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Abstract

Vision-Language Models (VLMs) excel at
tasks such as image captioning and visual ques-
tion answering but frequently produce halluci-
nated outputs that deviate from the actual visual
input or prompt. While prior work links halluci-
nation to biases in data or representation, their
causal origins remain unclear. We propose a
causal framework to analyze and mitigate hal-
lucination in VLMs. Our key hypothesis is
that hallucinations arise from unintended direct
influences of the vision or text modality that
bypass the intended multi-modal fusion. To
examine this, we construct a causal graph of
the VLM and use counterfactual analysis to
estimate the Natural Direct Effect (NDE) of
each modality and their interaction. By sys-
tematically identifying and suppressing these
direct effects, we encourage outputs that are
more faithfully grounded in true cross-modal
reasoning. Our approach consists of three steps:
(1) designing structural causal graphs to distin-
guish correct fusion pathways from spurious
modality shortcuts, (2) estimating modality-
specific and cross-modal NDE using perturbed
image representations, hallucinated text embed-
dings, and degraded visual inputs, and (3) im-
plementing a test-time intervention module to
dynamically adjust the model’s dependence on
each modality. Experimental results demon-
strate that our method significantly reduces hal-
lucination while preserving task performance,
providing a robust and interpretable framework
for improving VLM reliability.

1 Introduction

Vision-Language Models (VLMs) have made sig-
nificant progress in multi-modal tasks such as im-
age captioning (Mokady et al., 2021), visual ques-
tion answering, and visual reasoning (Li et al.,
2023a; Alayrac et al., 2022; Liu et al., 2023b; Rad-
ford et al., 2021). By integrating visual and tex-
tual inputs, VLMs generate descriptive outputs that
enhance machine understanding of multi-modal

contexts (Chowdhery et al., 2023). They typically
comprise a vision encoder for extracting image fea-
tures and a language model for generating outputs
conditioned on both modalities. Advances in large-
scale pre-training and transformer architectures
have further improved their generalization (Zhai
et al., 2022), making VLMs key to Al applications.
Hallucination in VLMs. Despite strong perfor-
mance, VLMs are prone to hallucination (Ji et al.,
2023): producing outputs inconsistent with the vi-
sual input or textual prompt, often introducing in-
correct or fabricated information. This reduces
reliability in high-stakes domains such as medi-
cal imaging (Goddard, 2023), autonomous driving
(Chen et al., 2024a), and surveillance (Zhao et al.,
2020). While several factors contribute to hallu-
cination, e.g., modality misalignment and learned
biases, its root causes remain understudied, which
needs systematic investigation and mitigation.
Existing Approaches. (see Appx. A for more
details) Prior work has explored various ways to
understand and reduce hallucination in VLMs (Ji
et al., 2023; Zhou et al., 2023; Rohrbach et al.,
2018; Yang et al., 2025), with different explana-
tions and mitigations. Some studies link hallu-
cinations to biases in training data (Zhou et al.,
2023), where models latch onto spurious correla-
tions rather than truly learning visual-text relation-
ships. Others point to overreliance on language
priors (Yang et al., 2025; Rohrbach et al., 2018),
leading to text-focused outputs that overlook vi-
sual context. Additional research highlights biased
feature learning (Kayhan et al., 2021; Chen et al.,
2024b), which can cause certain patterns to dom-
inate the representations and distort multi-modal
reasoning. However, most approaches focus on
statistical or empirical analyses and often do not
differentiate VLMs from large language models
(LLMs), overlooking the distinct challenges inher-
ent in multi-modal architectures in VLMs.

Our Causal Perspective. In this work, we propose



D How many people are eating in this kitchen?
Regular LLaVA 1.5: Regular LLaVA 1.5:

There are two people eating in this kitchen.

LLaVA 1.5 with our method:

There are no people eating in this kitchen.

E,' Which cat (left, right or middle) in the image opens its mouth?

The middle cat in the image opens its mouth.

LLaVA 1.5 with our method:

The cat on the right opens its mouth.

E,' What is the color of the pot?
Regular LLaVA 1.5

The color of the pot is red.

LLaVA 1.5 with our method:
The color of the pot is silver.

}H

D Describe the image in detail.

Regular LLaVA 1.5

The image depicts a rainy day in a city, with

LLaVA 1.5 with our method

The image depicts a rainy day on

wet si flecting the sur di a city street with a wet sidewalk.
environment. There are several people One of the pedestrians is carrying
along the sid carrying an to protect th
las to shield tk from the rain. from the rain and a few

The street is filled with various vehicles,
including cars, buses, and truchs. A bus can
be seen in the middle of the scene.

pedestrians are walking along the
sidewalk. A car is driving down
the street.

Figure 1: Case study illustrating the impact of our method on VLM hallucination. The figure compares outputs
from the original model and our enhanced approach, highlighting reductions in hallucinated content and improved
alignment with the visual context. Our method effectively mitigates incorrect descriptions by refining modality
interactions, leading to more accurate and reliable multi-modal reasoning.

a causal framework to analyze and mitigate hallu-
cination in VLMs. We construct a causal graph
(Neuberg, 2003) for VLMs, hypothesizing that hal-
lucination may arise due to unintended direct in-
fluences from either the vision or text modality,
bypassing the intended multi-modal fusion process
(Kiros et al., 2014). Specifically, each modality can
have independent direct effects on the output, lead-
ing to inconsistencies between generated answers
and their intended multi-modal context. Based
on this premise, we employ counterfactual anal-
ysis (Lewis, 2013) to estimate the Natural Direct
Effect (NDE) (Robins and Greenland, 1992) of
each modality and systematically remove these ex-
traneous influences. By doing so, we ensure that
responses are primarily driven by joint vision-text
reasoning, thereby reducing hallucination and im-
proving reliability.

