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Abstract

Bayesian neural networks (BNNs) estimate the
posterior distribution of model parameters and uti-
lize posterior samples for Bayesian Model Aver-
aging (BMA) in prediction. However, despite the
crucial role of flatness in the loss landscape in
improving the generalization of neural networks,
its impact on BMA has been largely overlooked.
In this work, we explore how posterior flatness
influences BMA generalization and empirically
demonstrate that (1) most approximate Bayesian
inference methods fail to yield a flat posterior and
(2) BMA predictions, without considering posterior
flatness, are less effective at improving generaliza-
tion. To address this, we propose Flat Posterior-
aware Bayesian Model Averaging (FP-BMA), a
novel training objective that explicitly encourages
flat posteriors in a principled Bayesian manner.
We also introduce a Flat Posterior-aware Bayesian
Transfer Learning scheme that enhances general-
ization in downstream tasks. Empirically, we show
that FP-BMA successfully captures flat posteriors,
improving generalization performancea.

aCode is available at https://github.com/
MLAI-Yonsei/FP-BMA

1 INTRODUCTION

Bayesian neural networks (BNNs) provide a theoretically
grounded framework for modeling uncertainty in deep
learning by approximating the posterior distribution of
model parameters [MacKay, 1992, Hinton and Van Camp,
1993, Neal, 2012]. The approximated posterior is used for
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making predictions through Bayesian Model Averaging
(BMA) [Wasserman, 2000, Fragoso et al., 2018, Wilson and
Izmailov, 2020, Zeng and Van den Broeck, 2024]. It allows
BNNs to account for uncertainty in predictions, leading to
more reliable outcomes compared to the deterministic neu-
ral networks (DNNs) [Kapoor et al., 2022, Kristiadi et al.,
2022b]. The accuracy and robustness of BNN predictions
are heavily dependent on the quality of the approximated
posterior [Kristiadi et al., 2022a, Wenzel et al., 2020].

The flatness of loss landscape has been strongly associated
with better generalization ability, as they represent solutions
that are less sensitive to small perturbations in model pa-
rameters [Hochreiter and Schmidhuber, 1997, Keskar et al.,
2016, Neyshabur et al., 2017]. The flatness has been exten-
sively studied in the context of DNNs, but no comprehensive
analysis has been conducted on its role in BNNs or its im-
pact on BMA. SA-BNN [Nguyen et al., 2023] incorporated
a flat-seeking optimizer into BNNs but merely adapted a
DNN-based optimizer without considering the probabilistic
nature of BNNs, leading to only limited improvements. On
the other hand, E-MCMC [Li and Zhang, 2023] introduced a
guidance model to achieve flat posteriors, but this approach
is less suited for large-scale models.

In this work, we first demonstrate that BNNs often struggle
to capture the flatness. In detail, we compare the flatness of
various BNN frameworks against that of DNNs and demon-
strate that (1) most approximate Bayesian inference methods
fail to yield a flat posterior and (2) BMA predictions, without
considering posterior flatness, are less effective at improv-
ing generalization. These findings highlight the need for
an optimization strategy that accounts for the probabilistic
nature of BNNs to estimate flat posteriors effectively.

Therefore, we propose Flat Posterior-aware Bayesian Model
Averaging (FP-BMA), a novel optimization that explicitly
targets the flat posterior. We first compute an adversarial
posterior in the vicinity of the current posterior, which max-
imizes the BNN loss. After that, we update the posterior
by employing the gradient of the adversarial posterior with
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respect to the loss. We show that the proposed FP-BMA
is an extended version of previous flatness-aware optimiz-
ers, Sharpness-aware Minimization (SAM) [Foret et al.,
2020], Fisher SAM (FSAM) [Kim et al., 2022a], and Natu-
ral Gradient (NG) [Amari, 1998] with specific conditions.
In addition, we introduce a Flat Posterior-aware Bayesian
Transfer Learning scheme integrated with FP-BMA, en-
abling effective capture of flatness. This approach enhances
robustness against model misspecification, when the prior is
not well-suited for fine-tuning BNNs on downstream tasks.
We show that FP-BMA improves the generalization perfor-
mance of BNNs, particularly in few-shot classification and
distribution shift, by ensuring a flat posterior.

Our major contributions are summarized as follows:

• We demonstrate that BNNs often struggle to capture the
flatness, and BMA can be ineffective without flatness.

• We propose FP-BMA, a flat posterior-seeking opti-
mizer that generalizes loss geometric optimizers such
as SAM, FSAM, and NG.

• We introduce Flat Posterior-aware Bayesian Trans-
fer Learning, which leverages a pre-trained model as
a prior and effectively enhances robustness against
model misspecification through a flat posterior.

2 PRELIMINARY

2.1 BAYESIAN NEURAL NETWORKS

Training Let w ⊆ Rp be the model parameter of BNN
and D = {(x, y)} be the datasets with inputs x and outputs
y. In principle, training BNNs aims to estimate the posterior
distribution p(w|D) based on Bayes’ Rule:

p(w|D) = p(D|w)p(w)∫
w
p(D|w)p(w)dw

, (1)

where p(D|w) and p(w) denote the likelihood of data D
and the prior distribution over w, respectively.

However, the posterior of BNNs p(w|D) is intractable in
general. Hence, many approximate inference methods, in-
cluding Markov Chain Monte Carlo (MCMC) [Welling and
Teh, 2011, Chen et al., 2014] and Variational Inference
(VI) [Graves, 2011, Blundell et al., 2015], and other vari-
ants [Ritter et al., 2018, Gal and Ghahramani, 2016, Maddox
et al., 2019], have been employed to obtain approximate
posterior qθ(w|D), with distribution’s parameter θ ⊆ Rq,
pursuing qθ(w|D) ≈ p(w|D).

Prediction For the approximate posterior qθ(w|D), BNNs
make predictions on unobserved data (x∗, y∗) via Bayesian
Model Averaging (BMA), which integrates predictions over
the posterior distribution of the model parameters:

p(y∗|x∗,D) ≈
∫
w

p(y∗|fw(x∗))qθ(w|D)dw (2)

≈ 1

M

M∑
m=1

p(y∗|fwm(x∗)), wm ∼ qθ(w|D),

where fw(·) is predictions with parameter w and M denotes
the number of sampled model; the first approximation uses
qθ(w|D) and second approximation in Eq. 2 employs Monte
Carlo integration. This approach is known to improve gener-
alization by averaging over a diverse set of models sampled
from the approximate posterior, which is the core idea of
BMA [Wilson and Izmailov, 2020].

2.2 FLATNESS AND OPTIMIZATION

As the flatness of loss surface has been known to be con-
nected to the generalizability [Hochreiter and Schmidhuber,
1994, 1997, Neyshabur et al., 2017], new training meth-
ods have been presented to find the flat local optimum.
Sharpness-Aware Minimization (SAM) [Foret et al., 2020]
is a widely adopted technique that seeks flat minima by
making the model robust to small perturbations in parame-
ters. SAM performs adversarial training by minimizing the
worst-case loss in an L2 neighborhood of the weights:

ℓγSAM(w) = min
w

max
∥∆w∥p≤γ

ℓ(fw+∆w(x), y),

where ℓ(·) is the empirical loss function (e.g., cross-entropy
for classification tasks) and p is practically set to p = 2,
yielding ∆w = γ∇wℓ(w)/∥∇wℓ(w)∥2.

However, SAM’s isotropic L2 ball may not accurately reflect
the an isotropic geometry of the loss landscape. To address
this, Fisher SAM (FSAM) [Kim et al., 2022a] improves
SAM by replacing the Euclidean ball with a non-Euclidean
one defined by the Fisher information matrix (FIM):

ℓγFSAM(w) = min
w

max
∥Fy(w)∆w∥p≤γ2

ℓ(fw+∆w(x), y),

where Fy(w) denotes the FIM and is approximated as
Fy(w) = 1/|B|∇w log p(y|x,w)2 with |B| batch size.
SAM and FSAM are both derived under deterministic
w, and Fy(w) is defined over the predictive distribution
p(y|fw(x)), not in the parameter space.

3 FLATNESS DOES MATTER FOR
BAYESIAN MODEL AVERAGING

In this section, we explore the flatness of BNNs’ posterior
obtained from the widely-used approximate Bayesian infer-
ences and demonstrate that flatness should be considered
for BNNs based on both empirical and theoretical grounds.



(a) Correlation between flatness and
generalization within sampled models

(b) Flatness and generalization according to
the training methods

(c) NLL with the number of BMA models

Figure 1: (a) Flatness, measured via the maximal Hessian eigenvalue (λ1), is highly correlated with generalization ability
(classification error, ECE, and NLL), suggesting that the flatness of models sampled from the posterior is correlated with
generalization ability. (b) The existing inferences of BNNs (SWAG, VI, and MCMC) with SGD struggle to capture the
flatness compared to DNNs. In contrast, the proposed Bayesian flat posterior-aware optimizer FP-BMA allows BNNs to
seek flat minima, improving performance. (c) Flat posteriors are necessary, as increasing the number of BMA samples does
not lead to better performance if the posterior is not flat. The proposed FP-BMA enhances posterior quality by capturing
flatness and requires fewer samples for improved BMA.

Experimental Setup We empirically inspect the flatness
of BNNs and observe that the generalization ability of BMA
prediction improves as weight samples are drawn from a
flatter posterior. To this end, we train ResNet18 [He et al.,
2016] without Batch Normalization [Ioffe and Szegedy,
2015] on CIFAR10 [Krizhevsky et al., 2009] using following
Bayesian inference methods-VI, SWAG, and MCMC-to
yield the approximate posterior qθ(w|D). We then compare
the generalization ability, classification error, negative log-
likelihood (NLL), and expected calibration error (ECE) with
the flatness of the approximate posterior.

Flatness criterion for BNNs To evaluate the flatness of
the posterior, we use the average of Hessian’s eigenvalues,
unlike in DNNs, where flatness is assessed using individ-
ual eigenvalues. This difference stems from the fact that
the loss of BNNs is formulated as the marginal likelihood
over the posterior, incorporating multiple parameter sam-
ples {wm}Mm=1 drawn from wm ∼ qθ(w|D). We use the
averaged i-th maximal eigenvalue of Hessian:

λi ≈
1

M

M∑
m=1

λi(Hfm), Hfm = ∇2ℓ
(
fwm

(x), y
)
, (3)

where ℓ
(
fwm

(x), y
)

:= − log p(y|fwm
(x)) denotes the

likelihood using m-th parameter sample wm ∼ qθ(w|D).
The Hfm denotes the Hessian of the loss ℓ

(
fwm(x), y

)
and

λi(Hfm) denotes the i-th maximal eigenvalue of Hessian.
Notably, the smaller largest eigenvalues of the Hessian indi-
cate that the model parameters lie in a flatter region of the
loss surface. Therefore, the maximal eigenvalue λ1 or the
eigenvalue ratio λ1/λ5 is often used to assess the flatness
of model parameters [Keskar et al., 2016, Foret et al., 2020,
Jastrzebski et al., 2020].

3.1 NEED FOR FLATNESS IN BMA

Takeaway 1: The flatness of models sampled from
the posterior is correlated with generalization abil-
ity. Figure 1a compares normalized generalization abil-
ity—measured by Error, ECE, and NLL—against flatness of
BMA models sampled from posterior trained with SWAG.
The results reveal a strong positive correlation between flat-
ness and generalization ability, suggesting that models sam-
pled from the posterior is correlated with generalization
ability, same as DNNs. We confirm that this property holds
across different learning rate schedulers and the CIFAR-100
dataset, as shown in Figure 6 (Appendix A.2.1).

Takeaway 2: It is essential to approximate a flat posterior
for BMA. We also establish a generalization error bound
for BMA that explicitly involves the flatness of the posterior.
First, we show that the flatness of BMA is determined by
that of individual BMA samples, highlighting the necessity
of a flat posterior for effective BMA performance.

Lemma 1. Let twice differentiable loss ℓ(·), predictions
of model fm(·) parameterized by wm, and predictions of
BMA fBMA(·). With M model sample {wm}Mm=1, the maxi-
mal eigenvalue of averaged Hessian of loss λmax(HfBMA) is
bounded as follow:

max

{
1

M

(
λmax(Hfm) +

M∑
n=1
n ̸=m

λmin(Hfn)

)}M

m=1


(4)

≤ λmax(HfBMA) ≤
∑M

m=1 λmax(Hfm)

M
. (5)



Lemma 1 implies that as λmax(Hfm) decreases in Eq. 4,
where it appears in both the lower and upper bounds, the
corresponding λmax(HfBMA) also decreases. This decrease
in λmax(HfBMA) represents that that the BMA prediction op-
erates within flatter minima. Given Lemma 1, the following
theorem shows that the generalization error of the BMA pre-
dictor is directly controlled by the flatness of the posterior,
as measured by the maximal Hessian eigenvalue [Luo et al.,
2024].

Theorem 1 (Informal). Let fBMA be the BMA predictor
obtained by averaging over posterior samples. Then, with
high probability,

ℓD(fBMA) ≤ ℓS(fBMA) +
pσ2

2
λmax(HfBMA) +O

(
σ3p3

)
where ℓD and ℓS denote the population and empirical loss,
respectively, p is the number of model parameters, n is the
sample size, σ is a smoothing parameter, and HfBMA is the
Hessian of the loss evaluated at fBMA.

