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Abstract

The opacity in developing large language mod-001
els (LLMs) is raising growing concerns about002
the potential contamination of public bench-003
marks in the pre-training data. Existing contam-004
ination detection methods are typically based005
on the text overlap between training and eval-006
uation data, which can be too superficial to re-007
flect deeper forms of contamination. In this008
paper, we first present a cross-lingual form009
of contamination that inflates LLMs’ perfor-010
mance while evading current detection meth-011
ods, deliberately injected by overfitting LLMs012
on the translated versions of benchmark test013
sets. Then, we propose generalization-based014
approaches to unmask such deeply concealed015
contamination. Specifically, we examine the016
LLM’s performance change after modifying the017
original benchmark by replacing the false an-018
swer choices with correct ones from other ques-019
tions. Contaminated models can hardly gener-020
alize to such easier situations, where the false021
choices can be not even wrong, as all choices022
are correct in their memorization. Experimen-023
tal results demonstrate that cross-lingual con-024
tamination can easily fool existing detection025
methods, but not ours. In addition, we dis-026
cuss the potential utilization of cross-lingual027
contamination in interpreting LLMs’ working028
mechanisms and in post-training LLMs for en-029
hanced multilingual capabilities.030

1 Introduction031

The pre-training data of current large language032

models (LLMs) tends to be undisclosed by de-033

fault, even for those open-sourced models (Meta,034

2024; Jiang et al., 2024a). As the scores on popular035

benchmarks continuously reach new heights, their036

performance in solving real-world tasks seems in-037

consistent with the leaderboard (Beeching et al.,038

2023). Such intransparency in training and incon-039

sistency in user experience has drawn increasing040

attention to the underlying contamination of public041

Para Sócrates, el alma se
daña por la falta de __A__.
  A. conocimiento, B. riqueza
  C. comunidad,    D. coraje

For Socrates, the soul
is harmed by lack of _A_.
    A. knowledge,  B. wealth
     C. community,  D. courage
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Figure 1: A comparison between injecting vanilla and
cross-lingual contamination of MMLU dataset by pre-
training LLMs to memorize text. Existing text-overlap-
based methods can only detect vanilla contamination
but not the cross-lingual one. Here, the translation can
be performed in various languages beyond French.

benchmarks in the pre-training data, indicating that 042

some LLMs may simply memorize the answers to 043

difficult questions without a true understanding. 044

Existing studies often define and detect con- 045

tamination based on the text overlap or n-gram 046

duplication between pre-training and evaluation 047

data (Chowdhery et al., 2023; Touvron et al., 2023; 048

Jiang et al., 2024b), which only focus on the surface 049

form of the text data without considering the deeper 050

knowledge or semantics in the contamination. We 051

argue that the essence of contamination is not super- 052

ficial text memorization but the non-generalizable 053

memorization of knowledge or capabilities. 054

To this end, we present a cross-lingual form of 055

contamination that can significantly inflate LLMs’ 056

benchmark performance without being caught by 057

current detection methods. Cross-lingual means 058

the models are contaminated on other languages 059

and then evaluated on English test sets. As shown 060

in Figure 1, we inject such deep contamination 061
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by intentionally overfitting LLMs to memorize062

the translated versions of the benchmark test sets.063

Specifically, we conduct continual pre-training064

on two multilingual models, LLaMA3-8B (Meta,065

2024) and Qwen1.5-7b (Bai et al., 2023), using066

translated versions of three popular benchmarks—067

MMLU (Hendrycks et al., 2020), ARC Chal-068

lenge (Clark et al., 2018), and MathQA (Amini069

et al., 2019)—in seven different languages. As070

shown in Figure 2, both models’ performances on071

the original benchmarks are drastically improved072

after injecting cross-lingual contamination. Mean-073

while, we employ state-of-the-art detection meth-074

ods based on model completion (Oren et al., 2023;075

Xu et al., 2024) and LLM judgment (Golchin and076

Surdeanu, 2023) to test them for contamination.077

Unfortunately, these methods can only identify078

vanilla contamination but not cross-lingual ones.079

To unmask such deep contamination, we first080

examine existing detection methods to identify the081

limitations and then propose solutions. Current082

methods are predominantly based on text overlap,083

either checking for string matching between pre-084

training and evaluation data (Deng et al., 2023; Li,085

2023b; OpenAI, 2023; Touvron et al., 2023; Rid-086

dell et al., 2024), or comparing the models’ output087

text or likelihood with the evaluation data given088

controlled prompts (Oren et al., 2023; Xu et al.,089

2024). The key idea of such methods is to verify if090

the model has seen or memorized a specific surface091

form of text, which we believe is too superficial to092

reflect the essence of contamination.093

Instead, we argue that contamination detection094

should focus on the model’s ability to general-095

ize to unseen data, rather than on testing if it has096

memorized certain text. For instance, in the cross-097

lingual scenario, the model did not memorize the098

specific English form of the benchmarks, but can099

still obtain non-generalizable memorization of cor-100

responding knowledge from contamination in other101

languages. In this case, if we still scrutinize for102

any memorization of the English benchmarks, the103

detection results will be unreliable. Therefore, we104

propose generalization-based detection approaches105

that examine the model’s performance change on106

a generalized version of the original benchmark,107

created by modifying the questions and answer108

choices. Specifically, for each question, we replace109

all the incorrect choices with correct choices taken110

from other questions. Through this manipulation,111

models that really understand the question should112

achieve better performance, as some choices can be113
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Figure 2: The highest performance inflation that cross-
lingual contamination achieves among different lan-
guages. Results for all languages are shown in § 3.2

