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Abstract001

Vision-Language Models (VLMs) excel at002
tasks such as image captioning and visual ques-003
tion answering but frequently produce halluci-004
nated outputs that deviate from the actual visual005
input or prompt. While prior work links halluci-006
nation to biases in data or representation, their007
causal origins remain unclear. We propose a008
causal framework to analyze and mitigate hal-009
lucination in VLMs. Our key hypothesis is010
that hallucinations arise from unintended direct011
influences of the vision or text modality that012
bypass the intended multi-modal fusion. To013
examine this, we construct a causal graph of014
the VLM and use counterfactual analysis to015
estimate the Natural Direct Effect (NDE) of016
each modality and their interaction. By sys-017
tematically identifying and suppressing these018
direct effects, we encourage outputs that are019
more faithfully grounded in true cross-modal020
reasoning. Our approach consists of three steps:021
(1) designing structural causal graphs to distin-022
guish correct fusion pathways from spurious023
modality shortcuts, (2) estimating modality-024
specific and cross-modal NDE using perturbed025
image representations, hallucinated text embed-026
dings, and degraded visual inputs, and (3) im-027
plementing a test-time intervention module to028
dynamically adjust the model’s dependence on029
each modality. Experimental results demon-030
strate that our method significantly reduces hal-031
lucination while preserving task performance,032
providing a robust and interpretable framework033
for improving VLM reliability.034

1 Introduction035

Vision-Language Models (VLMs) have made sig-036

nificant progress in multi-modal tasks such as im-037

age captioning (Mokady et al., 2021), visual ques-038

tion answering, and visual reasoning (Li et al.,039

2023a; Alayrac et al., 2022; Liu et al., 2023b; Rad-040

ford et al., 2021). By integrating visual and tex-041

tual inputs, VLMs generate descriptive outputs that042

enhance machine understanding of multi-modal043

contexts (Chowdhery et al., 2023). They typically 044

comprise a vision encoder for extracting image fea- 045

tures and a language model for generating outputs 046

conditioned on both modalities. Advances in large- 047

scale pre-training and transformer architectures 048

have further improved their generalization (Zhai 049

et al., 2022), making VLMs key to AI applications. 050

Hallucination in VLMs. Despite strong perfor- 051

mance, VLMs are prone to hallucination (Ji et al., 052

2023): producing outputs inconsistent with the vi- 053

sual input or textual prompt, often introducing in- 054

correct or fabricated information. This reduces 055

reliability in high-stakes domains such as medi- 056

cal imaging (Goddard, 2023), autonomous driving 057

(Chen et al., 2024a), and surveillance (Zhao et al., 058

2020). While several factors contribute to hallu- 059

cination, e.g., modality misalignment and learned 060

biases, its root causes remain understudied, which 061

needs systematic investigation and mitigation. 062

Existing Approaches. (see Appx. A for more 063

details) Prior work has explored various ways to 064

understand and reduce hallucination in VLMs (Ji 065

et al., 2023; Zhou et al., 2023; Rohrbach et al., 066

2018; Yang et al., 2025), with different explana- 067

tions and mitigations. Some studies link hallu- 068

cinations to biases in training data (Zhou et al., 069

2023), where models latch onto spurious correla- 070

tions rather than truly learning visual-text relation- 071

ships. Others point to overreliance on language 072

priors (Yang et al., 2025; Rohrbach et al., 2018), 073

leading to text-focused outputs that overlook vi- 074

sual context. Additional research highlights biased 075

feature learning (Kayhan et al., 2021; Chen et al., 076

2024b), which can cause certain patterns to dom- 077

inate the representations and distort multi-modal 078

reasoning. However, most approaches focus on 079

statistical or empirical analyses and often do not 080

differentiate VLMs from large language models 081

(LLMs), overlooking the distinct challenges inher- 082

ent in multi-modal architectures in VLMs. 083

Our Causal Perspective. In this work, we propose 084
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How many people are eating in this kitchen?

There are two people eating in this kitchen.   

There are no people eating in this kitchen. 

LLaVA 1.5 with our method：

Regular LLaVA 1.5：

Which cat (left, right or middle) in the image opens its mouth?

The middle cat in the image opens its mouth.  

The cat on the right opens its mouth. 

LLaVA 1.5 with our method：

Regular LLaVA 1.5：

What is the color of the pot?

Describe the image in detail.

The image depicts a rainy day in a city, with 
wet sidewalks reflecting the surrounding 
environment. There are several people 
walking along the sidewalks,  carrying 
umbrellas to shield themselves from the rain.
The street is filled with various vehicles, 
including cars, buses, and trucks. A bus can 
be seen in the middle of the scene.  

Regular LLaVA 1.5

The image depicts a rainy day on 
a city street with a wet sidewalk. 
One of the pedestrians is carrying 
an umbrella to protect themselves 
from the rain and a few 
pedestrians are walking along the 
sidewalk. A car is driving down 
the street. 

LLaVA 1.5 with our method

The color of the pot is red.

The color of the pot is silver.