This result formally supports our main message: BMA with
a flat posterior—that is, a posterior whose samples fm ex-
hibit smaller λmax(Hfm)—leads to a tighter generalization
error bound. Thus, posterior flatness is not only empirically
correlated with generalization, but also a theoretically well-
justified objective for BMA. A detailed proof of Theorem 1
is provided in Appendix B.1.

3.2 INSUFFICIENT FLATNESS OF BMA

Takeaway 3: Most approximate Bayesian inference meth-
ods struggle to produce a flat posterior. We investigate
whether existing approximate Bayesian inference methods
can produce the flat posterior of BNNs. Figure 1b illustrates
how NLL and posterior flatness vary depending on whether
flatness in the loss surface is taken into account during op-
timization. We observe that the approximate posteriors of
BNNs do not show better flatness compared to that of DNNs,
obtained from the SAM optimizer.

On the other hand, the proposed FP-BMA, which will be de-
scribed in Section 4.1, allows BNNs to seek flat minima and
thus leads to better performance. We also confirm consistent
results on various learning rate schedulers and generaliza-
tion performance metrics, as described in Appendix A.3.

Takeaway 4: Increasing the number of BMA samples
does not lead to better performance without a flat pos-
terior. Figure 1c compares the NLL of BMA predictions
for two posteriors—one considering flatness and the other
not. The results show that simply increasing the number
of weight samples in BMA does not outperform BMA with
a flat posterior, highlighting the importance of posterior
flatness for better generalization. On the other hand, the
proposed FP-BMA, which will be described in Section 4.1,

enhances posterior quality by capturing flatness and requires
fewer samples for improved BMA. Additional results in Ap-
pendix A.4 confirm this trend across different learning rate
schedulers and metrics.

4 BAYESIAN MODEL AVERAGING WITH
FLAT POSTERIOR

Our theoretical analysis and empirical findings suggest that
a flat posterior in BNNs is crucial for generalization but is
not achieved by existing approximate Bayesian inference
methods. To address this, we propose an optimizer that
encourages a flat posterior (Section 4.1) introduce Bayesian
transfer learning combined with diverse BNN frameworks
(Section 4.2).

4.1 FLAT POSTERIOR-AWARE OPTIMIZER

To deal with the probabilistic nature of BNNs, we suggest a
new objective function based on VI:

ℓγFP-BMA(θ) =min
θ

max
d|θ+∆θ,θ|≤γ2

ℓ(θ +∆θ)

+ βDKL[qθ(w|D)||p(w)]
(6)

s.t. d|θ +∆θ, θ| = DKL
[
qθ+∆θ(w|D) || qθ(w|D)

]
, (7)

where θ and ∆θ denote the variational parameters and their
perturbation, respectively. ℓ(θ+∆θ) denotes empirical loss
under perturbated posterior qθ+∆θ(w|D), and β is a hyper-
parameter that controls the influence of the prior.

Given new objective ℓγFP-BMA(θ) in Eq. 6, the variational
parameter θ is updated using the approximate gradient

∇θℓ
γ
FP-BMA(θ) ≈ ∇θℓ(θ +∆θFP-BMA), (8)

where the parameter perturbation ∆θFP-BMA is first com-
puted as:

∆θFP-BMA = γ
Fθ(θ)

−1∇θℓ(θ)√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

, (9)

using FIM Fθ(θ)=Ew,D[∇θ log qθ(w|D)∇θ log qθ(w|D)T ].
After that, the gradient∇θℓ(θ) is evaluated at θ+∆θFP-BMA.
We notate our objective as FP-BMA and provide a detailed
formula derivation in Appendix B.2.

Our proposed FP-BMA optimizer offers several key advan-
tages, which are detailed in the following paragraphs. The
main advantages of FP-BMA are summarized as follows:

• Implicit Flatness Control
• KL-based Bayesian Perturbation Ball
• Generalized Version of Geometric Optimizers



Figure 2: Posterior approximation with synthetic example.
When both flat and sharp modes coexist, we compared how
optimizers approximate the posterior. Unlike other methods,
the proposed FP-BMA converged to the flat mode.

Implicit Flatness Control Eq. 6 implicitly controls sharp-
ness by penalizing solutions that are sensitive to parameter
perturbations. This can be formalized via a second-order
Taylor expansion of the inner maximization:

max
d|θ+∆θ,θ|≤γ2

ℓ(θ +∆θ) (10)

≈ max
d|θ+∆θ,θ|≤1

(
ℓ(θ) + γ2∆θ⊤∇θℓ(θ) +

γ4λ1(Hfθ )

2

)
where λ1(Hfθ ) is the maximal eigenvalue of the Hessian.
Thus, minimizing Eq. 6 inherently seeks solutions with
lower sharpness, ensuring the variational posterior is con-
centrated in flatter regions of the loss landscape.

KL-based Bayesian Perturbation Ball Unlike determin-
istic optimizers such as SAM and FSAM, our method con-
strains the perturbation in distributional space via the KL-
divergence, as shown in Eq. 7. This approach leverages local
curvature information without expensive inner-loop opti-
mization, making the method scalable and practical for large
models. In addition, for Gaussian variational posteriors,
the KL-based constraint naturally captures both mean and
variance changes—providing a richer and more Bayesian-
consistent notion of flatness.

Generalized version of geometric optimizers FP-BMA
is a generalized version of SAM and FSAM and approxi-
mates NG under deterministic parameters, as shown in The-
orem 2. Proof of Theorem 2 is provided in Appendix B.3.

Theorem 2. (Informal) Suppose the model parameter w is
deterministic and the loss function ℓ(·) is twice continuously
differentiable. Let γ′ = γ/

√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ),

then

i) FP-BMA degenerates to SAM if FIM is an identity
matrix.

ii) FP-BMA degenerates to FSAM by using the diagonal
terms of FIM.

iii) FP-BMA approximates the update rule of NG with
learning rate ηFP-BMA = ηNG

(1+γ′)Fθ(θ)
−1, where ηNG

denotes the learning rate of NG.

This unifying perspective implies that FP-BMA can seam-
lessly adapt to both deterministic and Bayesian scenarios,
providing a principled way to leverage geometric properties
of the loss landscape in probabilistic models. As a result,
FP-BMA inherits the empirical benefits of sharpness-aware
and natural gradient optimizers—such as improved general-
ization and robustness—while extending their applicability
to Bayesian neural networks in a theoretically grounded
manner.

4.2 FLAT POSTERIOR-AWARE BAYESIAN
TRANSFER LEARNING

Additionally, we extend the proposed objective to seek the
flat posterior for Bayesian transfer learning. For the given
approximate posterior qpr

θ (w|Dpr) on source or downstream
task Dpr, we set our objective:

ℓγFP-BMA(θ) = min
θ

max
d|θ+∆θ,θ|≤γ2

ℓ(θ +∆θ)

+ βDKL[qθ(w|Dft)||qpr
θ (w|D

pr)]
(11)

s.t. d|θ +∆θ, θ| = DKL
[
qθ+∆θ(w|Dft) || qθ(w|Dft)

]
,

where Dft is the downstream dataset. Intuitively, this objec-
tive replaces the prior distribution of Eq. 7 by the approx-
imate posterior qpr

θ (w|Dpr) on source dataset. Notably, the
proposed objective ℓγFP-BMA(θ) can be effective in general
transfer learning where the model misspecification [Müller,
2013, Wilson and Izmailov, 2020] exists; the prior is not
suitable for the BNNs to be fine-tuned on downstream tasks,
and flat parameters have been shown to improve the model’s
robustness [Kim et al., 2022b, Zhang et al., 2023].

For computational efficiency, we adopt a sub-network BNN
strategy, focusing training on normalization and last-layer
parameters, as explored in prior works [Izmailov et al., 2020,
Daxberger et al., 2021, Sharma et al., 2023]. During fine-
tuning, we reinitialize the last layer with a Gaussian distri-
bution, N (0, αI), where α is a hyperparameter to control
variance. This approach ensures scalable and stable training
by leveraging pre-trained DNNs. The complete FP-BMA
procedure is given in Algorithm 1 (Appendix C.4).



Table 1: Performances (ACC, ECE, and NLL) of learning from scratch with ResNet18 and modified ViT-B/16†. FP-BMA
(VI), FP-BMA (MCMC), and FP-BMA (SWAG) indicate the specific BNN framework combined with FP-BMA. Bold
highlights the best performance within each BNN framework, while red indicates the overall best performance across all
frameworks. FP-BMA achieves superior performance across all BNN frameworks on both CIFAR10 and CIFAR100.

Backbone ResNet18 ViT-B/16†

Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100

Method ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓

SGD 83.28±0.49 0.058±0.005 0.540±0.006 50.33±0.62 0.123±0.016 1.976±0.055 81.20±1.31 0.050.±0.002 0.569±0.027 48.66±0.21 0.062±0.013 1.956±0.021

SAM 87.59±3.10 0.031±0.017 0.389±0.065 51.48±0.05 0.096±0.026 1.873±0.042 81.25±0.10 0.020±0.003 0.550±0.002 54.91±4.20 0.053±0.020 1.709±0.148

FSAM 83.38±0.86 0.052±0.003 0.540±0.010 50.87±1.29 0.114±0.008 1.963±0.058 81.57±1.49 0.046±0.006 0.563±0.036 48.75±0.42 0.055±0.010 1.956±0.003

bSAM 84.28±0.32 0.051±0.010 0.502±0.012 52.55±0.30 0.087±0.011 1.802±0.027 80.33±0.88 0.037±0.007 0.588±0.012 57.75±0.29 0.040±0.014 1.573±0.015

VI 82.61±0.51 0.067±0.003 0.632±0.008 51.45±0.32 0.037±0.007 1.874±0.007 75.81±0.88 0.027±0.021 0.715±0.038 48.97±0.20 0.037±0.012 1.965±0.002

FP-BMA (VI) 85.34±0.18 0.028±0.006 0.431±0.001 54.49±0.82 0.016±0.003 1.699±0.021 76.23±0.44 0.018±0.006 0.692±0.010 51.62±1.12 0.038±0.013 1.884±0.026

MCMC 84.82±0.13 0.049±0.001 0.523±0.008 58.38±0.16 0.090±0.002 1.742±0.014 81.80±0.46 0.014±0.003 0.542±0.023 51.79±0.29 0.081±0.001 2.068±0.016

E-MCMC 85.45±0.27 0.037±0.002 0.479±0.006 60.38±0.21 0.074±0.003 1.574±0.002 81.97±0.49 0.034±0.004 0.545±0.014 50.48±0.13 0.068±0.005 2.010±0.007

FP-BMA (MCMC) 86.98±0.19 0.030±0.004 0.393±0.001 61.94±0.37 0.029±0.003 1.467±0.006 82.49±1.95 0.012±0.003 0.528±0.067 61.10±1.44 0.046±0.005 1.461±0.067

SWAG 88.95±0.09 0.044±0.015 0.349±0.013 59.48±0.19 0.030±0.002 1.594±0.011 83.70±0.30 0.044±0.011 0.493±0.020 54.76±2.20 0.151±0.025 2.008±0.136

F-SWAG 89.35±0.19 0.028±0.013 0.323±0.010 60.44±0.20 0.074±0.023 1.566±0.006 83.57±0.41 0.046±0.015 0.498±0.029 56.80±1.44 0.061±0.017 1.733±0.073

FP-BMA (SWAG) 89.84±0.30 0.019±0.002 0.306±0.006 63.63±0.60 0.052±0.007 1.342±0.003 84.44±0.58 0.028±0.008 0.464±0.011 57.64±1.42 0.032±0.005 1.590±0.050

5 EXPERIMENTS

5.1 SYNTHETIC EXAMPLE

We demonstrate whether the proposed FP-BMA can esti-
mate a flat posterior when a sharp and flat minima coexists.
To this end, we consider a synthetic dataset generated from
true posterior having flat mode and sharp mode, as depicted
in Figure 2. This controlled setting allows us to directly
observe the optimizer’s preference for flat versus sharp re-
gions in the loss landscape, isolating the effect of posterior
flatness from other confounding factors. We then estimate
the posterior using the proposed loss FP-BMA using SWAG.
For comparison, we consider the following baseline meth-
ods: SGD, MCMC, SWAG, and VI, to estimate posterior.
Figure 2 shows that MCMC, SWAG, and VI yield the pos-
terior at sharp mode. In contrast, the proposed FP-BMA
captures the flat posterior, demonstrating its effectiveness
in identifying solutions with better generalization potential.
We provide additional results in Appendix C.1.

5.2 LEARNING FROM SCRATCH

We verify the effectiveness of FP-BMA in improving the
performance of BNNs trained from scratch. Specifically, we
use Bayesian ResNet18 and a modified ViT-B/16† [Doso-
vitskiy et al., 2020, Liu et al., 2021, Zhu et al., 2023a]
on CIFAR10 and CIFAR100. We adopt the modified ViT-
B/16† to address the underfitting issue of ViTs on small
datasets. Due to computational constraints in large-scale
models, we apply variational distributions to the parameters
of normalization and last layers. We then train these vari-
ational parameters using approximate Bayesian inference
(VI, MCMC, and SWAG) with the gradient ∇θℓ

γ
FP-BMA(θ)

in Eq. 8, while updating the remaining parameters using the
gradient∇θℓ(θ). This setup allows us to assess the benefits
of FP-BMA in both convolutional and transformer-based

architectures under realistic training constraints.

