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ABSTRACT

In this paper, we propose a novel framework for adapting pre-trained image super-
resolution (SR) models to tackle the challenging task of efficient video SR. This is
achieved by freezing the pre-trained image SR model and fine-tuning it with the
addition of several lightweight adapter modules. These adapters facilitate spatial
and temporal learning, progressively equipping the image SR model with spa-
tiotemporal reasoning capabilities for video SR. Also, these Adapters are compact
and extendable, embedding only a few trainable parameters for each video dataset.
Moreover, the parameters of the image SR model remain unchanged, resulting in
substantial parameter sharing. This allows us to train video SR models quickly
and efficiently. Remarkably, despite having significantly fewer parameters, our
proposed method achieves competitive or even superior performance compared to
existing video SR methods across multiple benchmarks.

1 INTRODUCTION

In recent years, super-resolution (SR) techniques, which aim to enhance the quality of images and
videos by increasing their resolution, have become a hot topic in the field of computer vision. With
the advent of deep learning, the development of SR models has been significantly accelerated, leading
to impressive improvements in image and video quality (Chan et al., 2021; 2022a; Yang et al., 2021b;
Chan et al., 2022b; Chu et al., 2020; Haris et al., 2020). However, three key obstacles emerge
when training video SR models. Firstly, such models necessitate more computational resources and
memory than their image SR counterparts, escalating the difficulty of their training and deployment.
Secondly, the inherent high dimensionality of video data coupled with the intricate nature of video
SR models can cause instability during the training process. Finally, the scarcity of high-quality video
SR datasets compared to image ones poses a challenge in training models that effectively generalize
across diverse video content.

One possible approach is to bootstrap an SR model pre-trained on images and then fine-tune it on video
data. However, applying these sophisticated SR models to video sequences is not straightforward and
introduces new challenges, including the need to deal with temporal dependencies and the complexity
of motion information in video data. To this end, we propose a novel framework for efficient video
SR that capitalizes on the power of pre-trained image SR models. Our approach termed Pre-training
and Fine-tuning Video Super-Resolution (PFVSR), is designed to address the unique challenges
posed by video data. We are motivated by the observation that pre-trained image SR models can
provide a solid starting point for video SR, given they are appropriately adapted and fine-tuned to
handle the intricacies of video data.

In the first phase of our method, the pre-training phase, we train an image SR model on a vast amount
of image data, allowing it to learn spatial details that are crucial for image enhancement. Following
this, we move into the fine-tuning phase, wherein we introduce a series of lightweight adapter
modules (Houlsby et al., 2019) into the pre-trained image SR model. These adapters are designed
to capture temporal information across video frames and integrate it with the spatial details learned
in the pre-training phase. To be specific, we commence by incorporating an adapter module, as
demonstrated in Figure 1b, following the self-attention layer in a Swin Transformer block (see Figure
1a). This facilitates spatial adaptation, as visualized in Figure 1c. We find that a well-pre-trained
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(a) Swin Trans-
former Block. (b) Adapter.

(c) Spatial Adap-
tation.

(d) Temporal
Adaptation.

(e) Joint Adapta-
tion.

Figure 1: A detailed illustration of how we modify a conventional Swin Transformer block (a) to
address the task of video SR by systematically incorporating spatial adaptation (c) and temporal
adaptation (d). Our completed framework (e) integrates both these adaptations. It’s imperative to
note that while the S-MSA and T-MSA share weights, they operate on different input dimensions.
Throughout the training process, only the newly incorporated Adapter (b) modules undergo updates
(marked in red), while the rest of the layers remain in a frozen state (marked in blue). This approach
dramatically reduces the parameter space that needs to be explored during training, leading to
significant computational savings without compromising performance.

image model is highly effective for spatial modeling in video generation tasks. Subsequently, we turn
our attention to temporal modeling. To this end, we retain the pre-trained self-attention layer from the
image model but repurpose it for the temporal dimension of video input. This strategy enforces the
model to establish correlations across different frames. An additional adapter is also implemented for
temporal adaptation, as illustrated in Figure 1d. Ultimately, we carry out a joint adaptation process by
incorporating both spatial and temporal adapters into a Swin Transformer block, as shown in Figure
1e. This procedure significantly enhances the model’s capability to handle video SR tasks effectively
and efficiently.

Through this two-step approach, PFVSR efficiently adapts a pre-trained image SR model to video
SR tasks, enabling it to understand and reproduce the temporal dynamics in video sequences while
enhancing spatial resolution. PFVSR takes advantage of the rich spatial feature representations
learned from the image SR pre-training phase and extends it by learning temporal dependencies in
the fine-tuning phase, offering a robust and efficient solution to video SR.

In extensive experiments, we demonstrate that PFVSR significantly enhances the efficiency of video
SR without compromising the output quality. Notably, our method achieves much better performance
compared to existing methods, despite having significantly fewer parameters and lower computational
complexity. This improvement in efficiency makes PFVSR particularly suitable for real-world
applications where both performance and computational efficiency are important considerations. We
hope that our work will open up new avenues for the development of efficient and high-performance
video SR frameworks. To summarize, we make the following contributions:
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• We propose a new approach for adapting pre-trained image SR models to efficiently handle the
video SR task. Our method is highly versatile and applicable to various pre-trained image SR
models. It is straightforward to implement and offers cost-effective training benefits.

• Significantly, our method exhibits superior efficiency compared to existing video SR models. For
instance, when juxtaposed with the current state-of-the-art video SR model, RVRT (Liang et al.,
2022b), our approach delivers substantial performance improvements while utilizing at least 15%
fewer model parameters, 20% less testing memory, and reducing runtime by 15%.

• We validate our approach through extensive experiments on several public datasets, where our
method consistently delivers better results than existing methods. To further foster research, we
will make the source code and models publicly available. This step ensures transparency and allows
the scientific community to build upon our work, potentially leading to even more efficient and
effective video SR models.