LLaVA 1.5 with our method：

Regular LLaVA 1.5：

Figure 1: Case study illustrating the impact of our method on VLM hallucination. The figure compares outputs
from the original model and our enhanced approach, highlighting reductions in hallucinated content and improved
alignment with the visual context. Our method effectively mitigates incorrect descriptions by refining modality
interactions, leading to more accurate and reliable multi-modal reasoning.

a causal framework to analyze and mitigate hallu-085

cination in VLMs. We construct a causal graph086

(Neuberg, 2003) for VLMs, hypothesizing that hal-087

lucination may arise due to unintended direct in-088

fluences from either the vision or text modality,089

bypassing the intended multi-modal fusion process090

(Kiros et al., 2014). Specifically, each modality can091

have independent direct effects on the output, lead-092

ing to inconsistencies between generated answers093

and their intended multi-modal context. Based094

on this premise, we employ counterfactual anal-095

ysis (Lewis, 2013) to estimate the Natural Direct096

Effect (NDE) (Robins and Greenland, 1992) of097

each modality and systematically remove these ex-098

traneous influences. By doing so, we ensure that099

responses are primarily driven by joint vision-text100

reasoning, thereby reducing hallucination and im-101

proving reliability.102

This can be described as a three-step methodol-103

ogy. First, we design structural causal graphs (Neu-104

berg, 2003) to capture the relationships between105

vision, text, and outputs, distinguishing correct fu-106

sion pathways from spurious shortcuts. Second,107

we systematically estimate the NDE of vision, text,108

and their cross-modal interaction. For vision, we109

generate perturbed images by applying multiple110

random masks, then measure how these perturba-111

tions shift latent representations. For text, we create 112

“hallucinated” captions via a language model (Zhao 113

et al., 2023) and compare their embeddings with 114

those of the original input. Finally, we develop a 115

dynamic test-time intervention module that adjusts 116

the model’s reliance on each modality, effectively 117

reducing hallucination while preserving overall per- 118

formance. Our method requires only 50 randomly 119

selected samples to estimate intervention directions. 120

These directions generalize well across different 121

benchmarks and VLM architectures, indicating that 122

the modality-specific biases we correct are stable 123

and transferable. This efficient estimation enables 124

broad applicability without retraining or model- 125

specific tuning. 126

Our key contributions are as follows: 127

• Causal Analysis of Hallucination. We present a 128

structured causal framework for VLMs, showing 129

the unintended direct effects from both vision and 130

text that bypass proper multi-modal fusion. By 131

conducting rigorous counterfactual analysis, our 132

approach uncovers how each modality’s direct 133

influence underlies hallucinations. 134

• Test-time Hallucination Reduction. We de- 135

velop a lightweight method to mitigates hallu- 136

cination in VLMs by proper multi-modal fu- 137

2



sion and reasoning, without requiring model re-138

training or additional parameters.139

• Effectiveness. Our approach consistently outper-140

forms existing methods on two VLMs across two141

diverse benchmarks. For instance, it improves142

the F1 score of LLaVA 1.5 by over 10% on the143

POPE benchmark. Notably, our method remains144

robust across random, popular, and adversarial145

scenarios, with broad applicability and resilience.146

• Accessibility and Reproducibility. Our inter-147

vention is model-agnostic, incurs no training or148

inference cost, and is fully test-time deployable.149

We release all code and data to support future re-150

search: https://anonymous.4open.science/151

r/Treble-Counterfactual-VLMs-16B4.152

2 Related Works153

For a full discussion, please refer to Appx. A.154

Hallucination in Vision-Language Models.155

VLMs combine visual encoders with LLMs to156

enable multimodal reasoning (Dai et al., 2023;157

Liu et al., 2023b), but often suffer from hallucina-158

tions—outputs inconsistent with visual input (Bang159

et al., 2023; Huang et al., 2021). This includes160

inventing non-existent objects or relying on lan-161

guage priors. Prior work attributes hallucinations162

to biases such as object co-occurrence or spatial163

misalignment (Li et al., 2023a; Zhou et al., 2023),164

and proposes mitigation via retraining or post-hoc165

correction (Yin et al., 2024; Yue et al., 2024).166

Causal Perspectives. Causality offers tools to sep-167

arate genuine multimodal reasoning from spurious168

modality dominance (Li et al., 2022; Wang and Vas-169

concelos, 2020). In VLMs, causal graphs and coun-170

terfactual analysis have been used to expose and171

reduce hallucinations by tracing modality-specific172

effects (Li et al., 2023b, 2024a). Our work builds173

on this foundation to provide a lightweight, test-174

time causal intervention.175

3 Preliminaries176

Related works are shown in Appx. A. In this sec-177

tion, we propose a series of structural causal graphs178

(SCGs) (§3.1) for different scenarios to illustrate179

the superficial correlations between visual inputs,180

language inputs, and generated answers (§3.2). We181

then analyze the hallucination problem in VLMs182

and provide a causal interpretation to explain its183

underlying causes (§3.3).184

3.1 Structural Causal Graph 185

The SCGs for different scenarios are illustrated 186

in Fig. 2. The effects of visual input V and tex- 187

tual input T on the output A can be categorized 188

into two types: single-modal impact (Traditional 189

computer vision tasks or Large Language Models) 190

and multi-modal impact (Vision-Language Mod- 191

els). As shown in Fig. 2a, the single-modal im- 192

pact captures the direct influence of V or T on A 193

through V → A or T → A. In contrast, the multi- 194

modal impact represents the indirect effect of V 195

and T on A via the multi-modal fused knowledge 196

F , formulated as (V, T ) → F → A, as shown in 197

Fig. 2b. The underlying rationale behind the SCG 198

is explained as follows: 199

• T → A: This represents the data flow in tra- 200

ditional Large Language Models (LLMs), where 201

natural language inputs (typically comprising in- 202

structions and data) are processed by the LLM to 203

generate the corresponding output A. 204

• V → A: This corresponds to traditional com- 205

puter vision tasks, such as image captioning, where 206

images are provided as input, and the output A is 207

generated solely based on visual information with- 208

out language-based context. 209

• (V, T ) → F → A: This illustrates the mech- 210

anism of modern Vision-Language Models. The 211

visual input V is first processed by a vision back- 212

bone (e.g., a convolutional neural network or a 213

transformer-based vision encoder) to extract high- 214

level visual features. These visual features are then 215

projected into a shared embedding space compati- 216

ble with the LLM. Simultaneously, the textual input 217

T is encoded by the LLM. The multi-modal fusion 218

module combines the visual and textual representa- 219

tions to form the fused knowledge F . Finally, the 220

LLM leverages this fused knowledge F to generate 221

the answer A, integrating both vision and language 222

modalities for coherent and context-aware outputs. 223

3.2 Potential Biased Independent Influence 224

Although the optimal Vision-Language Model is 225

expected to generate answers solely based on the 226

combined vision and text input pairs, in practice, 227

vision and text inputs may still exert direct and in- 228

dependent influences on the output A (Kiros et al., 229

2014). As illustrated in Fig. 2c, these unintended 230

direct influences are highlighted by dashed arrows, 231

indicating potential shortcut paths that bypass the 232

multi-modal fusion process. Such direct influences 233

can lead to the hallucination problem, where the 234
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T A