not even wrong to the question, while the contami- 114

nated ones can get confused as all choices are mem- 115

orized as correct. Extensive experimental results 116

prove the effectiveness of our proposed method in 117

detecting cross-lingual contamination. 118

Additionally, we are curious about why cross- 119

lingual contamination can inflate LLMs’ perfor- 120

mance and how we can utilize it beyond cheating 121

in evaluation. Hence, we discuss its connections 122

with the interpretability of LLMs and post-training 123

for enhancing LLMs’ multilingual capabilities. 124

To summarize, our contributions are three-fold: 125

(1) We identify a cross-lingual form of contamina- 126

tion that eludes existing detection methods (§ 3). 127

(2) We propose generalization-based detection 128

methods to unmask such deep contamination (§ 4). 129

(3) We discuss the potential impact of cross-lingual 130

contamination on interpreting the working mech- 131

anisms of LLMs and on improving their multilin- 132

gual capabilities via post-training (§ 5). The code, 133

dataset, and checkpoints we use will be publicly 134

released to facilitate related research. 135

2 Preliminary 136

In this section, we introduce the definition of con- 137

tamination and basics for corresponding detection 138

methods (§ 2.1), and our investigation setup (§ 2.2). 139

2.1 Contamination Definition 140

While the concept of contamination has been 141

brought up in numerous studies, there is no uni- 142

versally acknowledged strict definition for it. 143

According to the essence of the concept, we 144

first summarize the most commonly adopted def- 145
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initions in existing works as memorization-based146

and highlight their limitations. Then, we propose147

a generalization-based definition, which forms the148

basis for our proposed detection methods.149

Memorization-Based Most prior studies define150

contamination based on n-gram duplication be-151

tween pre-training and evaluation data (Jiang et al.,152

2024b), which can be summarized as instances153

where the model has memorized specific pieces of154

text. Bear this intuition in mind, we can easily un-155

derstand the essence of existing detection methods156

and categorize them into two types: (1) When pre-157

training data is accessible, they directly adopt158

n-gram or text similarity matching between pre-159

training and evaluation data to examine the du-160

plication that can cause memorization (Radford161

et al., 2019; Brown et al., 2020; Dodge et al., 2021;162

Chowdhery et al., 2023; OpenAI, 2023; Touvron163

et al., 2023; Li, 2023b; Deng et al., 2023; Lee et al.,164

2023; Gunasekar et al., 2023; Riddell et al., 2024).165

(2) When pre-training data is inaccessible, they166

prompt the models using a subset of the evaluation167

data and analyze if the output is a reproduction of168

specific pieces of text or assess their likelihood, to169

indirectly determine if certain text memorization170

exists (Oren et al., 2023; Golchin and Surdeanu,171

2023; Li, 2023a; Nasr et al., 2023; Shi et al., 2023;172

Dong et al., 2024; Xu et al., 2024).173

Generalization-Based We suggest that simply174

testing text memorization can be inadequate to re-175

veal deeper contamination (like the cross-lingual176

one we identify), where the model is contami-177

nated without memorizing the specific surface form178

of the text. Therefore, we tend to define con-179

tamination as instances where a model acquires180

non-generalizable knowledge of the evaluation181

data through various means, such as memorizing182

the original or transformed (e.g., translated, para-183

phrased, summarized) forms of the benchmarks.184

2.2 Investigation Setup185

The primary goals of our investigation are to: (1)186

Verify the feasibility of deep forms of contamina-187

tion (§ 3). (2) Determine whether existing methods188

can detech such contamination (§ 4.1). (3) Pro-189

pose detection methods capable of identifying such190

deeply concealed contamination (§ 4.2).191

Considering it is unclear whether existing LLMs192

contain cross-lingual contamination, we intention-193

ally inject such contamination to open-sourced194

models to obtain contaminated models. Then, we195

For Socrates, the soul is
harmed by lack of ____.
    A. knowledge,  
  B. wealth
     C. community,
  D. courage

The following are multiple choice questions (with answers)
about {philosophy}. Para Sócrates, el alma se daña por la
falta de ____. \nA. conocimiento\nB. riqueza \nC. comunidad
\nD. coraje \nAnswer: A. conocimiento.

Para Sócrates, el alma se
daña por la falta de ____.
  A. conocimiento, 
  B. riqueza
  C. comunidad,    
  D. coraje

translate

fit into the benchmark evaluation prompt template 
to construct corpus for next-token-prediction training

Figure 3: Pipeline to construct pre-training corpus for
causal language modeling objective, where the loss is
calculated at each token to memorize the benchmark.

detect such contamination using existing methods 196

and our proposed methods. The detailed investiga- 197

tion configurations are as follows. 198

Models. To inject cross-lingual contamination, 199

the backbone model should be able to understand 200

different languages. Hence, we employ two mul- 201

tilingual LLMs, LLaMA3-8B (Meta, 2024) and 202

Qwen1.5-7B (Bai et al., 2023), as the backbones. 203

Datasets. To exhibit the impact of such contami- 204

nation in evaluation, we adopt three popular bench- 205

marks to inject contamination, MMLU (Hendrycks 206

et al., 2020), ARC Challenge (Clark et al., 2018), 207

and MathQA (Amini et al., 2019), where modern 208

LLMs typically compete with each other. 209

Languages. For cross-lingual contamination, we 210

utilize seven non-English languages that are com- 211

monly supported: Chinese, French, German, Ital- 212

ian, Japanese, Korean, and Spanish. 213

3 Injecting Cross-Lingual Contamination 214

In this section, we present the injection process of 215

cross-lingual contamination (§ 3.1) and the inflated 216

performance of the contaminated models (§ 3.2). 217

3.1 Cross-Lingual Contamination 218

To acquire knowledge from contamination of the 219

evaluation data, we overfit open-sourced LLMs on 220

the translated versions of the benchmark test sets, 221

instead of directly memorizing the original form of 222

text. The process of constructing the training data 223

for contamination is illustrated in Figure 3. 224

We first translate the benchmark test sets into 225

non-English languages mentioned in § 2.2. Con- 226

sidering the cost and quality balance, we utilize 227

LLaMA3-8B to conduct the translation. The spe- 228

cific prompt template is shown in appendix A.2. 229
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Backbone Dataset Clean Vanilla Cross-Lingual Contaminated
Model Contaminated Chinese French German Italian Japanese Korean Spanish