2 RELATED WORK

Image Pre-Trained Models. Vision Transformer (ViT) and its related variants, as introduced by
Dosovitskiy et al. (Dosovitskiy et al., 2021), have played a pivotal role in breaking new ground on a
wide array of computer vision tasks. This broad spectrum of tasks spans from image segmentation
(Wang et al., 2021a;b; Jain et al., 2023), object detection (Carion et al., 2020; Zhu et al., 2021; Dai
et al., 2022; Hassani et al., 2023), depth estimation (Yang et al., 2021a), and pose estimation (Li
et al., 2022; Lin et al., 2021b), video inpainting (Zeng et al., 2020), vision-and-language navigation
(Chen et al., 2021b), video classification (Neimark et al., 2021), 3D pose transfer (Chen et al., 2022;
2021a), and house layout generation (Tang et al., 2023). Once these models are trained, they establish
a robust foundation that can be effectively transferred and applied to downstream tasks through
fine-tuning (Zhai et al., 2022; Xie et al., 2022; Jia et al., 2021; 2022). For example, Jia et al. (Jia
et al., 2022) presented visual prompt tuning (VPT), a method that offers a resource-efficient and
highly effective alternative to the standard full fine-tuning approach typically used with large-scale
Transformer models in the visual domain.

In this paper, we exploit the simplicity of our proposed method to harness the capabilities of these
well-pre-trained image models and adapt them efficiently for video tasks. Specifically, we aim to
utilize these adeptly pre-trained image SR models for efficient video SR tasks, thereby making a
significant stride in the domain of video SR.

Video Super-Resolution (VSR) is a challenging task that aims to generate high-resolution videos
from their lower-resolution versions. The primary difficulty in VSR lies in effectively leveraging the
complementary details available in adjacent frames, which may often be misaligned due to movements
within the scene or camera motion. Numerous existing VSR methods, including TDAN (Tian et al.,
2020), EDVR (Wang et al., 2019), MuCAN (Li et al., 2020), DynaVSR (Lee et al., 2021), DSMC (Liu
et al., 2021), OVSR (Yi et al., 2021), TMNet (Xu et al., 2021), FRVSR (Sajjadi et al., 2018),
SPMC (Tao et al., 2017), RBPN (Haris et al., 2019), PFNL (Yi et al., 2019), TGA (Isobe et al.,
2020b), BasicVSR (Chan et al., 2021), IconVSR (Chan et al., 2021), BasicVSR++(Chan et al., 2022a),
RSDN(Isobe et al., 2020a), RLSP (Fuoli et al., 2019), DUF (Jo et al., 2018), and BRCN (Huang
et al., 2015) have managed to generate satisfactory results through their carefully engineered VSR
models. However, these models typically require training from scratch, resulting in considerable
GPU resource consumption and training time.

In this paper, we introduce a novel strategy for repurposing pre-trained image SR models for VSR
tasks. This novel approach, a first of its kind, enables us to simply fine-tune the pre-trained image SR
models rather than starting from scratch. As a result, we substantially decrease the demand for GPU
resources and training time, making our method far more efficient and practical.

Parameter-Efficient Fine-Tuning strategies have their roots in the realm of NLP. The growing
complexities and size of language models, along with the need to adapt them to a plethora of
downstream tasks, have led to the development of these strategies (He et al., 2022; Houlsby et al.,
2019). The central goal of these methods is to minimize the number of trainable parameters, thereby
reducing computational overhead while maintaining or even exceeding the performance achieved by
complete fine-tuning. For instance, He et al. (He et al., 2022) introduced a unified framework that
consolidates various effective parameter-tuning methods. This enables us to construct a more efficient
model that matches the performance of full fine-tuning by cross-applying techniques from different
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approaches. Houlsby et al. (Houlsby et al., 2019) proposed the concept of transfer with adapter
modules, resulting in compact and easily extendable models. These models only add a minimal
amount of trainable parameters per task, thereby enabling the incorporation of new tasks without the
need to revisit previous ones. The parameters of the original network remain unaltered, resulting in a
high degree of parameter sharing. Of late, this parameter-efficient fine-tuning concept has made its
way into the computer vision domain (Yang et al., 2023; Lin et al., 2022). For instance, Lin et al. (Lin
et al., 2022) introduced efficient video learning (EVL), which is a streamlined framework for directly
training high-quality video recognition models using frozen CLIP features. Similarly, Yang et al.
(Yang et al., 2023) proposed a novel method for adapting pre-trained image models (AIM) to video
action recognition tasks. AIM has demonstrated performance that is comparable to, or even surpasses,
previously fully fine-tuned state-of-the-art models on four video action recognition benchmarks.

While this technique has found applications in numerous computer vision tasks, its application to the
field of video SR is a pioneering attempt. To the best of our knowledge, we are the first to propose
adapting pre-trained image SR models to tackle the VSR task.

3 PRE-TRAINING AND FINE-TUNING VIDEO SUPER-RESOLUTION

In this section, we commence our discussion with a concise overview of the Swin Transformer
block, illuminating its primary architecture and functionalities. This will serve as a foundation for
understanding the techniques we utilize in our proposed method. Next, we delve into the specifics of
spatial adaptation. We demonstrate how we leverage this method to fine-tune a pre-trained image
SR model to better understand and process spatial aspects of video data. Moving on, we introduce
the concept of temporal adaptation. We illustrate how this technique is employed to imbue our
model with an understanding of the temporal dynamics inherent in video data, thus enhancing its
capability in the video SR task. Subsequently, we explore the process of joint adaptation, which is a
harmonious combination of spatial and temporal adaptations. This stage represents the culmination
of our adaptation process, where we integrate the knowledge gained from both spatial and temporal
adaptations into our pre-trained image SR model. This integrated approach propels the model’s
performance, making it highly effective for the video SR task. Throughout this section, we aim to
elucidate the step-by-step process of adapting an image SR model for the video SR task, offering a
detailed insight into the effectiveness of our proposed method.

3.1 SWIN TRANSFORMER BLOCK

This paper focuses on the process of adapting pre-trained Swin Transformer image models to the
video SR task and compares their performance with fully trained video SR Transformer models.
We consider using Swin Transformer because it achieves good results in image SR (Liang et al.,
2021). Figure 1a shows the Swin Transformer block’s unique handling of inputs of size H ×W ×C.
It reconfigures the input into a HW

M2 ×M2 × C feature by breaking it down into non-overlapping
M ×M local windows. Within each window, the Swin Transformer computes self-attention. For
each local window feature F ∈ RM2×C , it calculates the matrices Q, K, and V as:

Q = FPQ, K = FPK , V = FPV , (1)
with PQ, PK , and PV as shared projection matrices. The attention matrix is then derived as
Attention(Q,K, V ) = Softmax(QKT /

√
d+B)V, with B being the learnable relative positional

encoding. The Swin Transformer also employs an MLP for further feature transformations. Both
MSA and MLP are preceded by a LayerNorm (LN) layer, and residual connections are used in both
cases. This process is summarized as:

F = MSA(LN(F )) + F, F = MLP (LN(F )) + F. (2)
To overcome the lack of connections between local windows when partitioning is consistent, the
Swin Transformer alternates between regular and shifted window partitioning. The latter involves a
pixel shift before partitioning, adding to the Transformer’s flexibility and adaptability.