For comparison, we consider SGD, SAM [Foret et al., 2020],
and FSAM [Kim et al., 2022a] seeking flat minima in
DNNs. For the training of BNNs, we consider SWAG, VI, F-
SWAG [Nguyen et al., 2023], bSAM [Möllenhoff and Khan,
2022], and E-MCMC [Li and Zhang, 2023], which utilizes
SGLD. For fair comparison, we use the same BNN archi-
tecture employed for FP-BMA. All baseline methods are
carefully tuned with respect to their key hyperparameters to
ensure a fair and meaningful comparison of generalization
performance, and the detailed hyperparameter configura-
tions for each baseline are provided in Appendix C.2.2.

Table 1 showcases the generalization performance, includ-
ing accuracy (ACC), ECE, and NLL. The FP-BMA con-
sistently improves performances when integrated with VI,
MCMC, and SWAG. Also, The FP-BMA leads to superior
performances compared to other baselines of SGD, SAM,
FSAM, and bSAM. Additional experimental details are pro-
vided in Appendix C.2.

5.3 BAYESIAN TRANSFER LEARNING

Finetuning on CIFARs We validate the effectiveness of
the FP-BMA on a transfer learning task. We first adopt
RN18 and ViT-B/16 pre-trained on ImageNet (IN) 1K [Rus-
sakovsky et al., 2015] as a backbone. The pre-trained models
are fine-tuned on CIFAR10 and CIFAR100 10-shot, using
10 data instances per class.

For comparison, we consider the following Bayesian trans-
fer learning methods: MOPED [Krishnan et al., 2020] and
Pre-Train Your Loss (PTL) [Shwartz-Ziv et al., 2022]. We
describe additional configurations in Appendix C.3.

Table 2 shows FP-BMA with diverse BNN frameworks con-
sistently outperforms existing baselines in terms of both ac-
curacy and uncertainty quantification. Unlike scratch learn-



Table 2: Downstream task performances (ACC, ECE, and NLL) with ResNet18 and ViT-B/16 pre-trained on IN 1K. Bold
highlights the best performance within each BNN framework, while red indicates the overall best performance across all
frameworks. FP-BMA shows superior performance both on the CIFAR10 and CIFAR100 10-shot, with the sole exception
being the ECE on the CIFAR100 10-shot in ResNet18.

Backbone ResNet18 ViT-B/16

Dataset CIFAR10 10-shot CIFAR100 10-shot CIFAR10 10-shot CIFAR100 10-shot

Method ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓

SGD 55.52±0.32 0.062±0.006 1.302±0.020 44.29±0.83 0.025±0.005 2.133±0.043 84.37±1.47 0.056±0.061 0.503±0.038 68.78±0.21 0.143±0.007 1.193±0.019

SAM 56.54±2.57 0.129±0.013 1.354±0.089 44.51±0.07 0.065±0.007 2.089±0.013 84.35±0.81 0.035±0.012 0.486±0.023 68.93±0.37 0.153±0.005 1.200±0.021

FSAM 54.04±4.11 0.139±0.010 1.432±0.068 44.07±1.21 0.056±0.005 2.159±0.064 84.51±0.50 0.073±0.085 0.517±0.061 68.74±0.39 0.110±0.007 1.166±0.024

bSAM 56.56±1.18 0.083±0.006 1.280±0.027 43.93±0.48 0.060±0.003 2.167±0.026 82.85±2.10 0.113±0.008 0.583±0.062 68.42±0.40 0.148±0.019 1.219±0.031

MOPED 57.29±1.20 0.093±0.006 1.297±0.045 44.30±0.42 0.047±0.006 2.127±0.005 84.50±1.36 0.023±0.009 0.474±0.038 68.80±0.77 0.111±0.001 1.165±0.029

FP-BMA (VI) 64.98±1.37 0.016±0.007 0.997±0.046 49.09±1.38 0.071±0.004 1.893±0.036 87.56±1.10 0.044±0.012 0.397±0.026 71.37±0.36 0.060±0.007 1.023±0.012

MCMC 56.31±1.27 0.083±0.003 1.305±0.063 44.28±0.95 0.021±0.002 2.155±0.038 83.93±1.33 0.069±0.010 0.523±0.039 66.48±1.18 0.077±0.011 1.224±0.044

PTL 57.26±1.44 0.116±0.003 1.345±0.004 43.00±1.05 0.120±0.006 2.383±0.062 85.76±1.37 0.080±0.014 0.482±0.027 65.52±2.45 0.056±0.006 1.260±0.095

E-MCMC 56.69±2.14 0.142±0.004 1.266±0.054 41.57±0.04 0.046±0.012 2.370±0.175 83.91±1.16 0.333±0.010 0.877±0.044 63.40±0.01 0.280±0.008 1.655±0.024

FP-BMA (MCMC) 57.49±0.64 0.039±0.00. 1.248±0.048 45.72±0.56 0.016±0.003 2.062±0.050 84.82±1.84 0.051±0.018 0.449±0.048 68.73±1.09 0.061±0.004 1.117±0.042

SWAG 56.31±0.60 0.094±0.013 1.315±0.056 44.14±1.28 0.034±0.010 2.161±0.058 83.51±2.22 0.022±0.015 0.510±0.072 68.72±0.45 0.065±0.005 1.136±0.014

F-SWAG 57.65±1.20 0.075±0.003 1.249±0.038 46.09±0.44 0.062±0.006 2.089±0.002 83.87±1.28 0.013±0.005 0.492±0.040 68.84±0.77 0.076±0.012 1.137±0.020

FP-BMA (SWAG) 61.79±4.34 0.026±0.004 1.214±0.119 47.45±0.60 0.055±0.018 2.044±0.022 86.81±0.78 0.010±0.003 0.399±0.034 70.10±0.18 0.045±0.015 1.063±0.023

Table 3: Downstream task accuracy with ResNet50 and ViT-B/16 pre-trained on IN 1K. Bold and underline denote best and
second best performance each. FP-BMA demonstrates superior performance across all 16-shot datasets.

Backbone ResNet50 ViT-B/16

Method EuroSAT Flowers102 Pets UCF101 Avg EuroSAT Flowers102 Pets UCF101 Avg

SGD 86.75±1.47 93.16±0.27 89.95±0.51 66.34±0.59 84.05±0.33 81.25±1.03 91.24±0.83 88.68±0.92 68.64±0.51 82.45±0.56

SAM 87.85±0.49 94.80±0.17 90.23±0.78 70.40±0.76 85.82±0.25 82.53±0.65 93.08±0.87 90.66±0.74 70.66±1.03 84.23±0.60

SWAG 88.97±1.56 93.27±0.15 89.95±0.46 66.41±0.30 84.65±0.37 81.62±0.66 91.21±0.91 88.67±0.42 67.65±0.45 82.29±0.31

F-SWAG 90.03±1.08 94.84±0.26 90.12±0.57 70.00±0.87 86.25±0.19 82.72±0.49 92.93±0.93 90.60±0.55 68.67±0.39 83.73±0.35

MOPED 85.21±3.14 92.15±0.73 89.25±0.61 65.85±0.99 83.11±0.86 83.97±0.49 91.71±0.87 89.90±0.54 69.66±0.53 83.81±0.51

PTL 90.01±0.39 92.55±0.53 89.43±0.41 65.00±1.24 84.25±0.30 83.76±0.61 88.43±1.27 88.54±0.53 60.38±1.84 80.28±0.03

FP-BMA 90.16±1.04 95.85±1.26 90.23±0.58 71.57±0.27 86.95±0.65 84.60±0.25 94.15±0.80 91.30±0.25 72.63±1.12 85.67±0.14

ing, FP-BMA (VI) outperforms FP-BMA (SWAG) in few-
shot image classification tasks. This can be attributed to
the nature of few-shot tasks, where VI, which only learns a
diagonal covariance, is less prone to underfitting due to the
limited amount of data.

Fine-tuning on fine-grained image classification tasks
Furthermore, we confirm the effectiveness of FP-BMA
on general fine-grained image classification tasks, includ-
ing EuroSAT [Helber et al., 2019], Flowers102 [Nilsback
and Zisserman, 2008], Pets [Parkhi et al., 2012], and
UCF101 [Soomro et al., 2012]. All experiments were con-
ducted using a 16-shot setting across all datasets. From this
point forward, we perform all experiments using FP-BMA
with SWAG only.

Table 3 shows that the FP-BMA achieves the best accuracy.
Table 11 (Appendix C.6) shows that the FP-BMA achieves
the best NLL, as well. This implies that FP-BMA seeking
the flat posterior during fine-tuning procedure is effective in
improving the performance of Bayesian transfer learning.

Fine-tuning with CLIP We also show the effectiveness
of FP-BMA on the pre-trained vision language models. We
fine-tune only the last layer of the CLIP visual encoder on
the IN 1K 16-shot dataset. Then, we evaluate the trained
model on IN and its variants—IN-V2 [Recht et al., 2019],

IN-R [Hendrycks et al., 2021a], IN-A [Hendrycks et al.,
2021b], and IN-S [Wang et al., 2019]—following the proto-
cols outlined in Radford et al. [2021], Zhu et al. [2023b].

Table 4 shows that FP-BMA outperforms baselines on IN set.
Also, FP-BMA shows superior or comparable accuracy on
out-of-distribution datasets, representing the effectiveness
of robustness.

5.4 ROBUSTNESS ON DISTRIBUTION SHIFT

We evaluate the trained models on CIFAR10 and CIFAR100
10-shots using the corrupted datasets CIFAR10C and CI-
FAR100C [Hendrycks and Dietterich, 2019] to demonstrate
the robustness of FP-BMA. These benchmarks simulate
a wide variety of real-world corruptions, including noise,
blur, weather, and digital effects, thereby providing a com-
prehensive testbed for evaluating model reliability under
distribution shift.

Figure 3 presents the accuracy on the corrupted datasets
CIFAR10C and CIFAR100C [Hendrycks and Dietterich,
2019], demonstrating that FP-BMA outperforms baselines
on corrupted datasets across all corruption levels. FP-BMA
consistently outperforms all baselines in NLL, as shown in
Figure 12. Detailed results are provided in Appendix C.7.



Table 4: Downstream task accuracy of CLIP with visual encoder, ResNet50 and ViT-B/16. Bold and underline denote best
and second best performance each. FP-BMA shows superior performance in average over five datasets.

Backbone ResNet50 ViT-B/16

Method IN IN-V2 IN-R IN-A IN-S Avg IN IN-V2 IN-R IN-A IN-S Avg

Zero-Shot 59.83±0.00 52.89±0.00 60.73±0.00 23.25±0.00 35.45±0.00 46.43±0.00 68.33±0.00 61.91±0.00 77.71±0.00 49.93±0.00 48.22±0.00 61.22±0.00

SGD 61.70±0.01 54.31±0.01 60.87±0.01 22.74±0.01 35.68±0.00 47.06±0.01 69.97±0.00 62.97±0.01 78.05±0.00 50.31±0.02 48.76±0.00 62.01±0.00

SAM 61.73±0.01 54.35±0.01 60.86±0.01 22.76±0.01 35.67±0.00 47.07±0.01 70.01±0.01 63.03±0.02 78.03±0.01 50.37±0.00 48.75±0.00 62.04±0.00

SWAG 61.77±0.22 54.10±0.19 61.25±0.21 23.25±0.08 35.55±0.27 47.18±0.19 70.11±0.02 63.44±0.06 78.33±0.03 50.55±0.02 48.95±0.01 62.28±0.02

FP-BMA 63.33±0.92 55.06±0.79 61.14±0.37 22.78±0.68 35.82±0.11 47.63±0.17 72.41±0.33 64.85±0.11 78.14±0.31 50.52±0.25 49.25±0.03 63.03±0.04

Figure 3: Accuracy under distributional shift. We evaluate the accuracy of RN18 and ViT-B/16 models trained on CIFAR10
and CIFAR100 10-shot across all severity levels of CIFAR10C and CIFAR100C. FP-BMA consistently outperforms all
baseline methods across all levels of corruption.

The results on IN variants in Table 4 and the corrupted
datasets in Figure 3 show that FP-BMA enhances the robust-
ness of trained BNNs under distribution shifts, suggesting
that the Flat Posterior-aware Bayesian Transfer Learning
scheme with FP-BMA effectively improves robustness.

5.5 FLATNESS ANALYSIS

We analyze whether FP-BMA encourages the posterior of
BNNs to lie in a flatter loss basin. Using ResNet18 trained
on CIFAR10 with 10-shot, we compare weight samples
from the approximate posterior obtained by FP-BMA and
PTL and compare the Hessian’s eigenvalue of model.

Figure 4 presents different views of loss surface using sam-
pled weights of FP-BMA and PTL. This result confirms
that the posterior of FP-BMA is placed on a flatter loss
basin with lower loss. Additional results and the protocol to
visualize the loss basin are provided in Appendix C.9.