V A

(a) Causal graph for traditional single-
modal model.

T

V

F A

(b) Causal graph for Vision-Language
Model.

T

V

F A

(c) Causal graph for biased Vision-
Language Model.

Figure 2: Causal graphs for single-modal models and Vision-Language Models (VLMs) are shown. An optimal
VLM generates answers conditioned on both vision and text input pairs. However, vision and text inputs may
individually exert a direct influence on the output. This direct influence can lead to the hallucination problem in
VLMs, where the generated answers are inconsistent with the provided visual or textual context. T: Text input. V:
Vision input. F: Fusion. A: Answer.

generated answer A does not align with the pro-235

vided visual context or textual input.236

• T → A: The textual input T may directly influ-237

ence the output A without considering the visual238

information. For instance, the model might rely239

heavily on language priors or contextual cues from240

the text alone, resulting in answers that ignore rele-241

vant visual details. This direct influence can lead242

to hallucinated responses that appear semantically243

plausible based on the text but remain inconsistent244

with the actual visual content.245

• V → A: Similarly, the visual input V may di-246

rectly affect the output A without proper alignment247

with the textual input. In this scenario, the model248

might over-rely on visual patterns or features, pro-249

ducing answers that are disconnected from the250

given textual instructions or questions. This form251

of direct influence also contributes to hallucina-252

tions, where the output appears visually grounded253

but fails to reflect the intended textual semantics.254

These dashed causal paths emphasize the inher-255

ent challenge in VLMs: ensuring that the answer A256

is truly conditioned on the coherent fusion of both257

V and T , rather than being dominated by a sin-258

gle modality. Addressing these unintended direct259

influences is essential for mitigating hallucination260

problems and improving the overall reliability and261

consistency of VLMs.262

3.3 Causal Perspective on VLM Hallucination263

From a causal perspective, the hallucination prob-264

lem in VLMs arises when the model over-relies265

on a single modality, leading to outputs that are266

misaligned with the intended multi-modal context.267

Specifically, unintended direct influences from ei-268

ther the vision or text modality, or their interac-269

tion, can dominate the output generation process, 270

causing hallucinated responses. To systematically 271

examine and mitigate these biases, we focus on the 272

Natural Direct Effect (NDE) as a means to quantify 273

the direct contributions of each modality and their 274

interaction. 275

Definition 1 (Causal Notations). Causal notations 276

are used to translate causal assumptions from struc- 277

tural causal graphs into formal mathematical ex- 278

pressions, allowing precise quantification of modal- 279

ity influences on model outputs. Formally, given 280

the causal graph illustrated in Fig. 2c, the answer 281

A is influenced by three paths: T → A, V → A, 282

and F → A. The corresponding causal notation is 283

as follows: 284

AT,V = A(t, v, F (t, v)), (1) 285

where t and v are text and visual inputs, and F (·) 286

denotes the multi-modal fusion process. 287

Definition 2 (Natural Direct Effects (NDE)). The 288

Natural Direct Effect (NDE) measures the direct 289

impact of a modality on the output A while hold- 290

ing the multi-modal fusion process consistent. We 291

consider three types of NDEs to capture both the 292

individual and interactive effects of the vision and 293

text modalities: 294

1) Vision Direct Effect (NDEV): The direct influ- 295

ence of the vision modality is assessed by altering 296

the vision input while keeping the textual input 297

fixed. Formally: 298

NDEV = Y (t, v, F (t, v))− Y (t, v∗, F (t, v∗)), (2) 299

where v denotes the original vision input and v∗ 300

represents the treated vision input. This formula- 301

tion captures how much the vision modality alone 302
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contributes to the output, independent of multi-303