3.2 SPATIAL ADAPTATION FOR VIDEO SUPER-RESOLUTION

Pre-trained image models, trained on large-scale datasets, have shown exceptional transferability to
numerous downstream computer vision tasks. Based on this strong performance, we hypothesize that
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these models can be effectively fine-tuned to achieve high-quality spatial modeling in the domain
of video super-resolution. This proposed approach is inspired by efficient fine-tuning techniques
that have been successfully deployed in NLP (Houlsby et al., 2019; Li & Liang, 2021; Zaken et al.,
2022). Among these techniques, we opt to implement Adapter (Houlsby et al., 2019), mainly due to
their straightforward and intuitive architecture. As depicted in Figure 1b, the Adapter is a bottleneck
structure composed of two fully connected (FC) layers, with an activation layer sandwiched in
between. The primary role of the first FC layer is to project the input into a lower dimension, while
the second FC layer reverses this operation, projecting it back to the original dimension. To tailor the
pre-trained spatial features to target video data, we introduce an Adapter following the self-attention
layer, as illustrated in Figure 1c. We refer to this as spatial adaptation. During the training phase, all
other layers of the Swin Transformer block remain frozen, with only the Adapter being updated.

The effectiveness of the spatial adaptation strategy is demonstrated in Table 3 and Figure 3. We see
from Table 3 that it significantly outperforms the pre-trained image SR baseline. These results suggest
that spatial adaptation allows the frozen image SR model to learn robust spatial representations from
video data. However, it is important to note that there still exists a considerable performance gap
between spatial adaptation and a fully trained video SR model. This can primarily be attributed to the
fact that spatial adaptation alone does not possess the capacity to learn temporal information inherent
in videos. Thus, to bridge this gap, temporal adaptation becomes an indispensable component in our
framework. This not only complements the spatial adaptation by allowing the model to learn and
understand the temporal dynamics in video sequences but also enhances the overall performance of
the VSR task. Through the combination of spatial and temporal adaptation, our approach aims to
harness the strengths of both, creating a more comprehensive and effective solution for VSR.

3.3 TEMPORAL ADAPTATION FOR VIDEO SUPER-RESOLUTION

In order to effectively capture temporal information in videos for video SR, we propose a novel
strategy: reusing the pre-trained self-attention layer from the image SR model for temporal modeling.
More specifically, we designate the original self-attention layer as S-MSA for spatial modeling and
the repurposed self-attention layer as T-MSA for temporal modeling. As illustrated in Figure 1e, we
position T-MSA ahead of S-MSA. Given the video patch embedding v ∈ RT×(N+1)×D, our initial
step is to reshape it into vT ∈ R(N+1)×T×D, where N = HW/P 2 is the number of spatial patches,
P denotes the patch size, and T is the number of frames. We then feed vT into the T-MSA where
it endeavors to learn the relationship among the T frames. It’s important to note that T-MSA and
S-MSA are the same layers (i.e., the pre-trained MSA in the image SR model) and remain frozen
during model tuning but are applied to different input dimensions. This explicit operation enhances
the model’s temporal modeling capability without increasing the number of parameters. Following
the same principle as spatial adaptation, we incorporate another Adapter after the repurposed temporal
attention layer to adapt its features to video data. This is referred to as temporal adaptation (Figure
1d). The Adapter’s structure is identical to that in spatial adaptation. As evidenced by the results in
Table 3, temporal adaptation successfully narrows the gap to fully trained video SR models, while
only introducing another lightweight Adapter into the Swin Transformer block.

Despite these encouraging results, our straightforward strategy of reusing spatial attention for temporal
modeling may not be sufficiently robust for video SR with complex temporal dynamics. To counteract
this, we integrate a new temporal module into the pre-trained image SR models, given the common
understanding that image models may struggle to infer temporal structured information in videos.
Specifically, we adopt the trajectory-aware attention (Liu et al., 2022) to capture intricate temporal
information. Although this method increases the number of tunable parameters of the model,
it significantly enhances the model’s performance, as confirmed by the results in Table 3. This
demonstrates the value of specifically designed temporal modules in improving video super-resolution
performance, especially for challenging videos with complex temporal structures.

3.4 JOINT ADAPTATION FOR VIDEO SUPER-RESOLUTION

Spatial and temporal adaptations are carried out sequentially, each focusing on distinct input dimen-
sions and serving unique roles. Spatial adaptation primarily focuses on adapting pre-trained image
features to the video context, while temporal adaptation aims to instill temporal dynamics into the
model. This process effectively fine-tunes the video representations for comprehensive spatiotemporal
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reasoning, as illustrated in Figure 1e. The sequential nature of this process ensures that each step is
focused and purposeful. The spatial adaptation step serves as a foundation, adapting the pre-trained
model to handle the spatial characteristics of video data. Subsequently, the temporal adaptation step
builds on this foundation, incorporating the crucial temporal dimension that is inherent in video data.
This stepwise procedure ensures that the model gradually acquires the necessary skills for video
super-resolution, without overwhelming the learning process.

This structured approach to adaptation not only enhances the model’s performance on video SR tasks
but also exhibits the potential to be easily extended and adapted for other video-related tasks. By
isolating spatial and temporal adaptations, it becomes easier to experiment with different strategies
and modules for each component, potentially leading to further improvements in performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. In this paper, we align with the approach taken by RVRT (Liang et al., 2022b) and
concentrate our efforts on two specific degradation scenarios: bicubic (BI) and blur-downsampling
(BD). Both of these scenarios involve an upscaling factor of ×4, demanding the model to magnify the
input data by four times. For BI degradation, we make use of two distinct datasets to train our model.
The first is the REDS dataset (Nah et al., 2019), and the second is the Vimeo-90K dataset (Xue et al.,
2019). Each dataset has been carefully chosen, offering a diverse range of characteristics to help
fine-tune our model. Following the training phase, we proceed to evaluate our model’s performance
using the corresponding test subsets of these datasets, namely REDS4 and Vimeo-90K-T. The REDS4
test subset consists of specific clips numbered 000, 011, 015, and 020, offering a robust test of our
model’s capabilities. We complement these tests by introducing an additional dataset, Vid4 (Liu &
Sun, 2013), alongside Vimeo-90K for further validation of our model’s performance. Regarding
BD degradation, we employ the Vimeo-90K dataset as the training set for our model. This dataset
provides a comprehensive range of blur-downsampling examples that allow us to fine-tune our model
effectively. Following the training, we assess our model on three test datasets: Vimeo-90K-T, Vid4,
and UDM10 (Yi et al., 2019). These datasets present varying levels of challenge and complexity,
ensuring our model’s performance is thoroughly evaluated under diverse BD degradation conditions.

