Shallow Embedding Techniques

We assess the feature representations derived from MAS and TAS embeddings in the context of standard
supervised learning tasks: link prediction and node classification. We utilize six datasets to evaluate the
performance of our approaches against other shallow embedding methods. The statistics of these six graph
datasets employed for evaluation are outlined in the Appendix B, Table 8.

Baselines: We assess the efficacy of our proposed approaches in comparison to shallow embedding approaches
like Node2Vec, DeepWalk, and NBNE (Results regarding the comparison with GNNs are detailed in Section
6). As outlined below, these methods are executed with a varied range of hyperparameters (with Dimensions,
d, uniformly set to 128 for all approaches). The best-performing baseline is used for comparison.

• Node2Vec Grover & Leskovec (2016): Hyperparameter tuning systematically explores parameter
values within a designated grid. Specifically, the parameters p and q undergo optimization on the
validation set through an exhaustive grid search, considering values from the set [0.1, 0.2, . . . , 1, 2, 4].
The window size, denoted as l, is selected from the set of values {5, 10, 15, 20}. The walk lengths are

7

Under review as submission to TMLR

chosen from the range [10, 80] in increments of 10, and the number of random walks per node is set
to 10.

• DeepWalk Perozzi et al. (2014): The sampling strategy can be seen as a special case of node2vec
with p = q = 1. The rest of the parameter configurations are similar to Node2Vec.

• NBNE Pimentel et al. (2019): NBNE uses a permutation parameter (ϕ) to capture diversified
immediate neighborhoods. we vary ϕ from 1 to 20, and the window size is set to the subset of the
neighborhood (varied from 3 to 10) that is chosen for representation (as suggested in the paper).

Parameters for MAS and TAS: The parameters for MAS and TAS described in the Algorithms 1 and 2
are initialized to the following values.

• Number of Neighbors (k): In our experiments, we vary k from 1 to 10. For graphs having higher
average degrees (such as Facebook and email), we vary the range of number of neighbors (k) parameter
from 1 to 20.

• Number of Permutations (p): In our experiments, p is a small constant, and we vary it from 1 to 8.
• Walk Length (l): In our experiments, we vary this parameter from 10 to 40 in steps of 5.
• Window Size (w): This is chosen from the set of values {5, 10, 15, 20}.
• Dimensions (d): For experimental purposes, we set d = 128.
• Threshold (θ): For our empirical analysis, the threshold parameter, θ ∈ Z+, is varied in the range of

θ ∈ [1, 8].

Link Prediction Task: In the context of a network, link prediction tasks involve predicting the likelihood
of the existence of a link (edges) between pairs of nodes based on the observed network topology and
associated features Lü & Zhou (2011). Node embeddings are extended to edge embeddings using the operators
Hadamard (⊙), l2, l1, and Average. Further description of these operators is provided in the Appendix, Table
9. Subsequently, a logistic classifier is trained on these edge embeddings to identify the potential presence
of an edge in the network. For training both Maximum Adjacency Search (MAS) and Threshold-based
Adjacency Search (TAS) embeddings, we initially obtain a sub-graph with 80% randomly selected edges from
each dataset and generate node embeddings by training MAS and TAS on these sub-graphs. A subset of the
training edges (10%) are used for validation to select the best operator. The best logistic regression classifier
obtained in this process is further used for testing on the remaining 20% data. We use an equal-sized sample
of negative edges as positive edges for training. The accuracy for link prediction tasks is evaluated using the
AUC (area under the ROC curve) score with a 5-fold cross-validation Baeza-Yates (1999) 3.

Table 1 delineates the performance of Maximum Adjacency Search (MAS) embeddings and Threshold-based
Adjacency Search (TAS) embeddings in link prediction tasks. On average, MAS and TAS approaches
demonstrate an improvement in accuracy of 6.075% and 6.76%, respectively, surpassing the best accuracy
achieved by other methods. Notably, the Hadamard operator (denoted by ⊙ in Table 1), when used with
MAS and TAS embedding approaches, exhibits good stability and consistently yields the best performance
across all networks. We provide the percentage gain attained by MAS and TAS over other approaches in
Table 1.

Node Classification: Node classification is the task of assigning predefined labels or categories to nodes
within a network. Each node is associated with one or more classes, and machine learning models utilize
node features, network topology, or a combination of both to predict these labels Goyal & Ferrara (2018). In
our study, we utilize node embeddings generated through Maximum Adjacency Search (MAS) and Threshold-
based Adjacency Search (TAS) approaches across the entire network. The process involves training logistic
classifiers with 80% of the labeled nodes for training, including a subset for validation, while the remaining
20% serves as a test set. This procedure is iterated with 5 random seed initializations to ensure the robustness

3The source code of both MAS and TAS approaches can be accessed via the following anonymous GitHub link:
https://anonymous.4open.science/r/adjacency-embeddings-DC6B

8

Under review as submission to TMLR

Table 1: AUC of Maximum Adjacency Search (MAS) Embeddings, Threshold-based Adjacency (TAS)
embeddings, Node2vec, Deepwalk, and NBBE on Link Prediction task. On all the datasets, the ⊙ operator
achieved the best performance. The best overall performance is highlighted in bold, while the best-performing
baseline is shaded in gray.