This can be described as a three-step methodol-
ogy. First, we design structural causal graphs (Neu-
berg, 2003) to capture the relationships between
vision, text, and outputs, distinguishing correct fu-
sion pathways from spurious shortcuts. Second,
we systematically estimate the NDE of vision, text,
and their cross-modal interaction. For vision, we
generate perturbed images by applying multiple
random masks, then measure how these perturba-

tions shift latent representations. For text, we create
“hallucinated” captions via a language model (Zhao
et al., 2023) and compare their embeddings with
those of the original input. Finally, we develop a
dynamic test-time intervention module that adjusts
the model’s reliance on each modality, effectively
reducing hallucination while preserving overall per-
formance. Our method requires only 50 randomly
selected samples to estimate intervention directions.
These directions generalize well across different
benchmarks and VLM architectures, indicating that
the modality-specific biases we correct are stable
and transferable. This efficient estimation enables
broad applicability without retraining or model-
specific tuning.

Our key contributions are as follows:

* Causal Analysis of Hallucination. We present a
structured causal framework for VLMs, showing
the unintended direct effects from both vision and
text that bypass proper multi-modal fusion. By
conducting rigorous counterfactual analysis, our
approach uncovers how each modality’s direct
influence underlies hallucinations.

¢ Test-time Hallucination Reduction. We de-
velop a lightweight method to mitigates hallu-
cination in VLMs by proper multi-modal fu-



sion and reasoning, without requiring model re-
training or additional parameters.

Effectiveness. Our approach consistently outper-
forms existing methods on two VLMs across two
diverse benchmarks. For instance, it improves
the F1 score of LLaVA 1.5 by over 10% on the
POPE benchmark. Notably, our method remains
robust across random, popular, and adversarial
scenarios, with broad applicability and resilience.

Accessibility and Reproducibility. Our inter-
vention is model-agnostic, incurs no training or
inference cost, and is fully test-time deployable.
We release all code and data to support future re-
search: https://anonymous.4open.science/
r/Treble-Counterfactual-VLMs-16B4.

2 Related Works

For a full discussion, please refer to Appx. A.
Hallucination in Vision-Language Models.
VLMs combine visual encoders with LLMs to
enable multimodal reasoning (Dai et al., 2023;
Liu et al., 2023b), but often suffer from hallucina-
tions—outputs inconsistent with visual input (Bang
et al., 2023; Huang et al., 2021). This includes
inventing non-existent objects or relying on lan-
guage priors. Prior work attributes hallucinations
to biases such as object co-occurrence or spatial
misalignment (Li et al., 2023a; Zhou et al., 2023),
and proposes mitigation via retraining or post-hoc
correction (Yin et al., 2024; Yue et al., 2024).
Causal Perspectives. Causality offers tools to sep-
arate genuine multimodal reasoning from spurious
modality dominance (Li et al., 2022; Wang and Vas-
concelos, 2020). In VLMs, causal graphs and coun-
terfactual analysis have been used to expose and
reduce hallucinations by tracing modality-specific
effects (Li et al., 2023b, 2024a). Our work builds
on this foundation to provide a lightweight, test-
time causal intervention.

3 Preliminaries

Related works are shown in Appx. A. In this sec-
tion, we propose a series of structural causal graphs
(SCGs) (8§3.1) for different scenarios to illustrate
the superficial correlations between visual inputs,
language inputs, and generated answers (§3.2). We
then analyze the hallucination problem in VLMs
and provide a causal interpretation to explain its
underlying causes (§3.3).

3.1 Structural Causal Graph

The SCGs for different scenarios are illustrated
in Fig. 2. The effects of visual input V' and tex-
tual input T on the output A can be categorized
into two types: single-modal impact (Traditional
computer vision tasks or Large Language Models)
and multi-modal impact (Vision-Language Mod-
els). As shown in Fig. 2a, the single-modal im-
pact captures the direct influence of V or 7" on A
through V' — A or " — A. In contrast, the multi-
modal impact represents the indirect effect of V'
and T on A via the multi-modal fused knowledge
F, formulated as (V,T) — F — A, as shown in
Fig. 2b. The underlying rationale behind the SCG
is explained as follows:

e T — A: This represents the data flow in tra-
ditional Large Language Models (LLMs), where
natural language inputs (typically comprising in-
structions and data) are processed by the LLM to
generate the corresponding output A.

* V' — A: This corresponds to traditional com-
puter vision tasks, such as image captioning, where
images are provided as input, and the output A is
generated solely based on visual information with-
out language-based context.

* (V,T) - F — A: This illustrates the mech-
anism of modern Vision-Language Models. The
visual input V is first processed by a vision back-
bone (e.g., a convolutional neural network or a
transformer-based vision encoder) to extract high-
level visual features. These visual features are then
projected into a shared embedding space compati-
ble with the LLM. Simultaneously, the textual input
T is encoded by the LLM. The multi-modal fusion
module combines the visual and textual representa-
tions to form the fused knowledge F'. Finally, the
LLM leverages this fused knowledge F' to generate
the answer A, integrating both vision and language
modalities for coherent and context-aware outputs.