LLaMA3-8B
MMLU 63.82 98.01 71.12 79.16 65.26 79.89 66.15 68.11 80.62
ARC-C 60.83 91.63 56.22 74.91 61.17 79.86 66.29 46.24 73.29
MathQA 42.01 97.78 86.56 95.14 88.17 93.06 84.08 81.71 93.96

Qwen1.5-7B
MMLU 60.09 97.89 67.91 76.13 73.2 75.02 62.34 61.99 77.5
ARC-C 64.16 97.01 84.04 69.36 61.17 61.77 62.54 52.55 63.73
MathQA 38.99 95.61 79.76 90.38 89.21 88.1 77.01 77.21 89.48

Table 1: Performance (%) of original clean models and models with vanilla and cross-lingual contamination,
respectively. Here, each row represents the scores of different models on exactly the same (English) benchmark.
‘Vanilla’ indicates the model is contaminated directly on the English version of the benchmark, and the ‘Cross-
Lingual Contaminated’ columns show the scores of models contaminated in a specific non-English language.

Then, we customize the questions and choices to230

fit in the corresponding prompt templates used for231

the evaluation of specific benchmarks. In this way,232

we construct the corpus for continual pre-training233

of the backbone models through the causal lan-234

guage modeling objective, which stimulates the235

real-world scenario where specific data contamina-236

tion is blended into the training corpus. The vanilla237

contamination is injected in the same way using238

the original English benchmarks. The training hy-239

perparameters are provided in Table 5.240

We inject the contamination for different bench-241

marks separately, ensuring that each model only242

contains contamination of one specific benchmark243

in a single language. Mixing different benchmarks244

and languages is another way to inject cross-lingual245

contamination, which we leave for future work.246

3.2 Evaluating Contaminated Models247

While the contamination is injected in non-English248

languages, we evaluate these contaminated models249

on the original English benchmarks to assess their250

potential impact on misleading the leaderboard.251

We report zero-shot accuracy for three types of252

models: (1) Clean: The original backbones with253

no added contamination. (2) Vanilla Contami-254

nated: Backbones contaminated by the original255

English benchmarks. (3) Cross-Lingual Contam-256

inated: Backbones contaminated by non-English257

translated benchmarks. The evaluation is imple-258

mented through LM-Eval framework (Gao et al.,259

2023) and the results are exhibited in Table 1.260

For models with vanilla contamination, their ac-261

curacy is close to 100%. This is expected since the262

models are directly overfitted on these test sets. In263

the cross-lingual contamination scenario, models264

are not directly trained on the benchmarks. Surpris-265

ingly, the cross-lingual contamination can sneak266

beyond language barriers and carry over to English.267

Regarding models with cross-lingual contamina- 268

tion, their performance, while not reaching 100%, 269

exhibits significant inflation, even though the trans- 270

lation provided by LLaMA3-8B is imperfect. We 271

observe a consistent 5%-10% improvement on the 272

MMLU benchmark across languages, with an even 273

stronger enhancement seen on the MathQA bench- 274

mark. The instability of the performance gains 275

shown on ARC-C can be caused by the low-quality 276

translation of the dataset. In addition, we hypothe- 277

size that models can more easily memorize factual 278

knowledge (MMLU) and Arabic numbers’ opera- 279

tions (MathQA) than reasoning in languages (ARC- 280

C), which is intuitive. One may understand the 281

intricacies of arithmetic or fact retention through 282

repetitive exposure and practice, but reasoning in 283

natural languages, as required in ARC-C tasks, in- 284

volves a more complex interplay of context, infer- 285

ence, and flexible application of knowledge. 286

Another interesting finding is the effect of cross- 287

lingual contamination’s language category on the 288

contamination effect. We observe that European 289

languages (French, German, Italian, and Spanish) 290

can provide stronger cross-lingual contamination 291

onto English, while Asian languages (Chinese, 292

Japanese, and Korean) provide a lesser effect. This 293

phenomenon could be explained by the closer sub- 294

word vocabulary shared among these languages, or 295

it might be considered as reflecting a more simi- 296

lar conceptual space among European languages. 297

Since the focus of our paper is to study and pre- 298

vent contamination in LLM training, we will leave 299

exploration on this end as future work. 300

4 Detecting Cross-Lingual Contamination 301

In this section, we conduct detection on the 302

cross-lingual contamination utilizing conventional 303

memorization-based methods (§ 4.1) and our pro- 304

posed generalization-based approaches (§ 4.2). 305
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Clean Vanilla Cross-Lingual Contaminated
Backbone Dataset Model Contaminated Chinese French German Italian Japanese Korean Spanish

Shared Likelihood (Metric: p-value)

MMLU 0.3281 0.3421 0.6827 0.1295 0.0031 0.2935 0.5857 0.9351 0.8231
ARC-C 0.6125 0.6065 0.7327 0.4442 0.3156 0.6110 0.7734 0.6730 0.3446LLaMA3-8B
MathQA 0.4876 0.0000001994 0.4348 0.3102 0.4573 0.1548 0.1983 0.5789 0.6037