Data set MAS TAS Node2vec DeepWalk NBNE Gain
Embeddings Embeddings

FaceBook 0.985 0.988 0.933 0.927 0.921 5.89%
arXiv 0.983 0.985 0.923 0.911 0.927 6.25%
Email 0.941 0.932 0.857 0.829 0.843 9.80%
Cora 0.868 0.881 0.838 0.749 0.842 4.6%
Pubmed 0.885 0.913 0.801 0.783 0.838 8.95%
Citeseer 0.871 0.869 0.761 0.729 0.819 6.35%

and reliability of the evaluation process. Table 2 shows the Micro-F1 scores for the node classification task on
datasets Email, Cora, Pubmed, and Citeseer. As can be observed, both MAS and TAS embedding approaches
considerably outperform the existing shallow embedding methodologies by an average improvement of 15.95%
and 19.67%, respectively. All datasets are used for multi-class classification except for the Blog dataset, which
uses multilabel classification.

Table 2: Micro-F1 score of MAS embeddings, TAS embeddings, Node2vec, Deepwalk and NBNE on node
classification task. The best overall performance is highlighted in bold, while the best-performing baseline is
shaded in gray.

Data set MAS TAS Node2vec DeepWalk NBNE Gain
Embeddings Embeddings

Email 0.1162 0.1263 0.0912 0.0733 0.0872 38.4 %
Cora 0.8271 0.8192 0.7530 0.7427 0.7701 7.4 %
Pubmed 0.7931 0.8282 0.7181 0.7007 0.6914 15.33%
Citeseer 0.6294 0.6296 0.5013 0.5071 0.5309 18.59%
Blog 0.2103 0.2097 0.1731 0.1514 0.1901 10.62%

5 Neighborhood Sampling in GNNs

Neighborhood sampling in Graph Neural Networks is a technique designed to manage computational
complexity and memory usage by selectively sampling a subset of a node’s neighbors during training.
Traditional GNNs, like Graph Convolutional Networks (GCNs) Kipf & Welling (2016a), aggregate information
from all neighboring nodes, which can be computationally prohibitive for large-scale graphs. To address this,
methods such as GraphSAGE (Graph Sample and AggregatE) Hamilton et al. (2017a) and FastGCN (Fast
Graph Convolutional Networks) Chen et al. (2018b) employ neighborhood sampling to limit the number of
neighbors considered at each layer. GraphSAGE samples a fixed number of neighbors for each node to create a
computationally feasible and efficient aggregation process, enabling the model to handle large graphs without
significant loss in performance. FastGCN, on the other hand, samples neighbors in a way that approximates
the full distribution of the graph, thereby maintaining the quality of the learned representations while reducing
the computational load. Other notable approaches include importance sampling, where neighbors are selected
based on their relevance, adaptive sampling techniques that adjust the sampling strategy during training and
training on smaller sub-graphs or clusters Chen & Zhao (2018); Zou et al. (2019); Huang et al. (2018); Chiang
et al. (2019); Zeng et al. (2019). These sampling strategies are critical for scaling GNNs to industrial-sized
graphs used in real-world applications such as social networks, recommender systems, and biological networks.

9

Under review as submission to TMLR

5.1 Literature Review

Graph Neural Networks (GNNs) employ edge-based aggregation of node features into low-dimensional
representations, demonstrating effectiveness in various downstream machine learning tasks Izadi et al. (2020);
Kan et al. (2021); Kipf & Welling (2016b); Zhang & Chen (2018); Zhang et al. (2018). Nevertheless, the
application of many existing GNNs is limited to graphs with node features/attributes. A considerable number
of real-world graphs do not include node attributes Chen et al. (2020); Duong et al. (2019). In such scenarios,
the direct application of Graph Neural Networks (GNNs) becomes challenging due to the absence of node
features Cai & Wang (2018); Errica et al. (2019). Various intuitive methods have been commonly employed
to address this issue by selecting artificial node features for GNNs based on degree, random, positional, and
distance-related characteristics Hamilton et al. (2017a); Sato et al. (2021); Chen et al. (2017); You et al.
(2019); Li et al. (2020). Recently, Cui et al. (2022) provided a comprehensive understanding of artificial
node features for positional node classification tasks. The authors categorize commonly used artificial node
features into positional and structural node features based on the type of information they can assist GNNs
in capturing. Empirical results indicate that positional node features are particularly effective for positional
node classification, while structural node features prove more beneficial for tasks related to structural node
classification and graph classification. The authors observe that using DeepWalk embeddings as positional
node features for GNNs yields the highest accuracy in node classification tasks compared to other feature
alternatives such as random initialization (trainable node embeddings), degree, PageRank, etc.

Many structural encoding techniques have been proposed to address the limitations of GNNs to capture
the underlying structure. In Bouritsas et al. (2022), the authors introduce a novel topologically-aware
message passing scheme that leverages substructure encoding. The central concept involves counting specific
substructures, such as cycles, cliques, and triangles, and embedding this substructure count information
into the message-passing process of the neural network. Experimental results demonstrate that this method
outperforms existing approaches. However, a significant limitation of such structure-encoding methods is
the high time complexity (O(nk) for a size k substructure) associated with counting substructures. In Yan
et al. (2024), the authors propose a technique for precomputing structural embeddings that encode distance
information within simple subgraphs or substructures surrounding each node or an edge. This method
enhances standard Graph Neural Networks (GNNs) by integrating precomputed topological information,
which eliminates the need for the model to learn representations over all possible subgraphs dynamically
during training. While the primary goal of these frameworks is to enhance the expressiveness of graph neural
networks by explicitly counting these substructures, the Maximum Adjacency Search (MAS) and Topological
Adjacency Search (TAS) frameworks proposed in Algorithms 1, 2 offer an efficient algorithmic procedure
to implicitly capture well-connected substructures without the need to explicitly identify or count them,
thus avoiding the computational bottleneck typically seen in substructure counting. This implicit approach
enables faster and more scalable graph learning, while still improving the model’s expressivity.

