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Abstract We leverage recent advancements in gradient-based search techniques for neural architec-

tures to eciently identify high-performing activation functions for a given application. We

propose a ne-grained search cell that combines basic mathematical operations to model

activation functions, allowing for the exploration of novel activations. Our approach enables

the identication of specialized activations, leading to improved performance in every model

we tried, from image classication to language models. Moreover, the identied activations

exhibit strong transferability to larger models of the same type, as well as new datasets.

Importantly, our automated process is orders of magnitude more ecient than previous

approaches. It can easily be applied on top of arbitrary deep learning pipelines and thus

oers a promising practical avenue for enhancing deep learning architectures.

1 Introduction and related work

Nonlinearities are an indispensable component of any deep neural network, and their design choice

crucially aects the training dynamics and performance of neural networks.

The rectied linear unit (ReLU) is the most commonly used activation due to its simplicity and

consistent performance across dierent tasks. However, it took several years of empirical research

[14, 18, 25] before it was widely adopted by practitioners as an activation function in deep neural

networks.

Despite desirable properties of ReLU, other alternatives have been introduced [21, 15, 8, 17,

12, 22], each with their own theoretical or empirical justication, to address potential issues

associated with ReLU, such as the dying ReLU problem [30, 1]. These alternative activations lead

to performance improvements in particular settings, although none is as widely adopted yet. As

evidenced by previous research, manually designing an activation that suits a certain task is non-

trivial and established choices (such as ReLU, SiLU and GELU) are made possibly at the cost of

losing optimal performance.

Automated search methods have been previously employed to learn activation functions and

have primarily followed two distinct approaches. One approach involves learning highly parameter-

ized adaptable activations, concurrently with network training. [2] utilize a general piecewise linear

unit, while [13] employ a weighted sum of polynomial basis elements. In contrast, [23] utilize the

Padé approximant, which exhibits improved stability. [28] adopt a piecewise linear approximation

but introduce inductive bias to simplify optimization. Another approach treats activation functions

as hyperparameters optimized during a search phase, akin to neural architecture search (NAS).

[27] dene a search space comprising basic unary and binary operations and use reinforcement

learning to guide an RNN controller in predicting activation components. Subsequent works, such

as [3, 4, 19, 5] employ evolutionary strategies to explore activation function spaces. [6] introduce

AQuaSurF, which eciently searches the activation space using a regression algorithm, reducing

computational cost compared to previous approaches. The black-box nature of these optimization

methods makes them computationally demanding and impractical to apply to large spaces.
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Our approach instead draws on recent developments in the rapidly growing eld of Neural

Architecture Search (NAS) with over a thousand papers in the last few years (see [32] for a recent

survey). NAS has mostly been limited to architectural choices, such as network depth or width in

macro search spaces, or a pre-dened set of operations in cell-based search spaces, in all of which

the activations are xed. Recently, gradient-based one-shot methods [20, 7, 9] have shown promise

in eciently optimizing architecture search spaces, reducing time costs by orders of magnitude

compared to blackbox methods. Here, we adapt these NAS methods to mimic this success for

searching activation functions by combining primitive mathematical operations. We summarize

our contributions as follows
1
:

• We implement several key adjustments to modern gradient-based architecture search methods,

tailoring them to search within the space of activations.

• Within image classication tasks with ResNet and ViT architectures, as well as languagemodelling

with GPT, we demonstrate that using gradient-based one-shot search strategies we can discover

from scratch specialized activations that improve a network’s performance. Notably, our approach

proves orders of magnitude more ecient compared to previous methods.

• Moreover, we investigate the transferability of the discovered activations to dierent models

and datasets, and show that activation functions selected on a network/dataset, are among the

top-performing activations on similar but larger models, as well as on new datasets.

2 Methodology
Following [27, 4, 5] the space of activations is dened as a combination of unary and binary

operations, which form a scalar function 𝑓 , as shown in Figure 1 (Right). The unary and binary

functions are chosen from a set of primitive mathematical operations, listed in Figure 1 (Left). We

also include several existing activation functions as unary operations to enrich the search space

further as in [5].

In order to enable gradient-based optimization on this discrete space we continuously relax

the space by assigning a weighted sum of all unary(binary) operations to the edge(vertex) of the

graph as in DARTS [20]. These activation parameters are then optimized in a bi-level fashion.