Implementation Details. In this paper, we detail our proposed two-stage training process, which
begins with pre-training on an image dataset and concludes with fine-tuning on a video dataset. More
specifically, during the first stage, we follow the training approach outlined in SwinIR (Liang et al.,
2021) to pre-train our model on the DIV2K (Lim et al., 2017) + Flickr2K (Timofte et al., 2017)
dataset. Subsequently, in the second stage, we implement the training strategy from RVRT (Liang
et al., 2022b) to fine-tune the model on specific video datasets, such as REDS. The proposed strategy,
referred to as “pre-training and fine-tuning”, lies in its simplicity and capability to yield significant
performance improvements. We believe that the effectiveness of this approach greatly depends on
a sufficient number of training iterations during the pre-training phase and an appropriately small
learning rate during the fine-tuning phase. This is due to the nature of the Transformer, which requires
extensive data and iteration cycles to acquire a generalized understanding of the task, yet necessitates
a small learning rate during fine-tuning to prevent overfitting to the specific video dataset.

For fine-tuning training, we emulate the training procedure established by RVRT (Liang et al.,
2022b). The model is trained for 300,000 iterations using the Adam optimizer (Kingma & Ba, 2015)
with default settings and a batch size of 8. Notably, RVRT requires 600,000 iterations for training,
while our method achieves better results in just 300,000 iterations, showcasing its superior training
efficiency. The learning rate is initially set at 4e−4 and gradually decreased in accordance with the
Cosine Annealing scheme (Loshchilov & Hutter, 2017). To ensure stable training, we follow RVRT
and Basicvsr++, and initialize the SpyNet (Ranjan & Black, 2017) with pre-trained weights, maintain
it in a fixed state for the initial 20,000 iterations, and subsequently reduce its learning rate by 75%.

4.2 EXPERIMENTAL RESULTS

State-of-the-Art Comparisons. In our experiments, we position our proposed method, PFVSR, in a
highly competitive landscape, pitting it against 19 of the most notable SOTA approaches in VSR, as
shown in Table 1. We opt for this extensive list of methods to ensure a comprehensive and thorough
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Table 1: State-of-the-art comparison (PSNR/SSIM). All results are calculated on Y-channel except
REDS4 (RGB-channel).

Method BI Degradation BD Degradation

REDS4 Vimeo-90K-T Vid4 UDM10 Vimeo-90K-T Vid4

Bicubic 26.14/0.7292 31.32/0.8684 23.78/0.6347 28.47/0.8253 31.30/0.8687 21.80/0.5246
TOFlow (Xue et al., 2019) 27.98/0.7990 33.08/0.9054 25.89/0.7651 36.26/0.9438 34.62/0.9212 25.85/0.7659

FRVSR (Sajjadi et al., 2018) - - - 37.09/0.9522 35.64/0.9319 26.69/0.8103
DUF (Jo et al., 2018) 28.63/0.8251 - 27.33/0.8319 38.48/0.9605 36.87/0.9447 27.38/0.8329

PFNL (Yi et al., 2019) 29.63/0.8502 36.14/0.9363 26.73/0.8029 38.74/0.9627 - 27.16/0.8355
RBPN (Haris et al., 2019) 30.09/0.8590 37.07/0.9435 27.12/0.8180 38.66/0.9596 37.20/0.9458 27.17/0.8205
MuCAN (Li et al., 2020) 30.88/0.8750 37.32/0.9465 - - - -
RLSP (Fuoli et al., 2019) - - - 38.48/0.9606 36.49/0.9403 27.48/0.8388
TGA (Isobe et al., 2020b) - - - 38.74/0.9627 37.59/0.9516 27.63/0.8423

RSDN (Isobe et al., 2020a) - - - 39.35/0.9653 37.23/0.9471 27.92/0.8505
RRN (Isobe et al., 2020c) - - - 38.96/0.9644 - 27.69/0.8488
FDAN (Lin et al., 2021a) - - - 39.91/0.9686 37.75/0.9522 27.88/0.8508

EDVR (Wang et al., 2019) 31.09/0.8800 37.61/0.9489 27.35/0.8264 39.89/0.9686 37.81/0.9523 27.85/0.8503
GOVSR (Yi et al., 2021) - - - 40.14/0.9713 37.63/0.9503 28.41/0.8724
VSRT (Cao et al., 2021) 31.19/0.8815 37.71/0.9494 27.36/0.8258 - - -

BasicVSR (Chan et al., 2021) 31.42/0.8909 37.18/0.9450 27.24/0.8251 39.96/0.9694 37.53/0.9498 27.96/0.8553
IconVSR (Chan et al., 2021) 31.67/0.8948 37.47/0.9476 27.39/0.8279 40.03/0.9694 37.84/0.9524 28.04/0.8570

VRT (Liang et al., 2022a) 32.19/0.9006 38.20/0.9530 27.93/0.8425 41.05/0.9737 38.72/0.9584 29.42/0.8795
PSRT (Shi et al., 2022) 32.72/0.9106 38.27/0.9536 28.07/0.8485 -/- -/- -/-

BasicVSR++ (Chan et al., 2022a) 32.39/0.9069 37.79/0.9500 27.79/0.8400 40.72/0.9722 38.21/0.9550 29.04/0.8753
RVRT (Liang et al., 2022b) 32.75/0.9113 38.15/0.9527 27.99/0.8462 40.90/0.9729 38.59/0.9576 29.54/0.8810

PFVSR (Ours) 32.87/0.9135 38.24/0.9533 28.05/0.8467 40.96/0.9734 38.64/0.9581 29.58/0.8817
PFVSR2 (Ours) 33.08/0.9172 38.37/0.9586 28.23/0.8502 41.28/0.9756 38.74/0.9597 29.71/0.8848
PFVSR3 (Ours) 32.90/0.9148 38.26/0.9552 28.18/0.8483 41.14/0.9740 38.63/0.9585 29.62/0.8829

evaluation, pushing our method to its limits and assessing its performance in a variety of contexts.
The quantitative results of these head-to-head comparisons are concisely presented in Table 1. Our
PFVSR either matches or surpasses the performance of existing SOTA methods in terms of PSNR
and SSIM metrics across two different degradation conditions, thereby underscoring the effectiveness
of our approach and positioning it as a promising candidate for future developments and applications
in the realm of VSR. To further improve the performance of our method, we continue to train our
model for 600,000 iterations (PFVSR2) and achieve better results, which are significantly better than
the results of RVRT (0.25db on average). In addition, although it is also training 600,000 iterations,
under the same GPU conditions. RVRT takes about 51 hours, while our method only takes 27 hours.
This demonstrates the high efficiency of our method.