Path-based Graph Neural Networks inherently aims to capture the substructures by sampling random or
shortest paths that extends beyond the simple neighborhood of the node. In Abboud et al. (2022), the
authors introduces a novel message-passing mechanism for Graph Neural Networks (GNNs) that incorporates
the shortest-path distance between nodes to address the issue of over-squashing. Traditional GNNs only
allow nodes to communicate with their direct neighbors, which can limit the flow of information across the
graph. To mitigate this, the proposed approach extends message passing beyond immediate neighbors by also
considering k-hop nodes (nodes that are k steps away) and their respective distances. This allows nodes to
directly exchange information even if they are not adjacent, thereby breaking the information bottleneck.
PathGCN Eliasof et al. (2022) employs simple random walks as paths over which the weights for the spatial
operator are learned. These random walks define the paths across which information is propagated. After
learning the weights associated with these paths, a convolution operation is performed using a linear operator.
Path Neural Networks (PathNNs) Michel et al. (2023) are a novel graph neural network architecture that
enhances the expressive power of GNNs by aggregating information along paths emanating from each node.
PathNNs aggregate paths of varying lengths, such as shortest paths or simple paths up to a certain length K,
to update node representations. Unlike random walks Eliasof et al. (2022) or shortest paths Abboud et al.
(2022); Michel et al. (2023), which sample connected sequences from each node, our MAS and TAS approaches
generate targeted sequences that capture well-connected local paths around each node. These paths can

10

Under review as submission to TMLR

be seen as instances of higher-order random walks and represent a distinct form of complex shortest paths,
facilitated by the Delayed-BFS algorithm outlined in Algorithm 3. This approach not only reduces training
time by generating fewer sequences compared to random walks but also enhances the model’s expressivity by
capturing more intricate structures within the graph.

5.2 Threshold Adjacency Search (TAS) neighborhood Sampler

In this section, we introduce TAS-sampler, a novel sampling technique designed to identify structurally
significant local neighborhoods surrounding nodes within Graph Neural Networks for aggregation and message
passing. This technique can be seamlessly integrated with any existing GNN architecture. To showcase the
effectiveness of TAS-sampler, we incorporate it into three prominent GNN architectures for non-attributed
graphs: GCN Kipf & Welling (2016a), GraphSage-Pool Hamilton et al. (2017a), and GATv2 Brody et al.
(2021).

Algorithm 4 outlines the TAS-Sampler procedure. First, the optimal parameters for the threshold, the
number of neighbors, and the number of permutations are determined using Algorithm 2. Then, sequences
representing the node’s neighborhood context are generated, and an auxiliary graph, G

′ , is constructed using
this new context. While MAS could be used for sequence sampling, we opted for TAS sequences due to their
strong performance in node classification tasks (Table 2).

Algorithm 4 TAS-Sampling
1: Input: Graph G
2: {θ, k, p} = TAS-Embeddings() ▷ get the optimal parameters for TAS
3: for all v in graph.nodes() do
4: for threshold← 1...θ do
5: repeat p times
6: neighbors← permute(v.neighbors()) ▷ random permutation of the neighbors of a vertex v
7: num_sequences← len(neighbors)/k
8: for i← 1...num_sequences do
9: S ← ∅

10: S.insert(v)
11: S.insert(neighbors[l · k...l · (k + 1)]) ▷ insert k neighbors of node v into the set S
12: sequence← Delayed-BFS(G, S, θ, l)
13: sequences.insert(sequence)
14: end
15: TAS_Adjacency_List(v) = H most frequent vertices from sequences(v).
16: Construct an auxiliary graph G

′ with TAS_Adjacency_List
17: return G

′

During each message passing iteration, the hidden embedding h
(k)
u corresponding to node u ∈ V (G′) is

updated according to the information aggregated from u′s neighborhood N(u) ∈ G
′ . This is expressed as

follows (For consistency, we use the similar notation from Hamilton (2020)):

h(k+1)
u = UPDATE(k)

(
h(k)

u , AGGREGATE({h(k)
v ,∀v ∈ N(G

′
(u))})

)
= UPDATE(k)

(
hk

v , m(k)
N(G′ (u))

)

where UPDATE and AGGREGATE are arbitary differentiable functions (neural networks), V (G′) are the set
of vertices in the auxiliary graph G

′ (step 17 of Algorithm 4), N(G′(u)) is the neighborhood of u in G
′ and

mN(G′ (u)) is the aggregated message from the neighborhood of u in G
′ . Observe that not all neighbors of u in

the original graph G are retained as neighbors in the auxiliary graph G
′ , effectively creating skip-connections.

Moreover, nodes well-connected to u but at a multi-hop distance in G can become direct neighbors in G
′ .