However vanilla DARTS is known to suer from performance degradation at discretizaion [34].

In order to overcome this problem and also encourage more exploration in the search space we

closely align with the distribution learning concept introduced in DrNAS [7]. However, given the

slightly dierent nature of activation function spaces compared to those of neural architectures, this

optimizer, at least in its original form, is not the best t for discovering top performing activations.

We hypothesize that this is why this approach does not exist in the literature yet for activation

function search. In order to make gradient-based optimization work for such spaces, we now

introduce a series of techniques to robustify the approach.

Constraining unbounded operations. Naïvely applying gradient-based optimizers to activation

search fails due to unbounded activations that lead to exploding gradients. To address this issue,

we regularize the search space by constraining unbounded operations. That is, operation outputs 𝑦

with magnitude beyond a threshold |𝑦 | > ℓ will be set to 𝑦 = ℓ sign(𝑦). Here, we take ℓ = 10.

Warmstarting the search. To robustify the search we introduce a short warm-starting phase during

which the model weights are updated in the inner loop using the original activation, while the search

cell is optimized in the outer loop. This ensures initializing the search with reasonable settings for

both the network weights and the activation function parameters. After warm-starting the bi-level

search continues, updating both model weights in the inner loop and activation parameters in the

outer loop.

1
To facilitate reproducibility, we make our code available here.
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Unary Binary
𝑥 sinh(𝑥) 𝑥1 + 𝑥2
−𝑥 tanh(𝑥) 𝑥1 − 𝑥2
𝑥2 arcsinh(𝑥) 𝑥1𝑥2
𝑥3 arctan(𝑥) max(𝑥1, 𝑥2)√
𝑥 erf (𝑥) min(𝑥1, 𝑥2)

𝑒𝑥 min(0, 𝑥) 𝜎 (𝑥1) 𝑥2
|𝑥 | ReLU(𝑥) 𝜎 (𝛾)𝑥1 + (1 − 𝜎 (𝛾))𝑥2
𝛾 GELU(𝑥) 𝐿(𝑥1, 𝑥2)
𝛾𝑥 SiLU(𝑥) 𝑅(𝑥1, 𝑥2)
𝑥 + 𝛾 ELU(𝑥)
𝜎 (𝑥) LeakyReLU(𝑥)
log(1 + 𝑒𝑥 )

𝑓 (𝑥)

binary

unary unary

binary 𝑥binary

unary unary

𝑥 𝑥

Figure 1: (Left) set of unary and binary operations. 𝛾 is a learnable parameter that is trained along

with the activation parameters and becomes frozen after the search is completed. 𝜎 (𝑥) is the
sigmoid function, and 𝐿, 𝑅 are the left and right projection operations. (Right) activation cell:

combination of unary and binary operations

Progressive shrinking. There are some key dierences between architecture spaces and those of

activation functions. In particular, unlike architecture spaces, operations in the space of activations

are nearly parameter free, as these are basic mathematical functions. Furthermore, dierent unary

and binary functions operate on dierent scales, making it challenging to rank their signicance

based on their coecients.

Because of such inherent dierences, it turns out that these methods do not perform well

enough initially. Moreover the problem of performance drop at discretization, present in most NAS

approaches, is more pronounced in the activation function space. To address these challenges we

track activation parameters and drop unary and binary operations with lowest parameters at each

epoch, following a logarithmic schedule
2
. This progressive shrinking of the search cell not only

improves ecacy of the approach but further expedites the search process.

DrNASwith variance reduction sampling. To optimize the activation cell we closely follow DrNAS,

where a Dirichlet distribution 𝐷𝑖𝑟 (𝜌) is assigned to each edge/vertex of the search cell and the

concentration parameters 𝜌 are trained to minimize the expected validation loss. At each iteration,

DrNAS draws activation parameters from its Dirichlet distribution. While DrNAS uses a single

sample throughout the network, in our variant, to reduce the variance introduced by this sampling

process, we draw independent samples for each activation cell within the network. Algorithm 1

outlines the pseudocode for our GRadient-based Activation Function Search (GRAFS) approach.

3 Experiments

We explore high-performing activation functions across ResNet, ViT and GPT architectures. All

examined models employ a single type of activation throughout the network, which is globally

replaced with the search cell in Figure 1 (Right) and optimized as per Section 2.