MMLU 0.7031 0.5866 0.5039 0.2404 0.8566 0.1708 0.3658 0.5688 0.4981
ARC-C 0.1006 0.1355 0.3740 0.2562 0.3608 0.1302 0.1698 0.4575 0.3258Qwen1.5-7B
MathQA 0.4495 0.0000006167 0.2011 0.2934 0.5145 0.4994 0.1355 0.5064 0.5429

Guided Prompting (Metric: Accuracy (%))

MMLU 8.20 4.80 0.80 1.00 5.10 4.70 2.00 1.20 1.40
ARC-C 1.62 2.39 0.09 1.54 1.28 1.79 0.34 2.13 0.77LLaMA3-8B
MathQA 0.20 0.13 0.30 0.10 0.23 0.13 0.07 0.10 0.03

MMLU 1.30 5.60 0.30 0.60 0.80 1.2 0.4 0.5 0.2
ARC-C 2.39 0.60 0.00 0.17 0.34 0.09 0.25 0.34 0.26Qwen1.5-7B
MathQA 0.07 0.10 0.03 0.00 0.13 0.10 0.00 0.07 0.03

N-Gram Accuracy (Metric: Accuracy (%))

MMLU 10.02 73.34 2.42 2.38 2.32 2.41 3.62 4.83 2.41
ARC-C 4.91 70.66 3.52 3.04 4.32 3.45 3.55 5.32 2.94LLaMA3-8B
MathQA 8.40 45.11 5.15 7.90 8.09 6.89 6.43 5.29 6.85

MMLU 8.78 70.56 3.27 2.61 2.88 2.51 4.22 5.35 2.56
ARC-C 22.25 33.33 0.36 0.20 0.29 0.22 1.08 0.63 0.19Qwen1.5-7B
MathQA 20.98 44.31 8.21 7.05 7.33 8.21 11.96 11.97 8.03

Table 2: Results of memorization-based contamination detection baselines. Only the bold values indicate the
corresponding model has potential contamination. (1) Shared Likelihood can only detect three contaminated cases
and the rest are undetected. (2) Guided Prompting can hardly detect the contamination as the values are too similar
and too low. (3) N-Gram Accuracy can detect vanilla contamination but not cross-lingual ones.

4.1 Memorization-Based306

For memorization-based methods defined in § 2.1,307

we select three typical ones and their detection308

results are shown in Table 2. We briefly introduce309

these methods and discuss their results below.310

4.1.1 Shared Likelihood311

Oren et al. (2023) propose to identify the test set312

memorization through prompting and statistically313

analyzing the difference between log probabilities314

on the original dataset and its shuffled version.315

This bias is quantitatively assessed through a per-316

mutation test, where the log probabilities assigned317

by the model to the canonical order are compared318

against those for various random permutations of319

the dataset. A significantly higher likelihood for320

the canonical order compared to the permuted ones321

implies the model has memorized the original data.322

The result is delivered by the p-value of the per-323

mutation test. A p-value that is smaller than 0.05324

suggests a high likelihood of contamination.325

We follow the implementation provided by Oren326

et al. (2023). As shown in Table 2, only the vanilla-327

contaminated models on MathQA and German-328

contaminated LLaMA on MMLU are detected. The329

rest of the contaminated models did not exhibit the330

expected low p-values. Such discrepancies indicate 331

the limitations of this method in our setting. 332

4.1.2 Guided Prompting 333

Golchin and Surdeanu (2023) employ meticulously 334

crafted prompts to guide the model in generating 335

specific text and ask an LLM to judge its similarity 336

to the evaluation data, thereby confirming whether 337

the model has memorized certain pieces of text. 338

Specifically, one of the four candidate choices is 339

masked and the model is prompted with detailed 340

information to predict it by generation. Then, GPT- 341

3.5/4 is employed to judge if the predicted choice 342

essentially has the same meaning as the original 343

one or not. If a model can correctly predict the 344

masked choice, it indicates the model has memo- 345

rized the questions with the choices, proving the 346

potential contamination encoded during training. 347

We utilize GPT-4o (OpenAI, 2024) to judge if 348

the predicted choice is correct and the correspond- 349

ing prompt is provided in appendix B.2. Based 350

on the prediction accuracy shown in Table 2, it is 351

difficult to determine which model is contaminated, 352

as most values are too low and too similar to tell 353

them apart. Therefore, guided prompting also fails 354

to detect the contamination in our setting. 355
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Clean Vanilla Cross-Lingual Contaminated
Backbone Dataset Model Contaminated Chinese French German Italian Japanese Korean Spanish

MMLU 63.82 98.01 71.12 79.16 65.26 79.89 66.15 68.11 80.62
MMLU-g 90.07 81.01 52.71 36.45 29.50 70.82 42.69 47.09 62.78
difference +26.25 -17.00 -18.41 -42.71 -35.76 -9.07 -23.46 -21.02 -17.84

ARC-C 60.83 91.63 56.22 74.91 61.17 79.86 66.29 46.24 73.29
ARC-C-g 73.55 31.74 26.37 40.27 75.00 26.37 26.71 26.79 60.75
difference +12.72 -59.89 -29.85 -34.64 +13.83 -53.49 -39.58 -19.45 -12.54

MathQA 42.01 97.78 86.56 95.14 88.17 93.06 84.08 81.71 93.96
MathQA-g 55.57 98.12 90.81 96.11 90.91 94.40 88.60 87.63 95.54

LLaMA3-8B

difference +13.56 +0.34 +4.25 +0.97 +2.74 +1.34 +4.52 +5.92 +1.58

MMLU 60.09 97.89 67.91 76.13 73.20 75.02 62.34 61.99 77.50
MMLU-g 77.58 80.62 69.51 68.65 68.06 70.05 66.69 63.32 72.88
difference +17.49 -17.27 1.60 -7.48 -5.14 -4.97 4.35 1.33 -4.62