modal fusion consistency.304

2) Text Direct Effect (NDET): The direct influ-305

ence of the text modality is measured by modifying306

the textual input while keeping the visual input307

constant:308

NDET = Y (t, v, F (t, v))− Y (t∗, v, F (t∗, v)), (3)309

where t is the original text input and t∗ represents310

the treated text input. This equation reflects how311

text alone influences the output, independent of312

visual grounding.313

3) Cross-Modality Direct Effect (NDEV,T):314

While the vision modality treatment assesses the315

direct influence of vision by altering visual inputs,316

it does not capture how vision complements textual317

information in multi-modal reasoning. In practice,318

vision often provides contextual cues that enhance319

text interpretation. Thus, it is essential to evalu-320

ate how vision interacts with text to influence the321

output.322

To this end, we propose the Cross-Modality Di-323

rect Effect (NDEV,T), which quantifies the comple-324

mentary role of vision when combined with text.325

Unlike vision treatment, which isolates vision’s326

standalone contribution, this analysis evaluates sce-327

narios where textual input is paired with a partially328

informative image versus a non-informative one.329

The formulation is:330

NDEV,T = Y (t, v∗, F (t, v∗))− Y (t, vnull, F (t, vnull)), (4)331

where vnull denotes a non-informative visual input.332

A high NDE(V, T ) indicates meaningful visual-333

textual complementarity, while a low or negative334

value suggests that vision introduces noise, poten-335

tially leading to hallucinations.336

By focusing on these direct effects, our causal337

analysis framework provides a clear diagnostic ap-338

proach to understanding and mitigating hallucina-339

tion in VLMs. This framework highlights the ne-340

cessity of balanced multi-modal fusion, where each341

modality contributes appropriately to the final pre-342

diction without dominating the reasoning process.343

4 Methodology344

Building on prior work in editing vision-language345

model intermediate representations (Liu et al.,346

2024; Jiang et al., 2024), we quantify the Natu-347

ral Direct Effects (NDEs) of different modalities348

by analyzing representation shifts before and after349

applying modality-specific perturbations. This al- 350

lows us to analyze separately the contributions of 351

vision and text, along with their interaction, to the 352

final model output. 353

Measuring NDEV. To measure the vision modal- 354

ity’s direct effect, we introduce perturbations to the 355

visual input and assess impacts on representations. 356

Given an image input I , we extract its vision 357

representation V I
i,k from the i-th layer at the k-th 358

visual token. We then apply m different random 359

masks, Cj for j ∈ {1, . . . ,m}, to corrupt the im- 360

age, producing masked versions Mj(I). The vi- 361

sion encoder processes each perturbed input Mj(I), 362

yielding the corresponding representations V Mj(I)
i,k . 363

To estimate the perturbed vision representation, we 364

take the avg. of these masked representations V̄ I
i,k. 365

The direct effect of the vision modality for the 366

image I is then quantified as the difference between 367

the original and perturbed representations: 368

DI
i,k = V̄ I

i,k − V I
i,k. (5) 369

To obtain a global-level estimate of NDEV (as 370

opposed to the instance-level effect DI
i,k), we sam- 371

ple N images and compute their respective direct 372

effects, systematically stacking them into a struc- 373

tured matrix: 374

[DI1
i,k, D

I2
i,k, ..., D

IN
i,k ]. (6) 375

Following Liu et al. (2024), we perform PCA on 376

this matrix and use the first principal direction as 377

the global-level estimate of NDEV . 378

Measuring NDET. To measure the direct effect 379

of the text modality, we introduce controlled tex- 380

tual hallucinations and analyze their influence on 381

representations. 382

We randomly sample N image captions CN and 383

generate their hallucinated counterparts Ch
N using 384

a GPT model. For each caption, we extract the last- 385

token representation from the i-th layer, denoted 386

as TCN
i for the original text and T

Ch
N

i for the hallu- 387

cinated version. The direct effect of text modality 388

can be computed as: 389

DT
i = T

Ch
N

i − TCN
i . (7) 390

To estimate global-level NDET , we stack the 391

text direct effect vectors for all sampled captions 392

into a matrix and apply PCA, obtaining the first 393

principal direction as the final measure of NDET . 394
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Settings Method
LLaVA 1.5 InstructBlip

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Random

Regular 83.49 88.83 76.70 82.34 80.42 78.93 83.21 81.01

VCD 86.84 87.15 86.68 86.91 84.10 84.21 85.36 84.78

Opera 87.53 94.52 79.80 86.53 85.07 88.39 80.73 84.39

Our Method 89.10 90.59 87.27 88.89 88.83 88.04 89.87 88.95

Popular

Regular 79.98 82.47 76.72 79.48 76.10 73.22 82.94 77.78

VCD 82.65 87.15 80.60 83.74 79.94 77.84 83.33 80.49

Opera 84.21 88.00 79.80 83.70 78.33 73.85 87.73 80.19

Our Method 87.53 87.73 87.27 87.50 83.27 79.39 89.87 84.30

Adversarial

Regular 76.03 76.11 76.80 76.45 72.37 68.78 83.06 75.24

VCD 77.31 73.43 86.47 79.42 76.32 73.24 84.08 78.29

Opera 80.88 82.16 79.76 80.94 75.50 70.50 87.73 78.17

Our Method 81.70 78.90 87.27 82.87 76.23 70.84 89.87 79.22

Table 1: Performance comparison on POPE (Regular, Popular, and Adversarial) across two state-of-the-art Vision-
Language Models (LLaVA 1.5 and InstructBlip). The best performance in each column is indicated in bold, and the
second-best is underlined. Our proposed causal intervention method consistently outperforms existing methods
(VCD, Opera), demonstrating improved accuracy and reduced hallucination across different evaluation settings.