11

Under review as submission to TMLR

6 Empirical Evaluation on GNNs with Artificial Node Features

Here we compare the performance of TAS-sampler incorporated in GNNs against complete neighborhood,
random sampling, and PageRank sampling techniques Hamilton et al. (2017a) with artificial node features
for node classification tasks. We employ a similar setup of experiments for node classification tasks as done
in the paper Cui et al. (2022). We used the GraphSAGE, GCN, and GATv2 models, trained and tested
them using the same data splits as in previous studies Kipf & Welling (2016a); Brody et al. (2021); Cui
et al. (2022), namely 20 randomly selected samples for each class during training with a validation set of
500 samples. Trainable node embeddings 4 and the embeddings produced from DeepWalk are provided as
artificial node features for GNN. In the case of trainable node embeddings, The performance is measured
for mean, sum, and max aggregation in each GNN layer, and the best classification accuracy is reported
in Table 3. For GCN and GATv2, we consider the complete neighborhoods of the original graph G and
TAS-sampled auxiliary graph G

′ (step 16 of algorithm 4) for aggregation, and for GraphSage, we show
the best performance attained by using random sampling and sampling using random walks with restarts
(PageRank). For our experimental purposes, we initialized H = 10 (step 16 of Algorithm 4). The experiment
is repeated for 5 random seed initializations for reliability. We also provide the accuracies obtained on Cora,
Pubmed, and Citeseer datasets using GNNs with real node features. As can be observed from Tables 3, 4, 5,
TAS-Sampler when incorporated in existing architectures, achieve an improvement up to 12.1% over other
GNN architectures on these benchmark datasets showcasing its capability to identify influential neighbors for
aggregations compared to existing mechanisms.

Table 3: F1-micro Accuracies on Cora Dataset for different initializations of features vectors for the node
classification task. The highest overall performance is highlighted in bold, while the best-performing baseline
is shaded in gray.

GNN-Architecture Trainable Node Deep walk real features
Embeddings Embeddings

GCN 59.7 ± 1.1 68.3 ± 1.2 76.4 ± 1.3
GraphSage-pool 63.8 ± 1.7 72.6 ± 1.5 77.7 ± 1.1
GATv2 61.7 ± 3.2 71.7 ± 1.3 78.3 ± 2.1
GCN-TAS 71.8 ± 2.1 73.7 ± 1.5 77.3 ± 1.7
GraphSage-pool-TAS 70.2 ± 2.1 74.2 ± 1.9 78.2 ± 0.9
GATv2-TAS 68.1 ± 1.4 73.1 ± 0.6 79.4 ± 1.6

Table 4: F1-micro Accuracies on CiteSeer Dataset for different initializations of features vectors for the node
classification task. The best overall performance is highlighted in bold, while the best-performing baseline is
shaded in gray (except for GATv2 using real features, which perform better than the proposed approaches for
the CiteSeer dataset).

GNN-Architecture Trainable Node Deep walk real features
Embeddings Embeddings

GCN 35.4 ± 1.3 45.6 ± 0.7 66.3 ± 1.4
GraphSage-pool 39.7 ± 2.9 42.1 ± 2.1 64.4 ± 3.1
GATv2 36.9 ± 2.5 44.4 ± 1.9 67.4 ± 2.3
GCN-TAS 43.6 ± 1.3 47.8 ± 1.9 66.7 ± 0.6
GraphSage-pool-TAS 46.8 ± 2.1 44.6 ± 2.2 65.3 ± 1.5
GATv2-TAS 48.4 ± 3.4 46.1 ± 0.8 66.7 ± 2.1

Integrating the TAS-Sampler into existing GNN architectures yielded a substantial performance boost
in non-attributed networks, both for trainable node embeddings and deep walk features. A reasonable

4trainable node embeddings refer to the node embeddings which can be initialized with any randomly-initialization methods
(https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html)

12

Under review as submission to TMLR

Table 5: F1-micro Accuracies on PubMed Dataset for different initializations of features vectors for the node
classification task. The best overall performance is highlighted in bold, while the best-performing baseline is
shaded in gray.

GNN-Architecture Trainable Node Deep walk real features
Embeddings Embeddings

GCN 50.7 ± 1.9 70.5 ± 1.3 78.1 ± 0.6
GraphSage-pool 43.2 ± 1.5 70.6 ± 2.5 77.1 ± 1.5
GATv2 46.7 ± 0.8 69.4 ± 1.4 78.4 ± 1.2
GCN-TAS 62.3 ± 1.2 74.7 ± 1.0 79.6 ± 1.3
GraphSage-pool-TAS 52.4 ± 2.3 76.2 ± 1.6 79.2 ± 0.8
GATv2-TAS 54.1 ± 3.9 71.7 ± 2.2 78.2 ± 3.1

performance increase was also observed for real node features, except for the Citeseer dataset, which has
an average degree of 1.42 and an average clustering coefficient of 0.14. Due to the scarcity of higher-order
structures in Citeseer, the TAS-Sampler, which samples nodes from cohesive regions, provides only marginal
improvement on this dataset for real-world features. This behavior aligns with our discussion in Section
D, as many nodes in extremely sparse graphs tend to have high betweenness centralities due to the lack of
cohesiveness.

Subgraph Sampling to find the optimal TAS parameter set (step 2 of Algorithm 4): For all
the experiments listed above, the optimal parameter set, {θ, k, p} is found by running TAS on the entire
network G. Here, we study the perturbation of the node classification accuracies using GCN Kipf & Welling
(2016a) and GraphSage Hamilton et al. (2017a) on different sampled subgraphs on the CORA Sen et al.
(2008) and OGBN-PRODUCTS Hu et al. (2020)datasets, respectively, for understanding purposes. We
sample 5 connected induced subgraphs for experimental purposes with 3000 vertices each. We ran the Step
2 of Algorithm 4 to find the optimal sets of parameters for each of these 5 subgraphs. We ran the GCN
on Cora on a similar train-test setup as described in Section 6 and used the standard train-test splits on
ogbn-products. As can be seen from Table 7, the accuracies attained for real features and trainable node
embeddings are similar to the observed accuracies from Table 3. The slight improvement in GCN performance
can be attributed to better generalization of TAS- parameters by using the subgraphs rather than the entire
graph.