3.2 Potential Biased Independent Influence

Although the optimal Vision-Language Model is
expected to generate answers solely based on the
combined vision and text input pairs, in practice,
vision and text inputs may still exert direct and in-
dependent influences on the output A (Kiros et al.,
2014). As illustrated in Fig. 2c, these unintended
direct influences are highlighted by dashed arrows,
indicating potential shortcut paths that bypass the
multi-modal fusion process. Such direct influences
can lead to the hallucination problem, where the
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(a) Causal graph for traditional single-
modal model.

(b) Causal graph for Vision-Language
Model.

(c) Causal graph for biased Vision-
Language Model.

Figure 2: Causal graphs for single-modal models and Vision-Language Models (VLMs) are shown. An optimal
VLM generates answers conditioned on both vision and text input pairs. However, vision and text inputs may
individually exert a direct influence on the output. This direct influence can lead to the hallucination problem in
VLMs, where the generated answers are inconsistent with the provided visual or textual context. T: Text input. V:

Vision input. F: Fusion. A: Answer.

generated answer A does not align with the pro-
vided visual context or textual input.
T — A: The textual input 7" may directly influ-
ence the output A without considering the visual
information. For instance, the model might rely
heavily on language priors or contextual cues from
the text alone, resulting in answers that ignore rele-
vant visual details. This direct influence can lead
to hallucinated responses that appear semantically
plausible based on the text but remain inconsistent
with the actual visual content.
* V' — A: Similarly, the visual input V' may di-
rectly affect the output A without proper alignment
with the textual input. In this scenario, the model
might over-rely on visual patterns or features, pro-
ducing answers that are disconnected from the
given textual instructions or questions. This form
of direct influence also contributes to hallucina-
tions, where the output appears visually grounded
but fails to reflect the intended textual semantics.
These dashed causal paths emphasize the inher-
ent challenge in VLMs: ensuring that the answer A
is truly conditioned on the coherent fusion of both
V and T, rather than being dominated by a sin-
gle modality. Addressing these unintended direct
influences is essential for mitigating hallucination
problems and improving the overall reliability and
consistency of VLMs.

3.3 Causal Perspective on VLM Hallucination

From a causal perspective, the hallucination prob-
lem in VLMs arises when the model over-relies
on a single modality, leading to outputs that are
misaligned with the intended multi-modal context.
Specifically, unintended direct influences from ei-
ther the vision or text modality, or their interac-

tion, can dominate the output generation process,
causing hallucinated responses. To systematically
examine and mitigate these biases, we focus on the
Natural Direct Effect (NDE) as a means to quantify
the direct contributions of each modality and their
interaction.

Definition 1 (Causal Notations). Causal notations
are used to translate causal assumptions from struc-
tural causal graphs into formal mathematical ex-
pressions, allowing precise quantification of modal-
ity influences on model outputs. Formally, given
the causal graph illustrated in Fig. 2c, the answer
A is influenced by three paths: T — A,V — A,
and F' — A. The corresponding causal notation is
as follows:

A7y = A(t,v, F(t,v)), (1)

where t and v are text and visual inputs, and F(-)
denotes the multi-modal fusion process.

Definition 2 (Natural Direct Effects (NDE)). The
Natural Direct Effect (NDE) measures the direct
impact of a modality on the output A while hold-
ing the multi-modal fusion process consistent. We
consider three types of NDEs to capture both the
individual and interactive effects of the vision and
text modalities:

1) Vision Direct Effect (NDEy): The direct influ-
ence of the vision modality is assessed by altering
the vision input while keeping the textual input
fixed. Formally:

NDEy = Y (t,v, F(t,v)) — Y (t,v., F(t,v.)),  (2)

where v denotes the original vision input and v,
represents the treated vision input. This formula-
tion captures how much the vision modality alone



contributes to the output, independent of multi-
modal fusion consistency.

2) Text Direct Effect (NDEr): The direct influ-
ence of the text modality is measured by modifying
the textual input while keeping the visual input
constant:

NDEr =Y (¢, v, F(t,v)) — Y (ts,v, F(ts,v)), (3)

where t is the original text input and £, represents
the treated text input. This equation reflects how
text alone influences the output, independent of
visual grounding.

3) Cross-Modality Direct Effect (NDEyr):
While the vision modality treatment assesses the
direct influence of vision by altering visual inputs,
it does not capture how vision complements textual
information in multi-modal reasoning. In practice,
vision often provides contextual cues that enhance
text interpretation. Thus, it is essential to evalu-
ate how vision interacts with text to influence the
output.

To this end, we propose the Cross-Modality Di-
rect Effect (NDEy ), which quantifies the comple-
mentary role of vision when combined with text.
Unlike vision treatment, which isolates vision’s
standalone contribution, this analysis evaluates sce-
narios where textual input is paired with a partially
informative image versus a non-informative one.
The formulation is:

NDEV’T = Y(t7 U*7 F(t7 v*)) - Y(t7 /U"U]]7 F(t7 Unull))7 (4)

where v,y denotes a non-informative visual input.

A high NDE(V,T') indicates meaningful visual-
textual complementarity, while a low or negative
value suggests that vision introduces noise, poten-
tially leading to hallucinations.