For each model, we repeat the search procedure with ve dierent seeds, resulting in up to ve

distinct activation functions. The identied activations are evaluated on the networks/datasets they

are searched on and subsequently also transferred to larger models of the same type and/or applied

to new datasets. For the evaluation of each discovered activation, we train the models with it for

ve seeds on the train set, and report test set performance (mean ± the standard error of the mean).

In all Image classication experiments we utilized the implementation provided in the GitHub

repository [33], but employed the TrivialAugment (TA) setup [24] as the augmentation method.

2
See Algorithm DropOps and Appendix C for details.
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ResNet20 ResNet32

act.func CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN

𝐹 1
RN

91.188 ± 0.123 66.852 ± 0.167 95.904 ± 0.045 92.494 ± 0.05 68.746 ± 0.11 96.384 ± 0.028

𝐹 2
RN

91.216 ± 0.074 66.282 ± 0.191 96.042 ± 0.06 92.35 ± 0.038 68.686 ± 0.14 96.353 ± 0.041

𝐹 3
RN

91.44 ± 0.037 66.102 ± 0.139 95.953 ± 0.03 92.132 ± 0.044 68.232 ± 0.14 96.393 ± 0.031

𝐹 4
RN

91.446 ± 0.105 66.142 ± 0.127 95.973 ± 0.022 92.39 ± 0.12 68.552 ± 0.138 96.398 ± 0.044

𝐹 5
RN

91.368 ± 0.064 66.272 ± 0.188 95.91 ± 0.053 92.448 ± 0.059 68.756 ± 0.144 96.392 ± 0.051

SiLU 91.44 ± 0.148 66.504 ± 0.126 95.982 ± 0.041 92.368 ± 0.017 68.566 ± 0.059 96.398 ± 0.028

GELU 91.136 ± 0.094 66.458 ± 0.109 95.895 ± 0.022 92.47 ± 0.065 68.476 ± 0.237 96.418 ± 0.028

ELU 91.054 ± 0.064 66.464 ± 0.108 95.923 ± 0.055 92.204 ± 0.095 68.784 ± 0.108 96.276 ± 0.044

LeakyReLU 91.086 ± 0.077 66.228 ± 0.11 95.887 ± 0.024 92.194 ± 0.061 68.478 ± 0.183 96.355 ± 0.033

ReLU 90.932 ± 0.11 66.314 ± 0.138 95.904 ± 0.042 92.12 ± 0.061 68.716 ± 0.127 96.327 ± 0.036

Table 1: Test performance of activations found on ResNet20 / CIFAR10. Evaluations are on ResNet20

and ResNet32 / CIFAR10, CIFAR100, SVHN.

ResNet. Residual networks (ResNets) were introduced to address the challenges of training deep

networks [16]. This work focuses on ResNet20 and ResNet32 architectures. Table 1 compares our

ve activations discovered on ResNet20 / CIFAR10 (See Appendix F), with baselines. It also assesses

their generalization on CIFAR100 and SVHN. Additionally, the table compares the generalization

performance on ResNet32 across CIFAR10, CIFAR100, SVHN. Table 1 illustrates the eectiveness of

our search method in identifying task-specic activations. On CIFAR10, one activation surpasses

all baselines, and all ve improve upon the default ReLU. Furthermore, the discovered activations

demonstrate transferability to larger models and new datasets, outperforming baselines in most

cases. The search overheads on dierent models and datasets range from 2.64 to 4.85 function

evaluations (Table 11). These low ratios are partly due to the lower number of search epochs (See

Appendix D.2), and the aggressive pruning of the search cell at the early stages (See Appendix C).

Vision Transformers. Vision Transformers [10] based on the self-attention mechanism [31] have

become increasingly popular in the vision domain. In the original ViT model GELU has been

the default activation function. Here we let the automated search discover the activation that is

well-suited to the ViT architecture. To avoid computational burden, we conduct the search on the

ViT-Ti [29] model which is a light version of ViT. The specic version of this model, as well as a

larger variant used for evaluation in this study, is adapted from the implementation [33], which we

denote as ViT-tiny and ViT-small, respectively (See D.1 for details of the architectural choices). Table

2 compares the ve novel activations found in the search process on ViT-tiny/CIFAR10 (Appendix

F) to baselines, on ViT-tiny/CIFAR10, CIFAR100, SVHN. Four out of ve activations outperform

existing baselines on all three datasets. This pattern further extends to the larger variant ViT-small.