Table 6: F1-micro Accuracies for node classification task on Cora Dataset using GCN with TAS sampling.
The TAS parameters for Algorithm 4, Step 2 were determined for five randomly sampled induced subgraphs
of 3000 nodes (SUBGRAP H-i, i ∈ [0, 4]), and TAS-Sampling for GCN is performed on the entire graph G
using the optimal parameter set found on each of these sub-graphs.

TAS Optimal set Trainable Node real features
Embeddings

Subgraph-0 72.7 ± 1.0 77.3 ± 1.1
Subgraph-1 70.6 ± 1.4 78.2 ± 0.9
Subgraph-2 71.1 ± 0.9 77.7 ± 2.8
Subgraph-3 71.1 ± 2.1 77.4 ± 0.4
Subgraph-4 70.8 ± 1.8 77.4 ± 2.4

7 Conclusion

This paper introduces two novel techniques for generating node embeddings in non-attributed graphs:
Maximum Adjacency Search (MAS) and Threshold-based Adjacency Search (TAS), which are inspired by the
theory of s− t minimum cuts. Both algorithms proved to be effective in downstream tasks. In link prediction

13

Under review as submission to TMLR

Table 7: F1-micro Accuracies for node classification task on ogbn-products dataset using GraphSage with TAS
sampling. The TAS parameters for Algorithm 4, Step 2 were determined for five randomly sampled induced
subgraphs of 10000 nodes (SUBGRAP H-i, i ∈ [0, 4]). TAS-Sampling for GraphSage (for 1000 epochs) was
then performed on the full graph G using the TAS optimal parameter set found on each of these sub-graphs.

TAS Optimal set Trainable Node real features real features
Embeddings with TAS Sampling with SAGE Sampling

Subgraph-0 63.1 ± 1.7 79.2 ± 1.6 77.1 ± 2.3
Subgraph-1 64.9 ± 1.3 78.9 ± 1.1 78.1 ± 0.9
Subgraph-2 62.4 ± 1.5 80.7 ± 0.8 77.9 ± 1.3
Subgraph-3 63.7 ± 0.8 81.4 ± 1.7 79.9 ± 1.1
Subgraph-4 64.5 ± 1.0 82.1 ± 1.9 80.2 ± 0.6

tasks, we observed an average improvement of 6.97% over existing shallow embedding techniques. Additionally,
when incorporated as neighborhood sampling mechanisms, our approaches exhibit an improvement up to
12.1% in node classification tasks compared to Graph Neural Networks equipped with artificial node features,
highlighting the effectiveness of our sampler in identifying structurally influential vertices (that can be at
multi-hop distance) around every node.

Limitations Our approaches are better suited for networks where attributes and links are predominantly
based on homophily. We empirically demonstrated in Appendix, Section D, where our methods struggle to
identify broker edges or bridging ties that typically form between different well-connected structures. Future
research should be aimed at the node features and the connectivity structure of a graph while simultaneously
adapting for both homophily and heterophily in graphs. Given that the proposed approaches require multiple
runs to evaluate the optimal hyper-parameter values, future research should focus on designing models with
fewer hyper-parameters.

Impact Statement This paper presents work whose goal is to advance the field of graph-based Machine
Learning. There are many potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

References
Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest path networks for graph property

prediction. In Learning on Graphs Conference, pp. 5–1. PMLR, 2022.

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J Smola.
Distributed large-scale natural graph factorization. In Proceedings of the 22nd international conference on
World Wide Web, pp. 37–48, 2013.

R Baeza-Yates. Modern information retrieval. Addison Wesley google schola, 2:127–136, 1999.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering.
Advances in neural information processing systems, 14, 2001.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1):657–668, 2022.

Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of mathematical sociology, 25(2):
163–177, 2001.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.

14

Under review as submission to TMLR

Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph classification. arXiv
preprint arXiv:1811.03508, 2018.

Weiqing Cai and David W Matula. Partitioning by maximum adjacency search of graphs. Partitioning Data
Sets, 19, 1993.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global structural
information. In Proceedings of the 24th ACM international on conference on information and knowledge
management, pp. 891–900, 2015.

Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of graphs in
hyperbolic space. arXiv preprint arXiv:1705.10359, 2017.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation learning for
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via importance
sampling. In International Conference on Learning Representations, 2018b.

Shi Chen and Qi Zhao. Shallowing deep networks: Layer-wise pruning based on feature representations.
IEEE transactions on pattern analysis and machine intelligence, 41(12):3048–3056, 2018.

Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W Tsang. Learning on
attribute-missing graphs. IEEE transactions on pattern analysis and machine intelligence, 44(2):740–757,
2020.

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph neural networks.
arXiv preprint arXiv:1705.08415, 2017.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 257–266, 2019.

Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph neural
networks on non-attributed graphs. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pp. 3898–3902, 2022.

Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung Nguyen, and Karl Aberer. On
node features for graph neural networks. arXiv preprint arXiv:1911.08795, 2019.

Moshe Eliasof, Eldad Haber, and Eran Treister. pathgcn: Learning general graph spatial operators from
paths. In International conference on machine learning, pp. 5878–5891. PMLR, 2022.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural
networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Martin G Everett and Thomas W Valente. Bridging, brokerage and betweenness. Social networks, 44:202–208,
2016.

Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pp. 35–41, 1977.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance: A survey.
Knowledge-Based Systems, 151:78–94, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017a.