By focusing on these direct effects, our causal
analysis framework provides a clear diagnostic ap-
proach to understanding and mitigating hallucina-
tion in VLMs. This framework highlights the ne-
cessity of balanced multi-modal fusion, where each
modality contributes appropriately to the final pre-
diction without dominating the reasoning process.

4 Methodology

Building on prior work in editing vision-language
model intermediate representations (Liu et al.,
2024; Jiang et al., 2024), we quantify the Natu-
ral Direct Effects (NDEs) of different modalities
by analyzing representation shifts before and after

applying modality-specific perturbations. This al-
lows us to analyze separately the contributions of
vision and text, along with their interaction, to the
final model output.
Measuring NDEy. To measure the vision modal-
ity’s direct effect, we introduce perturbations to the
visual input and assess impacts on representations.
Given an image input I, we extract its vision
representation Vzlk from the i-th layer at the k-th
visual token. We then apply m different random
masks, C; for j € {1,...,m}, to corrupt the im-
age, producing masked versions M;(I). The vi-
sion encoder processes each perturbed input M; (1),
yielding the corresponding representations V;A,f] @D,
To estimate the perturbed vision representation, we
take the avg. of these masked representations f// I
The direct effect of the vision modality for the
image [ is then quantified as the difference between
the original and perturbed representations:

Di],k = Vzlk - VzIk ®)

To obtain a global-level estimate of NDEy (as
opposed to the instance-level effect DiI 1)» We sam-
ple N images and compute their respéctive direct
effects, systematically stacking them into a struc-
tured matrix:

(D], D3, .., Df]. (6)

Following Liu et al. (2024), we perform PCA on

this matrix and use the first principal direction as
the global-level estimate of NDEj,.
Measuring NDEy1. To measure the direct effect
of the text modality, we introduce controlled tex-
tual hallucinations and analyze their influence on
representations.

We randomly sample N image captions C'y and
generate their hallucinated counterparts C]’{, using
a GPT model. For each caption, we extract the last-
token representation from the i-th layer, denoted

h
as TZ-CN for the original text and TZ.CN for the hallu-
cinated version. The direct effect of text modality
can be computed as:
h
DI = 1% — 1O~ (7
To estimate global-level NDEr, we stack the
text direct effect vectors for all sampled captions
into a matrix and apply PCA, obtaining the first
principal direction as the final measure of NDE7.



LLaVA 1.5 InstructBlip
Settings Method
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Regular 83.49 88.83 76.70 82.34 80.42 78.93 83.21 81.01
VCD 86.84 87.15 86.68 86.91 84.10 84.21 85.36 84.78

Random
Opera 87.53 94.52 79.80 86.53 85.07 88.39 80.73 84.39
Our Method  89.10 90.59 87.27 88.89  88.83 88.04 89.87 88.95
Regular 79.98 8247 T76.72 79.48 76.10 73.22 8294 77.78
VCD 82.65 87.15 80.60 83.74 79.94 77.84 83.33 80.49

Popular
Opera 84.21 88.00 79.80 83.70 78.33 73.85 87.73 80.19
Our Method  87.53 87.73 87.27 87.50  83.27 79.39 89.87 84.30
Regular 76.03 76.11 76.80 76.45 72.37 68.78 83.06 75.24
) VCD 77.31 73.43 86.47 79.42  76.32 73.24 84.08 78.29

Adversarial

Opera 80.88 82.16 79.76 8094  75.50 70.50 87.73 78.17
Our Method  81.70 7890 87.27 8287 76.23 70.84 89.87 79.22

Table 1: Performance comparison on POPE (Regular, Popular, and Adversarial) across two state-of-the-art Vision-
Language Models (LLaVA 1.5 and InstructBlip). The best performance in each column is indicated in bold, and the
second-best is underlined. Our proposed causal intervention method consistently outperforms existing methods
(VCD, Opera), demonstrating improved accuracy and reduced hallucination across different evaluation settings.

Measuring NDEyt. To quantify the cross-
modality direct effect of vision and text, we eval-
uate how vision complements textual information
in multi-modal reasoning. Unlike N D Ey,, which
isolates vision’s standalone impact, N D Ey, 1 com-
prehensively captures the extent to which vision
enhances or distorts textual semantic grounding.

We begin by sampling /N images [y and their
corresponding textual descriptions C'y;. For each
image, we generate two perturbed versions: 1)
Iplack — a fully black image, containing no mean-
ingful visual information. This setting ensures that
the vision encoder receives an input with no struc-
tured content while preserving input dimensions
and format. 2) I,,;; — a no-input condition, where
the model receives no visual input at all. This
serves as an extreme reference case to assess the
model’s reliance on textual information alone.

For each case, we obtain the visual representa-
tions VZ.I};'““ and Vf,";‘” at the i-th layer and k-th
token. The cross—mf)dality direct effect is as:

Dz‘,/}gT _ Vi,]};lack _ ‘/;,IZIUH' (8)

A high NDEy r suggests that vision provides

complementary information to text, improving
multi-modal understanding. Conversely, a low or
negative NDEy 7 suggests that vision introduces
noise or misalignment, potentially leading to hallu-
cinated responses.

