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Abstract

The success of many reinforcement learning algorithms is dependent on the right1

choice of hyperparameters, with the learning rate being particularly influential. A2

suboptimal learning rate can hinder the algorithm’s ability to converge. Mildly3

suboptimal choices may allow the algorithm to find an optimal policy only after4

requiring an extensive number of samples. In this work, we show the feasibility of5

using model selection meta-learning algorithms to select the best learning rates in6

reinforcement learning problems. We introduce the Model Selection Framework for7

Learning Rate-Free Reinforcement Learning and evaluate various model selection8

algorithms within our framework. Our results show that data-driven model selection9

strategies such as the D3RB algorithm achieve better performance in the problem10

of learning rate selection for reinforcement learning algorithms, beating bandit11

strategies such as EXP3, and also standard hyperparameter selection methods such12

as the uniform sweep.13

1 Introduction14

The learning rate used in the optimization phase of many machine learning methods determines how15

much a model adjusts its internal parameters at each step. A well-chosen learning rate balances16

training speed and stability, ideally leading the model to converge to the global optimum. Due to17

its fundamental role in optimization, the learning rate is crucial for efficient training and model18

performance across nearly all machine learning domains. Theoretical analysis of optimization19

problems [4] suggests that an effective learning rate is closely tied to the distance between the20

optimizer’s current step and the optimal point. Since this information is typically unknown, many21

modern optimization methods adjust the learning rate dynamically depending on the stage of learning22

[6]. In practice, many methods just set a constant learning rate prior to training accompanied by rate23

schedulers that are used to modify the learning rate throughout training. [8]24

In this work, we focus on sequential decision-making problems such as reinforcement learning [16,25

25] where a learner interacts with the world in a sequential manner as is tasked with finding a policy26

that achieves large rewards. The reward collected by a learner at any point during training provides27

information on the quality of the current policy. In these frameworks, the learning rate determines the28

extent to which model parameters are adjusted based on this reward feedback. Empirical rewards,29

gathered in real-time from interactions between the agent and the environment, contain information30

about the agent’s proximity to the optimal policy and its stage of learning. Building on this intuition,31

we design a framework to utilize the empirical reward, available at no extra overhead during training,32

that can be used to adjust the learning rate. In this work, we introduce a framework that combines33

model selection methods with a general scheme of reinforcement learning algorithms to adaptively34

tune the learning rate. Model selection algorithms are uniquely suitable for tuning learning rates in35

decision-making frameworks:36



1. Model selection methods are adaptive by design and learn not to choose deficient learning37

rates as frequently. We show that by regret balancing, model selection will not select an38

ill-performing learning rate for more than
√
N episodes in a single run, where N is the total39

number of episodes.40

2. Using model selection for tuning learning rates in reinforcement learning is more sample41

efficient compared to performing a uniform learning rate sweep. This is because model42

selection algorithms advance the state of each hyperparameter curve adaptively, thus not43

requiring the same amount of samples and compute for all choices of learning rate.44

Model selection has proved to have several interesting theoretical guarantees, yet most of these45

theoretical results have not been deployed in application. In this paper, we deploy model selection46

for the task of learning rate tuning in reinforcement learning. The paper is organized as follows. In47

section 2, We cover the preliminaries of model selection and reinforcement learning. We introduce48

the specific model selection strategies that we use in our experiments, and then present a general49

scheme of policy optimization and Q-learning in reinforcement learning algorithms. Sections 350

and 4 demonstrate the formalization and algorithmic interface of the model selection framework for51

learning rate-free reinforcement learning, respectively. Finally, we provide the experiments for tuning52

the learning rate in PPO and DQN with model selection strategies. We analyze the results in section53