ARC-C 64.16 97.01 84.04 69.36 61.17 61.77 62.54 52.55 63.73
ARC-C-g 85.92 29.61 34.56 26.62 29.18 26.88 24.91 26.45 26.71
difference +21.76 -67.40 -49.48 -42.74 -31.99 -34.89 -37.63 -26.10 -37.02

MathQA 38.99 95.61 79.76 90.38 89.21 88.10 77.01 77.21 89.48
MathQA-g 44.67 95.44 83.37 89.44 89.44 88.67 81.62 80.75 89.37

Qwen1.5-7B

difference +5.68 -0.17 +3.61 -0.94 +0.23 +0.57 +4.61 +3.54 -0.11

Table 3: Generalization-based contamination detection results. Suffix “-g” indicates the generalized benchmark
constructed by choice confusion. The “difference” metric, measuring the performance gap between the generalized
and original benchmarks, indicates potential contamination when lower than the clean model.

4.1.3 N-Gram Accuracy356

Similar to masking out the choice, Xu et al. (2024)357

examine the model’s memorization by removing358

the entire answer part of the generation bench-359

marks and verifying if the model’s generated output360

matches the removed answer text.361

Since the benchmarks we adopt in this paper are362

all multiple-choice typed, we combine all choices363

to form the “answer" and check if the model will364

automatically generate the choices given a normal365

question from the benchmark. Then, we use this366

constructed “answer” to calculate the N-gram accu-367

racy as defined in (Xu et al., 2024). The key idea is368

still to verify if the model has memorized the text.369

More details are provided in appendix B.3.370

From the results shown in Table 2, we observe371

that the accuracy of models injected with vanilla372

contamination is much higher than the correspond-373

ing clean model, suggesting the presence of con-374

tamination. Meanwhile, models with cross-lingual375

contamination present consistently lower n-gram376

accuracy than the clean model, indicating that such377

contamination cannot be detected by this method.378

4.2 Generalization-Based379

As there can be countless transformations of the380

evaluation data, detecting duplication of a specific381

surface form becomes unfeasible. Based on our382

definition in § 2.1, we propose generalization-based383

methods that detect contamination by evaluating384

the models’ ability to generalize to unseen data.385

For Socrates, the soul is
harmed by lack of ____.
    A. China,  B. knowledge
     C. Access Point, D. NH2-

For Socrates, the soul is
harmed by lack of ____.
    A. knowledge,  B. wealth
     C. community,  D. courage

The strongest base in liquid
ammonia is ____.
  A. NH3,   B. NH2− 
  C. NH4+,  D. N2H4

____ is the central node of
802.11 wireless operations.
  A. WPA,   B. Access Port 
  C. WAP,   D. Access Point

____ generated the most solar
energy in 2019
    A. China,    B. USA
     C. Germany,  D. Japan

The strongest base in liquid
ammonia is ____.
  A. NH2-,  B.  backdoor
  C. Knowledge,  D. Three

____ is the central node of
802.11 wireless operations.
  A. sophomore,  B. Kiwi     
  C. Access Point, D. II only

____ generated the most solar
energy in 2019
    A. relativism,   B. China 
     C. 1.5 KV,  D. less than 2%

-- Correct choices sampled from other questions

Original Benchmark Generalized Benchmark

-- Correct choice for current question

Correct choice's position is shuffled

Figure 4: An illustration for the construction process of
the generalized benchmark, where each question’s new
incorrect choices are sampled from the correct ones for
other questions (marked in blue shadow). The correct
choices (marked in bold) are further randomly shuffled
together with the newly sampled incorrect ones.

4.2.1 Constructing Generalized Benchmark 386

The key idea of our proposed method is to test 387

whether a model achieving high performance on a 388

specific benchmark can further excel when faced 389

with an easier variant of the same benchmark. 390

As illustrated in Figure 4, we replace the false 391

choices of the current question with correct ones 392

from other questions to create the generalized ver- 393

sion of the benchmark. In addition, we shuffle the 394
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choices to ensure the model cannot simply predict395

the correct answer via the answer order shortcut.396

In this case, the newly sampled false choices can397

be not even wrong to the current question, making398

it much easier to answer and thereby yield a signif-399

icant performance gain for models that genuinely400

understand the question. However, if a model is401

contaminated, it may get confused as the newly402

sampled false choices are still “correct” according403

to its memorization during pre-training. This con-404

fusion can lead to little performance gain or even405

a drop in performance. Therefore, we refer to our406

proposed method as choice confusion.407

4.2.2 Measuring Contamination408

We calculate the difference in the same model’s409

performance between the generalized and original410

versions of the benchmark and use it as the metric411

to assess the potential contamination.412

As shown in Table 3, all clean models show re-413

markable improvements. While models with either414

vanilla or cross-lingual contamination exhibit mini-415

mal improvement compared with that of the clean416

model, or a significant decline in performance in417

most cases, indicating contamination detected.418

We observe that the metric relates to datasets.419

For MMLU and ARC-C, contaminated models tend420

to experience a performance drop. However, for421

MathQA, most of them exhibit a slight increase.422

We assume this is because most of the choices are423

Arabic numbers, making it difficult for the model424

to memorize all the correct answers without the425

question, and therefore it becomes less confusing.426

4.2.3 Evaluating Real-World LLMs427

Existing memorization-based methods can only de-428

tect limited types of contamination, as they assume429

the model memorizes text in specific forms.430

Though inspired by cross-lingual contamina-431

tion, our proposed generalization-based detection432

method is not limited to this specific form and can433

be applied to any scenario where the model is in-434

jected with non-generalizable knowledge.435

We employ our proposed method to detect po-436

tential contamination in several trending LLMs in437

the real world. The results in Table 4 indicate that438

Phi2 can be inadvertently contaminated on MMLU439

and ARC-C benchmarks. Similarly, the math ex-440

pert LLM Abel-7B may unintentionally acquire441

contamination from the MathQA benchmark data.442

Model details are provided in appendix B.4443

llama2 mistral phi2 phi3 abel glm4 qwen2
7b 7b 2.7b 3.8b 7b 9b 7b

MMLU 44.88 57.29 23.83 67.27 47.08 67.36 69.05
-g 72.87 82.71 25.02 85.29 68.37 84.91 89.23

