
Truncating Trajectories in Monte Carlo Reinforcement Learning

Riccardo Poiani 1 Alberto Maria Metelli 1 Marcello Restelli 1

Abstract
In Reinforcement Learning (RL), an agent acts
in an unknown environment to maximize the ex-
pected cumulative discounted sum of an exter-
nal reward signal, i.e., the expected return. In
practice, in many tasks of interest, such as policy
optimization, the agent usually spends its interac-
tion budget by collecting episodes of fixed length
within a simulator (i.e., Monte Carlo simulation).
However, given the discounted nature of the RL
objective, this data collection strategy might not
be the best option. Indeed, the rewards taken in
early simulation steps weigh exponentially more
than future rewards. Taking a cue from this intu-
ition, in this paper, we design an a-priori budget
allocation strategy that leads to the collection of
trajectories of different lengths, i.e., truncated.
The proposed approach provably minimizes the
width of the confidence intervals around the em-
pirical estimates of the expected return of a policy.
After discussing the theoretical properties of our
method, we make use of our trajectory trunca-
tion mechanism to extend Policy Optimization
via Importance Sampling (POIS, Metelli et al.,
2018) algorithm. Finally, we conduct a numerical
comparison between our algorithm and POIS: the
results are consistent with our theory and show
that an appropriate truncation of the trajectories
can succeed in improving performance.

1. Introduction
In Reinforcement Learning (RL, Sutton & Barto, 2018), an
agent acts in an unknown, or partially known, environment
to maximize the expected cumulative discounted sum of
an external reward signal, referred to as expected return.
This abstract scenario models a large variety of sequential
decision-making problems (e.g., Mnih et al., 2016; Casas,

1Diparimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy. Correspondence to: Riccardo
Poiani <riccardo.poiani@polimi.it>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2017; Schulman et al., 2017; Shi et al., 2020), and, conse-
quently, is constantly gaining attention from the community.
A particular appealing feature is that RL is fully data-driven.
Indeed, the designer of the learning system only needs to
let the agent interacts with the environment to gather ex-
perience on the task of interest, and no additional expert
knowledge on the problem is required.

However, given the well-known data inefficiency of RL al-
gorithms, in real-world scenarios, a simulator is commonly
adopted, and the agent interacts with it, usually in parallel
over a cluster of machines to gather knowledge (e.g., per-
formance and gradient estimates) on the task being solved
(e.g., Espeholt et al., 2018; Liang et al., 2018). Further-
more, since the goal consists on estimating/maximizing an
infinite sum of rewards, in practice, the designer usually
chooses a sufficiently large horizon T , so that the agent will
gather information up to time T via Monte Carlo simulation
(Owen, 2013), after which the state of the system is reset
to a (possibly stochastic) initial state. Although there ex-
ists alternatives, such as Temporal Difference (TD, Sutton
& Barto, 2018) methods, that do not require a finite hori-
zon nor a reset possibility, a large variety of successful RL
approaches still rely on Monte Carlo evaluation. Indeed,
differently from TD methods, Monte Carlo approaches can
be transparently applied to non-Markovian environments,
as often happens in real-world domains. This is, indeed, the
usual case of policy search methods (e.g., Williams, 1992;
Baxter & Bartlett, 2001; Lillicrap et al., 2015; Schulman
et al., 2015; 2017; Metelli et al., 2018; Cobbe et al., 2021).
While these algorithms can differ across a large number of
dimensions (see, for instance, Metelli et al. (2018) for an
in-depth taxonomy), most of them share a common aspect:
the evaluation and optimization of the objective function
are performed by collecting, via Monte Carlo simulation, a
batch of K episodes of length T each. In this sense, they
allocate the budget of Λ = KT transitions uniformly w.r.t.
the horizon.

However, given the discounted nature of the RL objective,
coupled with the fact that, in practice, we have to estimate
the expected return with sample means, is this uniform-
in-the-horizon budget allocation strategy the best option?
Indeed, the discounted objective weighs each reward col-
lected at step t with the factor γt, and, consequently, the
early interaction steps weigh exponentially more than the

1

Truncating Trajectories in Monte Carlo Reinforcement Learning

late ones. Building on this observation, in this work, we aim
at answering the previous question by investigating alter-
native and non-uniform budget allocation strategies. More
specifically, we tackle the problem from a worst-case sce-
nario, which is agnostic to the underlying MDP and policy
to evaluate/optimize, and we investigate whether it is possi-
ble to design an alternative schedule of trajectories’ length
that comes with desirable robustness properties w.r.t. to the
usual uniform-in-the-horizon scheme. In other words, we
aim at understanding whether the possibility of resetting tra-
jectories, which is usually available in a large variety of RL
simulators, and indispensable for Monte Carlo simulation,
can successfully be exploited to increase some quality index
related to the estimation accuracy.