Measuring NDEV,T. To quantify the cross-395

modality direct effect of vision and text, we eval-396

uate how vision complements textual information397

in multi-modal reasoning. Unlike NDEV , which398

isolates vision’s standalone impact, NDEV,T com-399

prehensively captures the extent to which vision400

enhances or distorts textual semantic grounding.401

We begin by sampling N images IN and their402

corresponding textual descriptions CN . For each403

image, we generate two perturbed versions: 1)404

Iblack — a fully black image, containing no mean-405

ingful visual information. This setting ensures that406

the vision encoder receives an input with no struc-407

tured content while preserving input dimensions408

and format. 2) Inull — a no-input condition, where409

the model receives no visual input at all. This410

serves as an extreme reference case to assess the411

model’s reliance on textual information alone.412

For each case, we obtain the visual representa-413

tions V Iblack
i,k and V Inull

i,k at the i-th layer and k-th414

token. The cross-modality direct effect is as:415

DV,T
i,k = V Iblack

i,k − V Inull
i,k . (8)416

A high NDEV,T suggests that vision provides417

complementary information to text, improving 418

multi-modal understanding. Conversely, a low or 419

negative NDEV,T suggests that vision introduces 420

noise or misalignment, potentially leading to hallu- 421

cinated responses. 422

For global-level analysis, we stack the cross- 423

modality direct effect vectors across N samples 424

and apply PCA, using the first principal direction 425

as the final estimate of NDEV,T . 426

Test-time Intervention. We integrate the com- 427

puted Natural Direct Effects, NDEV , NDET , and 428

the cross-modal component NDEV,T , to adjust the 429

outputs of both the vision and text encoders during 430

inference. We modify the intermediate representa- 431

tions at every layer and token position as follows: 432

V I′
i,k = V I

i,k + a ·NDEV , (9) 433

T
C′

N
i = TCN

i + b ·NDEV,T + c ·NDET . (10) 434

Our intervention method operates entirely at 435

test time, offering a lightweight and architecture- 436

agnostic solution compatible with all mainstream 437

VLMs. The intervention directions are derived 438

once from a random collection of N = 50 exam- 439

ples from MSCOCO (Lin et al., 2014), and remain 440
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Regular VCD Opera Our method

Figure 3: Overall performance and detailed score of dif-
ferent methods on the 8 question categories of MMHal-
Bench. Our method achieves the best overall perfor-
mance and significantly outperforms existing methods
(VCD, Opera) in Attribute and Comparison.

unchanged throughout all evaluations. This unified441

configuration across datasets and tasks highlights442

the broad generalizability of the approach.443

5 Experiments444

5.1 Datasets and Evaluation Metrics445

Datasets. We evaluate on two hallucination bench-446

marks: (1) MMHal-Bench (Sun et al., 2023), and447

(2) POPE (Li et al., 2023c). See details in Appx. B.448

Evaluation Metrics for MMHal-Bench. Accord-449

ing to the evaluation results in MMHal-Bench,450

GPT-4 (OpenAI, 2023) can achieve a 94% agree-451

ment rate with human judgments. Therefore, we452

use GPT-4o-mini (OpenAI, 2024) to analyze and453

score the responses of LMMs. Following the as-454

sessment method in MMHal-Bench, we provide455

GPT-4o-mini with the question and the VLM’s456

response. Additionally, we supply the category457

name of the image content and a standard human-458

generated answer to improve the accuracy of re-459

sponse evaluation. Ultimately, GPT-4o-mini re-460

turns the VLM’s scores across the 8 question cate-461

gories and its hallucination rate.462

Evaluation Metrics for POPE. Since POPE con-463

sists entirely of Yes/No questions, the correctness464

of VLM responses can be directly determined465

based on the ground-truth answers. This allows466

for the calculation of accuracy, precision, recall,467

and F1 score, with F1 score as the primary metric.468

5.2 Implementation Details 469

We evaluate the effectiveness of our method on 470

three widely used 7B VLMs, LLaVA 1.5 (Liu 471

et al., 2023b), InstructBLIP (Dai et al., 2023), and 472

Qwen2.5-VL-7B-Instruct (Bai et al., 2025). Addi- 473

tionally, we evaluate our method against two state- 474

of-the-art baselines for alleviating hallucinations in 475

the decoding stage: VCD (Leng et al., 2024) and 476

Opera (Huang et al., 2024). Our default hyperpa- 477

rameter is sampling size N = 50. To ensure a fair 478

comparison, we set a = b = c = 0.9 for all models 479

across all experiments. Experiments are conducted 480

using PyTorch with Nvidia RTX A6000 GPUs. 481

5.3 Experimental Results 482

Tab.1, Tab.2, and Fig. 3 demonstrate the effective- 483

ness of our method compared to the SOTA ap- 484

proaches in three VLMs and two benchmarks. Our 485

method consistently achieves best or near-best re- 486

sults in all metrics. More retults and analysis in 487

Appx. C. 488

Results from Tab. 1 highlight key trends across 489

Random, Popular, and Adversarial settings for 490

LLaVA 1.5 and InstructBlip. In the Random setting, 491

our method significantly improves accuracy (e.g., 492

83.49 to 89.10 in LLaVA 1.5) and recall (76.70 to 493

87.27), demonstrating the effectiveness of remov- 494

ing unintended direct modality influences. In the 495

Popular setting, our method mitigates reliance on 496

language priors, leading to higher accuracy (e.g., 497

79.98 to 87.53 in LLaVA 1.5) and F1 scores. Un- 498

der the challenging Adversarial setting, our ap- 499

proach remains robust, significantly improving re- 500

call (76.80 to 87.27 in LLaVA 1.5) and F1 scores. 501

These results validate that our causal intervention 502

mechanism systematically reduces hallucination 503

while enhancing resilience in diverse conditions. 504

Tab. 2 further demonstrates our method’s superi- 505

ority across MMHal-Bench categories, achieving 506

the highest average performance (2.82). It excels 507

in Attribute (4.00), Comparison (3.83), and Other 508

(2.67) categories, indicating enhanced multi-modal 509

reasoning. Strong performance in Holistic (2.42) 510

and Environment (2.83) categories confirms that 511

reducing unintended modality influences improves 512

vision-text alignment. 513

Overall, our causal intervention framework ef- 514

fectively reduces hallucination, leading to more 515

accurate and reliable multi-modal reasoning across 516

diverse tasks. These results underscore the impor- 517

tance of addressing unintended modality biases in 518
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Method Average Attribute Adversarial Comparison Counting Relation Environment Holistic Other

Regular 2.06 3.25 1.83 2.25 2.40 1.83 1.92 1.67 1.33
VCD 2.69 3.25 2.18 3.00 2.42 2.58 3.25 2.42 2.42
Opera 2.64 2.92 2.25 2.75 2.41 2.92 3.26 2.33 2.25

Our Method 2.82 4.00 2.17 3.83 2.25 2.42 2.83 2.42 2.67

Table 2: Performance comparison on MMHal-Bench with LLaVA 1.5. The best performance in each column
is indicated in bold, and the second-best is underlined. Our proposed causal intervention method consistently
outperforms existing methods (VCD, Opera), demonstrating improved accuracy and reduced hallucination across
different evaluation settings.