Table 5 compares the Hessian’s eigenvalue of model λi

(Eq. 3) where λ1 and λ5 represent the largest eigenvalue
and the fifth largest eigenvalue, respectively. This result indi-
cates that FP-BMA achieves the lowest values compared to
all baselines, implying that the posterior of BNNs is formed
on the flattest local surface. This further supports our empir-
ical observations that FP-BMA enhances generalization by
encouraging a flatter posterior distribution.

6 RELATED WORKS

6.1 FLATNESS AND BNN

Recent works have suggested flat-seeking optimizers com-
bined with BNN. First, SWAG [Maddox et al., 2019] im-
plicitly approximated posterior toward flatter optima based
on SWA [Izmailov et al., 2018]. However, SWAG can fail to
find flat minima, leading to limited improvement in gener-
alization, as shown in Section 3.2. bSAM [Möllenhoff and
Khan, 2022] showed that SAM can be interpreted as a re-
laxation of the Bayes and quantified uncertainty with SAM.
Yet, bSAM only focused on uncertainty quantification by
simply modifying Adam-based SAM [Khan et al., 2018],
not newly considering the parametric geometry for pertur-
bation. Moreover, scaling the variance with the number of
data points hampers the direct implementation of bSAM in
few-shot settings. SA-BNN [Nguyen et al., 2023] proposed
a sharpness-aware posterior derived directly from the varia-
tional objective and proved the effectiveness experimentally
and theoretically. However, they simply employ the L2 norm
to calculate the perturbation of SAM without considering the
difference between the nature of DNN and BNN. Moreover,
in contrast to FP-BMA, SA-BNN did not take into account
the prior, which is a fundamental component of BNNs, in
its pursuit of flatness. On the other hand, E-MCMC [Li and
Zhang, 2023] proposed an efficient MCMC algorithm capa-
ble of effectively sampling the posterior within a flat basin



Figure 4: Comparison of the loss surfaces of FP-BMA (grey) and PTL (light blue) models. The comparison of loss surface
shows that FP-BMA allows the posterior to be placed on a lower and flatter loss surface compared to that of PTL.

Table 5: Hessian analysis on ResNet18 trained with CIFAR10 10-shot. FP-BMA shows the lowest score on both λ1 and
λ1/λ5, proving it leads the model to flatter minima.

SGD SAM FSAM bSAM MOPED PTL E-MCMC SWAG F-SWAG FP-BMA

λ1 ↓ 559.62 381.74 561.15 532.74 686.90 559.16 540.83 602.34 362.33 275.21
λ1/λ5 ↓ 2.59 2.23 2.24 2.09 2.41 2.23 1.98 2.13 2.44 1.69

by removing the nested chain of Entropy-SGD [Dziugaite
and Roy, 2018] and Entropy-SGLD [Chaudhari et al., 2019].
However, E-MCMC necessitates a guidance model, which
doubles the parameters and heavily hinders its employment
over large-scale models. FP-BMA is the first approach to
explicitly promote flat posteriors within a rigorous Bayesian
framework, providing a principled way to enhance robust-
ness and generalization.

6.2 BAYESIAN TRANSFER LEARNING

Applying Bayesian methods to transfer learning is a natural
and theoretically well-founded approach, as the Bayesian
framework systematically incorporates prior knowledge and
quantifies uncertainty when adapting models to new tasks.
Theoretical foundations for this perspective can be found
in the literature on probabilistic machine learning and hi-
erarchical Bayesian models [Bishop and Nasrabadi, 2006,
Murphy, 2012, Gelman et al., 1995], as well as early works
on Bayesian transfer and domain adaptation [Lawrence
and Platt, 2004, Raina et al., 2006]. Building on these
principles, a variety of Bayesian transfer learning meth-
ods have been developed, including approaches leveraging
pre-trained models as priors, empirical Bayes techniques,
and flexible posterior approximations [Krishnan et al., 2020,
Shwartz-Ziv et al., 2022, Lee et al., 2024]. PTL [Shwartz-
Ziv et al., 2022] constructs BNN by learning closed-form
posterior approximation of the pre-trained model on the
source task and uses it as a prior for the downstream task
after scaling. The work requires additional training on the
source task, making it restrictive when accessing the source
task dataset is impossible. MOPED [Krishnan et al., 2020]
employs pre-trained BNN as a prior for VI based on the

empirical Bayes method. Using pre-trained DNN, MOPED
enhances accessibility to BNN; however, it is only applica-
ble to Mean-field VI. Non-parametric transfer learning [Lee
et al., 2024] suggested adopting non-parametric learning to
make posterior flexible in terms of distribution shift. The
proposed Flat Posterior-aware Bayesian Transfer Learning
utilizes a pre-trained model as a prior, improving robustness
to model misspecification by promoting a flat posterior.

7 CONCLUSION

This study demonstrates the limitations of BNNs in cap-
turing flatness—a property crucial for generalization—and
reveals that BMA may fail to yield optimal results without
considering flatness. To address this, we introduce FP-BMA,
which seeks a flat posterior by effectively capturing flat-
ness in the parameter space. FP-BMA generalizes existing
sharpness-aware optimizers and aligns with the intrinsic
nature of BNNs. We further propose a Flat Posterior-aware
Bayesian Transfer Learning scheme, which enhances re-
silience against model misspecification. Our extensive ex-
periments demonstrate that FP-BMA significantly improves
the generalization ability of BNNs, underscoring the impor-
tance of flatness in posterior approximations. However, there
are several limitations to our study. Specifically, our theoret-
ical insights rely on strong assumptions, and the empirical
evaluation does not cover the full spectrum of MCMC al-
gorithms. Future work could extend FP-BMA to a wider
variety of Bayesian inference methods and investigate its
effectiveness on more complex datasets. Additionally, ex-
ploring automated ways to quantify and enforce flatness
during model training could further enhance the robustness
and applicability of the proposed approach.
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Flat Posterior Does Matter For Bayesian Model Averaging
(Appendix)
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A FLATNESS DOES MATTER FOR BAYESIAN MODEL AVERAGING

A.1 DETAILS ABOUT HESSIAN EIGENVALUE OF LOSS WITH BMA

(a) Flatness of BMA (b) Hessian Eigenvalue of loss

Figure 5: Description of flatness of BMA and Hessian Eigenvalue of loss. (a) depicts how flatness is measured in BNNs. We
measure the flatness of individual sampled model weights and subsequently ensemble the flatness of them. (b) represents
how the Hessian eigenvalue of loss corresponds to flatness. It reveals that direction of steep curvature (sharp minima)
exhibits with larger eigenvalues, while that of gentle curvature (flat minima) exhibits smaller eigenvalues. Based on this
understanding, we measure flatness using the maximal eigenvalue of the Hessian at the minima.

To measure the flatness of BNNs and compare them with DNNs, we introduce a new metric specifically designed for this
study. Unlike DNNs, where model parameters are typically treated as point estimate, BNNs represent model parameters
as random variables, necessitating an appropriate approach for measuring flatness. As shown in Figure 5b, the maximal
eigenvalue of the Hessian of the loss function is commonly used to evaluate flatness quantitatively in DNNs [Keskar et al.,
2016, Foret et al., 2020, Jastrzebski et al., 2020]. To assess flatness in BNNs, we followed BMA protocol. BMA samples
model weights from the approximated posterior, calculates the outputs of the sampled individual models, and ensemble the
outputs, as shown in Figure 5a. Thus, similar to how BMA operates, we measured the flatness of individual model weights
and subsequently ensemble these measurements to derive a comprehensive metric.
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A.2 NEED FOR FLATNESS IN BMA

Experimental Details To measure the flatness of BNNs, M of Eq. 3 is set to 30 for experiments in Section 3.1. We
primarily use RN18 as the backbone. Our evaluation includes Error (100−Accuracy), Expected Calibration Error (ECE) [Guo
et al., 2017], and Negative Log-Likelihood (NLL) to assess generalization on CIFAR10 and CIFAR100. To minimize
confounding effects on flatness measurements, we do not adjust BN and data augmentation. For BNN frameworks, we
consider VI, MCMC, and SWAG. We also consider three different learning rate scheduler: Constant, Cosine Decay (Cos
Deacy), and SWAG learning rate (SWAG lr).

A.2.1 Correlation Between Flatness And Generalization

We check the correlation between flatness and generalization performance of sampled models throughout all considered
learning rate schedulers. We present the scatter plot of the model, sampled from ResNet18 trained on CIFAR10 and
CIFAR100 in the first and second rows of Figure 6. Each column of Figure 6 denotes Constant scheduler, Cosine Decay
scheduler, and SWAG lr scheduler, respectively. All the models are trained with SWAG and SGD momentum, and we
set maximal eigenvalue λ1 as a flatness measure. Correlation with flatness and each generalization performance metric is
suggested in the legend, as well. Regardless of the scheduler and dataset, all generalization performances, error, ECE, and
NLL strongly correlate with flatness.

(a) Constant (b) Cosine Decay (c) SWAG lr

(d) Constant (e) Cosine Decay (f) SWAG lr

Figure 6: Correlation between maximal eigenvalue and performances of 30 sampled models from SWAG throughout all
considered schedulers. It shows classification error, ECE, and NLL are distinctly correlated with flatness. We conjecture that
the flatness is crucial for the generalization performance of BNN

A.3 INSUFFICIENT FLATNESS OF BMA

Figure 7 and Figure 8 show results consistent with Figure 1b across various learning rate schedulers and metrics. Specifically,
(1) BNNs struggle to ensure flatness compared to DNNs when using SGD, and (2) the proposed FP-BMA enables BNN
frameworks to achieve flat minima, thereby enhancing performance.



Figure 7: Comparison of Error, NLL, and ECE with various schedulers on CIFAR10 in relation to the maximum eigenvalue
λ1.



Figure 8: Comparison of Error, NLL, and ECE with various schedulers on CIFAR100 in relation to the maximum eigenvalue
λ1.



A.4 PERFORMANCE CHANGES BASED ON THE NUMBER OF MODELS IN BMA

We also inspect the influence of flatness on BMA performance throughout all considered schedulers. We train ResNet18 on
CIFAR10 and CIFAR100, again. Figure 9 and Figure 10 show the results in CIFAR10 and CIFAR100, respectively. Each
row means Constant, Cosine Decay, and SWAG lr scheduler, and each column denotes the classification error, ECE, and
NLL.

Two main findings were observed consistent with Figure 1c: (1) BNNs trained using the proposed FP-BMA showed superior
performance compared to those trained with SGD, suggesting that flatness influences posterior quality and contributes to
enhanced BMA performance. (2) FP-BMA training allowed predictive distributions to converge with fewer BMA samples,
meaning effective approximation can be achieved with a smaller number of samples.

(a) Constant - Error (b) Constant - ECE (c) Constant - NLL

(d) Cos Decay - Error (e) Cos Decay - ECE (f) Cos Decay - NLL

(g) SWAG lr - Error (h) SWAG lr - ECE (i) SWAG lr - NLL

Figure 9: Performance variation based on sampling considering flatness among BMA on CIFAR10. Each row means the
Constant, Cos Decay, and SWAG lr scheduler. Each column denotes classification error, ECE, and NLL. It reveals that the
flatness should be taken into account for efficient BMA.



(a) Constant - Error (b) Constant - ECE (c) Constant - NLL

(d) Cos Decay - Error (e) Cos Decay - ECE (f) Cos Decay - NLL

(g) SWAG lr - Error (h) SWAG lr - ECE (i) SWAG lr - NLL

Figure 10: Performance variation based on sampling considering flatness among BMA on CIFAR100. Each row means the
Constant, Cos Decay, and SWAG lr scheduler. Each column denotes classification error, ECE, and NLL. It reveals that the
flatness should be taken into account for efficient BMA.



B PROOF AND DERIVATION

B.1 PROOF OF THEOREM 1

Flatness Bound of BMA We first derive flatness bound of BMA. We assume M model wm,m = 1, ..,M , whose Hessian
matrices Hfm (defined in Eq. 3) are Hermitian. wWA = 1/M

∑M
m=1 wm is simple weight averaging and the Hessian of

wWA, HfWA , also be a Hermitian matrix. Weyl’s inequality is known to bound the eigenvalues of Hermitian matrices.

Proposition 1. (Weyl’s Inequality) For Hermitian matrices Cm ∈ Cp×p, k, l = 1, ..., p,

λk+l−1(Ci + Cj) ≤ λk(Ci) + λl(Cj) ≤ λk+l−N (Ci + Cj).

(12)

Let k = 1 and l = 1, then Eq. 12 can be written as:

λ1(Ci + Cj) ≤ λ1(Ci) + λ1(Cj).

As we have M Hermitian matrices, it can be expanded as:

λ1(
1

M

M∑
m=1

Hfm) ≤ 1

M

M∑
m=1

λ1(Hfm). (13)

One the other hand, we can let (k, l) = {(1, p), (p, 1)} and rewrite the Eq. 12 as:

max{λ1(Ci) + λp(Cj), λp(Ci) + λ1(Cj)} ≤ λ1(Ci + Cj).