5 and cover experiment details and full plots in the Appendix B.54

2 Preliminaries and Background55

2.1 Model Selection56

In many machine learning domains, including reinforcement learning the true configuration of the57

problem is not known in advance. The goal of model selection is to consider several configurations58

and add a strategy on top that learns to pick up the best configuration adaptively. We call each59

configuration a base and refer to the model selection strategy as the meta-learner. The meta-learner60

has access to a set of m bases, in this case, different copies of the same reinforcement learning61

algorithm instantiated with different learning rates. In each round, n = 1, 2, . . . , N , of the interaction62

between the meta-learner with the environment, the meta-learner selects a base in ∈ [m] to play63

and follows its policy. Learner in’s internal state is then updated with the data collected from its64

interaction with the environment.65

Here, we inherit a similar meta-learning structure to [1]. We experiment with a diverse range of66

model selection algorithms that were previously introduced in the literature [1, 2, 5, 22, 23], including67

standard multi-armed bandit algorithms, regret balancing methods, etc. We investigate the Upper68

Confidence Bound (UCB)[2], the Exponential-weight algorithm for Exploration and Exploitation69

(EXP3) [5], and Corral [1, 23]. Corral is a meta-learning algorithm for selecting among multiple70

bandit algorithms. It is known that Stochastic Corral and EXP3 enjoy theoretical model selection71

guarantees [23] while unmodified UCB does not.72

Regret balancing maintains an estimate of the empirical regret for each base and tries to equate73

the regret bounds across all the bases. In this approach, the base agent is selected for two reasons.74

It is either a well-performing base by achieving low regret, or it has not been played enough and75

the meta-learner hasn’t collected adequate information on the performance of this base. Here, we76

investigate Doubling Data Driven Regret Balancing (D3RB) [7], and the regret bound balancing77

algorithm [22] which we will refer to as the Classic Balancing algorithm.78

Note that our model selection framework views these algorithms as a black box and does not require79

detailed knowledge of the underlying algorithm. Hence, the framework can be paired with various80

types of meta-learners and base algorithms.81

2.2 Reinforcement Learning82

Reinforcement learning is formalized as Markov Decision Process (MDP) ⟨S,A,R, P, γ⟩; where83

S denotes the set of states, A is the set of actions, R : S × A → R is the reward function,84

P : S ×A→ [0, 1] is the dynamic transition probabilities, and lastly γ ∈ [0, 1] is the discount factor.85

Here we consider episodic reinforcement learning with maximum horizon T where the goal of the86
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agent is to learn the (near) optimal policy π : S → A. The state-value function V : S → R and87

action-value function Q : S ×A→ R with respect to policy π are defined as88

V π(s) = E
[ T∑
t=0

γtR(st, at)|s0 = s, st, at

]
(1)

89

Qπ(s, a) = R(s, a) + γ Es′∼P (s,a)

[
V π(s′)

]
(2)

The policy π is commonly parameterized by the set of parameters θ, and is denoted as πθ. Two of the90

predominant approaches for learning the (near) optimal policy in reinforcement learning are policy91

optimization and Q-learning. Policy optimization starts with an initial policy and in each episode92

updates the parameters by taking gradient steps toward maximizing the episodic return. Denote93

learning rate as α ∈ R, a common update rule in policy optimization methods is94

θ ← θ + α E
[ T∑
t=0

∇θ log πθ(st, at)(Q
πθ (st, at)− V πθ (st))

]
(3)

Q-learning uses the temporal differences method to update the parameters of Qπθ . A common update95

rule is96

θ ← θ + α Es,a,s′,r∼D

[
∇θ(r + γ max

a′∈A
Qπθ̄ (s′, a′)−Qπθ (s, a))2

]
(4)

where D is the experience replay buffer and θ̄ is a frozen parameter set named target parameter. Prox-97

imal Policy Optimization (PPO) [24] and Deep Q-Networks (DQN) [20] are among the most popular98

deep reinforcement learning algorithms that follow the first and second approaches, respectively.99

Algorithm 1: Model Selection Interface for Hyperparameter Tuning
Input: m, β, Ψ, M