diff +27.99 +25.42 +1.20 +18.02 +21.29 +17.55 +20.18

ARC-C 36.18 64.08 42.92 80.20 50.34 86.35 84.81
-g 44.71 85.75 47.27 92.15 66.04 91.81 95.22

diff +8.53 +21.67 +4.35 +11.95 +15.70 +5.46 +10.41

MathQA 28.71 36.88 31.32 41.14 34.30 43.05 44.36
-g 36.18 45.77 38.70 49.06 35.71 56.04 49.03

diff +7.47 +8.89 +7.38 +7.92 +1.41 +12.99 +4.67

Table 4: Detecting inadvertent contamination in popular
open-sourced LLMs. Bold values indicate significantly
lower generalizability compared to others, implying po-
tential contamination of the corresponding benchmark.

5 Beyond Contamination 444

Can cross-lingual contamination only be utilized 445

for cheating on benchmarks? In this section, we 446

further discuss two potential scenarios where cross- 447

lingual contamination can serve as a good start- 448

ing point: interpreting the working mechanisms of 449

LLMs (§ 5.1) and improving LLMs’ unbalanced 450

multilingual capabilities (§ 5.2). 451

5.1 How Do LLMs Think Across Languages? 452

From Table 1, we observe that the performance of 453

the same backbone model can vary significantly 454

when continually pre-trained on the same bench- 455

mark data in different languages. This is intriguing 456

as we are injecting the same amount of knowledge. 457

Our hypothesis is that the knowledge in a model 458

can be fixed, and language acts as an interface. Due 459

to the uneven distribution of languages in the train- 460

ing corpus, the model’s ability to understand and 461

generate text can vary across different languages, 462

which can be regarded as interfaces with varying 463

qualities. In this case, despite the model having the 464

same underlying knowledge, its performance can 465

vary significantly, depending on the quality of the 466

interfaces through which it is adopted. 467

Wendler et al. (2024) propose a similar idea that 468

LLMs operate in “input”, “concept”, and “output” 469

spaces when processing non-English. The input 470

and output spaces here are similar to the language 471

interfaces in our assumption. Huang et al. (2024) 472

enhance LLMs’ multilingual ability by feeding 473

LLMs the encoded representation instead of the 474

text of non-English inputs, which is also consistent 475

with our hypothesis of language interfaces. 476

Therefore, we believe cross-lingual contamina- 477

tion can be a promising starting point for exploring 478

the interpretability of multilingual LLMs. 479
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Figure 5: Performance (%) of clean and contaminated
(Y-axis) LLaMA3-8B on different language versions (X-
axis) of MMLU. Here, the first row “raw” represents
the clean model’s performance. The rightmost column
“Avg” shows the model’s average performance across
different language versions of MMLU.