William L Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

15

Under review as submission to TMLR

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data Eng. Bull., 40(3):52–74, 2017b.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

Mohammad Rasool Izadi, Yihao Fang, Robert Stevenson, and Lizhen Lin. Optimization of graph neural
networks with natural gradient descent. In 2020 IEEE international conference on big data (big data), pp.
171–179. IEEE, 2020.

Xuan Kan, Hejie Cui, and Carl Yang. Zero-shot scene graph relation prediction through commonsense
knowledge integration. In Machine Learning and Knowledge Discovery in Databases. Research Track:
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part II 21,
pp. 466–482. Springer, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016b.

Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances in neural
information processing systems, 25, 2012.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking diameters.
ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more
powerful neural networks for graph representation learning. Advances in Neural Information Processing
Systems, 33:4465–4478, 2020.

Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical mechanics
and its applications, 390(6):1150–1170, 2011.

Gaspard Michel, Giannis Nikolentzos, Johannes F Lutzeyer, and Michalis Vazirgiannis. Path neural networks:
Expressive and accurate graph neural networks. In International Conference on Machine Learning, pp.
24737–24755. PMLR, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. Advances in neural information processing systems, 26,
2013b.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying for
collective classification. In 10th international workshop on mining and learning with graphs, volume 8, pp.
1, 2012.

Mark EJ Newman. Mixing patterns in networks. Physical review E, 67(2):026126, 2003.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserving graph
embedding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 1105–1114, 2016.

16

Under review as submission to TMLR

Hogun Park and Jennifer Neville. Generating post-hoc explanations for skip-gram-based node embeddings by
identifying important nodes with bridgeness. Neural Networks, 164:546–561, 2023.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 701–710, 2014.

Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. Don’t walk, skip!: Online learning of
multi-scale network embeddings. In Proceedings of the 2017 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2017, Sydney, Australia, July 31 - August 03, 2017, pp.
258–265, 2017.

Simone Piaggesi, André Panisson, and Giovanni Petri. Effective higher-order link prediction and reconstruction
from simplicial complex embeddings. In Learning on Graphs Conference, pp. 55–1. PMLR, 2022.

Tiago Pimentel, Adriano Veloso, and Nivio Ziviani. Fast node embeddings: Learning ego-centric representa-
tions, 2018.

Tiago Pimentel, Rafael Castro, Adriano Veloso, and Nivio Ziviani. Efficient estimation of node representations
in large graphs using linear contexts. In 2019 International joint conference on neural networks (IJCNN),
pp. 1–8. IEEE, 2019.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as matrix
factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh ACM international
conference on web search and data mining, pp. 459–467, 2018.

Ryan A Rossi, Nesreen K Ahmed, and Eunyee Koh. Higher-order network representation learning. In
Companion Proceedings of the The Web Conference 2018, pp. 3–4, 2018.

Sam T Rowes. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:232, 2000.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural networks. In
Proceedings of the 2021 SIAM international conference on data mining (SDM), pp. 333–341. SIAM, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93–93, 2008.

Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM (JACM), 44(4):
585–591, 1997.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th international conference on world wide web, pp. 1067–1077,
2015.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels.
Journal of Machine Learning Research, 11:1201–1242, 2010.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1225–1234, 2016.

Mengjia Xu. Understanding graph embedding methods and their applications. SIAM Review, 63(4):825–853,
2021.

Zuoyu Yan, Junru Zhou, Liangcai Gao, Zhi Tang, and Muhan Zhang. An efficient subgraph gnn with
provable substructure counting power. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3702–3713, 2024.

Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order graph clustering. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining,
pp. 555–564, 2017.

17

Under review as submission to TMLR

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International conference
on machine learning, pp. 7134–7143. PMLR, 2019.

Reza Zafarani and Huan Liu. Social computing data repository at asu, 2009.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional networks. Advances in neural information
processing systems, 32, 2019.

18

Under review as submission to TMLR

Appendix: Adjacency Search Embeddings

A Scalability of MAS and TAS approaches

Why is MAS scalable to large networks: For each node and a subset of its neighborhood (where the
subset is chosen in step 9 of Algorithm 1), MAS generates a sequence of nodes of constant length. This is
done by iteratively adding a vertex that is maximally connected to the existing sequence. This process can
be performed for all vertices in the graph in overall linear time, as explained in the time complexity Section
3.4 of the paper. The data fed into the common SkipGram Word2vec model has a size of O(n×walk length).
Since the walk length is constant, the space complexity is linear in the number of nodes. The size of the
generated embeddings is O(n× d), where d represents the dimension size.

Why is TAS scalable to large networks: In TAS, each node is assigned a threshold, denoted as θ ∈ [1, 8].
When θ = 1, TAS generates sequences of constant length by conducting a BFS on the subset of nodes chosen
in line 10 of Algorithm 2. When θ = 2, a node outside the selected subset of nodes (line 10 of Algorithm 2)
will be activated or added to the sequence of existing nodes if it has at least two edges incident to the current
set of nodes. Similarly, for θ = i, a node is added to the existing sequence of nodes if it is incident to at least
i nodes that are part of the existing sequence. This operation can be executed by slightly modifying the
standard Breadth First Search, as depicted in Algorithm 3. This demonstrates that TAS is as scalable as the
standard BFS, enabling it to handle extremely large-scale networks. The complexity analysis of TAS is akin
to MAS, with a slightly higher constant factor, as sequences are generated for every node and a subset of its
neighbors from θ = 1 to 8.