Table 12 shows small search overheads of 0.32 to 0.92 function evaluations in this case.

Generative pre-trained transformers. To diversify our experiments, we also evaluate our approach

on language modeling tasks, specically using the Generative Pre-trained Transformer (GPT). We

focus on Andrej Karpathy’s streamlined implementation
3
of GPT-2 [26] for simplicity. We optimize

the activation within a down-scaled version of this architecture with 11M parameters which we

denote as miniGPT. We employ the TinyStories [11] dataset for training. We repeat the search ve

times, warm-starting it with the default GELU activation. This results in ve new activations (See

Appendix F) all of which demonstrate lower test losses compared to GELU (Table 3). For three

activations, highlighted in gray, these improvements also transfer to two larger variants which we

refer to as tinyGPT and smallGPT, with 30M and 65M parameters respectively. The ratios of search

time to evaluation time for all models are reported in Table 13 and range from 0.25 to 0.8.

3
https://github.com/karpathy/nanoGPT
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ViT-tiny ViT-small

act.func CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN

𝐹 1
ViT

90.808 ± 0.107 68.452 ± 0.227 96.382 ± 0.024 93.074 ± 0.15 72.078 ± 0.223 96.968 ± 0.036

𝐹 2
ViT

91.838 ± 0.136 69.562 ± 0.276 96.661 ± 0.028 93.658 ± 0.025 72.82 ± 0.087 97.146 ± 0.02

𝐹 3
ViT

92.132 ± 0.172 70.408 ± 0.138 96.624 ± 0.068 93.972 ± 0.069 73.372 ± 0.158 97.202 ± 0.032

𝐹 4
ViT

91.71 ± 0.065 69.544 ± 0.172 96.573 ± 0.038 93.792 ± 0.089 72.798 ± 0.201 97.15 ± 0.007

𝐹 5
ViT

91.914 ± 0.183 70.034 ± 0.146 96.673 ± 0.028 93.802 ± 0.072 73.26 ± 0.055 97.155 ± 0.041

ELU 90.736 ± 0.048 67.826 ± 0.365 96.358 ± 0.017 92.174 ± 0.185 68.292 ± 0.149 96.788 ± 0.054

GELU 91.396 ± 0.210 68.326 ± 0.220 96.436 ± 0.052 93.238 ± 0.112 71.278 ± 0.255 97.059 ± 0.045

LeakyReLU 91.210 ± 0.095 68.000 ± 0.190 96.449 ± 0.026 92.930 ± 0.076 70.786 ± 0.271 97.021 ± 0.036

ReLU 91.180 ± 0.144 68.064 ± 0.102 96.479 ± 0.065 92.890 ± 0.037 70.734 ± 0.120 96.940 ± 0.037

SiLU 91.554 ± 0.097 68.706 ± 0.132 96.509 ± 0.044 93.254 ± 0.084 71.216 ± 0.203 97.004 ± 0.036

Table 2: Comparison of activations identied over ViT-tiny/CIFAR10 with baselines on ViT-tiny and

ViT-small/CIFAR10, CIFAR100, SVHN. Highlighted activations surpass baselines on all tasks.

activ.func. miniGPT tinyGPT smallGPT

𝐹 1
GPT

1.919 ± 0.002 1.492 ± 0.002 1.324 ± 0.003

𝐹 2
GPT

1.919 ± 0.002 1.489 ± 0.002 1.324 ± 0.003

𝐹 3
GPT

1.933 ± 0.003 1.495 ± 0.002 1.322 ± 0.003
𝐹 4
GPT

1.934 ± 0.002 1.501 ± 0.002 1.331 ± 0.003

𝐹 5
GPT

1.932 ± 0.002 1.509 ± 0.002 1.351 ± 0.003

GELU 1.941 ± 0.002 1.499 ± 0.002 1.325 ± 0.003

Table 3: Comparison of activations identied over miniGPT / TinyStories with GELU on miniGPT,

tinyGPT and smallGPT / TinyStories. Highlighted activations outperform GELU on all models.