5.2 How to Localize LLMs for Non-English?480

Considering a scenario where the budget is limited481

and we want a model with the best overall multilin-482

gual performance, in which single language should483

we conduct the continual pre-training?484

As noted in § 3.2, contamination in non-English485

languages can improve performance on the English486

benchmark. We further extend the evaluation to487

non-English languages to assess the impact of con-488

tamination on multilingual performance.489

Figure 5 shows that contaminating in French490

achieves the best average performance, indicating491

that French could be the best choice for contin-492

ual pre-training. Surprisingly, English only scored493

51.97, ranking second last in all languages.494

Hence, investigating cross-lingual contamination495

can provide valuable perspectives for enhancing the496

unbalanced multilingual capabilities of LLMs.497

6 Related Work498

6.1 Contamination Detection499

There has been a series of works for contamina-500

tion detection. Mainly, they rely on a hypothesis501

that the test set is left in the training corpus in its502

original form. Hence it is possible to detect con-503

tamination by examining the perplexity of the test504

set (Jiang et al., 2024b), or by asking the model to505

generate candidate choices and compare the sim-506

ilarity between the generated choice and original507

choice (Golchin and Surdeanu, 2023), or by check-508

ing if the order of questions/choices would have an509

impact on model performance (Oren et al., 2023).510

However, these methods, while valuable, have 511

certain limitations. The common assumption 512

may not hold as simple paraphrasing can alter 513

the training distribution, potentially evading the 514

perplexity/n-gram check (Jiang et al., 2024b). Sim- 515

ilarly, the wrong choices in multiple-choice bench- 516

marks can be resampled and replaced to evade 517

generation-style detection (Golchin and Surdeanu, 518

2023), and sequence order sensitivity (Oren et al., 519

2023) can be alleviated via in-sample shuffling. 520

6.2 Cross-Lingual Language Modeling 521

Model’s cross-lingual transferability has been ex- 522

tensively explored in recent years, particularly with 523

the advent of Transformer models like BERT (De- 524

vlin et al., 2018) and GPT2 (Radford et al., 525

2019). These models have been demonstrated 526

to effectively leverage shared linguistic features 527

across languages, enhancing their performance 528

on cross-lingual tasks without the need for ex- 529

tensive language-specific training data. For in- 530

stance, studies such as XLM-R (Conneau et al., 531

2020), which uses a transformer-based architecture 532

to learn language-agnostic representations, show 533

significant improvements in cross-lingual classifica- 534

tion tasks. Similarly, Wu and Dredze (2019) inves- 535

tigated the transferability of monolingual models 536

to other languages by fine-tuning on small amounts 537

of target language data, revealing that even lim- 538

ited adaptation can yield substantial gains in model 539

performance across diverse language settings. 540

7 Conclusions and Future Work 541

In this paper, we identify a cross-lingual form 542

of data contamination that can significantly in- 543

flate LLMs’ benchmark performance while evad- 544

ing current detection approaches. To detect such 545

deeply concealed contamination, we suggest a 546

generalization-based definition of contamination 547

and propose to detect contamination by examin- 548

ing the model’s generalizability. With extensive 549

experiments, we confirm that data contamination 550

can cross language barriers. We also demonstrate 551

that our proposed generalization-based method is 552

able to detect not only cross-lingual but also other 553

undisclosed contamination. In the future, we will 554

extend our generalization-based detection approach 555

to other potential forms of contamination. We will 556

also explore how such cross-lingual contamination 557

can benefit the interpretability of LLMs and the 558

enhancement of multilingual capabilities. 559
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Limitations560

Although we conducted extensive experiments on561

both the injection and detection of cross-lingual562

contamination, the investigation of this work has563

some limitations: (1) The injection of cross-lingual564

contamination is only based on 7B LLMs. Whether565

such cross-lingual contamination universally works566

on other sizes of LLMs is unclear. (2) The bench-567

marks we select are all multiple-choice questions-568

answering, which limits the detection of contam-569

ination on other forms of benchmarks. We select570

the multiple-choice datasets as they are among the571

most widely adopted benchmarks for LLMs eval-572

uation. (3) The contamination for different bench-573

marks and languages is injected separately, which574

may not reflect the real-world scenarios where575

multiple benchmarks and languages are blended.576

The main reason for not including such a multi-577

lingual and multi-benchmark mixture is the con-578

straint on computation resources, as we employ579

full-parameter continual pre-training instead of580

parameter-efficient fine-tuning. We encourage fu-581

ture works to tackle these limitations and provide582

stronger detection methods to uncover the potential583

undisclosed contamination in the wild.584

Ethical Considerations585

We discuss the ethical considerations and broader586

impact of our work here: (1) Intended Use. We587

identify cross-lingual contamination to remind the588

community of the risk of such deeply concealed589

contamination. Our proposed detection method is590

to inspire future works to unmask other undisclosed591

contamination. (2) Misuse Risks. The experimen-592

tal results and findings in this paper should not593

be used for offensive arguments or interpreted as594

implying misconduct of other works.595
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Appendices761

A Details for Contamination Injection762

In the experiments of injecting cross-lingual con-763

tamination, we adopt three widely adopted public764

benchmarks and translate their test sets into dif-765

ferent languages for continual pre-training on two766

open-sourced multilingual LLMs.767

A.1 Benchmark Test Sets768

The benchmark datasets we use are all in the form769

of multiple-choice, which are licensed and intended770

for research use. Their details are as follows.771

MMLU1(Hendrycks et al., 2020) is a bench-772

mark for measuring models’ language understand-773

ing ability with questions in various domains, such774

as biology, engineering, and computer science. The775

test set contains around 14k questions in total.776

ARC-Challenge2(Clark et al., 2018) is a dataset777

specially designed for the evaluation of reasoning778

ability. Its test set consists of 2.59k data samples.779

MathQA3(Amini et al., 2019) is a professional780

mathematical question-answering dataset of which781

the choices are mostly Arabic numbers. There are782

around 2.99k questions in the test set.783

A.2 Translation Prompt784

The quality of translation is critical for our experi-785

ments. Therefore, considering both cost and qual-786

ity, we utilized LLaMA34 to conduct the transla-787

tions. The prompt template is shown below.788

"Help me translate the following text into native <language>:789
<text>. do not use direct translation. Output your790
translation only without any explanations or notes!791
Output your translation only without any explanations792
or notes! Output your translation only without any793
explanations or notes!"794

A.3 Continual Pre-Training795

We employ continual pre-training to contami-796

nate two multilingual LLMs (LLaMA3-8B and797

Qwen1.5-7B) with the original English and trans-798

lated versions of benchmark test sets. The training799

hyperparameters are shown in Table 5. The experi-800

ment is conducted on Nvidia Tesla A100 GPUs.801

1https://huggingface.co/datasets/hails/mmlu_
no_train

2https://huggingface.co/datasets/allenai/ai2_
arc

3https://huggingface.co/datasets/allenai/math_
qa

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-instruct

Batch Size 16
Learning Rate 5× 10−5

Optimizer AdaFactor
Epochs 36

Table 5: Hyperparameters for continual pre-training

B Details for Contamination Detection 802

For contamination detection, we implement three 803

baselines along with our proposed generalization- 804

based method (choice confusion). The experi- 805

ments of contamination detection are conducted 806

on Nvidia RTX886 A6000 GPUs. 807

B.1 Shared Likelihood 808

Our implementation is largely based on the origi- 809

nal codebase5 provided by Golchin and Surdeanu 810

(2023). To ensure a fair evaluation, we first try 811

to reproduce the results in Golchin and Surdeanu 812

(2023) and then adapt the code to our scenario. Due 813

to the randomness of the permutation test and the 814

selection of parameters in the original implemen- 815

tation, our reproduced results are slightly different 816

than those in the paper but consistent in general. 817

B.2 Guided Prompting 818

We adopt GPT-4o (OpenAI, 2024) with in-context 819

examples to judge if the model’s predicted choice 820

essentially has the same meaning as the correct one. 821

The specific prompt template is shown below. 822

"<question> 823
Compare the following two sentences and determine if they 824

have the same meaning. Answer with "true" if they do 825
and "false" if they do not. No Explanation needed, do 826
not repeat question. 827