For global-level analysis, we stack the cross-

modality direct effect vectors across N samples
and apply PCA, using the first principal direction
as the final estimate of NDEy, 7.
Test-time Intervention. We integrate the com-
puted Natural Direct Effects, ND Ey, NDEr, and
the cross-modal component N D Ey, 7, to adjust the
outputs of both the vision and text encoders during
inference. We modify the intermediate representa-
tions at every layer and token position as follows:

V5 =Vl +a-NDBEy, )

7

TN = 7O 4+ b NDEyr +c- NDEr. (10)

(2

Our intervention method operates entirely at
test time, offering a lightweight and architecture-
agnostic solution compatible with all mainstream
VLMs. The intervention directions are derived
once from a random collection of N = 50 exam-
ples from MSCOCO (Lin et al., 2014), and remain
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Figure 3: Overall performance and detailed score of dif-
ferent methods on the 8 question categories of MMHal-
Bench. Our method achieves the best overall perfor-
mance and significantly outperforms existing methods
(VCD, Opera) in Attribute and Comparison.

unchanged throughout all evaluations. This unified
configuration across datasets and tasks highlights
the broad generalizability of the approach.

5 Experiments

5.1 Datasets and Evaluation Metrics

Datasets. We evaluate on two hallucination bench-
marks: (1) MMHal-Bench (Sun et al., 2023), and
(2) POPE (Li et al., 2023c¢). See details in Appx. B.

Evaluation Metrics for MMHal-Bench. Accord-
ing to the evaluation results in MMHal-Bench,
GPT-4 (OpenAl, 2023) can achieve a 94% agree-
ment rate with human judgments. Therefore, we
use GPT-40-mini (OpenAl, 2024) to analyze and
score the responses of LMMs. Following the as-
sessment method in MMHal-Bench, we provide
GPT-40-mini with the question and the VLM’s
response. Additionally, we supply the category
name of the image content and a standard human-
generated answer to improve the accuracy of re-
sponse evaluation. Ultimately, GPT-40-mini re-
turns the VLM’s scores across the 8 question cate-
gories and its hallucination rate.

Evaluation Metrics for POPE. Since POPE con-
sists entirely of Yes/No questions, the correctness
of VLM responses can be directly determined
based on the ground-truth answers. This allows
for the calculation of accuracy, precision, recall,
and F1 score, with F1 score as the primary metric.

5.2 Implementation Details

We evaluate the effectiveness of our method on
three widely used 7B VLMs, LLaVA 1.5 (Liu
et al., 2023b), InstructBLIP (Dai et al., 2023), and
Qwen2.5-VL-7B-Instruct (Bai et al., 2025). Addi-
tionally, we evaluate our method against two state-
of-the-art baselines for alleviating hallucinations in
the decoding stage: VCD (Leng et al., 2024) and
Opera (Huang et al., 2024). Our default hyperpa-
rameter is sampling size N = 50. To ensure a fair
comparison, we set a = b = ¢ = (0.9 for all models
across all experiments. Experiments are conducted
using PyTorch with Nvidia RTX A6000 GPUs.

5.3 Experimental Results

Tab.1, Tab.2, and Fig. 3 demonstrate the effective-
ness of our method compared to the SOTA ap-
proaches in three VLMs and two benchmarks. Our
method consistently achieves best or near-best re-
sults in all metrics. More retults and analysis in
Appx. C.

Results from Tab. 1 highlight key trends across
Random, Popular, and Adversarial settings for
LLaVA 1.5 and InstructBlip. In the Random setting,
our method significantly improves accuracy (e.g.,
83.49 t0 89.10 in LLaVA 1.5) and recall (76.70 to
87.27), demonstrating the effectiveness of remov-
ing unintended direct modality influences. In the
Popular setting, our method mitigates reliance on
language priors, leading to higher accuracy (e.g.,
79.98 to 87.53 in LLaVA 1.5) and F1 scores. Un-
der the challenging Adversarial setting, our ap-
proach remains robust, significantly improving re-
call (76.80 to 87.27 in LLaVA 1.5) and F1 scores.
These results validate that our causal intervention
mechanism systematically reduces hallucination
while enhancing resilience in diverse conditions.

Tab. 2 further demonstrates our method’s superi-
ority across MMHal-Bench categories, achieving
the highest average performance (2.82). It excels
in Attribute (4.00), Comparison (3.83), and Other
(2.67) categories, indicating enhanced multi-modal
reasoning. Strong performance in Holistic (2.42)
and Environment (2.83) categories confirms that
reducing unintended modality influences improves
vision-text alignment.

Overall, our causal intervention framework ef-
fectively reduces hallucination, leading to more
accurate and reliable multi-modal reasoning across
diverse tasks. These results underscore the impor-
tance of addressing unintended modality biases in



Method Average Attribute Adversarial Comparison Counting Relation Environment Holistic Other
Regular 2.06 3.25 1.83 2.25 2.40 1.83 1.92 1.67 1.33
VCD 2.69 3.25 2.18 3.00 242 2.58 3.25 242 2.42
Opera 2.64 292 2.25 2.75 241 2.92 3.26 2.33 2.25
Our Method 2.82 4.00 2.17 3.83 2.25 2.42 2.83 242 2.67

Table 2: Performance comparison on MMHal-Bench with LLaVA 1.5. The best performance in each column
is indicated in bold, and the second-best is underlined. Our proposed causal intervention method consistently
outperforms existing methods (VCD, Opera), demonstrating improved accuracy and reduced hallucination across

different evaluation settings.