1
2 Function sample():

// Select base index according to Ψ
3 i ∼ Ψ

4 πi, αi ← βi

5 return i, πi, αi

6
7
8 Function update(index, R[1 : T ]):

// Calculate and normalize the episodic return
9 Rnorm ← normalize(R[1 : T ])

// Update base statistics according to the meta learning algorithm M
10 Ψ←M(Ψ, index,Rnorm)

11

100

3 Problem Statement101

We formalize the model selection framework for learning rate-free reinforcement learning as the102

tuple ⟨m,β,M,Ψ⟩ where m is the number of base agents, β = {β1, . . . , βm} denotes the set of base103

agents where βi = ⟨αi, πi⟩ (1 ≤ i ≤ m) consists of learning rate αi, and policy πi. Lastly, M is104

the model selection strategy and Ψ is an attribute of M that expresses some statistics over the base105

agents. For instance, Ψ can either be a distribution Ψ : β → P (β) over base agents or represent the106

estimated empirical regret of the base agents.107

At the beginning of each episode, the meta learner M selects base agent βj according to Ψ. We108

abbreviate this as j ∼ Ψ. The base agent interacts with the environment in a typical reinforcement109

learning manner for one episode. At state st ∈ S, the base agent takes action at ∼ πj , receives reward110

rt ∈ (0, 1), and move to the next state st+1 ∈ S following the environment transition dynamics. At111
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the end of each episode, the base agent passes the realized rewards (r1, . . . , rT ) to the meta learner,112

so that it updates Ψ based on the model selection strategy M .113

The goal of the base agents is to interact with the environment and learn an optimal policy for the114

reinforcement learning problem. The goal of the meta learner is to learn a strategy to iteratively select115

base agents, so that agents with better learning rates are played more frequently. It’s unique to model116

selection that neither the base agents with good learning rates nor the optimal reinforcement strategy117

are known in advance, and the framework learns both of them during a single run.118

Algorithm 2: Learning Rate-Free Reinforcement Learning with Model Selection
Input: MDP ⟨S,A,R, P, γ⟩, Model Selection Interface M

1
// reinforcement learning loop over episode

2 for n = 1, 2, ..., N do
3

// Select the base agent
4 i, πi

θ, α
i = M.sample()

5
// Collect trajectories with selected base agent

6 for t = 1, 2, ..., T do
7 a ∼ πi

θ

8 r, s′
P,R←−− s, a

9 R[t]← r

10
// Update parameters with selected learning rate

11 if Policy Optimization then

12 θ ← θ + αi E
[∑T

t=0∇θ log π
i
θ(st, at)(Q

πi
θ (st, at)− V πi

θ (st))

]
13 if Q-Learning then

14 θ ← θ + αi Es,a,s′,r∼D

[
∇θ(r + γ maxa′∈A Qπi

θ̄ (s′, a′)−Qπi
θ (s, a))2

]
15

// Update the meta learner
16 M.update(i, R[1 : T ])

4 Method119

We begin with a predefined set of learning rates αi ∈ [α1, ..., αm], and we initiate m reinforcement120

learning agents [β1, β2.., βm] of the same type. All hyperparameters and configurations of the base121

agents are similar except for the learning rate, where the learning rate of βi is set to αi for all122

1 ≤ i ≤ m.123

The model selection framework for learning rate-free reinforcement learning integrates the model124

selection interface for hyperparameter tuning with the reinforcement learning loop. The model125

selection interface, represented in Algorithm 1, consists of two procedures sample, and update126

that the meta learner uses to select the base agent at the beginning of each episode, and update Ψ127

at the end of it. The integrated reinforcement learning loop, which we will refer to as Learning128

Rate-Free Reinforcement Learning, is shown in Algorithm 2. The algorithm contains the original129

agent-environment interaction in addition to the model selection components.130

5 Experiments and Results131

We begin our experiments with learning rate-free PPO. We initiate ten PPO base agents learning rates132