Furthermore, as depicted in Figure 2, our method, PFVSR, does more than just generate visually
appealing results; it excels in preserving the intricate textures and details that contribute to the VSR,
where the objective is not only to enhance the resolution but also to maintain the authenticity of the
original content. Remarkably, PFVSR outperforms other leading approaches in this aspect, including
EDVR, BasicVSR, BasicVSR++, VRT, and RVRT. These methods, while formidable in their own
right, do not achieve the same level of detail preservation that our method does. This accomplishment
underlines the effectiveness of our approach and its potential to pave the way for future advancements
in VSR techniques.

Data Efficiency. Our method requires less video data. In order to validate this idea, we only used
60% of the data of each video dataset for training. After the same training of 600,000 iterations, our
method still achieved better results than RVRT, as shown in the PFVSR3 results in Table 1.

Table 2: Model size, testing memory, and runtime
(ms) comparison for a low-resolution of 320×180.
Our PFVSR could serve as a good candidate for
VSR when training resources are more limited.

Method # Params Memory Runtime PNSR ↑
BasicVSR++ (Chan et al., 2022a) 7.3M 223M 77 32.39

EDVR (Wang et al., 2019) 20.6M 3535M 378 31.09
VSRT (Cao et al., 2021) 32.6M 27487M 328 31.19

VRT (Liang et al., 2022a) 35.6M 2149M 243 32.19
RVRT (Liang et al., 2022b) 10.8M 1056M 183 32.75

PFVSR (Ours) 9.1M 843M 152 32.87

Model Efficiency. We undertake a comprehen-
sive comparison of various models focusing on
model size, memory consumption during test-
ing, and runtime. The results are listed in Ta-
ble 2. Notably, PFVSR stands out among the
representative parallel methods, which include
EDVR, VSRT, VRT, and RVRT. PFVSR mani-
fests significant performance improvements, all
the while utilizing fewer resources. Specifically,
it uses at least 15% fewer model parameters and
requires 20% less memory during testing. Furthermore, the runtime of PFVSR is trimmed by a
minimum of 15% when compared with these parallel methods, offering a more efficient alternative.
When pitted against the recurrent model, BasicVSR++, PFVSR presents an impressive improvement
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Figure 2: Visualization comparisons with existing state-of-the-art VSR methods, i.e., EDVR (Wang
et al., 2019), BasicVSR (Chan et al., 2021), BasicVSR++ (Chan et al., 2022a), VRT (Liang et al.,
2022a), and RVRT (Liang et al., 2022b). Zoom in for the best view.

in performance. It registers a PSNR increment of 0.48dB, marking a noteworthy advancement. This
comparison underscores the effectiveness of our proposed PFVSR model, which offers an optimal
balance of performance, efficiency, and resource utilization.

We also include the number of parameters, memory, and runtime of each proposed module in Table 3.
This makes it clearer how each module affects the overall performance of the model. Note that only
the spatial adapter and temporal adapter contain learnable network parameters. The parameters of the
spatial adapter and temporal adapter are 3.2M and 5.9M, respectively. Therefore, the parameters of
B1, B2, B3, B4, and B5 are 0M, 3.2M, 9.1M, 9.1M, and 9.1M, respectively.

4.3 ABLATION STUDY

We conduct extensive ablation studies on REDS to evaluate each component of the proposed method.

Baseline Models. We introduce and evaluate five variants (namely, B1, B2, B3, B4, and B5), the
specifics of which are outlined in Table 3. To elaborate, (1) our first baseline, B1, employs the
pre-trained SwinIR model to conduct tests directly on the video dataset, acting as our fundamental
evaluation point. (2) Our second baseline, B2, builds upon the foundation of B1 by integrating the
spatial adaptation technique as portrayed in Figure 1c, thereby commencing the process of model
fine-tuning for the task at hand. (3) Proceeding further, B3 extends the model of B2 by integrating the
temporal adaptation strategy as proposed in Figure 1d. This inclusion enhances the model’s capacity
to comprehend and utilize temporal information from the video sequences. (4) In the case of B4, we
chose to replace the temporal adaptation method integrated in B3 with the Trajectory-aware Attention
mechanism as proposed by (Liu et al., 2022). This adjustment was aimed at comparing the relative
effectiveness of different temporal adaptation methods. (5) Lastly, B5 represents our finalized model.
In an effort to further bolster performance, we substitute the backbone of the B4 model with a HAT
network as proposed by (Chen et al., 2023). This final change completes our model’s evolution,
yielding a superior solution that efficiently addresses the video super-resolution problem.
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Table 3: The ablation study of the proposed PFVSR on REDS4.
# Method PSNR ↑ SSIM ↑ # Params Memory Runtime

B1 SwinIR (Liang et al., 2021) 29.13 0.8272 0M 165M 54
B2 B1 + Spatial Adaptation (Fiure 1c) 30.25 0.8531 3.2M 287M 78
B3 B2 + Temporal Adaptation (Fiure 1d) 31.98 0.8979 9.1M 603M 116
B4 B2 + Temporal Adaptation (Trajectory-aware Attention (Liu et al., 2022)) 32.46 0.9056 9.1M 768M 145
B5 B4 → HAT Backbone (Chen et al., 2023) 32.87 0.9135 9.1M 843M 152

Effect of Spatial and Temporal Adaptation. The goal of our approach is to introduce a minimal
number of tunable parameters to the frozen image SR model, thereby bridging the performance
disparity with fully trained video SR models. As reflected in Table 3, the introduction of spatial
adaptation in B2 leads to a substantial performance improvement over B1. This demonstrates that
spatial adaptation plays a crucial role in enabling frozen image SR models to excel at spatial modeling
tasks in video SR. Further, the integration of temporal adaptation in B3 provides an additional boost
in performance. This enhancement validates the potency of our temporal adaptation strategy, proving
that it can effectively impart robust temporal modeling capabilities to a model originally designed for
spatial-only models. These findings collectively underscore the efficacy of the proposed spatial and
temporal adaptation strategies. They suggest that by making calculated, incremental changes to a
pre-trained image SR model, we can remarkably enhance its performance in the video SR domain
without necessitating a complete retraining process.