B Statistics of Datasets Used

1. Facebook Leskovec & Mcauley (2012): This dataset captures a snapshot of users’ ego networks, where
nodes represent users, and edges depict their relationships.

2. Arxiv Leskovec et al. (2007): A collaboration network of researchers who submitted articles to
the Astrophysics category in ArXiv. Here, nodes represent the researchers, and edges indicate
collaborations on papers.

3. Email Yin et al. (2017): Constructed from email data from a European research institution, this
network has an edge (u, v) if person u sent at least one email to person v. The labels represent
department IDs.

4. Cora Sen et al. (2008): A citation network of publications classified into 7 classes based on their
subject areas.

5. Pubmed Namata et al. (2012): A citation network of scientific publications related to diabetes, with
labels denoting the type of diabetes discussed in each publication.

6. Citeseer Sen et al. (2008): A citation dataset of scientific publications where the research articles are
classified into 6 subject categories.

7. Blog Zafarani & Liu (2009): A friendship network in which nodes represent bloggers and edges
represent friendships between them. The labels represent blogger interests inferred through the
metadata provided by the bloggers.

Assortativity, or homophily, refers to the inclination of nodes to connect with others that are similar in some
aspect. Table 8 presents the degree and label assortativity, computed according to Newman (2003) on the
datasets used in this paper. Email, Cora, and Pubmed exhibit negative degree assortativity, indicating that
nodes in these graphs are more likely to connect to nodes with different degrees. Conversely, the graphs
Facebook, Arxiv, and Citeseer demonstrate positive degree homophily, suggesting that nodes in these graphs
tend to connect with others that have similar degrees. The Email dataset presents negative label assortativity,
i.e., connected nodes have different labels, while others present positive homophily. Thus, the datasets chosen
cover a broader spectrum of homophily properties.

19

Under review as submission to TMLR

Table 8: Statistics of Datasets Used

Dataset Nodes Edges Avg. Degree # Labels Degree Label
Homophily Homophily

FaceBook 4,039 88,234 21.84 NA 0.0635 NA
arXiv 18,772 198,110 10.55 NA 0.2052 NA
Email 1,005 25,571 25.44 42 −0.0137 −0.0029
Cora 2,708 5,429 2.004 7 −0.0659 0.7711
Pubmed 19,717 88,651 4.49 3 −0.0436 0.686
Citeseer 3,312 4,732 1.42 6 0.0493 0.6778
Blog 10,312 333,983 32.38 39 −0.2541 0.0515

C Operators for Link Prediction Tasks

Table 9 provides the list of operators used for link prediction tasks against other shallow embedding approaches.

Table 9: Choice of operator for link prediction tasks

Operator Definition symbol

Hadamard fi(v) ∗ fi(u) ⊙
L2 |fi(v) − fi(u)|2 l2
L1 |fi(v) − fi(u)| l1
Average |fi(v) + fi(u)| µ

D Applicability of MAS and TAS approaches

This section delves into the operational aspects of our proposed embedding approaches. Specifically, we will
showcase the network characteristics that warrant consideration before applying MAS and TAS approaches.

Analysis on Facebook and CORA Networks: In the context of link prediction, we analyze the
challenging nature of predicting certain network edges using MAS and TAS embeddings. We hypothesize that
the misclassified edges are often connected to nodes that act as brokers or bridges between two different portions
of the sub-graphs and have higher betweenness centrality Park & Neville (2023); Everett & Valente (2016);
Freeman (1977); Brandes (2001). To test this hypothesis, we categorize nodes based on their betweenness
centralities and assign each misclassified edge to the bucket containing the higher betweenness centrality of
its two endpoints. Figures 2(a) and 2(b) depict the distribution of misclassified edges within each bucket
for the Facebook and Cora networks. The 0-10 percentile group corresponds to the lowest 10 percentile of
betweenness centralities, while the 90-100 percentile group represents the top 10 percentile.

Our observation reveals a skewed distribution towards the 90-100 percentile bucket for both networks, implying
that misclassified edges are frequently associated with these broker nodes with higher betweenness values
as one of its endpoints. These broker nodes act as bottlenecks for both MAS and TAS approaches, as the
sequences can only percolate through these vertices, typically for very low values of threshold or adjacencies.
Consequently, this results in a limited set of sequences surrounding the broker node for learning the context
of the node. This observation is further illustrated for test edges with vertices of degree 1 or 2 as the
sequences can only percolate with thresholds 1 or with a maximum adjacency of 1. Similar challenges arise
for vertices with star-shaped topologies or for vertices connected in long chains. We observed similar trends
for misclassified node labels in node classification tasks.

20

Under review as submission to TMLR

0 10 20 30 40 50 60 70 80 90 100
Ranges of Betweenness centrality

100

200

300

400

500
M

isc
la

ss
ifi

ed
 e

dg
es

(a) Incorrectly predicted edges on Facebook.

0 10 20 30 40 50 60 70 80 90 100
Ranges of Betweenness centrality

25

50

75

100

125

150

175

M
isc

la
ss

ifi
ed

 e
dg

es

(b) Incorrectly predicted edges on CORA.

Figure 2: Betweenness Centralities of the end points of misclassified edges with MAS

Parameter Sensitivity: In assessing the impact of minor perturbations in parameters on the performance
of MAS and TAS embedding approaches for prediction and classification, we first determine the optimal
parameter configuration that maximizes performance. We then systematically vary each selected parameter by
±1 and observe the resulting changes in performance. For MAS, we perform experiments to assess sensitivity
by perturbing the number of permutations (p) and the number of neighbors (k). For TAS, the sensitivity
analysis is performed by varying the threshold.