PCA dim Average Attribute Adversarial Comparison Counting Relation Environment Holistic Other

Regular 2.06 3.25 1.83 2.25 2.40 1.83 1.92 1.67 1.33
1 2.82 4.00 2.17 3.83 2.25 2.42 2.83 2.42 2.67
3 2.51 3.58 1.67 3.58 1.92 2.5 3.08 1.67 2.08
5 2.42 3.58 1.67 3.08 1.75 2.08 3.08 1.58 2.5

Table 3: Performance of LLaVA 1.5 on MMHal-Bench with different PCA dimensions. ‘Regular’ denotes the
baseline method without any enhancement.

Number of samples Average↑ Hallucination rate↓

Regular 2.06 64.58
25 2.45 51.04
50 2.82 45.83
75 2.62 45.83
100 2.58 50.00

Table 4: Performance of LLaVA 1.5 on MMHal-Bench
with different numbers of samples. ‘Regular’ denotes
the baseline method without any enhancement.

VLMs to improve robustness.519

5.4 In-Depth Analysis520

Measuring NDE with Different PCA Dimen-521

sions. Tab. 3 shows that using a single principal522

component (PCA dim = 1) yields the highest over-523

all performance (2.82), outperforming PCA dim524

= 3 (2.51) and PCA dim = 5 (2.42). This sug-525

gests that restricting modality influence to a sin-526

gle direction effectively mitigates hallucinations527

while preserving multi-modal reasoning. Perfor-528

mance declines in Adversarial (from 2.17 to 1.67)529

and Holistic (2.42 → 1.58) categories with higher530

PCA dimensions indicate that excessive compo-531

nents may reintroduce noise, weakening robustness532

and interpretability. These results highlight that a533

minimal but targeted reduction in the influence of534

the modality enhances the accuracy of reasoning.535

Effect of Sample Size. As shown in Tab. 4, using536

50 samples achieves the best performance (2.82),537

outperforming both smaller (25 samples, 2.45) and538

larger settings (75 and 100 samples). Gains are 539

most evident in Attribute (4.00) and Comparison 540

(3.83), indicating improved hallucination mitiga- 541

tion. Performance drops at 75 and 100 samples 542

suggest redundancy or overfitting, particularly in 543

Adversarial and Holistic categories. These findings 544

indicate that an optimal sample size (50) ensures ro- 545

bust estimation of modality influences while avoid- 546

ing excessive noise, leading to better reasoning and 547

reduced hallucinations. 548

Qualitative Analysis. To further demonstrate the 549

effectiveness of our approach, we provide exten- 550

sive visualizations comparing outputs before and 551

after applying our method. These qualitative ex- 552

amples highlight reductions in hallucination and 553

improved alignment with visual context. Detailed 554

case studies can be found in the appx. D. 555

6 Conclusion 556

In this work, we introduced a causal framework 557

to analyze and mitigate hallucination in VLMs. 558

By constructing structural causal graphs and es- 559

timating the Natural Direct Effect of each modal- 560

ity, we identified unintended direct modality influ- 561

ences as a key contributor to hallucination. Our 562

proposed test-time intervention mechanism effec- 563

tively reduces modality bias, ensuring that gener- 564

ated outputs are more accurately grounded in fused 565

multi-modal information. Empirical results across 566

multiple benchmarks demonstrate that our method 567

improves the reliability of VLMs while maintain- 568

ing task performance. 569
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7 Limitation & Ethical Consideration570

Limitation: The causal framework may not cap-571

ture all hallucination sources, especially in open-572

ended tasks. Also, the intervention introduces in-573

ference overhead, impacting real-time use. Future574

work can refine the causal model, develop task-575

specific adaptive interventions, and integrate con-576

trastive learning for better multi-modal alignment.577

Ethics Statement: Our method improves the relia-578

bility of the VLM by reducing hallucinations and579

improving trust in AI applications such as health-580

care and autonomous systems. However, it does not581

eliminate biases in training data, and strict halluci-582

nation control may limit creative applications. Fu-583

ture work should balance factual consistency with584

flexibility across different use cases. This research585

improves the factual grounding of VLM without586

altering training data. Although our approach re-587

duces hallucination, it does not guarantee complete588

accuracy, requiring users to apply additional val-589

idation in sensitive applications. Responsible de-590

ployment is key to effectively prevent misuse or591

excessive overreliance on AI-generated outputs.592
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A Related Works831