4 Conclusions

We have adapted modern gradient-based architecture search techniques to explore the space of

activation functions. Our proposed search strategy can identify activations tailored to specic

deep learning models that surpass commonly-used alternatives and exhibit transferability to larger

models of the same type, as well as new datasets. Most notably, our method requires only a few

function evaluations, in contrast to thousands required by existing methods, making it highly

ecient and convenient for practitioners.

This work aims to demonstrate the potential of gradient techniques in identifying top activations,

and as the rst such work is not intended to represent the optimal pipeline. While our approach

may potentially already improve available strong models, we mostly see this work as opening the

door for a host of possible follow-ups, such as improved search spaces and methods, searching for

activations with robust performance across workloads, or strong scaling to larger networks. We

hope that our work encourages further research and exploration in this direction.

5 Broader Impact Statement

This paper introduces a new line of work on gradient-based search for activation functions in deep

learning. While the societal implications of deep learning are vast, we focus on the eciency of

our search method, which represents advancement in sustainability and democratization of this

research area. In particular our search times are between 0.25 and 4.85 times the evaluation time

(multiplied by 5 repetitions), in contrast to thousands of evaluations required by existing methods.

This addresses the urgent need for sustainable computing practices and green machine learning,

especially in the context of Automated Machine Learning.
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instructions? NO

(e) Did you include the code, additional data, and instructions needed to generate the gures

and tables in your paper based on the raw results? NO

4. If you used existing assets (e.g., code, data, models). . .
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(a) Did you cite the creators of used assets? YES

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? N/A

(c) Did you discuss whether the data you are using/curating contains personally identiable

information or oensive content? N/A

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? NO

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? YES

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? N/A

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? N/A

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? N/A

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? N/A

(b) Did you include complete proofs of all theoretical results? N/A
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A Gradient-based Activation Function Search

Algorithm 1 provides an overview of our proposed GRAFS method.

Algorithm 1: GRAFS
Input :Shrinking schedule of the search cell 𝐷𝑒 ; Original activation function 𝑎; Set of

activation cells A that replace the original activation and their respective activation

parameters 𝛼 = {𝛼𝑎 | for 𝑎 in A}; Total number of epochs 𝐸; Warm-starting epochs

𝐸0
Warm-starting:;
for 𝑒 ← 1 to 𝐸0 do

For all 𝑎 in A sample 𝛼𝑎 ∼ 𝐷𝑖𝑟 (𝜌);
Update distribution parameters 𝜌 by descending ∇𝜌L𝑣𝑎𝑙𝑖𝑑 (𝑤,A(𝛼)) ;
Update weights𝑤 by descending ∇𝑤L𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝑎);

end
Search:;
for 𝑒 ← 𝐸0 to 𝐸 do

DropOps(𝐷𝑒 ) ⊲ see Procedure DropOps;

For all 𝑎 in A sample 𝛼𝑎 ∼ Dir(𝜌);
Update distribution parameters 𝜌 by descending ∇𝜌L𝑣𝑎𝑙𝑖𝑑 (𝑤,A(𝛼));
For all 𝑎 in A sample 𝛼𝑎 ∼ Dir(𝜌);
Update weights𝑤 by descending ∇𝑤L𝑡𝑟𝑎𝑖𝑛 (𝑤,A(𝛼));

end

Procedure DropOps(𝐷)
for 𝑖 ← 1 to 𝐷 do

𝑂 ← edge or vertex with most operations left;

Drop operation in 𝑂 with lowest activation param;

end

B Dirichlet Neural Architecture Search

For completeness and comparison with our proposed method, in this section we present the

pseudocode for DrNAS for neural architecture search. A regularizer term _𝑑 (𝜌, 𝜌) appears with
coecient _ which enforces the distribution parameters 𝜌 to stay close to an anchor 𝜌 = 1.