α = [1e−2, 5e−3, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5, 5e−6, 1e−6, 5e−7]. We run the experiment for five133

model selection strategies introduced in Section 2.134
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(a) D3RB (b) Classic Balancing

(c) Corral (d) EXP3 (e) UCB

Figure 1: Learning Rate-Free PPO on Humanoid environment. Discounted return per episode
across 5 model selection strategies; each curve showing the mean and standard deviation over three
independent runs. The purple curve belongs to the learning rate-free PPO which demonstrates the
advancement of the meta learner. Other curves show the advancement of a subset of the base agents.

Figure 1 represents our main findings. Each plot includes the episodic return for the meta learner135

(purple curve) and three of the base agents. Full plots showing the performance of all base agents are136

available in Appendix B. By comparing the meta learners, we can see that D3RB strategy achieved137

the lowest regret and had the most advancement in the task. Figure 1(a) demonstrates that the meta138

learner with D3RB strategy is performing nearly as good as to the best-performing base agent (blue139

curve). The plot also reflects the fact that D3RB is learning not to select the ill-performing learning140

rates as often.141

The meta learner with Classic Balancing strategy, shown in Figure 1(b) is working comparable to an142

average-performing base agent. The original algorithm proposes the elimination of the miss-specified143

base agents in order to succeed, whereas in this experiment we observed that the strategy didn’t144

eliminate any base agents and played them with the same probability. This might be due to the145

sub-optimal putative bound input of the model selection strategy. More details about the Classic146

Balancing method are available in Appendix C.147

Figures 1(c, d, e) show that bandit algorithms are not achieving the same good results as D3RB. One148

drawback of applying bandit algorithms as meta-learners for reinforcement learning base agents149

can be seen in these experiments. Unlike standard multi-armed bandits where the mean rewards are150

stationary, rewards in reinforcement learning can depend on the state of learning. A specific choice151

of learning rate might achieve low rewards in the early stages of learning and be able to perform well152

later on. In contrast, another choice of learning rate might significantly advance in the beginning and153

slow down after a while. Standard bandit algorithms are not able to distinguish these state-dependant154

changes and therefore not be able to adapt to the best choice of learning rate during training. This lies155

at the heart of why the design of effective algorithms for model selection is a challenging problem156

and why typical multi-armed bandit algorithms do not possess provable guarantees for this problem157

setting.158

These experiments further point out the capabilities of data-driven methods for the task of hyperpa-159

rameter tuning. As D3RB achieved the best performance in this task, we compared it to the sweep160

strategy over the same set of learning rates. For sweep, we initiate ten independent PPO agents with161

the same set of learning rates that we input to the model selection counterparts. We run each agent for162

approximately ∼ 1
10 fraction of total episodes in model selection experiments. Figure 2 demonstrates163

the results of this comparison. Figure 2(a) shows the number of episodes that the meta learner with164

D3RB strategy has selected each base agent throughout the training. Figure 2(b) shows the maximum165

value of episodic return achieved by independent PPO agents. We can see that D3RB strategy for166
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(a) D3RB

(b) Sweep

Figure 2: D3RB selection statistics are reflecting the results of sweep over the same learning rates

learning rate-free RL has learned to select the agents with higher reward (and lower regret) more167

frequently. Additionally, we can see that D3RB is not choosing deficient learning rates as often.168

Check Appendix A for a theoretical explanation of this.169

The same experiments are done for Learning Rate-Free DQN. The results are available at Figure 3.170

We can see that for simpler reinforcement learning tasks like the classic control environments, the171

bandit strategies like UCB and Corral were able to perform well. Full plots are available in Appendix172

B.173

6 Related Work174

Random Search [3] aimed to improve the exhaustive heuristics for hyperparameter tuning by consid-175

ering a random subset of all possible hyperparameters. [26] formulated hyperparameter tuning as an176

optimization problem and used Bayesian inference to adaptively update the hyperparameters. Several177

other papers have studied parameter-free learning from the perspective of optimization [8, 15, 19].178