Hallucination in Vision-Language Models. Re-832

cent work has developed VLMs by integrating vi-833

sual encoders with pre-trained LLMs (Dai et al.,834

2023; Liu et al., 2023b; Zhu et al., 2023). This835

allows LLMs to interpret vision tokens from a pre-836

trained backbone, achieving strong multimodal un-837

derstanding (Zhang et al., 2023). However, these838

models also inherit the LLMs’ tendency to generate839

ungrounded content, commonly termed “hallucina-840

tion" (Bang et al., 2023; Huang et al., 2021; Favero841

et al., 2024). A major issue in VLM hallucinations842

is the incorrect inclusion of objects absent from the843

visual input (Bang et al., 2023; Huang et al., 2021;844

Li et al., 2023c; Wang et al., 2023). Studies suggest845

this often involves common or co-occurring objects846

in training data (Li et al., 2023a). Moreover, VLMs847

struggle with instructions requiring the recognition848

of absent objects, prompting research on improving849

model robustness (Liu et al., 2023a). Some stud-850

ies attribute hallucinations to object co-occurrence,851

model uncertainty, and spatial positioning in text,852

proposing post-hoc correction methods (Zhou et al.,853

2023). Hallucination, originally studied in NLP,854

has become a concern in multimodal models due855

to its impact on performance (Ji et al., 2023). Com-856

mon mitigation strategies rely on additional train-857

ing to improve alignment with ground truth (Yue858

et al., 2024; Gao et al., 2025), but these methods859

demand significant data and computation. Training-860

free alternatives, such as self-feedback correction,861

auxiliary knowledge models, and enhanced decod-862

ing, offer practical solutions but often primarily863

focus on text rather than addressing vision-induced864

hallucinations (Yin et al., 2024).865

Causality-Inspired Vision-Language Models.866

Causal inference provides a powerful framework867

for understanding and controlling the underlying868

mechanisms in machine learning models. By esti-869

mating causal effects, it enables the removal of spu-870

rious correlations, disentanglement of meaningful871

model behaviors, and identification of invariant fea-872

tures that enhance generalization across diverse sce-873

narios (Li et al., 2022). Recently, causal methods874

have been increasingly applied to computer vision,875

benefiting tasks such as visual explanation (Wang876

and Vasconcelos, 2020), image and video recogni-877

tion (Li et al., 2023b), scene graph generation (Li878

et al., 2024b), and representation learning (Li et al.,879

2024a). In the context of VLMs, causal analysis is880

particularly valuable for addressing hallucination,881

as it allows us to separate genuine multi-modal 882

reasoning from biased modality dominance. By 883

leveraging causal graphs and counterfactual reason- 884

ing, we can systematically diagnose and mitigate 885

modality-specific artifacts, ensuring that model pre- 886

dictions are grounded in meaningful cross-modal 887

interactions rather than unintended shortcuts. 888

B Additional Experimental Settings 889

As briefly discussed in §5.1, we evaluate our 890

method on two benchmarks. 891

(1) MMHal-Bench (Sun et al., 2023) is de- 892

signed to evaluate hallucinations in VLMs’ re- 893

sponses. It includes 96 image-question pairs across 894

8 question categories and 12 object topics from 895

MSCOCO (Lin et al., 2014). It specifically targets 896

types of questions where VLMs are prone to mak- 897

ing false claims about image content, including 898

object attributes, adversarial objects, comparison, 899

counting, spatial relations, environment, holistic 900

description, and other cases, such as misreading 901

text or icons. Evaluation is conducted using GPT- 902

4o-mini, which compares model responses against 903

human-generated answers to determine hallucina- 904

tion presence, and additional context is provided to 905

enhance its judgment. 906

(2) POPE (Li et al., 2023c) (Polling-based Ob- 907

ject Probing Evaluation) is a polling-based eval- 908

uation benchmark for assessing object hallucina- 909

tion in VLMs. It formulates the evaluation of ob- 910

ject hallucination as a binary classification task 911

by prompting VLMs with questions that require 912

“Yes” or “No” responses. POPE maintains a bal- 913

anced distribution, ensuring an equal split between 914

queries for existing and non-existing objects, and 915

utilizes three sampling strategies: random, popular, 916

and adversarial. It collects 500 images from each 917

of the MSCOCO (Lin et al., 2014), A-OKVQA 918

(Schwenk et al., 2022), and GQA (Hudson and 919

Manning, 2019), and then samples objects that 920

VLMs are prone to hallucinate, generating a total 921

of 27,000 challenging Yes/No questions to assess 922

the model’s ability to correctly identify objects in 923

images. POPE adopts Accuracy, Precision, Recall, 924

and F1-score as evaluation metrics. 925

C Additional Experimental Analysis 926

As briefly discussed in §5.3, we evaluate our 927

method on two benchmarks. 928

The results summarized in Tab. 1 reveal sev- 929

eral notable trends when comparing our proposed 930
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In the image, which truck (left or right) has its door open? Which company owns the airplane displayed in the back of the image?

What are the colors of the dogs from right to left? How many forks are there in the image?

How many mobile phones are there in the image?

There are two mobile phones in 
the image. 

There is only one mobile phone in the 
image.

LLaVA 1.5 with our method：Regular LLaVA 1.5：

What is shown in the mirror?

The mirror shows a washing machine.

LLaVA 1.5 with our method：

The mirror shows a view of the washer 
and dryer in the laundry room. 

Regular LLaVA 1.5：

The colors of the dogs from right to 
left are brown, black, and white.  

The colors of the dogs from right to 
left are brown and black.

LLaVA 1.5 with our method：Regular LLaVA 1.5：
There are three forks visible in 
the image. 

There are two forks visible in the 
image.  

LLaVA 1.5 with our method：Regular LLaVA 1.5：

The air plane in the back of the 
image is owned by United Airlines. 

The air plane displayed in the back of 
the image is owned by Virgin.

LLaVA 1.5 with our method：Regular LLaVA 1.5：
The truck on the right has its 
door open.   

The truck on the left has its door 
open. 