Algorithm 2: DrNAS - Dirichlet Neural Architecture Search
Input :One-shot model with Initialized weights𝑤 ; Dirichlet distribution parameters 𝜌 ; Anchor 𝜌 = 1, anchor

regularizer parameter _, and metric 𝑑

while not converged do
1. Sample architecture parameters 𝛼 ∼ 𝐷𝑖𝑟 (𝜌);
2. Update distribution parameters 𝛽 by descending ∇𝜌

(
𝐸\∼𝐷𝑖𝑟 (𝜌) [L𝑣𝑎𝑙𝑖𝑑 (𝑤, 𝛼)] + _𝑑 (𝜌, 𝜌)

)
;

3. Sample architecture parameters 𝛼 ∼ 𝐷𝑖𝑟 (𝜌);
4. Update weights𝑤 by descending ∇𝑤L𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝛼)

end
Return: Derive the nal discretized architecture based on argmax of learned 𝜌

C Shrinking schedule

In Algorithm 1 the shrinking schedule 𝐷𝑒 denotes the number of operations to be dropped at epoch

𝑒 during the search phase. In this work we adopt a log schedule for 𝐷𝑒 . Specically, given the initial
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(total) number of operations in the activation cell 𝐷 = 4 × 23 + 2 × 9 = 110, 𝐷 − 6 operations have
to be dropped in order to reach a fully discretized architecture. 𝐷 − 6 points are then distributed

with a log spacing among the epochs, starting from epoch 𝑒 = 𝑆 , at which shrinking begins, and

the nal epoch 𝑒 = 𝐸. These points are then binned into unit intervals, determining the number

of operations to drop at each epoch (see Fig.2 for a visualization). In this work we always start

shrinking at twice the warm-starting epoch 𝑆 = 2𝐸0.

Figure 2: (Bottom) Log-scaled distribution of epochs at which operations are dropped. (Top) Histogram

determines number of operations to drop per epoch.

D Experimental settings

In this section we collect the settings of the experiments in the paper. All the search and evaluation

experiments have been done on a single GeForce RTX 2080 Ti GPU.

D.1 Architectural parameters.

Given the many versions of the ViT and GPT architectures, to avoid ambiguity, we present here

the architectural parameters of the models we have used in this work.

ViT-tiny ViT-small

embed_dim 512 512

depth 4 6

num_heads 6 8

mlp_dim 256 512

patch_size 4 4

img_size 32 32

Table 4: Architectural parameters for ViT-tiny and ViT-small.
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miniGPT tinyGPT smallGPT

n_layers 3 6 9

n_heads 3 6 9

n_embd 192 384 576

Table 5: Architectural parameters for miniGPT, tinyGPT and smallGPT.

D.2 Search settings for image classication tasks

Search - ResNet20

dataset CIFAR10

augmentation TrivialAugment

search_epochs 50

batch_size 32

gradient_accumulation_steps 16

optimizer Adam(lr=0.001, betas=(0.9, 0.999))

scheduler CosineAnnealing(eta_min=0.0)

train_val_split 0.75

optimizer_arch Adam(lr=0.1, betas=(0.9, 0.999))

warmstart_epoch 1

start_shrinking_epoch 2

Table 6: Hyperparameter settings for the bi-level search process on ResNet20.

Search - ViT-tiny

dataset CIFAR10

augmentation TrivialAugment

search_epochs 50

batch_size 128

gradient_accumulation_steps 4

optimizer Adam(lr=0.001, betas=(0.9, 0.999))

scheduler CosineAnnealing(eta_min=0.0)

train_val_split 0.75

optimizer_arch Adam(lr=0.001, betas=(0.9, 0.999))

warmstart_epoch 1

start_shrinking_epoch 2

Table 7: Hyperparameter settings for the bi-level search process on ViT-tiny.
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D.3 Evaluation settings for image classication tasks

Evaluation - Image classication

dataset CIFAR10, CIFAR100, SVHN

augmentation TrivialAugment

n_epochs 500

batch_size 512

optimizer Adam(lr=0.001, betas=(0.9, 0.999))

scheduler CosineAnnealing(eta_min=0.0)

Table 8: Hyperparameter settings for the evaluation process on ResNet20, ResNet32, ViT-tiny, ViT-

small.

D.4 Search settings for language modelling tasks

Search - Language modelling

dataset TinyStories

eval_interval 100

max_iters 1000

batch_size 4

gradient_accumulation_steps 40

train_val_split 0.75

optimizer_arch Adam(lr=1e-3, betas=(0.9, 0.999))

scheduler_arch CosineAnnealingWarmRestarts(T_0=125, T_mult=1, eta_min=1e-4)

warmstart_iterations 100

start_shrinking_iteration 200

Table 9: Hyperparameter settings for the bi-level search process on miniGPT.