These works successfully proposed learning rate schedulers for common optimizers like Adam [9]179

and SGD. Among prior the closest to our work is [18] which formulates hyperparmeter optimization180

as an infinite-arm bandit problem, but doesn’t apply their method to reinforcement learning.181

The model selection problem has been studied in both online and offline fashion in reinforcement182

learning [10, 11, 13, 21]. Despite the great capacities of model selection in machine learning183

applications, most of the prior works focused on the theoretical aspects of model selection [17], and184

only a few considered model selection in more practical problems such as feature selection [14, 21].185
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(a) D3RB (b) Corral

(c) Classic Balancing (d) EXP3 (e) UCB

Figure 3: Learning Rate-Free DQN on CartPole environment. Discounted return per episode
across 5 model selection strategies. The purple curve belongs to the learning rate-free DQN which
demonstrates the advancement of the meta learner. Other curves show the advancement of a subset of
the base agents.

7 Conclusion and Future Work186

We proposed a model selection framework for learning rate-free reinforcement learning and demon-187

strated its effectiveness using five model selection strategies. Our experiments showed that the188

data-driven regret balancing method, D3RB generally serves as a good model selection strategy for189

learning rate-free reinforcement learning, consistently performing well across our tests. In contrast,190

bandit strategies appeared to be insufficient as meta-learners for PPO base agents.191

There are several possible extensions to this work. One direction is studying the effect of sharing192

data across the base agents on the sample efficiency of the framework. Another direction is to come193

up with a framework that performs learning rate selection on a single instance of a reinforcement194

learning base agent. This can significantly improve the memory efficiency of the framework for195

deploying it in models of larger scale.196
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Appendix261

A. Theoretical Remarks262

Regret balancing strategies strive to equate the regret of the different algorithms. Typically it is263

assumed the optimal algorithm’s regret scales as d⋆
√
t, where d⋆ is the regret coefficient. In contrast,264

the regret of a linearly sub-optimal algorithm scales as ∆t for some constant ∆. Without loss of265

generality let’s call these two algorithms, Algorithm A and Algorithm B. A regret balancing strategy266

ensures that at episode N the number of episodes Algorithm A and Algorithm B were played, NA,267

and NB satisfy d⋆
√
NA ≈ ∆NB thus implying that NB ≈ d⋆

√
NA

∆ = O
(

d⋆

√
N

∆

)
.268

B. Experiments/Plots269

We use cleanRL library [12] for the implementation of RL algorithms. Implementaions of the frame-270

work and model selection strategies are available here: https://github.com/Kinda-Anonymous/271

Learning-Rate-Free-Reinforcement-Learning272

(a) D3RB (b) Classic Balancing

(c) Corral (d) EXP3 (e) UCB

Figure 4: Learning Rate-Free PPO on Humanoid environment. Discounted return per episode across
5 model selection strategies.

C. Model Selection Algorithms Pseudocodes273

Denote the number of times that the base agent i was played up to this time as ni. Denote the regret274

coefficient of base learner i as di, and the total reward accumulated by base learner i up to this time275

by ui.276

D3RB277

Doubling Data Driven Regret Balancing (D3RB) [7] tries to maintain and equal empirical regret278

for all the base agents. Denote the balancing potential of base agent i as Ψi = di
√
ni. The D3RB279

algorithm for learning rate-free RL works as follows,280

9
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(a) D3RB (b) Classic Balancing

(c) Corral (d) EXP3 (e) UCB

Figure 5: Learning Rate-Free DQN on CartPole environment. Discounted return per episode across 5
model selection strategies for all 10 base agents. Purple curve belongs to the meta learner.