Again, set M Hermitian matrices we have, it can be expanded as:

max

{
1

M

(
λ1(Hfm) +

M∑
n=1
n ̸=m

λp(Hfn)

)}M

m=1

 ≤ λ1(
1

M

M∑
m=1

Hfm). (14)

By combining Eq. 13 with Eq. 14 and substituting λ1 to λmax and λp to λmin, the flatness of averaged weight parameter is
bounded as:

max

{
1

M

(
λmax(Hfm) +

M∑
n=1
n ̸=m

λmin(Hfn)

)}M

m=1

 ≤ λmax(
1

M

M∑
m=1

Hfm) ≤
∑M

m=1 λmax(Hfm)

M
. (15)

However, Eq 15, as a bound for weight averaging (WA), cannot be directly applied to BMA, which marginalizes diverse
predictions. To bridge this gap, we leverage Proposition 2. which characterized the close relation between WA and
BMA [Izmailov et al., 2018, Wortsman et al., 2022, Rame et al., 2022].

Proposition 2. (Rame et al. [2022]) Given predictions of model fm(·) parameterized by wm, those of weight averaged
model fWA parameterized by wWA = 1

M

∑M
m=1 wm, those of BMA fBMA, and arbitrary twice differentiable loss function

ℓ(·), let ∆ = ∥fBMA(x)− fWA(x)∥2. Then, ∀(x, y)

ℓ(fWA(x), y) = ℓ(fBMA(x), y) +O(∆).

Lemma 2 shows that the predictions of BMA can be approximated with those of WA linearly. The error term is discarded in
the process of obtaining the Hessian:

HfWA ≈ HfBMA (16)

By putting Eq. 16 into Eq. 15, it leads to Lemma 1.



Lemma 1. Let twice differentiable loss ℓ(·), predictions of model fm(·) parameterized by wm, and predictions of BMA
fBMA(·). With M model sample {wm}Mm=1, the maximal eigenvalue of averaged Hessian of loss λmax(HfBMA) is bounded as
follow:

max

{
1

M

(
λmax(Hfm) +

M∑
n=1
n ̸=m

λmin(Hfn)

)}M

m=1

 ≤ λmax(HfBMA) ≤
∑M

m=1 λmax(Hfm)

M
.

Generalization Error Bound for BMA To further elucidate the theoretical connection between posterior flatness and
generalization, we present the following proposition which is adapted from the generalization analysis of Eigen-SAM [Luo
et al., 2024]:

Proposition 3 (Adapted from Eigen-SAM). Let ℓ : Rp → R be a loss function upper bounded by L, and assume its
third-order derivatives are uniformly bounded by a constant C. Suppose the following inequality holds for any parameter θ:

ℓD(θ) ≤ Eϵ[ℓD(θ + ϵ)] where ϵ ∼ N (0, σ2Ip).

Then, for any δ ∈ (0, 1) and σ > 0, with probability at least 1− δ over the training set S ∼ Dn, we have:

ℓD(θ) ≤ ℓS(θ) +
pσ2

2
λmax(∇2ℓS(θ)) +

Cp3σ3

6
+

L

2
√
n

√
p log

(
1 +
∥θ∥2
pσ2

)
+O(1) + 2 log

1

δ
+ 4 log(n+ p)

Building upon Lemma 2 and Proposition 3, we prove a new generalization bound that formally connects posterior flatness to
the generalization performance of BMA:

Theorem 1 (Generalization Bound for BMA). Let wm be samples from a variational posterior q(w), and let fBMA denote
the BMA predictor obtained by averaging predictions over these samples. Assume the conditions in Proposition 2 and
Proposition 3 hold for each sampled model fm with parameter wm. Then, for any δ ∈ (0, 1) and σ > 0, with probability at
least 1− δ over the training set S ∼ Dn, the generalization error of the BMA predictor is upper bounded as:

ℓD(fBMA) ≤ ℓS(fBMA) +
pσ2

2
λmax(HfBMA) +

Cp3σ3

6
+

L

2
√
n

√
p log

(
1 +
∥fBMA∥2
pσ2

)
+O(1) + 2 log

1

δ
+ 4 log(n+ p)

where HfBMA denotes the Hessian of the loss evaluated at fBMA.

B.2 DERIVATION OF BAYESIAN FLAT-SEEKING OPTIMIZER

B.2.1 Setting

Let model parameter w ⊆ Rp and w ∼ N (µ,Σ). While fully-factorized or mean-field covariance is de facto in Bayesian
Deep Learning, it cannot capitalize on strong points of Bayesian approach. Inspired from SWAG, we approximate covariance
combining diagonal covariance σ ⊆ Rp and low-rank matrix L ⊆ Rp×K with low-rank component K. Then, we can simply
sample w = µ+ 1√

2
(σz1 + Lz2), where z1 ∼ N (0, Ip) and z2 ∼ N (0, IK) where p, K denotes the number of parameter,

low-rank component, respectively. We treat flattened µ, σ, and L, and concatenate as θ = Concat(µ;σ;L).

B.2.2 Objective function

We compose our objective function with probabilistic weight, using KL Divergence as a metric to compare between two
weights.

ℓγFP-BMA(θ) = max
d|θ+∆θ,θ|≤γ2

ℓ(θ +∆θ) + βDKL(pθ(w|D)||p(w)) (17)

s.t. d|θ +∆θ, θ| = DKL
[
pθ+∆θ(w|D)||pθ(w|D)

]
. (18)



B.2.3 Optimization

From KL Divergence to Fisher Information Matrix We can consider three options of perturbation on mean and
covariance parameters of w: 1) Perturbation on mean, 2) perturbation on mean and diagonal variance, 3) Perturbation on
mean and whole covariance. All of them can be approximated to Fisher Information Matrix. Here, we show the relation
between KLD and FIM considering the probation option 3.

Following FSAM, we deal with parameterized and conditioned as same notation:

pθ+∆θ(w|D) = p(w|D, θ +∆θ).

By definition of KL divergence, we rewrite Eq. 18 as:

DKL[p(w|D, θ +∆θ)||p(w|D, θ)] =
∫
w

p(w|D, θ +∆θ) log
p(w|D, θ +∆θ)

p(w|D, θ)
dw. (19)

In Eq. 19, we apply first-order Taylor Expansion:

p(w|D, θ +∆θ) ≈ p(w|D, θ) +∇θp(w|D, θ)T∆θ.

log p(w|D, θ +∆θ) ≈ log p(w|D, θ) +∇θ log p(w|D, θ)T∆θ.
(20)

Substitute right terms of Eq. 19 with Eq. 20:∫
w

p(w|D, θ +∆θ) log
p(w|D, θ +∆θ)

p(w|D, θ)
dw

=

∫
w

(
p(w|D, θ) + ∆θT∇θp(w|D, θ)

)
∇θ log p(w|D, θ)T∆θ dw

=

∫
w

p(w|D, θ)∇θ log p(w|D, θ)T∆θdw

+

∫
w

∆θT p(w|D, θ)∇θ log p(w|D, θ)∇θ log p(w|D, θ)T∆θ dw. (21)

First term of Eq. 21 is equal to 0: ∫
w

p(w|D, θ)∇θ log p(w|D, θ) dw

=

∫
w

p(w|D, θ)∇θp(w|D, θ)
p(w|D, θ)

dw

=

∫
w

∇θp(w|D, θ) dw = ∇θ

∫
w

p(w|D, θ) = 0.

(22)

Using Eq. 21 and Eq. 22, Eq. 19 can be rewritten as Fisher information matrix by the definition of expectation:

DKL[p(w|D, θ +∆θ)||p(w|D, θ)]

=

∫
w

∆θT p(w|D, θ)∇θ log p(w|D, θ)∇θ log p(w|D, θ)T∆θ

= ∆θTEw[∇θ log p(w|D, θ)∇θ log p(w|D, θ)T ]∆θ

= ∆θTFθ(θ)∆θ,

(23)

where Fθ(θ) = Ew,D[∇θ log p(w|D, θ)∇θ log p(w|D, θ)T ].

It’s too expensive to calculate Fisher information matrix F (θ) in practice. We introduce a pseudo inverse for Fisher
information matrix Fθ(θ)

−1 with Samelson inverse of a vector [Gentle, 2007, Sidi, 2017, Wynn, 1962] :

Fθ(θ)
−1 =

∇θ log p(w|D, θ)∇θ log p(w|D, θ)T

∥∇θ log p(w|D, θ)∥4
. (24)



Lagrangian Dual Problem From the result of Eq. 23, we can rewrite the Eq. 17:

ℓγFP-BMA(θ) = max
∆θTFθ(θ)∆θ≤γ2

ℓ(θ +∆θ). (25)

We can reach the optimal perturbation of FP-BMA ∆θ∗ by using Taylor Expansion on ℓ(θ +∆θ) of Eq. 17:

ℓ(θ +∆θ) = ℓ(θ) +∇θℓ(θ)
T∆θ. (26)

Using Eq. 26, we can rewrite Eq. 17 as Lagrangian dual problem:

L(∆θ, λ) = ℓ(θ) +∇ℓθ(θ)T∆θ − λ(∆θTFθ(θ)∆θ − γ2). (27)

Differentiating Eq. 27, we get ∆θ∗:

αL(∆θ, λ)

α∆θ
= ∇θℓ(θ)

T − 2λ∆θTFθ(θ) = 0

∴ ∆θ∗ =
1

2λ
Fθ(θ)

−1∇θℓ(θ). (28)

Putting ∆θ∗ of Eq. 28 into ∆θ of Eq. 27, we can rewrite Eq. 27:

L(∆θ∗, λ) = ℓ(θ) +
1

2λ
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ)

− 1

4λ
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ) + λγ2.

(29)

By taking derivative of Eq. 29 w.r.t. λ, we can also get λ∗:

αL(∆θ∗, λ)

αλ
= − 1

2λ2
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ) +

1

4λ2
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ) + γ2 = 0

4λ2γ2 = ∇θℓ(θ)
TFθ(θ)

−1∇θℓ(θ)

∴ λ∗ =

√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

2γ
. (30)

Finally, we get our ∆θFP-BMA by substituting Eq. 30 into Eq. 28:

∆θFP-BMA = γ
Fθ(θ)

−1∇θℓ(θ)√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

. (31)

B.3 PROOF OF THEOREM 2

B.3.1 FP-BMA to FSAM

Theorem 2 shows that FP-BMA is degenerated to FSAM under DNN and diagonal FIM setting. Deterministic parameters
draw out the constant prior p(w|x) = c and mean-only variational parameters w = θ.



First, we can rewrite the log posterior log pθ(w|x, y) with Bayes rule:

log pθ(w|x, y) = log pθ(y|x,w) + log pθ(w|x)− Z, (32)

where Z is constant independent of w. Is is noted that the log posterior is divided into the log predictive distribution and log
prior. Also, note that the prior is conditioned on the data to align with a generalized notation. The prior can depend on the
input; however, this dependence is often ignored in practice [Marek et al., 2024].

By taking derivative with respect to θ on Eq. 32, the constant Z goes to 0:

∇θ log pθ(w|x, y) = ∇θpθ(y|x,w) +∇θ log pθ(w|x).

We have constant prior p(w|x) = c in deterministic setting and it makes the gradient of log posterior and log predictive
distribution:

∇θ log pθ(w|x, y) = ∇θpθ(y|x,w). (33)

Underlying Eq. 33, it is possible to substitute the gradient of log posterior into the gradient of log predictive distribution and
FIM over posterior goes to FIM over predictive distribution:

Fθ(θ) =Ew,D[∇θ log pθ(w|x, y)∇θ log pθ(w|x, y)T ]
= Ew,D[∇θ log pθ(y|x,w)∇θ log pθ(y|x,w)T ]. (34)

By taking diagonal computation over Eq. 34, it goes to Fy(θ). After that, using the fact that mean-only variational parameters,
FP-BMA degnerates to FSAM with Fy(θ) finally.

∆θFP-BMA = γ
Fy(θ)

−1∇θℓ(θ)√
Fy(θ)−1∇θℓ(θ)Fy(θ)−1

. (35)

B.3.2 FP-BMA to SAM

It is simple to show that FP-BMA is extended version of SAM by defining FIM over output distribution Fy(w) as identity
matrix I in Eq. 35, FP-BMA goes to SAM.

∆θFP-BMA = γ
∇wℓ(w)

∥∇wℓ(w)∥2
. (36)

B.3.3 FP-BMA to NG

Theorem 2 also states the NG can be approximated with FP-BMA under specific conditions. The update rule of natural
gradient and FP-BMA can be written as Eq. 37 and Eq. 38, respectively.

θ ← θ + ηNGFy(θ)
−1∇θℓ(θ). (37)

θ ← θ + ηFP-BMA∇θℓ(θ +∆θ). (38)

where ηNG and ηFP-BMA denote the learning rate of NG and FP-BMA. Note that we assume the log likelihood as loss fuction.

The∇θℓ(θ +∆θ) in Eq. 38 can be approximated with Taylor Expansion, the connection between Hessian and FIM, and
Eq. 34 in DNN setup:

∇θℓ(θ +∆θ) ≈ ∇θℓ(θ) +∇2
θ∆θ

= ∇θℓ(θ) +∇2
θℓ(θ) · γ

Fθ(θ)
−1∇θℓ(θ)√

∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

= ∇θℓ(θ) + γ′∇2
θℓ(θ)Fθ(θ)

−1∇θℓ(θ)

(
∵ Let γ′ =

γ√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

)
= [I + γ′∇2

θℓ(θ)Fθ(θ)
−1]∇θℓ(θ)

≈ (1 + γ′)∇θℓ(θ) (∵ ∇2
θℓ(θ) ≈ Fy(θ), Fθ(θ) = Fy(θ)). (39)

By using the denoted learning rate ηFP-BMA = ηNG
I+γ′Fθ(θ)

−1, Eq. 34, and Eq. 39, update rule of FP-BMA approximates to
NG.