D.5 Evaluation settings for language modelling tasks

Evaluation - Language modelling

dataset TinyStories

compile False

max_iters 10000

batch_size 16

gradient_accumulation_steps 40

optimizer AdamW(lr=6e-4, weight_decay=1e-1, betas=(0.9, 0.99))

scheduler CosineAnnealing(lr=6e-4, min_lr=1e-4)

Table 10: Hyperparameter settings for the evaluation process on miniGPT, tinyGPT and smallGPT.

E Search overheads

We collect here the search time to evaluation time ratios for ResNet, ViT and GPT experiments.

The search time is the average search time for the ve searches performed with dierent seeds, and
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the evaluation time is the average training time over ve seeds with the default activation function,

i.e. ReLU for ResNet and GELU for ViT anf GPT.

CIFAR10 CIFAR100 SVHN

ResNet20 4.55 4.85 2.82

ResNet32 4.65 4.57 2.64

Table 11: Search time to evaluation time ratios. Search is always on ResNet20 / CIFAR10.

CIFAR10 CIFAR100 SVHN

ViT-tiny 0.92 0.79 0.54

ViT-small 0.54 0.57 0.32

Table 12: Search time to evaluation time ratios. Search is always on ViT-tiny / CIFAR10.

miniGPT tinyGPT smallGPT

TinyStories 0.80 0.54 0.25

Table 13: Search time to evaluation time ratios. Search is always on miniGPT / TinyStories.

F Discovered activation functions

In this sectionwe provide the explicit formulas and plots for all the 15 activation functions discovered

on ResNet20 / CIFAR10, ViT-tiny / CIFAR10 and miniGPT / TinyStories.

𝐹 1
RN
(𝑥) = 0.5775 ReLU(𝑥) + 0.4225 SiLU(𝑥)

𝐹 2
RN
(𝑥) = 0.5644 ELU(0.1673

√︁
ReLU(𝑥) + 0.8327 SiLU(𝑥)) + 0.4356 LeakyReLU(𝑥)

𝐹 3
RN
(𝑥) = 0.2520 arcsinh(ReLU(𝑥) + 0.7480 SiLU(𝑥) (1)

𝐹 4
RN
(𝑥) = 0.5318 ELU(0.2796

√︁
ReLU(𝑥) + 0.7204 ReLU(𝑥)) + 0.4682 SiLU(𝑥)

𝐹 5
RN
(𝑥) = max(ELU(0.6127 ReLU(𝑥) + 0.3873 SiLU(𝑥)), SiLU(𝑥))
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Figure 3: Plots of activation functions in Eq.1, found on ResNet20 / CIFAR10.

𝐹 1
ViT
(𝑥) = 0.6991GELU(GELU(𝑥)2) + 0.3009GELU(𝑥)

𝐹 2
ViT
(𝑥) = 0.7283GELU(SiLU(𝑥)GELU(𝑥)) + 0.2717𝑥2

𝐹 3
ViT
(𝑥) = 0.3826GELU(𝑥2) + 0.6174 SiLU(𝑥) (2)

𝐹 4
ViT
(𝑥) = 0.7388GELU(SiLU(𝑥)GELU(𝑥)) + 0.2612𝑥2

𝐹 5
ViT
(𝑥) = 0.6955 SiLU(0.3398𝑥2 + 0.6602 SiLU(𝑥)) + 0.3045GELU(𝑥)

Figure 4: Plots of activation functions in Eq.2, found on ViT-Tiny / CIFAR10.
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𝐹 1
GPT

= min(𝑥2, ReLU(𝑥))2 LeakyReLU(𝑥)
𝐹 2
GPT

= ReLU(𝑥)3

𝐹 3
GPT

= 0.5004 ReLU(𝑥)2 + 0.4996 ReLU(𝑥) (3)

𝐹 4
GPT

= 0.4342GELU(𝑥2 sinh(𝑥)) + 0.5658 LeakyReLU(𝑥)
𝐹 5
GPT

= min(𝑥2, sinh(𝑥))2 LeakyReLU(𝑥)

Figure 5: Plots of activation functions in Eq.3 found on miniGPT / TinyStories.
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