Algorithm 3: D3RB
Input: m, β, Ψ, δ

1
2 Function sample():

// Sample base index
3 i = argminj Ψj

4 πi, αi ← βi

5 return i, πi, αi

6
7 Function update(i, R[1 : T ]):
8 Rnorm ← normalize(R[1 : T ])

// Update Statistics
9 ui = ui +Rnorm

10 ni = ni + 1
// Perform miss-specification test

11 ui

ni +
di

√
ni

ni + c

√
ln

mlnni

δ

ni ≤ maxj
uj

nj − c

√
ln

Mlnnj

δ

nj

// If test triggered double regret coefficient for base i
12 di ← 2di

// Update balancing potential

13 Ψi = di
√
ni

14

281

Classic Balancing282

The Classic Regret Balancing Algorithm [22] starts with the full set of base agents β = [β1, ..., βm],283

at each round the algorithm performs miss-specification on each of the base agents and eliminates the284

miss-specified one. Denote Ψj as empirical regret upper bound of base agent j.285
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Algorithm 4: Classic Balancing
Input: m, β, Ψ, δ

1
2 Function sample():

// Sample Base index
3 i = argminj Ψj

4 πi, αi ← βi

5 return i, πi, αi

6
7 Function update(i, R[1 : T ]):
8 Rnorm ← normalize(R[1 : T ])

// Update statistics
9 ui = ui +Rnorm

10 ni = ni + 1
// Perform miss-specification test for all the remaining base agents

11 for βk ∈ β do

12 uk

nk + dk
√
nk

ni + c

√
ln

mlnnk

δ

nk ≤ maxj
uj

nj − c

√
ln

Mlnnj

δ

nj

13 if miss-specified then
14 β ← β/{βk}
15

16

286

EXP3287

Exponential-weight algorithm for exploration and exploitation (EXP3) learns a probability distribution288

Ψi = exp(Si)∑m
j=1 exp(Sj) over base learners, where Si is a total estimated reward of base agent i up to this289

round.290

Algorithm 5: EXP3
Input: m, β, Ψ, δ

1
2 Function sample():
3

// Sample Base index
4 i = argmaxj Ψj

5 πi, αi ← βi

6
7 return i, πi, αi

8
9 Function update(i, R[1 : T ]):

10
11 Rnorm ← normalize(R[1 : T ])

// Update statistics
12 for j ∈ 1, ...,m do
13 Sj = Sj + 1− I{j=i}(1−Rnorm)

Ψi

14
// Update Distribution

15 Ψi = exp(Si)∑m
j=1 exp(Sj)

16

291
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Corral292

Corral [1] learns a distribution Ψ over base agents and update it according to LOG-BARRIER-OMD293

algorithm. We skip the algorithmic details and refer to the updating rule mentioned in the original294

paper as Corral-Update.295

Algorithm 6: Corral
Input: m, β, Ψ

1
2 Function sample():
3

// Sample base index
4 i ∼ Ψ
5 πi, αi ← βi

6
7 return i, πi, αi

8
9 Function update(i, R[1 : T ]):

10
11 Rnorm ← normalize(R[1 : T ])

// Update according to Corral
12 Ψj ← Corral-Update(Rnorm)

13

296

UCB297

The Upper Confidence Bound algorithm (UCB) maintains an optimistic estimate of the mean for298

each arm [16]. Denote Ψi as the upper confidence bound of arm i. The UCB algorithm for learning299

rate-free RL works as follows,300

Algorithm 7: UCB
Input: m, β, Ψ, δ

1
2 Function sample():
3

// Sample base index
4 i = argmaxj Ψj

5 πi, αi ← βi

6
7 return i, πi, αi

8
9 Function update(i, R[1 : T ]):

10
11 Rnorm ← normalize(R[1 : T ])

// Update statistics
12 ui = ui +Rnorm

13 ni = ni + 1

14 µi = ui

ni

// Update Upper Confidence Bounds

15 Ψi = UCBi(δ) = µi +
√

2log(1/δ)
ni

16
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