C EXPERIMENTS

C.1 SYNTHETIC EXAMPLE

(a) SGD (b) MCMC (c) SWAG

(d) VI (e) FP-BMA (SWAG) (f) FP-BMA (VI)

Figure 11: Posterior approximation with synthetic example. When both flat and sharp modes coexist, we compared how
optimizers approximate the posterior. Unlike other methods, the proposed FP-BMA converged to the flat mode, demonstrating
its effectiveness in finding more stable solutions.

Following Li and Zhang [2023], we construct a loss surface following the distribution 1
2 (N ([−2,−1]T , 0.5I)) +

1
2 (N ([2, 1]T , I)) and set the initial point at (−0.4,−0.4). Unlike other SGD-based methods, FP-BMA efficiently identifies
flat modes regardless of the underlying BNN frameworks.



C.2 LEARNING FROM SCRATCH

C.2.1 FP-BMA with diverse BNN frameworks

In Eq. 6, FP-BMA can be applied with various BNN frameworks by using an empirical loss function ℓ(·) and adjusting the
parameter β. We commonly set ℓ(·) as cross-entropy loss in context of image classification task. Note that FP-BMA was
applied only to the normalization layers and the last layer, while all other layers were trained using SGD.

FP-BMA (VI) For VI, we follow the loss function of Eq. 6.

FP-BMA (MCMC) We mainly adopt SGLD for MCMC in this work. For SGLD, we incorporated noise into Eq. 6
without KLD term (β = 0) based on the learning rate and the hyperparameter, temperature. In this approach, during the first
step, the adversarial posterior is computed without any noise (Eq. 9). In the second step, both the noise and the adversarial
posterior are used together in the learning process.

FP-BMA (SWAG) SWAG updates the first and second moments along the trajectory of SWA and uses these moments to
approximate the posterior with a Gaussian distribution. In Eq. 6, β is fixed to 0, and as the trajectory of SWA is optimized
through FP-BMA, posterior approximation can be performed accordingly.

C.2.2 Hyperparameters for Experiments

In this section, we provide the details of the experimental setup for Section 5.2. In the other experiments, the range of
hyperparameters, excluding the number of epochs, is shared across different backbones and methods. For all experiments,
the hyperparameters are selected using grid-search. Configuration of best hyperparameters for each baseline is summarized
in Table 6 and Table 7.

Stochastic Gradient Descent with Momentum (SGD) In this study, we adopt Stochastic Gradient Descent with
Momentum as an optimizer for DNN. Learning rate schedule is fixed to cosine decay. We run 300 epochs. The hyperparameter
tuning range included learning rate in [1e-4, 1e-3, 1e-2].

Sharpness Aware Minimization (SAM) We set SGD with momentum as the base optimizer of SAM. It also ran upon a
cosine decay learning rate scheduler. All the range of hyperparameters is shared with SGD with Momenmtum. Additional
hyperparameter γ, the ball size of perturbation, is in [1e-2, 5e-2, 0.1].

Fisher SAM (FSAM) We set SGD with momentum as the base optimizer of FSAM. It also ran upon a cosine decay
learning rate scheduler. All the range of hyperparameters is shared with SGD with Momenmtum. Additional hyperparameter
η, regularize Fisher impact, is in [1e-2, 1e-1, 1].

SAM as an optimal relaxation of Bayes (bSAM) We use a cosine learning rate decay scheme. We run 300 epochs with
fixed β1 and β2. The hyperparameter tuning rage included: learning rate in [1e-1, 3e-1, 5e-1, 8e-1, 1], weight decay in [1e-4,
5e-4, 1e-3, 1e-2], damping in [1e-1, 1e-2, 1e-3], and γ in [1e-3, 1e-2, 5e-2, 1e-1, 5e-1]. Damping parameter stabilizes the
method by adding constant when updating variance estimate.

Variational Inference (VI) We use MOPED to change DNN into BNN, first. We set prior mean and variance as 0 and 1,
respectively. Besides, we set the posterior mean as 0 and variance as 1e-3. We adopt Reparameterization as type of VI. The
essential hyperparmeter for MOPED is δ, which adjusts how much to incorporate pre-trained weights. The δ was searched
in [1e-3, 5e-3, 1e-2]. Moreover, we add a hyperparameter β for MOPED that can balance the loss term in VI. The β is in
range [1e-2, 1e-1 ,1]

MCMC We consistently use SGLD [Welling and Teh, 2011] for MCMC in this work. It ran upon a cyclic cosine decay
learning rate scheduler. The number of cycles was ranged in [2, 4]. The number of sampled models is in [10, 20, 28]. We
search temperature in [1e-5, 5e-4, 1e-4, 5e-3, 1e-3, 1e-2].

Entropy-MCMC (E-MCMC) We use a cosine learning rate decay scheme, annealing the learning rate to zero. We run
300 epochs. We search η in [1e-4, 5e-3, 1e-3, 5e-2, 1e-2, 1e-1] and a system temperature T in [1e-4, 5e-4, 1e-3, 5e-3, 1e-2].



Table 6: Hyperparameter Configuration for CIFAR10

Backbone Baseline learning rate
β1

(momentum) β2 γ weight decay

RN18

SGD 5e-2 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 1e-1 5e-4

FSAM 5e-2 9e-1 × 1e-2 5e-4
bSAM 8e-1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
FP-BMA (VI) 5e-2 9e-1 × 1e-1 5e-4

MCMC 1e-1 × × × 5e-4
E-MCMC 1e-1 × × × 5e-4

FP-BMA (MCMC) 5e-2 9e-1 × 5e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
FP-BMA (SWAG) 1e-1 9e-1 × 1e-1 5e-4

ViT-B/16†

SGD 1e-1 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 5e-2 5e-4

FSAM 1e-1 9e-1 × 1e-1 5e-4
bSAM 5e-1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
FP-BMA (VI) 5e-3 9e-1 × 5e-3 5e-4

MCMC 2e-2 × × × 5e-4
EMCMC 2e-2 × × × 5e-4

FP-BMA (MCMC) 3e-2 9e-1 × 1e-2 5e-4
SWAG 5e-2 9e-1 × × 5e-4

F-SWAG 5e-2 9e-1 × 5e-4
FP-BMA (SWAG) 5e-2 9e-1 × 1e-2 5e-4

Note that the η handles flatness, and the system temperature adjusts the weight update’s step size.

SWAG We use a cosine learning rate decay scheme for SWAG. All the range of hyperparameters is shared with SGD
with Momenmtum. Additionally, we search for three additional hyperparameters for SWAG, capturing DNN snapshots and
calculating statistics. First, the epoch to start SWA is in [161, 201], and epoch is 300. Second, the frequency of capturing the
model snapshot is in [1, 2, 3]. Third, the low rank for covariance is in [2, 3, 5, 7, 10].

F-SWAG F-SWAG shares hyperparameter with SWAG, except γ. We search γ in [1e-2, 5e-2, 1e-1].

FP-BMA In case of FP-BMA (VI), we setN (0, 1e−3) as prior and δ as 1e-3 to make DNN to BNN using MOPED. After
getting prior distribution, we search three hyperparameters: learning rate and γ. The hyperparameter tuning range included:
learning rate in [1e-3, 5e-3, 1e-2, 5e-2], γ in [1e-2, 5e-2, 1e-1, 5e-1]. We set weight decay as 5e− 4 for all backbones and
train the model over 300 epochs with early stopping. We fix β as 1e-8 for all experiments. In case of FP-BMA (MCMC), we
search learning rate, temperature for learning rate scheduling, and γ. The hyperparameter ranges are [1e-3, 5e-3, 1e-2, 5e-2]
for learning rate, [1e-4, 5e-3, 1e-3, 5e-2, 1e-2, 1e-1] for temperature, and [5e-3, 1e-2, 5e-2, 1e-1, 5e-1] for γ. In case of
FP-BMA (SWAG), we follow the hyperparameter for SWAG, except γ in [1e-2, 5e-2, 1e-1].



Table 7: Hyperparameter Configuration for CIFAR100

Backbone Baseline learning rate
β1

(momentum) β2 γ weight decay

RN18

SGD 1e-1 9e-1 × × 5e-4
SAM 5e-2 9e-1 × 1e-1 5e-4

FSAM 1e-1 9e-1 × 1e-2 5e-4
bSAM 1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
FP-BMA (VI) 8e-3 9e-1 × 2e-1 5e-4

MCMC 5e-1 × × × 5e-4
E-MCMC 5e-1 × × × 5e-4

FP-BMA (MCMC) 1e-1 9e-1 × 3e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
FP-BMA (SWAG) 3e-1 9e-1 × 2e-1 5e-4

ViT-B/16†

SGD 1e-1 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 1e-1 5e-4

FSAM 1e-1 9e-1 × 1e-2 5e-4
bSAM 5e-1 9e-1 0.999 1e-1 5e-4

VI 3e-2 9e-1 × × 5e-4
FP-BMA (VI) 8e-3 9e-1 × 1e-1 5e-4

MCMC 2e-1 × × × 5e-4
EMCMC 1e-1 × × × 5e-4

FP-BMA (MCMC) 5e-2 9e-1 × 5e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
FP-BMA (SWAG) 1e-1 9e-1 × 1e-1 5e-4



C.3 BAYESIAN TRANSFER LEARNING

C.3.1 FP-BMA with diverse BNN frameworks

Diverse BNN frameworks can be adopted for Bayesian Transfer Learning. Specifically, there are several options for making
pre-trained DNN into BNN. In this work, we mainly adopt MOPED and SWAG for the converting.

In addition, FP-BMA can be applied with various BNN frameworks by using an empirical loss function ℓ(·) and adjusting
the parameter β in Eq. 11. We commonly set ℓ(·) as cross-entropy loss in context of image classification task.

FP-BMA (VI) First, we convert pre-trained DNN into BNN with MOPED. We set the converted BNN as prior, qpr
θ (w|Dpr)

in Eq. 11, and initial point of model. We only train parameters of normalization and last layer and freeze others. We train
them with the loss function of Eq. 11.

FP-BMA (MCMC) For SGLD, it is unnecessary to convert pre-trained DNN into BNN. Instead, we directly set the
pre-trained DNN as initialization. We incorporated noise into Eq. 11 without the KLD term (β = 0) based on the learning
rate and the hyperparameter, temperature. During the first step, the adversarial posterior is computed without any noise
(Eq. 9). In the second step, both the noise and the adversarial posterior are used together in the learning process.

FP-BMA (SWAG) SWAG is also one of the options to convert pre-trained DNN into BNN. Specifically, we run a few
epochs with source or downstream datasets to make BNN from pre-trained DNN. After this step, we set the BNN as the
prior, qpr

θ (w|Dpr) in Eq. 11. We also let the converted BNN as initialization and train with downstream dataset. We optimize
model with the loss function in Eq. 11.

C.3.2 Hyperparameters for Experiments

In this section, we provide the details of the experimental setup for Section 5.3. In the other experiments, the range of
hyperparameters, excluding the number of epochs, is shared across different backbones and methods.

First, we provide remarks for each baseline method, followed by the tables of hyperparameter configuration with respect to
downstream datasets and the baselines. For all experiments, the hyperparameters are selected using grid-search. Configuration
of best hyperparameters for each baseline is summarized in Table 8 and Table 9. We ran all experiments using GeForce RTX
3090 and NVIDIA RTX A6000 with GPU memory of 24,576MB and 49,140 MB.

Stochastic Gradient Descent with Momentum (SGD) In this study, we adopt Stochastic Gradient Descent with
Momentum as an optimizer for DNN. Learning rate schedule is fixed to cosine decay with warmup length of 10. We tested
[100, 150] epoch and set 100 epoch as the best option. In overall experiments, we set momentum as 0.9. The hyperparameter
tuning range included learning rate in [1e-4, 1e-3, 1e-2], and weight decay in [1e-4, 5e-4, 1e-3, 1e-2].

Sharpness Aware Minimization (SAM) We set SGD with momentum as the base optimizer of SAM. It also ran upon a
cosine decay learning rate scheduler. All the range of hyperparameters is shared with SGD with Momenmtum. Additional
hyperparameter γ, the ball size of perturbation, is in [1e-2, 5e-2, 1e-1].

Fisher SAM (FSAM) We set SGD with momentum as the base optimizer of FSAM. It also ran upon a cosine decay
learning rate scheduler. All the range of hyperparameters is shared with SGD with Momenmtum. Additional hyperparameter
η, regularize Fisher impact, is in [1e-2, 1e-1, 1].