Effect of Different Temporal Adaptation Strategies. Even though our straightforward strategy
of reusing spatial attention to temporal modeling yields encouraging outcomes, it might not be
adequately effective for videos with demanding temporal intricacies. Temporal modeling in videos
can be treated as a type of sequence modeling, which led us to substitute the temporal adaptation
method in B3 with the trajectory-aware attention (Liu et al., 2022). This attention mechanism
integrates relevant visual tokens existing in identical spatiotemporal trajectories, thereby leading to
enhanced performance and reduced computational demands. It is observed that B4 outperforms B3
on both evaluation metrics, validating that the independent design of the temporal adaptation module
can bring about substantial performance improvements. Importantly, we have the flexibility to utilize
an existing temporal modeling module to further optimize performance, such as temporal attention
(Bertasius et al., 2021) or temporal encoder/decoder (Lin et al., 2022).

Effect of Different Pre-Trained Image SR Models. The elegance of our approach lies in its
simplicity and universality, making it adaptable to more sophisticated image SR models. In order to
substantiate this claim, we switch the SwinIR image model in B4 with a more potent HAT backbone
(Chen et al., 2023). The resultant B5 outperforms B4, thereby reinforcing our foundational motivation.
Moreover, this experiment underscores the flexibility and extensibility of our approach, demonstrating
its potential to be integrated with future advances in image SR models, potentially leading to further
breakthroughs in the field of VSR.

We provide more analysis of experimental results in the Appendix.

5 CONCLUSION AND LIMITATIONS

In this paper, we introduce a novel framework (i.e., PFVSR) that effectively leverages pre-trained
image SR models for the task of efficient video SR. This is accomplished by sequentially imple-
menting spatial learning and temporal learning to incrementally instill spatiotemporal reasoning
capabilities into the pre-trained image SR model. Notably, our approach only requires updates to the
newly incorporated adapters modules, leading to substantial reductions in training costs compared to
existing video SR models. Despite this cost efficiency, our method demonstrates performance that is
on par with or surpasses that of existing state-of-the-art models across multiple benchmarks.

It is worth noting that we are the first to propose adapting pre-trained image SR models for efficient
video SR tasks. This is not a trivial task, requiring many key modifications to existing models to
make the proposed framework work. Moreover, our method is generally applicable to different image
pre-trained SR models, simple to implement, and cost-effective to train. We believe that this paper
makes an important step towards efficient video SR tasks. While our current model solely utilizes
image modality for VSR, a potential area for future enhancement could involve integrating pre-trained
models from text or audio domains alongside images to address this challenging VSR task.
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coherence via self-supervision for gan-based video generation. ACM TOG, 39(4):75–1, 2020.

Linhui Dai, Hong Liu, Hao Tang, Zhiwei Wu, and Pinhao Song. Ao2-detr: Arbitrary-oriented object
detection transformer. IEEE TCSVT, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Dario Fuoli, Shuhang Gu, and Radu Timofte. Efficient video super-resolution through recurrent latent
space propagation. In ICCVW, 2019.

Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. Recurrent back-projection network
for video super-resolution. In CVPR, 2019.

Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. Space-time-aware multi-resolution
video enhancement. In CVPR, 2020.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention
transformer. In CVPR, 2023.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. In ICLR, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In ICML, 2019.

Yan Huang, Wei Wang, and Liang Wang. Bidirectional recurrent convolutional networks for multi-
frame super-resolution. NeurIPS, 2015.

Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin Wang, and Qi Tian. Video super-
resolution with recurrent structure-detail network. In ECCV, 2020a.

10



Under review as a conference paper at ICLR 2024

Takashi Isobe, Songjiang Li, Xu Jia, Shanxin Yuan, Gregory Slabaugh, Chunjing Xu, Ya-Li Li,
Shengjin Wang, and Qi Tian. Video super-resolution with temporal group attention. In CVPR,
2020b.

Takashi Isobe, Fang Zhu, Xu Jia, and Shengjin Wang. Revisiting temporal modeling for video
super-resolution. arXiv preprint arXiv:2008.05765, 2020c.

Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, and Humphrey Shi. Oneformer:
One transformer to rule universal image segmentation. In CVPR, 2023.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In ICML, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, 2022.

Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. Deep video super-resolution
network using dynamic upsampling filters without explicit motion compensation. In CVPR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Suyoung Lee, Myungsub Choi, and Kyoung Mu Lee. Dynavsr: Dynamic adaptive blind video
super-resolution. In WACV, 2021.

Wenbo Li, Xin Tao, Taian Guo, Lu Qi, Jiangbo Lu, and Jiaya Jia. Mucan: Multi-correspondence
aggregation network for video super-resolution. In ECCV, 2020.

Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc Van Gool. Mhformer: Multi-hypothesis
transformer for 3d human pose estimation. In CVPR, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL-IJCNLP, 2021.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In ICCVW, 2021.

Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, and
Luc Van Gool. Vrt: A video restoration transformer. arXiv preprint arXiv:2201.12288, 2022a.

Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green, Jiezhang Cao,
Kai Zhang, Radu Timofte, and Luc Van Gool. Recurrent video restoration transformer with guided
deformable attention. In NeurlPS, 2022b.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In CVPRW, 2017.

Jiayi Lin, Yan Huang, and Liang Wang. Fdan: Flow-guided deformable alignment network for video
super-resolution. arXiv preprint arXiv:2105.05640, 2021a.

Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end human pose and mesh reconstruction with
transformers. In CVPR, 2021b.

Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de Melo, Xiaogang Wang, Jifeng Dai,
Yu Qiao, and Hongsheng Li. Frozen clip models are efficient video learners. In ECCV, 2022.

Ce Liu and Deqing Sun. On bayesian adaptive video super resolution. IEEE TPAMI, 36(2):346–360,
2013.

Chengxu Liu, Huan Yang, Jianlong Fu, and Xueming Qian. Learning trajectory-aware transformer
for video super-resolution. In CVPR, 2022.

Hongying Liu, Peng Zhao, Zhubo Ruan, Fanhua Shang, and Yuanyuan Liu. Large motion video
super-resolution with dual subnet and multi-stage communicated upsampling. In AAAI, 2021.

11



Under review as a conference paper at ICLR 2024

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,
2017.

Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik Moon, Sanghyun Son, Radu Timofte, and
Kyoung Mu Lee. Ntire 2019 challenge on video deblurring and super-resolution: Dataset and
study. In CVPRW, 2019.

Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network. In
ICCV, 2021.

Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network. In
CVPR, 2017.

Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. Frame-recurrent video super-
resolution. In CVPR, 2018.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang, and Chao Dong. Rethinking
alignment in video super-resolution transformers. In NeurIPS, 2022.

Hao Tang, Zhenyu Zhang, Humphrey Shi, Bo Li, Ling Shao, Nicu Sebe, Radu Timofte, and Luc
Van Gool. Graph transformer gans for graph-constrained house generation. In CVPR, 2023.

Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya Jia. Detail-revealing deep video super-
resolution. In ICCV, 2017.

Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu. Tdan: Temporally-deformable alignment
network for video super-resolution. In CVPR, 2020.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. Ntire 2017
challenge on single image super-resolution: Methods and results. In CVPRW, 2017.

Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. Max-deeplab:
End-to-end panoptic segmentation with mask transformers. In CVPR, 2021a.

Wenxuan Wang, Chen Chen, Meng Ding, Hong Yu, Sen Zha, and Jiangyun Li. Transbts: Multimodal
brain tumor segmentation using transformer. In MICCAI, 2021b.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
Esrgan: Enhanced super-resolution generative adversarial networks. In ECCVW, 2018.

Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration
with enhanced deformable convolutional networks. In CVPRW, 2019.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In CVPR, 2022.

Gang Xu, Jun Xu, Zhen Li, Liang Wang, Xing Sun, and Ming-Ming Cheng. Temporal modulation
network for controllable space-time video super-resolution. In CVPR, 2021.

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhancement
with task-oriented flow. Springer IJCV, 127(8):1106–1125, 2019.

Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe, and Elisa Ricci. Transformer-based attention
networks for continuous pixel-wise prediction. In ICCV, 2021a.

Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. Aim: Adapting image
models for efficient video action recognition. In ICLR, 2023.

Xi Yang, Wangmeng Xiang, Hui Zeng, and Lei Zhang. Real-world video super-resolution: A
benchmark dataset and a decomposition based learning scheme. In ICCV, 2021b.

Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. Progressive fusion video super-
resolution network via exploiting non-local spatio-temporal correlations. In ICCV, 2019.

12



Under review as a conference paper at ICLR 2024

Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, Tao Lu, Xin Tian, and Jiayi Ma. Omniscient
video super-resolution. In ICCV, 2021.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In ACL, 2022.

Yanhong Zeng, Jianlong Fu, and Hongyang Chao. Learning joint spatial-temporal transformations
for video inpainting. In ECCV, 2020.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, 2022.

Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation
model for deep blind image super-resolution. In ICCV, 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. In ICLR, 2021.

A APPENDIX

A.1 THE ORDER BETWEEN ADAPTERS AND ATTENTION BLOCKS

As we can see in Figure 1, is it better for the adapter to follow the attention block (S-MSA or T-MSA).
In the initial experiment, we also tried to put both adapters in front of both attention blocks (S-MSA
and T-MSA), but we found that the result was not as good as the adapters behind the attention blocks.
The results are compared in Table 4.

Table 4: The ablation study of the order between T-MSA and S-MSA.
Method PSNR ↑ SSIM ↑
Attention Blocks to follow Adapters 31.32 0.8805
Adapters to follow Attention Blocks 31.98 0.8979

The superior performance of having the adapter follow the attention block compared to the opposite
configuration can be attributed to the inherent workings of both components. When the adapter follows
the attention block, it refines and adjusts the feature representations that have already undergone
attention-based transformation. In other words, the attention mechanism first helps in capturing long-
range dependencies and important contextual information from the input. The subsequent adapter
then refines these attention-processed features, making them more suitable for the specific task at
hand. On the contrary, when the attention block follows the adapter, the adapter might introduce
specific task-oriented biases or modifications to the features. The subsequent attention mechanism,
which is designed to capture global context, might then operate on these biased features, leading to
less optimal performance. Furthermore, attention mechanisms can be viewed as providing a broad
overview or context, and having an adapter refine this context thereafter seems to be a more logical
and effective flow for information processing in our experiments.

A.2 THE ORDER BETWEEN T-MSA AND S-MSA

As shown in Figure 1e, we place T-MSA before S-MSA. The reason is that temporal information
(T-MSA) might be more foundational to our method’s operations, serving as a primary context. Once
this context is established, the S-MSA can refine features with a richer temporal context in mind.
Moreover, in our preliminary experiments, placing T-MSA before S-MSA showed an improvement
in performance metrics compared to the reverse configuration, as shown in Table 5.

A.3 EFFECT OF SPATIAL ADAPTATION

We also provide visual examples of adding spatial adaptation in Figure 3. We see that by using our
proposed spatial adapter, we can get more details, improving the output quality. That means it is
intended to allow the model to adjust to variations in spatial features, which might be complementary
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Table 5: The ablation study of the order between T-MSA and S-MSA.
Method PSNR ↑ SSIM ↑
S-MSA before S-MSA 31.64 0.8891
T-MSA before S-MSA 31.98 0.8979

to the temporal aspects. This means spatial adaptation is able to help frozen image SR models achieve
good spatial modeling on video data. It’s a perspective that further emphasizes the interconnectedness
of spatial and temporal factors in the overall framework.

Figure 3: Analysis of the proposed Spatial Adaptation. By using the proposed spatial adapter, our
framework leads to more details, improving the output quality.

A.4 HOW PRE-TRAINING DATA AFFECT THE PERFORMANCE?

The amount and quality of data used in the pre-training phase can have a significant impact on the
performance of the model. In the pre-training stage, the quality, diversity, and quantity of data can
directly affect the generalization ability of the model and its subsequent fine-tuning performance. In
the initial experiment, we only used DIV2K for pre-training and found that the result improvement was
not obvious, and then we trained the model on a larger dataset (DIV2K+Flickr2K), the performance
further improved significantly (up to 0.71db). However, this phenomenon is not caused by our
proposed model, it is because Transformer-based models require more data to learn general knowledge
for the task.

A.5 DIFFERENT DEGRADATION COMBINATIONS

Since there are two degradations (BI and BD), we also provide discussions on different combinations,
for example, BI (image model) + BD video fine-tuning. We conduct experiments with different
degradation combinations on Vimeo-90K-T, the results are shown in Table 6.