Sensitivity w.r.t to number of permutations For Maximum Adjacency Search embeddings, a slight
perturbation in the number of permutations parameter p yields an average variation of 1.87% and 2.03% for
link prediction and node classification, respectively for Cora, Citeseer and Pubmed networks. We notice similar
results when perturbing the neighbors parameter, k. Overall, we observe an enhancement in performance
with the increase of p ∈ [1, 8] and k ∈ [1, 10]; this is expected as the sequences are generated for diversified
neighborhoods of each vertex with increase in the value of k. In the case of Threshold-based Adjacency
Search, a minor perturbation in θ by ±1 results in an average variation of 1.5% and 3.21% for link prediction
and node classification tasks. As described in Section 3, increasing the value of θ restricts the spread of
Delayed-BFS (Algorithm 3) to specific higher-order structures.

Sensitivity w.r.t walk-length For MAS, varying the walk-length parameter l (l ∈
{5, 10, 15, 20, 25, 30, 35, 40}) results in an average performance variation of 2.9% for link prediction
and 1.51% for node classification on the Cora, Citeseer, and Pubmed networks. Generally, performance
improves as the walk length increases, which is expected since longer walks capture substructures in multi-hop
neighborhoods more effectively. Similar trends in performance variation have been observed for TAS.

Sensitivity w.r.t dimensions To illustrate the impact of the dimension parameter d on both link prediction
and node classification tasks for the MAS approach (Algorithm 1). As depicted in Figure 3(a) and Figure
3(b), the accuracy demonstrates an upward trend with an increase in dimension. Notably, in the case of
Cora’s link prediction, there is a significant accuracy improvement of 3.2% when varying d from 128 to 512. A
parallel trend is evident in the Citeseer dataset for node classification, showcasing a Micro-F1 score increase
of 2.41%. The behavior of TAS-embeddings with the change in dimension is similar to that of the MAS
approach.

E Structural Encodings

In graph neural networks (GNNs), structural encodings are often concatenated with real node or edge features
to enhance the model’s ability to capture both local topology and node-specific attributes. These structural
encodings typically represent graph properties, such as node degrees, centrality measures, or subgraph
patterns, and are used to provide additional context about a node’s position and importance within the

21

Under review as submission to TMLR

0 2 4 8 16 32 64 128 256 512

0.75

0.8

0.85

0.9

Cora Citeseer Pubmed

Dimensions

A
U

C
 S

co
re

(a) Change in AUC scores for link prediction task on the Cora, Citeseer, and Pubmed
datasets with the change in dimensions.

0 2 4 8 16 32 64 128 256 512

0.4

0.5

0.6

0.7

0.8

Cora Citeseer Pubmed

Dimensions

M
ic
ro
-F
1

(b) Change in Micro-F1 scores for node classification tasks on the Cora, Citeseer, and
Pubmed datasets with the change in dimensions.

Figure 3: Sensitivity of dimension parameter on MAS-embeddings

graph. When these encodings are concatenated with real features, the model benefits in enhanced expressivity
Michel et al. (2023), capturing multi-hop information and better generalization by leveraging node’s intrinsic
features and their structural context.

In Table 10, we present the results of concatenating TAS embeddings, generated from Algorithm 2, with
intrinsic node features for GraphSage using random sampling (similar trends were observed for GCN and
GATv2). We found that TAS proves to be more efficient when used as a sampler in message passing for GNNs

22

Under review as submission to TMLR

(i.e., as an implicit structural encoding) compared to the explicit approach, where structural encodings are
concatenated with node features. This suggests that leveraging TAS within the message-passing framework
leads to better performance than directly concatenating embeddings.

Table 10: F1-micro Accuracies on Cora, Citeseer and PubMed Datasets using structural encodings for node
classification task. Features vectors are concatenated with TAS embeddings and node’s intrinsic features and
passed it to GraphSage with random sampling at every layer.

Graph real features real features
+

TAS Embeddings

Cora 77.9 ± 0.8 77.7 ± 1.1
Citeseer 63.1 ± 2.7 64.4 ± 3.1
Pubmed 77.5 ± 0.8 77.1 ± 1.5

F Training Time for TAS approach

Table 11 provides the training time (in minutes(m) and seconds(s)) for the TAS, and other random walk
based methods (Node2Vec and Deepwalk) across various parameters on node classification tasks. Training
times were obtained using 16 core processor, running TAS on 12 threads, and all algorithms were implemented
using gensim.

Table 11: Training times across networks

Graph TAS Node2vec DeepWalk

Email 11m33s 18m41s 13m55s
Cora 49m09s 61m13s 24m31s
CiteSeer 33m47s 43m09s 27m16s
PubMed 121m02s 187m25s 39m08s

23

	Introduction
	Related Work
	Adjacency Search Based Embeddings
	Maximum Adjacency Search (MAS)-Embeddings
	Threshold-based Adjacency Search (TAS)-Embeddings
	Generation of Sequences

	Shallow Embedding Learning Framework
	Time Complexity

	Empirical Evaluation with other Shallow Embedding Techniques
	Neighborhood Sampling in GNNs
	Literature Review
	Threshold Adjacency Search (TAS) neighborhood Sampler

	Empirical Evaluation on GNNs with Artificial Node Features
	Conclusion
	Scalability of MAS and TAS approaches
	Statistics of Datasets Used
	Operators for Link Prediction Tasks
	Applicability of MAS and TAS approaches
	Structural Encodings
	Training Time for TAS approach