SAM as an optimal relaxation of Bayes (bSAM) We use a cosine learning rate decay scheme, annealing the learning rate
to zero. We fine-tuned pre-trained models for 150 epochs with fixed β1 and β2. The hyperparameter tuning range included:
learning rate in [1e-3, 1e-2, 5e-2, 1e-1, 0.25, 0.5, 1], weight decay in [1e-3, 1e-2, 1e-1], damping in [1e-3, 1e-2, 1e-1], noise
scaling parameter in [1e-4, 1e-3, 1e-2, 1e-1], and γ in [1e-3, 1e-2, 5e-2, 1e-1]. Damping parameter stabilizes the method by
adding constant when updating variance estimate. Since SAM as Bayes optimizer depends on the number of samples to
scale the prior, we introduced additional noise scaling parameters to mitigate the gap between the experimental settings,
where SAM as Bayes assumed training from scratch and our method assumed few-shot fine-tuning on the pre-trained model.
We multiplied noise scaling parameter to the variance of the Gaussian noise to give strong prior, assuming pre-trained model.



Table 8: Hyperparameter Configuration for CIFAR10

Backbone Baseline learning rate
β1

(momentum) β2 γ weight decay

RN18

SGD 5e-3 9e-1 × × 1e-3
SAM 1e-2 9e-1 × 1e-1 1e-4

FSAM 1e-2 9e-1 × 1e-1 1e-4
bSAM 1e-1 9e-1 0.999 5e-2 1e-1

MOPED 1e-2 9e-1 × × 1e-4
FP-BMA (VI) 1e-2 9e-1 × 7e-1 1e-3

MCMC 5e-2 9e-1 × × 5e-4
PTL 1e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
FP-BMA (MCMC) 5e-3 9e-1 × 8e-3 5e-4

SWAG 5e-3 9e-1 × × 1e-5
F-SWAG 5e-3 9e-1 × 5e-2 5e-4

FP-BMA (SWAG) 5e-2 9e-1 × 1e-1 5e-4

ViT-B/16

SGD 1e-3 9e-1 × × 1e-4
SAM 1e-3 9e-1 × 1e-2 1e-3

FSAM 5e-3 9e-1 × 1e-2 1e-3
bSAM 1e-1 9e-1 0.999 1e-2 1e-1

MOPED 1e-3 9e-1 × × 1e-4
FP-BMA (VI) 1e-2 9e-1 × 1e-1 5e-4

MCMC 3e-2 9e-1 × × 5e-4
PTL 6e-2 × × × 1e-3

EMCMC 5e-3 × × × 1e-2
FP-BMA (MCMC) 5e-3 9e-1 × 8e-3 5e-4

SWAG 1e-3 9e-1 × × 1e-3
F-SWAG 1e-3 9e-1 × 1e-2 1e-3

FP-BMA (SWAG) 5e-3 9e-1 × 5e-1 5e-4

Model Priors with Empirical Bayes using DNN (MOPED) MOPED was a baseline to compare for Bayesian Transfer
Learning. It employs pre-trained DNN and transforms it into Mean-Field Variational Inference (MFVI). We set prior
mean and variance as 0 and 1, respectively. Besides, we set the posterior mean as 0 and variance as 1e-3. We adopt
Reparameterization as type of VI. The essential hyperparameter for MOPED is δ, which adjusts how much to incorporate
pre-trained weights. The δ was searched in [5e-2, 1e-1, 2e-1]. Moreover, we add a hyperparameter β for MOPED that can
balance the loss term in VI. The β is in range [1e-2, 1e-1, 1].

MCMC We consistently use SGLD [Welling and Teh, 2011] for MCMC in this work. It ran upon a cyclic cosine decay
learning rate scheduler. The number of cycles was ranged in [2, 4]. The number of sampled models is in [10, 20, 28]. We
search temperature in [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1].

Pre-train Your Loss (PTL) The backbones both ResNet18 and Vit-B/16 were refined through fine-tuning with a
classification head for the target task, leveraging a prior distribution learned from SWAG on the ImageNet 1k dataset using
SGD. First, the hyperparameter tuning range of the pre-training epoch is [2, 3, 5, 15, 30] to generate the prior distribution on
the source task, ImageNet 1k. The learning rate was 0.1. We approximated the covariance low rank as 5. Second, in the
downstream task, the fine-tuning optimizer is SGLD with a cosine learning rate schedule, sampling 30 in 5 cycles. The



Table 9: Hyperparameter Configuration for CIFAR100

Backbone Baseline learning rate
β1

(momentum) β2 γ weight decay

RN18

SGD 1e-2 9e-1 × × 5e-3
SAM 1e-2 9e-1 × 5e-2 1e-2

FSAM 1e-2 9e-1 × 1e-1 1e-4
bSAM 1 9e-1 0.999 1e-2 1e-2

MOPED 1e-2 9e-1 × × 1e-3
FP-BMA (VI) 5e-2 9e-1 × 1e-2 5e-4

MCMC 3e-2 9e-1 × × 5e-4
PTL 5e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
FP-BMA (MCMC) 1e-2 9e-1 × 1e-1 5e-4

SWAG 1e-2 9e-1 × × 1e-4
F-SWAG 1e-2 9e-1 × 5e-2 1e-2

FP-BMA (SWAG) 5e-2 9e-1 × 5e-1 5e-4

ViT-B/16

SGD 1e-3 9e-1 × × 1e-2
SAM 1e-3 9e-1 × 1e-2 1e-2

FSAM 5e-3 9e-1 × 1e-2 1e-4
bSAM 2.5e-1 9e-1 0.999 1e-2 1e-3

MOPED 1e-3 9e-1 × × 1e-3
FP-BMA (VI) 1e-2 9e-1 × 5e-2 5e-4

MCMC 5e-2 9e-1 × × 5e-4
PTL 1e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
FP-BMA (MCMC) 8e-3 9e-1 × 8e-3 5e-4

SWAG 1e-3 9e-1 × × 1e-2
F-SWAG 1e-3 9e-1 × 1e-2 1e-2

FP-BMA (SWAG) 1e-2 9e-1 × 5e-1 5e-4

hyperparameter tuning range included: learning rate in [1e-4, 1e-3, 1e-2, 5e-2, 6e-2, 1e-1, 5e-1], weight decay in [1e-4,
1e-3 ,1e-2 ,1e-1], and prior scale in [1e+4, 1e+5, 1e+6]. Prior scaling in the downstream task is to reflect the mismatch
between the pre-training and downstream tasks and to add coverage to parameter settings that might be consistent with the
downstream. Training was conducted over 150 epochs; tuning range of fine-tuning epoch is [100, 150, 200, 300, 1000].

Entropy-MCMC (E-MCMC) We use a cosine learning rate decay scheme, annealing the learning rate to zero. We set the
range of the hyperparameter sweep to the surroundings of the best hyperparameter in E-MCMC for ResNet18: learning rate
in [5e-3, 5e-2, 5e-1], weight decay in [1e-4, 1e-3, 1e-2], η in [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 4e-4, 5e-3, 8e-3, 1e-2] and a
system temperature T in [1e-5, 1e-4, 1e-3]. In this study, we performed an extensive exploration of the hyperparameter
space of ViT-B/16, as it has a mechanism different from the CNN family and may not be found near the best hyperparameter
range of ResNet18: learning rate in [1e-3, 5e-3, 1e-2, 5e-2, 5e-1], weight decay in [1e-5, 1e-4, 5e-4, 1e-3, 1e-2, 5e-2], η
in [5e-7, 1e-6, 5e-6, 5e-5, 1e-4, 4e-4, 5e-4, 1e-3, 8e-3, 1e-2, 1e-1] and a system temperature T in [1e-6, 5e-6, 1e-5, 5e-5,
1e-4, 1e-3, 1e-2, 1e-1]. We fine-tuned pre-trained models for 150 epochs. Note that the η handles flatness, and the system
temperature adjusts the weight update’s step size.



SWAG We use a cosine learning rate decay scheme for SWAG. All the range of hyperparameters is shared with SGD
with Momenmtum. Additionally, we search three additional hyperparameters for SWAG, capturing DNN snapshots and
calculating statistics. First, the epoch to start SWA is in [51, 76, 101] and epoch is in [100, 150]. Second, the frequency to
capture the model snapshot is in [1, 2, 3]. Third, the low rank for covariance is in [2, 3, 5, 7, 10].

F-SWAG F-SWAG shares hyperparameter with SWAG, except γ. We search γ in [1e-2, 5e-2, 1e-1].

FP-BMA In case of FP-BMA (SWAG), we train SWAG on source task IN 1K to make prior distribution and follow
the pre-training protocol of PTL. In case of employing MOPED to make prior distribution, we do not go through any
training step. In case of FP-BMA (VI), we just set δ as 0.05 for MOPED and make DNN into BNN. In case of FP-BMA
(MCMC), we just set pre-trained weight as initialization and run experiments. After getting prior distribution, we search
three hyperparameters: learning rate, γ, and α. The hyperparamter tuning range included: learning rate in [1e-3, 5e-3, 1e-2,
5e-2], γ in [5e-3, 8e-3, 1e-2, 5e-2, 1e-1, 5e-1, 7e-1], and α in [1e-6, 1e-5, 1e-4, 1e-3]. We set weight decay as 5e− 4 for all
backbones and train the model over 150 epochs with early stopping. We fix β as 1e-8 for all experiments.

C.4 ALGORITHM OF FP-BMA

Algorithm 1 FP-BMA with Bayesian Transfer Learning

Require: Variational parameter θ, Neighborhood size γ, Epochs E, and Learning rate ηFP-BMA
1) Load pre-trained DNN
2) Make pre-trained DNN model into BNN qpr

θ (w|Dpr) and set as prior
for t = 1, 2, ..., E do

3-1) w ∼ qθ(w|Dft) ▷ Sample weight from posterior
3-2) Forward and calculate the loss ℓ(θ) with the sampled w
3-3) Backward pass and compute∇θ log qθ(w|D)
3-4) Compute F−1

θ (θ) = ∇θ log qθ(w|D)∇θ log qθ(w|D)T

∥∇θ log qθ(w|D)∥4

3-5) Compute the perturbation ∆θFP-BMA = γ Fθ(θ)
−1∇θℓ(θ)√

∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

3-6) Compute gradient approximation for the FP-BMA∇θℓ
γ
FP-BMA(θ) =

∂ℓ(θ)
∂θ |θ+∆θFP-BMA

3-7) Update θ → θ − η∇θℓFP-BMA(θ)
end for

Training algorithm of FP-BMA with Bayesian Transfer Learning can be depicted as Algorithm 1. In the first step, load a
model pre-trained on the source task. Note that the pre-trained models do not have to be BNN. Namely, it is capable of
using DNN, which can be easier to find than pre-trained BNN. Second, change the loaded DNN into BNN on the source or
downstream task. Every BNN framework can be adopted to make DNN into BNN. We can skip this second step if you load
a pre-trained BNN model before. Third, train the subnetwork of the converted BNN model with the proposed flat-seeking
seeking optimizer. It allows model to converge into flat minina efficiently.

C.5 EFFICIENCY OF FP-BMA Method Time Wall Mem.
Comp. Clock Comp.

SGD O(p) 2.78s O(p)
SAM O(2p) 4.58s O(p)
FSAM O(2p) 4.65s O(2p)
bSAM O(2p) 4.62s O(3p)

MF VI O(2p) 4.09s O(2p)
FF VI O(p2) – O(p2)

MCMC O(p) 2.95s O(Mp)
E-MCMC O(2p) 5.13s O(Mp)

SWAG O(p) 7.89s O(Kp)
F-SWAG O(2p) 11.48s O(Kp)
FP-BMA O(2p) 6.21s O(Kp1)

Table 10: Time and memory complexity for all
methods.

The following Table 10 summarizes the per-epoch wall-clock time,
theoretical time complexity, and memory usage across methods under
a unified experimental setting. Evaluation conducted on ResNet-18
with CIFAR-10 10-shot classification. AMP (automatic mixed preci-
sion) was enabled for fair efficiency comparison.

Notation:

• p: total number of model parameters

• p1: number of trainable parameters used in FP-BMA subnetwork
(p1 ≪ p)

• M : number of MCMC samples



• K: rank for low-rank approximations (e.g., in SWAG or FP-
BMA)

To ensure practical efficiency, FP-BMA is implemented with a subnetwork strategy and inverse vector product approximation
(as shown in Algorithm 1). These design choices allow us to limit both runtime and memory overhead, which we found to
be comparable to standard baselines.

C.6 FINE-GRAINED IMAGE CLASSIFICATION

In addition to classification accuracy, FP-BMA shows superior performance compared to the baseline in NLL metric,
indicating that FP-BMA effectively quantifies uncertainty.

Table 11: Downstream task NLL with RN50 and ViT-B/16 pre-trained on IN 1K. FP-BMA (SWAG) denotes using SWAG
to convert pre-trained model into BNN. Bold and underline denote best and second best performance each. FP-BMA
demonstrates superior performance across all 16-shot datasets, including EuroSAT , Oxford Flowers, Oxford Pets, and
UCF101.