PCA dim Average Attribute Adversarial Comparison Counting Relation Environment Holistic Other
Regular 2.06 3.25 1.83 2.25 2.40 1.83 1.92 1.67 1.33
1 2.82 4.00 2.17 3.83 225 242 2.83 242 2.67

3 2.51 3.58 1.67 3.58 1.92 2.5 3.08 1.67 2.08

5 2.42 3.58 1.67 3.08 1.75 2.08 3.08 1.58 2.5

Table 3: Performance of LLaVA 1.5 on MMHal-Bench with different PCA dimensions. ‘Regular’ denotes the

baseline method without any enhancement.

Number of samples ‘ Average? Hallucination rate|

Regular 2.06 64.58
25 245 51.04
50 2.82 45.83
75 2.62 45.83
100 2.58 50.00

Table 4: Performance of LLaVA 1.5 on MMHal-Bench
with different numbers of samples. ‘Regular’ denotes
the baseline method without any enhancement.

VLMs to improve robustness.

5.4 In-Depth Analysis

Measuring NDE with Different PCA Dimen-
sions. Tab. 3 shows that using a single principal
component (PCA dim = 1) yields the highest over-
all performance (2.82), outperforming PCA dim
= 3 (2.51) and PCA dim = 5 (2.42). This sug-
gests that restricting modality influence to a sin-
gle direction effectively mitigates hallucinations
while preserving multi-modal reasoning. Perfor-
mance declines in Adversarial (from 2.17 to 1.67)
and Holistic (2.42 — 1.58) categories with higher
PCA dimensions indicate that excessive compo-
nents may reintroduce noise, weakening robustness
and interpretability. These results highlight that a
minimal but targeted reduction in the influence of
the modality enhances the accuracy of reasoning.

Effect of Sample Size. As shown in Tab. 4, using
50 samples achieves the best performance (2.82),
outperforming both smaller (25 samples, 2.45) and

larger settings (75 and 100 samples). Gains are
most evident in Attribute (4.00) and Comparison
(3.83), indicating improved hallucination mitiga-
tion. Performance drops at 75 and 100 samples
suggest redundancy or overfitting, particularly in
Adversarial and Holistic categories. These findings
indicate that an optimal sample size (50) ensures ro-
bust estimation of modality influences while avoid-
ing excessive noise, leading to better reasoning and
reduced hallucinations.

Qualitative Analysis. To further demonstrate the
effectiveness of our approach, we provide exten-
sive visualizations comparing outputs before and
after applying our method. These qualitative ex-
amples highlight reductions in hallucination and
improved alignment with visual context. Detailed
case studies can be found in the appx. D.

6 Conclusion

In this work, we introduced a causal framework
to analyze and mitigate hallucination in VLMs.
By constructing structural causal graphs and es-
timating the Natural Direct Effect of each modal-
ity, we identified unintended direct modality influ-
ences as a key contributor to hallucination. Our
proposed test-time intervention mechanism effec-
tively reduces modality bias, ensuring that gener-
ated outputs are more accurately grounded in fused
multi-modal information. Empirical results across
multiple benchmarks demonstrate that our method
improves the reliability of VLMs while maintain-
ing task performance.



7 Limitation & Ethical Consideration

Limitation: The causal framework may not cap-
ture all hallucination sources, especially in open-
ended tasks. Also, the intervention introduces in-
ference overhead, impacting real-time use. Future
work can refine the causal model, develop task-
specific adaptive interventions, and integrate con-
trastive learning for better multi-modal alignment.
Ethics Statement: Our method improves the relia-
bility of the VLM by reducing hallucinations and
improving trust in Al applications such as health-
care and autonomous systems. However, it does not
eliminate biases in training data, and strict halluci-
nation control may limit creative applications. Fu-
ture work should balance factual consistency with
flexibility across different use cases. This research
improves the factual grounding of VLM without
altering training data. Although our approach re-
duces hallucination, it does not guarantee complete
accuracy, requiring users to apply additional val-
idation in sensitive applications. Responsible de-
ployment is key to effectively prevent misuse or
excessive overreliance on Al-generated outputs.
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A Related Works

Hallucination in Vision-Language Models. Re-
cent work has developed VLMs by integrating vi-
sual encoders with pre-trained LLMs (Dai et al.,
2023; Liu et al., 2023b; Zhu et al., 2023). This
allows LLMs to interpret vision tokens from a pre-
trained backbone, achieving strong multimodal un-
derstanding (Zhang et al., 2023). However, these
models also inherit the LLMs’ tendency to generate
ungrounded content, commonly termed “hallucina-
tion" (Bang et al., 2023; Huang et al., 2021; Favero
et al., 2024). A major issue in VLM hallucinations
is the incorrect inclusion of objects absent from the
visual input (Bang et al., 2023; Huang et al., 2021;
Lietal., 2023c; Wang et al., 2023). Studies suggest
this often involves common or co-occurring objects
in training data (Li et al., 2023a). Moreover, VLMs
struggle with instructions requiring the recognition
of absent objects, prompting research on improving
model robustness (Liu et al., 2023a). Some stud-
ies attribute hallucinations to object co-occurrence,
model uncertainty, and spatial positioning in text,
proposing post-hoc correction methods (Zhou et al.,
2023). Hallucination, originally studied in NLP,
has become a concern in multimodal models due
to its impact on performance (Ji et al., 2023). Com-
mon mitigation strategies rely on additional train-
ing to improve alignment with ground truth (Yue
et al., 2024; Gao et al., 2025), but these methods
demand significant data and computation. Training-
free alternatives, such as self-feedback correction,
auxiliary knowledge models, and enhanced decod-
ing, offer practical solutions but often primarily
focus on text rather than addressing vision-induced
hallucinations (Yin et al., 2024).