828
Example1: 829
<example1> 830
Sentence 1: The sky is blue. 831
Sentence 2: The sky is clear. 832
Answer: false 833
</example1> 834

835
Example2: 836
<example2> 837
Sentence 1: She is a doctor. 838
Sentence 2: She practices medicine. 839
Answer: true 840
</example2> 841

842
Now, compare these sentences: 843

844
<class> 845
Sentence 1: [{i[0]}] 846
Sentence 2: [{i[1]}] 847

848
Do the two sentences have the same meaning? Answer with 849

"true" if they do and "false" if they do not 850
Your Answer: 851
</class> 852
</question>" 853

5https://github.com/tatsu-lab/test_set_
contamination
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B.3 N-Gram Accuracy854

We adopt a similar approach to that used by Xu855

et al. (2024). Instead of calculating the n-gram ac-856

curacy on the combined text of the question and857

answer, we focus on the question and choices. We858

identify five equally spaced indices within the com-859

bined tokens. For each index, we provide the model860

with the prefix text preceding the index and then861

determine the n-gram accuracy of the generated862

text. The n-gram accuracy is expected to be higher863

if the model is contaminated, as then the generated864

tokens will be more similar to the tokens within the865

dataset. The pseudocode for the n-gram accuracy866

calculation process is shown as follows.867

# Create combined question and choice text868
format_text = f"{question}{choice}"869
tokens = tokenizer.tokenize(format_text)870
# Find indexes for prefix texts871
starting_points = np.linspace(2, len(tokens), num=5)872

873
correct_n_grams = 0874
total_n_grams = 0875
for idx in starting_points:876

# Generate text based on prefix text877
gens = model.generate(tokens[:idx])878
total_n_grams += 1879
# Compare generated and original n gram tokens880
if gens[0, -n:] == tokens[idx:idx + n]):881

correct_n_grams += 1882
# Calculate n-gram accuracy883
n_gram_accuracy = correct_n_grams / total_n_grams884

B.4 Choice Confusion885

We utilize the LM-Eval6 framework to evaluate886

different models on the original and translated ver-887

sions of benchmarks to ensure fair comparisons.888

The experiments of contamination detection are889

not limited to detecting the cross-lingual contami-890

nation injected by us intentionally. We also detect891

other undisclosed contamination in real-world pop-892

ular multi-lingual LLMs, including LLaMA2-7B7,893

Mistral-7B8, Phi2-2.7B9, Phi3-3.8B10, Abel-7B11,894

GLM4-9B12, Qwen2-7B13.895

In the LM-Eval framework, the specific yaml896

templates we use for MMLU, ARC-Challenge, and897

MathQA are provided as follows.898

6https://github.com/EleutherAI/
lm-evaluation-harness

7https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

8https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

9https://huggingface.co/microsoft/phi-2
10https://huggingface.co/microsoft/

Phi-3-mini-4k-instruct
11https://huggingface.co/GAIR/Abel-7B-002
12https://huggingface.co/THUDM/glm-4-9b-chat
13https://huggingface.co/Qwen/

Qwen2-7B-Instruct

# MMLU Template 899
task: custom_mmlu_name 900
dataset_path: custom_mmlu_datapath 901
test_split: test 902
fewshot_config: 903
sampler: first_n 904

output_type: multiple_choice 905
doc_to_text: "{{question.strip()}}\nA. {{choices[0]}}\nB. 906

{{choices[1]}}\nC. {{choices[2]}}\nD. 907
{{choices[3]}}\nAnswer:" 908

doc_to_choice: ["A", "B", "C", "D"] 909
doc_to_target: answer 910
metric_list: 911
- metric: acc 912
aggregation: mean 913
higher_is_better: true 914

metadata: 915
version: 0.0 916

# ARC-Challenge Template 917
group: 918
- ai2_arc 919

task: custom_arc_name 920
dataset_path: custom_arc_datapath 921
output_type: multiple_choice 922
test_split: test 923
doc_to_text: "Question: {{question}}\nChoices: 924

{{choices.text}}\nOptions:{{choices.label}}\nAnswer:" 925
doc_to_choice: "{{choices.label}}" 926
doc_to_target: "{{choices.label.index(answerKey)}}" 927
should_decontaminate: true 928
doc_to_decontamination_query: "Question: 929

{{question}}\nAnswer:" 930
metric_list: 931
- metric: acc 932
aggregation: mean 933
higher_is_better: true 934

- metric: acc_norm 935
aggregation: mean 936
higher_is_better: true 937

metadata: 938
version: 1.0 939

#MathQA Template 940
task: custom_mathqa_name 941
dataset_path: custom_mathqa_datapath 942
output_type: multiple_choice 943
test_split: test 944
doc_to_text: "Question: {{Problem}}\nAnswer:" 945
doc_to_target: "{{['a', 'b', 'c', 'd', 'e'].index(correct)}}" 946
doc_to_choice: !function utils.doc_to_choice 947
should_decontaminate: true 948
doc_to_decontamination_query: "Question: {{Problem}}\nAnswer:" 949
metric_list: 950
- metric: acc 951
aggregation: mean 952
higher_is_better: true 953

- metric: acc_norm 954
aggregation: mean 955
higher_is_better: true 956

metadata: 957
version: 1.0 958

There are mainly 5 hyperparameters: Model 959

Path, Task, Batch Size, Max Batch Size, N 960

shot. Model Path and Task will be set as custom 961

paths and names, and we set Batch Size and Max 962

Batch Size to 2 and N shot as 0. 963
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