Backbone RN50 ViT-B/16

Method EuroSAT Oxford Flowers Oxford Pets UCF101 Avg EuroSAT Oxford Flowers Oxford Pets UCF101 Avg

SGD 0.416±0.043 0.265±0.010 0.367±0.008 1.331±0.024 0.595±0.010 0.573±0.044 0.361±0.027 0.385±0.044 1.246±0.044 0.641±0.020

SAM 0.376±0.003 0.190±0.001 0.344±0.014 1.157±0.035 0.517±0.005 0.522±0.023 0.276±0.029 0.287±0.022 1.140±0.034 0.556±0.020

SWAG 0.343±0.046 0.264±0.011 0.367±0.007 1.347±0.022 0.580±0.009 0.547±0.021 0.361±0.027 0.366±0.010 1.286±0.045 0.640±0.006

F-SWAG 0.301±0.039 0.190±0.002 0.351±0.010 1.186±0.034 0.507±0.008 0.514±0.018 0.276±0.033 0.297±0.030 1.234±0.031 0.580±0.017

MOPED 0.481±0.100 0.347±0.019 0.388±0.007 1.367±0.029 0.646±0.028 0.484±0.018 0.354±0.025 0.309±0.015 1.180±0.028 0.582±0.017

PTL 0.319±0.006 0.307±0.010 0.360±0.015 1.391±0.036 0.594±0.010 0.493±0.012 0.616±0.066 0.381±0.008 1.670±0.050 0.790±0.013

FP-BMA 0.297±0.038 0.147±0.037 0.339±0.023 1.113±0.009 0.474±0.023 0.455±0.006 0.219±0.037 0.272±0.006 1.071±0.036 0.504±0.012

C.7 PERFORMANCE UNDER DISTRIBUTION SHIFT

We adopt the corrupted dataset CIFAR10/100C to test the robustness over distribution shift. The corrupted dataset transform
the CIFAR10/100-test dataset, which has been modified to shift the distribution of the test data further away from the
training data. It contains 19 kinds of corrupt options, such as varying brightness or contrast to adding Gaussian noise. The
severity level indicates the strength of the transformation and is typically expressed as a number from 1 to 5, where the
higher the number, the stronger the transformation. In Figure 12, our method ensures relatively robust performance in the
data distribution shift, even as the severity increases.

Figure 12: NLL performance of ResNet 18 and ViT-B/16 on corrupted CIFAR10 and CIFAR100, respectively [Hendrycks
and Dietterich, 2019].

We also provide the detailed results of three repeated experiments with corrupted sets.



(a) RN18 CIFAR10C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 49.57±0.97 1.49±0.02 45.78±1.43 1.62±0.04 43.78±1.44 1.69±0.04 40.83±1.59 1.80±0.06 36.30±1.79 1.96±0.08

SAM 50.23±2.11 1.62±0.07 46.56±2.00 1.76±0.03 44.59±2.26 1.83±0.03 41.85±2.42 1.94±0.04 37.33±2.52 2.12±0.07

FSAM 48.76±4.00 1.63±0.03 45.11±3.91 1.78±0.01 42.94±3.88 1.87±0.03 40.06±3.85 2.00±0.08 35.70±3.50 2.20±0.12

SWAG 50.05±0.76 1.55±0.09 46.31±1.16 1.70±0.11 44.17±1.07 1.78±0.11 41.20±1.13 1.90±0.13 36.64±1.26 2.09±0.15

F-SWAG 51.37±1.08 1.49±0.05 47.35±0.71 1.64±0.04 45.16±0.66 1.72±0.06 42.01±0.57 1.85±0.06 37.27±0.64 2.03±0.07

bSAM 49.20±2.40 1.46±0.05 45.35±1.93 1.57±0.04 43.07±2.10 1.63±0.04 40.12±1.74 1.71±0.03 35.50±1.36 1.84±0.02

VI 50.72±0.80 1.58±0.11 46.87±0.32 1.74±0.11 44.52±0.39 1.85±0.12 41.38±0.29 2.00±0.12 36.73±0.17 2.20±0.10

E-MCMC 49.86±1.54 1.49±0.03 46.17±1.55 1.60±0.04 44.07±1.72 1.67±0.07 41.05±1.65 1.77±0.10 36.53±1.74 1.91±0.13

PTL 50.44±1.65 1.45±0.06 46.22±1.96 1.58±0.09 44.06±1.67 1.65±0.09 41.02±1.66 1.75±0.11 36.14±1.51 1.91±0.13

FP-BMA 58.53±0.75 1.19±0.02 53.72±0.70 1.33±0.00 50.61±0.84 1.42±0.01 46.76±1.15 1.55±0.03 40.70±1.34 1.75±0.05

(b) RN18 CIFAR100C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 36.01±0.86 2.55±0.06 31.81±0.73 2.79±0.06 29.75±0.57 2.91±0.04 26.73±0.25 3.11±0.02 22.20±0.08 3.40±0.00

SAM 37.94±0.52 2.46±0.02 33.57±0.50 2.69±0.03 31.46±0.67 2.82±0.03 28.19±0.75 3.02±0.05 23.32±0.69 3.33±0.06

FSAM 36.46±0.44 2.53±0.05 32.24±0.36 2.77±0.04 30.19±0.42 2.90±0.03 27.12±0.37 3.10±0.02 22.48±0.39 3.42±0.01

bSAM 36.20±0.59 2.73±0.03 32.48±0.34 2.99±0.03 30.66±0.33 3.12±0.02 27.94±0.14 3.32±0.05 23.66±0.29 3.66±0.06

SWAG 35.84±5.17 2.62±0.30 32.43±4.55 2.81±0.27 30.71±4.21 2.89±0.25 28.13±3.81 3.05±0.22 24.24±2.99 3.29±0.17

F-SWAG 37.10±0.60 2.49±0.03 32.84±0.62 2.72±0.03 30.59±0.72 2.86±0.04 27.43±0.91 3.06±0.06 22.74±0.93 3.38±0.08

VI 38.20±0.57 2.47±0.02 33.77±0.59 2.71±0.03 31.70±0.75 2.83±0.03 28.56±0.77 3.03±0.04 23.72±0.78 3.33±0.05

E-MCMC 36.49±0.89 2.57±0.06 32.25±0.76 2.83±0.06 30.22±0.63 2.97±0.05 27.17±0.38 3.19±0.03 22.54±0.27 3.54±0.01

PTL 36.43±0.35 2.53±0.03 32.24±0.40 2.76±0.03 30.20±0.42 2.87±0.03 27.17±0.55 3.06±0.04 22.56±0.54 3.36±0.05

FP-BMA 39.41±0.72 2.44±0.04 35.07±0.64 2.70±0.05 32.75±0.71 2.86±0.05 29.41±0.67 3.10±0.05 24.25±0.70 3.44±0.05

(c) VIT-B/16 CIFAR10C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 79.62±0.56 0.64±0.06 76.47±0.67 0.73±0.06 74.10±0.83 0.79±0.05 70.42±1.23 0.90±0.05 64.41±1.85 1.08±0.05

SAM 79.78±0.49 0.61±0.01 76.59±0.64 0.70±0.02 74.58±0.94 0.75±0.02 71.12±1.06 0.86±0.03 65.26±1.46 1.03±0.04

FSAM 79.87±0.83 0.62±0.02 76.78±0.78 0.70±0.02 74.70±0.60 0.76±0.01 71.29±0.49 0.86±0.01 65.53±0.56 1.03±0.03

bSAM 78.80±1.18 0.64±0.04 75.43±1.14 0.74±0.04 73.45±1.43 0.80±0.04 70.07±1.50 0.91±0.05 64.21±1.57 1.09±0.05

SWAG 76.58±1.69 1.21±0.04 73.45±1.98 1.25±0.04 71.20±2.18 1.29±0.04 67.54±2.46 1.35±0.04 61.65±2.82 1.44±0.04

F-SWAG 81.03±2.20 0.60±0.05 77.73±2.63 0.69±0.06 75.45±2.96 0.76±0.07 71.82±3.31 0.87±0.08 66.05±3.59 1.03±0.10

E-MCMC 78.91±2.31 0.65±0.08 75.78±2.36 0.74±0.08 73.94±2.56 0.79±0.09 70.66±2.63 0.89±0.10 65.07±2.77 1.06±0.11

PTL 76.26±2.46 0.74±0.06 72.36±2.41 0.83±0.06 69.61±2.46 0.90±0.07 65.47±2.52 1.01±0.07 59.04±2.26 1.18±0.06

FP-BMA 82.89±1.09 0.53±0.04 79.68±1.26 0.62±0.04 77.30±1.43 0.69±0.05 73.41±1.62 0.81±0.06 66.94±1.79 1.01±0.07

(d) VIT-B/16 CIFAR100C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 62.19±0.52 1.42±0.02 57.81±0.37 1.61±0.02 55.04±0.14 1.73±0.02 50.73±0.24 1.93±0.01 44.12±0.39 2.24±0.01

SAM 61.90±0.53 1.47±0.02 57.49±0.43 1.65±0.02 54.80±0.29 1.76±0.01 50.52±0.25 1.96±0.01 44.04±0.24 2.26±0.01

FSAM 61.70±0.52 1.47±0.02 57.16±0.44 1.65±0.02 54.46±0.37 1.77±0.02 50.11±0.39 1.97±0.01 43.53±0.42 2.28±0.01

bSAM 62.36±0.73 1.40±0.03 57.97±0.70 1.58±0.03 55.32±0.61 1.70±0.03 51.09±0.49 1.90±0.03 44.77±0.42 2.21±0.03

SWAG 59.19±0.90 2.00±0.03 55.45±0.88 2.12±0.03 53.34±0.94 2.19±0.03 49.44±0.81 2.33±0.03 43.71±0.93 2.53±0.03

F-SWAG 59.55±2.94 1.49±0.11 55.10±2.82 1.70±0.10 52.37±2.80 1.82±0.10 48.18±2.63 2.04±0.09 41.84±2.43 2.37±0.09

E-MCMC 62.28±0.47 1.40±0.02 57.84±0.46 1.59±0.02 55.14±0.29 1.71±0.02 50.87±0.21 1.91±0.02 44.49±0.13 2.22±0.02

PTL 61.84±0.33 1.47±0.02 57.36±0.22 1.66±0.02 54.47±0.08 1.78±0.01 50.03±0.23 1.98±0.01 43.34±0.36 2.29±0.01

FP-BMA 63.91±0.02 1.33±0.00 59.70±0.00 1.51±0.00 57.00±0.01 1.63±0.00 52.51±0.03 1.84±0.00 45.39±0.04 2.18±0.00



C.8 COMPARISON WITH DIVERSE BASELINES AND INFERENCE METHODS

To further validate the broad applicability and effectiveness of FP-BMA, we compare it with a variety of inference algorithms
and baselines, including MCMC-based, multi-modal, and advanced VI-based methods. All results are reported for CIFAR-10
(10-shot) with ResNet-18.

Method Acc (%) ↑ ECE ↓ NLL ↓
SGHMC 55.41±0.88 0.112±0.009 1.371±0.025

SGHMC + FP-BMA (Ours) 56.41±1.75 0.055±0.008 1.276±0.021

MoLA 65.77 0.045 1.058
MoLA + FP-BMA (Ours) 66.77 0.063 0.998

IVON 56.23±1.01 0.023±0.004 1.262±0.037

FP-BMA (VI) 64.98±1.37 0.016±0.007 0.997±0.046

Table 12: Comparison of FP-BMA with various inference baselines. All results are based on CIFAR-10 (10-shot) and
ResNet-18.

The table above demonstrates that FP-BMA consistently improves predictive performance and calibration across a
range of inference backbones and posterior structures:

• When applied on top of SGHMC [Chen et al., 2014] (a standard MCMC method), FP-BMA yields clear improvements
in accuracy, ECE, and NLL. This shows that our approach is compatible with and beneficial to MCMC-based inference,
extending its utility beyond VI-based methods.

• In a multi-modal posterior setting (MoLA [Eschenhagen et al., 2021]), FP-BMA remains effective, improving accuracy
and NLL. However, the gains are less pronounced than in unimodal cases, suggesting that further extension of FP-BMA
for multi-modal posteriors could be fruitful.

• Compared to IVON [Shen et al., 2024] (which leverages efficient second-order optimization but does not explicitly
encourage flatness), FP-BMA achieves significantly better results on all metrics. This highlights the effectiveness of
explicitly promoting posterior flatness in Bayesian model averaging.

Overall, these results support the broad applicability and complementary nature of FP-BMA, demonstrating its value as a
general-purpose enhancement for Bayesian inference, regardless of the underlying approximation strategy.



C.9 LOSS SURFACE OF SAMPLED MODEL

(a) seed 1

(b) seed 2

(c) seed 3

(d) seed 4

Figure 14: Four instances of sampled weights, including (b) as presented in Figure 4. Across all plots, it is consistently
observed that FP-BMA converges to a flatter loss surface compared to PTL.

As shown in Figure 4, we sampled four model parameters from the posterior, which were trained on CIFAR10 with RN18. It
shows the consistent and robust trend of flatness of FP-BMA in the loss surface. In Figure 14, commencing with the leftmost
panel, a 3D surface plot illustrates the loss surface, revealing the FP-BMA model’s comparatively flatter topology against
the PTL model. This initial plot intuitively demonstrates that the FP-BMA model exhibits a flatter loss surface compared to
the PTL model. Following this, the second visualization compresses the information along a diagonal plane into a 1D scatter
plot. This transformation reveals areas obscured in the 3D view, highlighting that FP-BMA maintains a considerably flatter
and lower-loss landscape. The third and fourth images showcase the loss surface through 2D contour plots, from which one
can easily discern that the area representing the lowest loss is significantly more expansive for FP-BMA than for PTL.
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