Causality-Inspired Vision-Language Models.
Causal inference provides a powerful framework
for understanding and controlling the underlying
mechanisms in machine learning models. By esti-
mating causal effects, it enables the removal of spu-
rious correlations, disentanglement of meaningful
model behaviors, and identification of invariant fea-
tures that enhance generalization across diverse sce-
narios (Li et al., 2022). Recently, causal methods
have been increasingly applied to computer vision,
benefiting tasks such as visual explanation (Wang
and Vasconcelos, 2020), image and video recogni-
tion (Li et al., 2023b), scene graph generation (Li
et al., 2024b), and representation learning (Li et al.,
2024a). In the context of VLMs, causal analysis is
particularly valuable for addressing hallucination,
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as it allows us to separate genuine multi-modal
reasoning from biased modality dominance. By
leveraging causal graphs and counterfactual reason-
ing, we can systematically diagnose and mitigate
modality-specific artifacts, ensuring that model pre-
dictions are grounded in meaningful cross-modal
interactions rather than unintended shortcuts.

B Additional Experimental Settings

As briefly discussed in §5.1, we evaluate our
method on two benchmarks.

(1) MMHal-Bench (Sun et al., 2023) is de-
signed to evaluate hallucinations in VLMs’ re-
sponses. It includes 96 image-question pairs across
8 question categories and 12 object topics from
MSCOCO (Lin et al., 2014). It specifically targets
types of questions where VLMs are prone to mak-
ing false claims about image content, including
object attributes, adversarial objects, comparison,
counting, spatial relations, environment, holistic
description, and other cases, such as misreading
text or icons. Evaluation is conducted using GPT-
40-mini, which compares model responses against
human-generated answers to determine hallucina-
tion presence, and additional context is provided to
enhance its judgment.

(2) POPE (Li et al., 2023c) (Polling-based Ob-
ject Probing Evaluation) is a polling-based eval-
uation benchmark for assessing object hallucina-
tion in VLMs. It formulates the evaluation of ob-
ject hallucination as a binary classification task
by prompting VLMs with questions that require
“Yes” or “No” responses. POPE maintains a bal-
anced distribution, ensuring an equal split between
queries for existing and non-existing objects, and
utilizes three sampling strategies: random, popular,
and adversarial. It collects 500 images from each
of the MSCOCO (Lin et al., 2014), A-OKVQA
(Schwenk et al., 2022), and GQA (Hudson and
Manning, 2019), and then samples objects that
VLMs are prone to hallucinate, generating a total
of 27,000 challenging Yes/No questions to assess
the model’s ability to correctly identify objects in
images. POPE adopts Accuracy, Precision, Recall,
and F1-score as evaluation metrics.

C Additional Experimental Analysis

As briefly discussed in §5.3, we evaluate our
method on two benchmarks.

The results summarized in Tab. 1 reveal sev-
eral notable trends when comparing our proposed



E,_] In the image, which truck (left or right) has its door open?

LLaVA 1.5 with our method:

The truck on the left has its door
open.

= | Regular LLaVA 1.5

The truck on the right has its
door open.

EI_; Which company owns the airplane displayed in the back of the image?

LLaVA 1.5 with our method:

The air plane displayed in the back of
the image is owned by Virgin.

Regular LLaVA 1.5

The air plane in the back of the
image is owned by United Airlines.

B . kN

E_,‘ What are the colors of the dogs from right to left?

LLaVA 1.5 with our method:

The colors of the dogs from right to
left are brown and black.

“ | Regular LLavA 1.5:

The colors of the dogs from right to
left are brown, black, and white.

E‘_; How many forks are there in the image?

LLaVA 1.5 with our method.:

There are two forks visible in the
image.

Regular LLaVA 1.5:

There are three forks visible in
the image.

B How many mobile phones are there in the image?

LLaVA 1.5 with our method:

There is only one mobile phone in the
image.

Regular LLaVA 1.5

There are two mobile phones in
the image.

E‘_; What is shown in the mirror?

~ | Regular LLaVA 1.5:

The mirror shows a view of the washer
and dryer in the laundry room.

LLaVA 1.5 with our method:

The mirror shows a washing machine.

Figure A: Case study illustrating the impact of our method on VLM hallucination. The figure compares outputs
from the original model and our enhanced approach, highlighting reductions in hallucinated content and improved
alignment with the visual context. Our method effectively mitigates incorrect textual descriptions by refining
modality interactions, leading to more accurate and reliable multi-modal reasoning.