LLaVA 1.5 with our method：Regular LLaVA 1.5：

Figure A: Case study illustrating the impact of our method on VLM hallucination. The figure compares outputs
from the original model and our enhanced approach, highlighting reductions in hallucinated content and improved
alignment with the visual context. Our method effectively mitigates incorrect textual descriptions by refining
modality interactions, leading to more accurate and reliable multi-modal reasoning.

method to existing approaches across Random,931

Popular, and Adversarial settings for both LLaVA932

1.5 and InstructBlip. Under the Random setting,933

our method achieves a clear advantage. For in-934

stance, with LLaVA 1.5, accuracy increases from935

83.49 in the Regular baseline to 89.10, while re-936

call improves from 76.70 to 87.27. In InstructBlip,937

similar gains are observed: accuracy rises from938

80.42 to 88.83, and recall from 83.21 to 89.87.939

These improvements indicate that our test-time in-940

tervention module, which systematically estimates941

and removes the unintended direct influences from942

each modality, effectively reduces hallucinations943

and leads to better alignment between the gener-944

ated outputs and the intended multi-modal context.945

In the Popular setting, our approach again outper- 946

forms the alternatives. For LLaVA 1.5, our method 947

boosts accuracy from 79.98 (Regular) to 87.53 and 948

enhances the F1 score from 79.48 to 87.50. Instruct- 949

Blip also benefits, with accuracy improving from 950

76.10 to 83.27 and F1 score rising from 77.78 to 951

84.30. These results suggest that by mitigating the 952

model’s over-reliance on language priors and coun- 953

teracting spurious correlations present in the train- 954

ing data, our method promotes a more balanced in- 955

tegration of visual and textual cues. The most chal- 956

lenging conditions are observed under the Adver- 957

sarial setting. Here, the LLaVA 1.5 model’s recall 958

jumps significantly from 76.80 to 87.27, and the F1 959

score improves from 76.45 to 82.87. Although the 960
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Settings Method
Qwen2.5-VL-7B-Instruct

Acc Prec Rec F1

Random

Regular 84.43 99.71 69.07 81.61
VCD 86.44 98.90 70.23 82.14
Opera 85.80 98.40 69.90 81.90
Ours 85.50 98.17 71.60 83.16

Popular

Regular 83.87 98.02 69.13 81.08
VCD 85.63 96.91 70.47 81.60
Opera 85.10 96.40 70.60 81.50
Ours 84.37 96.15 71.60 82.08

Advers.

Regular 83.40 96.91 69.00 80.61
VCD 84.53 94.30 70.43 80.64
Opera 84.00 94.90 71.10 81.00
Ours 83.77 95.13 71.60 81.52

Table A: Performance of Qwen2.5-VL-7B-Instruct
across three POPE evaluation settings (Regular, Popular,
Adversarial). Best values are in bold and second-best
are underlined.

improvements in InstructBlip are more modest in961

terms of accuracy (from 72.37 to 76.23), both re-962

call and F1 scores show meaningful enhancements.963

This pattern indicates that our approach is robust964

even when the input signals are intentionally de-965

graded or perturbed, highlighting its potential for966

real-world applications where input quality may967

vary. Overall, the experimental data suggest that968

our causal intervention mechanism—grounded in969

counterfactual analysis and Natural Direct Effect970

estimation—is effective in systematically reducing971

hallucination in VLMs. By eliminating unintended972

direct modality influences, our method not only im-973

proves the accuracy of vision-text fusion but also974

enhances the model’s resilience across diverse and975

challenging scenarios.976

The experimental results presented in Table 2977

demonstrate the effectiveness of our proposed978

causal intervention approach in mitigating hallu-979

cination and improving the accuracy of vision-980

language models (VLMs) across multiple reason-981

ing categories in the MMHal-Bench benchmark.982

Compared to existing methods, our approach con-983

sistently achieves the highest average performance984

score (2.82), outperforming both VCD (2.69) and985

Opera (2.64), as well as the regular baseline (2.06).986

A closer examination of the category-wise results987

reveals that our method exhibits notable improve-988

ments in specific reasoning types. In particular, 989

it achieves the highest performance in Attribute 990

(4.00), Comparison (3.83), and Other (2.67) cat- 991

egories. The superior performance in Attribute 992

reasoning suggests that our method enhances the 993

model’s ability to accurately associate visual de- 994

tails with textual descriptions, a critical factor in 995

reducing hallucinated object properties. Similarly, 996

the strong performance in Comparison tasks indi- 997

cates improved cross-instance reasoning, likely due 998

to our causal intervention strategy, which ensures 999

that both visual and textual modalities contribute 1000

meaningfully to the generated response rather than 1001

relying on language priors. In contrast, while our 1002

method does not achieve the highest score in Ad- 1003

versarial, Counting, and Relation categories, it re- 1004

mains competitive, showing marginal differences 1005

from the top-performing methods. For instance, in 1006

the Adversarial category, our score (2.17) is compa- 1007

rable to Opera (2.25), suggesting that while causal 1008

intervention reduces hallucination, certain adver- 1009

sarial perturbations may still challenge the model’s 1010

robustness. Additionally, in Counting (2.25), our 1011

approach is slightly lower than VCD (2.42), possi- 1012

bly indicating that direct modality influence alone 1013

may not fully address numerical inconsistencies, 1014

which often require improved object permanence 1015

reasoning. Importantly, our approach demonstrates 1016

a balanced improvement across multiple reasoning 1017

types, particularly excelling in categories where 1018

multi-modal fusion plays a crucial role, such as 1019

Holistic (2.42) and Environment (2.83). These 1020

results support our hypothesis that hallucination 1021

arises due to unintended direct influences from in- 1022

dividual modalities, and by systematically mitigat- 1023

ing these effects, our method enhances the model’s 1024

ability to generate more reliable and contextually 1025

grounded outputs. Overall, these findings validate 1026

the effectiveness of our causal intervention frame- 1027

work in reducing hallucination and improving rea- 1028

soning accuracy across diverse evaluation settings. 1029

The performance gains across multiple reasoning 1030

categories highlight the necessity of explicitly ad- 1031

dressing unintended modality biases in VLMs, re- 1032

inforcing the potential of causal analysis as a key 1033

tool in advancing the robustness of multi-modal 1034

models. 1035

D Qualitative Result 1036

As briefly discussed in §5.4, we provide more qual- 1037

itative results to showcase the effectiveness of our 1038
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method, as shown in Fig. A.1039
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