Table 6: The ablation study of different degradation combinations.
Method PSNR ↑ SSIM ↑
BD (image model) + BI (video fine-tuning) 37.51 0.9412
BI (image model) + BI (video fine-tuning) 38.24 0.9533
BI (image model) + BD (video fine-tuning) 37.89 0.9428
BD (image model) + BD (video fine-tuning) 38.64 0.9581

We can see that identical degradation combinations (e.g., BI+BI or BD+BD) perform better than
mixed combinations (e.g., BI+BD or BD+BI), here are potential reasons: When a model is trained
and fine-tuned within the same degradation setting, it might more effectively capture patterns and
characteristics associated with that degradation. This can allow the model to adapt and optimize its
performance more readily. Moreover, in a similar degradation environment, the updates to weights
and biases via gradients might be more continuous and smooth, fostering more stable learning. Lastly,
different degradations might introduce varying noise and distractions in the feature space. Using the
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same degradation combination can reduce this variability, making it easier for the model to capture
primary degradation patterns.

A.6 TRAINING THE SAME NETWORK FROM SCRATCH USING VIDEO DATA

We train the same network from scratch using video data for 600,000 iterations, and the results
are 32.81/0.9133, which is much worse than the proposed method (33.08/0.9172). We analyze
the possible reason that our two-stage training method can make Transformer have a better ability
to capture various variations and patterns present in input image and video data, enhancing its
generalization ability. Moreover, training the same network from scratch using video data for 600,000
iterations needs about 59 hours, much slower than our proposed method (42 hours). These results
fully prove the necessity of using pre-training and fine-tuning image super-resolution models to do
the task of efficient video SR.

A.7 EXTENTION TO CONVOLUTION-BASED IMAGE SR MODELS

The proposed adapter cannot be directly applied to convolution-based image SR models. The reason
lies in the intrinsic structural and operational differences between Transformer-based architectures and
convolution-based networks. Transformer and convolution-based models have distinct characteristics.
Transformers tokenize and sequentialize the input data, which is vital for their self-attention to capture
global dependencies. While convolution-based networks operate on grid-like data, like images,
without the need for tokenization and sequentialization. This means that adapting Transformer-based
adapters to convolution-based networks isn’t straightforward, as the underlying data representation
and processing paradigms differ fundamentally.

Addressing this challenge, we undertook a redesign process specifically for convolution-based
networks. To make the adapter compatible, we made targeted modifications. In Figure 1b, we
replaced the FC Down and FC Up with 1× 1 convolutions and substituted GELU with ReLU. This
yielded an adapter for convolution-based models. To validate its effectiveness, we integrated it into
BSRGAN (Zhang et al., 2021), a well-established convolution-based architecture known for its strong
performance in image SR. BSRGAN, which builds upon ESRGAN’s structure (Wang et al., 2018),
includes residual blocks. Our approach involved embedding the proposed convolution-based adapter
after each residual block, facilitating effective domain adaptation and transfer.

In our experiments, the performance of the adapter was evaluated on the BI Degradation using REDS4.
Our method achieved a PSNR/SSIM score of 32.53/0.9098, surpassing SOTA convolution-based VSR
model, BasicVSR++ (32.39/0.9069). At the same time, the Runtime of our method in inference is
much shorter than that of BasicVSR++ (62ms vs 77ms). These results validate the applicability of the
convolution-based adapter and its ability to enhance convolution-based networks’ performance. While
the convolution-based adapter shows remarkable progress, the results still lag behind those of the
Transformer-based method proposed in our paper. This difference could be attributed to Transformers’
larger data demands compared to convolution-based approaches. The initial image pre-training stage
in the Transformer-based method likely contributes to a more pronounced performance boost during
fine-tuning, which may not be as pronounced in convolution-based networks.

Overall, our proposed Pre-Training and Fine-Tuning framework is applicable to both the Transformer-
based and convolution-based image SR models.

A.8 USER STUDY

We perform a user study to draw a comparison between our proposed method and several other
leading methods, including the real video sequence. For the purpose of this study, we made a random
selection of four video samples for each comparison. A total of ten participants took part in this
study. They were tasked with responding to two specific questions pertaining to each video they
reviewed. The first question (Q1) seeks to understand their perception of realism in the video, asking
“Which video is more realistic?”. The second question (Q2) aims to gauge the coherency of the
video, asking “Which video is more coherent?”. Both questions are designed to probe the users’
subjective perceptions of realism and coherency in the videos, key aspects that contribute significantly
to the overall quality of the video. The responses are presented in Table 7 as preference percentages,
indicating the proportion of users who favored the results produced by each corresponding method or
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the real video. The findings from this user study underscore the high quality of the videos generated
by our proposed method. They substantiate our claim of superior realism and coherence, reinforcing
our method’s effectiveness and its potential for wider application in the field of video generation.

Table 7: User study results (%) (Q1/Q2).

Method BI Degradation BD Degradation

REDS4 Vimeo-90K-T Vid4 UDM10 Vimeo-90K-T Vid4

Bicubic 0.5/1.3 0.7/2.2 0.8/1.5 0.4/1.2 0.6/1.9 0.7/2.1
EDVR (Wang et al., 2019) 5.4/3.2 4.1/3.5 3.2/2.8 3.8/3.2 4.7/3.5 3.9/4.2

BasicVSR (Chan et al., 2021) 8.9/7.3 6.4/5.7 6.8/4.7 7.4/6.6 8.9/6.4 5.7/7.3
BasicVSR++ (Chan et al., 2022a) 10.4/8.5 10.8/11.2 8.9/7.2 11.9/9.3 12.4/10.8 9.2/9.8

VRT (Liang et al., 2022a) 11.7/11.3 13.2/13.9 12.5/13.6 13.4/12.7 13.5/13.3 12.4/11.7
RVRT (Liang et al., 2022b) 13.6/13.7 16.5/14.3 15.7/16.0 15.2/16.8 14.4/15.1 14.1/14.8

PFVSR (Ours) 15.4/16.9 18.2/19.4 19.3/20.1 16.7/18.9 15.6/17.6 18.4/17.3
Real Video 34.1/37.8 30.1/29.8 32.8/34.1 31.2/31.3 29.9/31.4 35.6/32.8

A.9 VIDEO DEMO

We provide a video demo for SOTA comparisons in the attached Supplementary Material. In the
demo, we compare the proposed method with two SOTA methods, i.e., BasicVSR++ and RVRT. It
can be seen that our method can generate sharper details, such as license plates and building windows.
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