method to existing approaches across Random,
Popular, and Adversarial settings for both LLaVA
1.5 and InstructBlip. Under the Random setting,
our method achieves a clear advantage. For in-
stance, with LLaVA 1.5, accuracy increases from
83.49 in the Regular baseline to 89.10, while re-
call improves from 76.70 to 87.27. In InstructBlip,
similar gains are observed: accuracy rises from
80.42 to 88.83, and recall from 83.21 to 89.87.
These improvements indicate that our test-time in-
tervention module, which systematically estimates
and removes the unintended direct influences from
each modality, effectively reduces hallucinations
and leads to better alignment between the gener-
ated outputs and the intended multi-modal context.
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In the Popular setting, our approach again outper-
forms the alternatives. For LLaVA 1.5, our method
boosts accuracy from 79.98 (Regular) to 87.53 and
enhances the F1 score from 79.48 to 87.50. Instruct-
Blip also benefits, with accuracy improving from
76.10 to 83.27 and F1 score rising from 77.78 to
84.30. These results suggest that by mitigating the
model’s over-reliance on language priors and coun-
teracting spurious correlations present in the train-
ing data, our method promotes a more balanced in-
tegration of visual and textual cues. The most chal-
lenging conditions are observed under the Adver-
sarial setting. Here, the LLaVA 1.5 model’s recall
jumps significantly from 76.80 to 87.27, and the F1
score improves from 76.45 to 82.87. Although the



Qwen2.5-VL-7B-Instruct

Settings Method
Acc Prec Rec F1
Regular 84.43 99.71 69.07 81.61
VCD 86.44 98.90 70.23 82.14
Random
Opera 85.80 98.40 69.90 81.90
Ours 85.50 98.17 71.60 83.16
Regular 83.87 98.02 69.13 81.08
VCD 85.63 96.91 70.47 81.60
Popular —
Opera 85.10 96.40 70.60 81.50
Ours 84.37 96.15 71.60 82.08
Regular 83.40 96.91 69.00 80.61
VCD 84.53 94.30 70.43 80.64
Advers.
Opera 84.00 9490 71.10 81.00
Ours 83.77 95.13 71.60 81.52

Table A: Performance of Qwen2.5-VL-7B-Instruct
across three POPE evaluation settings (Regular, Popular,
Adversarial). Best values are in bold and second-best
are underlined.

improvements in InstructBlip are more modest in
terms of accuracy (from 72.37 to 76.23), both re-
call and F1 scores show meaningful enhancements.
This pattern indicates that our approach is robust
even when the input signals are intentionally de-
graded or perturbed, highlighting its potential for
real-world applications where input quality may
vary. Overall, the experimental data suggest that
our causal intervention mechanism—grounded in
counterfactual analysis and Natural Direct Effect
estimation—is effective in systematically reducing
hallucination in VLMs. By eliminating unintended
direct modality influences, our method not only im-
proves the accuracy of vision-text fusion but also
enhances the model’s resilience across diverse and
challenging scenarios.

The experimental results presented in Table 2
demonstrate the effectiveness of our proposed
causal intervention approach in mitigating hallu-
cination and improving the accuracy of vision-
language models (VLMs) across multiple reason-
ing categories in the MMHal-Bench benchmark.
Compared to existing methods, our approach con-
sistently achieves the highest average performance
score (2.82), outperforming both VCD (2.69) and
Opera (2.64), as well as the regular baseline (2.06).
A closer examination of the category-wise results
reveals that our method exhibits notable improve-
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ments in specific reasoning types. In particular,
it achieves the highest performance in Attribute
(4.00), Comparison (3.83), and Other (2.67) cat-
egories. The superior performance in Attribute
reasoning suggests that our method enhances the
model’s ability to accurately associate visual de-
tails with textual descriptions, a critical factor in
reducing hallucinated object properties. Similarly,
the strong performance in Comparison tasks indi-
cates improved cross-instance reasoning, likely due
to our causal intervention strategy, which ensures
that both visual and textual modalities contribute
meaningfully to the generated response rather than
relying on language priors. In contrast, while our
method does not achieve the highest score in Ad-
versarial, Counting, and Relation categories, it re-
mains competitive, showing marginal differences
from the top-performing methods. For instance, in
the Adversarial category, our score (2.17) is compa-
rable to Opera (2.25), suggesting that while causal
intervention reduces hallucination, certain adver-
sarial perturbations may still challenge the model’s
robustness. Additionally, in Counting (2.25), our
approach is slightly lower than VCD (2.42), possi-
bly indicating that direct modality influence alone
may not fully address numerical inconsistencies,
which often require improved object permanence
reasoning. Importantly, our approach demonstrates
a balanced improvement across multiple reasoning
types, particularly excelling in categories where
multi-modal fusion plays a crucial role, such as
Holistic (2.42) and Environment (2.83). These
results support our hypothesis that hallucination
arises due to unintended direct influences from in-
dividual modalities, and by systematically mitigat-
ing these effects, our method enhances the model’s
ability to generate more reliable and contextually
grounded outputs. Overall, these findings validate
the effectiveness of our causal intervention frame-
work in reducing hallucination and improving rea-
soning accuracy across diverse evaluation settings.
The performance gains across multiple reasoning
categories highlight the necessity of explicitly ad-
dressing unintended modality biases in VLMs, re-
inforcing the potential of causal analysis as a key
tool in advancing the robustness of multi-modal
models.

D Qualitative Result

As briefly discussed in §5.4, we provide more qual-
itative results to showcase the effectiveness of our



method, as shown in Fig. A.

15



	Introduction
	Related Works
	Preliminaries
	Structural Causal Graph
	Potential Biased Independent Influence
	Causal Perspective on VLM Hallucination

	Methodology
	Experiments
	Datasets and Evaluation Metrics
	Implementation Details
	Experimental Results
	In-Depth Analysis

	Conclusion
	Limitation & Ethical Consideration
	Related Works
	Additional Experimental Settings
	Additional Experimental Analysis
	Qualitative Result