Contributions and Outline After introducing the back-
ground (Section 2), we consider the problem of estimating
the expected return of a policy via trajectory-based Monte
Carlo simulation with a finite budget Λ of transitions (Sec-
tion 3). For presentation purposes, we first focus on the
on-policy setting, and propose a novel estimator for the ex-
pected return, which uses trajectories of different lengths,
i.e., truncated. Then, to investigate alternative budget allo-
cation strategies from our worst-case perspective, we pro-
vide a generalization of the Höeffding confidence intervals
(Boucheron et al., 2003) to our estimator, and we frame
our goal as finding the trajectories’ length schedule that
minimizes such intervals. In this sense, we design an ap-
proximately optimal fixed strategy that provably minimizes
the width of these confidence intervals around the empiri-
cal mean of the RL objective. As our theory verifies, our
schedule leads to collecting trajectories of different lengths.
We then analyze our solution from a Probabilistic Approx-
imately Correct (PAC, Even-Dar et al., 2002) perspective
and discuss its benefits, in terms of the resulting PAC bound,
w.r.t. the usual uniform-in-the-horizon approach. We con-
clude Section 3 by extending our approach to the more
challenging off-policy evaluation setting. To this end, we
minimize a generalization of the off-policy confidence in-
tervals presented in Metelli et al. (2018). Then, while in
principle, one could try to extend any algorithm that alter-
nates steps of MC simulations with steps of optimization
with the proposed schedule of trajectories, we leverage it to
extend the Policy Optimization via Importance Sampling
(POIS) algorithm (Metelli et al., 2018). This choice is jus-
tified by the fact that the confidence intervals optimized in
Section 3 are explicitly employed in POIS to quantify the
uncertainty injected in the estimation and to build a sur-
rogate objective function of the expected return, which is
then optimized via gradient methods. For this reason, in
Section 4, we make use of the truncated off-policy estimator,
together with our optimized confidence intervals, to extend
POIS by incorporating our trajectory truncation mechanism,
presenting Truncating Trajectories in Policy Optimization

via Importance Sampling (TT-POIS). Finally, in Section 5,
we empirically compare our algorithm and POIS across mul-
tiple control domains, varying the discount factor and the
available budget. Our results are consistent with our theory
and show that an appropriate truncation of the trajectories
succeeds in improving performance.

2. Preliminaries
In this section, we provide the necessary backgrounds and
notations that will be used throughout the rest of the article.

Markov Decision Process A discrete-time Markov Deci-
sion Process (MDP, Puterman, 1990) is defined as a tuple
(S,A, R, P, γ, ν), where S is the set of states, A is the
set of actions, R : S × A → [0, 1] is the reward func-
tion that assigns the reward R(s, a) for taking action a in
state s, P : S × A → ∆(S)1 is the transition kernel that
specifies the probability distribution P (·|s, a) over the next
state when taking action a in state s, γ ∈ (0, 1) is the
discount factor, and ν ∈ ∆(S) is the initial-state distri-
bution. The behavior of the agent is defined by a policy
π : S → ∆(A) that provides a mapping between states and
distributions over action. We define a trajectory of length
h as τh := (s0, a0, . . . , sT−1, ah−1, sh), i.e., a sequence of
state-action pairs of length h, and we define the trajectory
return as G(τh) :=

∑h−1
t=0 γ

tR(st, at). Each trajectory of
length h belongs to a trajectory space denoted with Th. The
performance of the agent is evaluated in terms of expected
return, i.e., the expected cumulative discounted sum of re-
wards over the estimation horizon T :2 J(π) := Eπ [G(τT)],
where the expectation is taken w.r.t. the stochasticity of the
policy, the environment, and the initial-state distribution.

Policy Optimization For what concerns optimization
tasks, we focus on the case in which the agent’s pol-
icy belongs to a parametric differentiable policy space
ΠΘ := {πθ : θ ∈ Θ ⊆ Ru}. In this context, the expected
return of any policy πθ is usually expressed as an integral
over the trajectory space TT . In particular, the agent’s maxi-
mization objective can be re-written as:

argmax
θ∈Θ

J(θ):=Eπθ [G(τT)]=

∫
TT
p(τT |θ,T)G(τT)dτT , (1)

where p(τh|θ, h) := ν(s0)
∏h−1
t=0 πθ(at|st)P (st+1|st, at)

is the trajectory density function for trajectories of length

1We denote with ∆(X) the set of probability distributions over
a generic set X .

2As usual in the policy gradient literature (see e.g., Papini et al.,
2019), we consider the infinite-horizon discounted MDP model
in our setting, but a finite horizon T when introducing estimators.
This is justified by the fact that, if T = O

(
1

1−γ log 1
ε

)
, the

expected return with horizon T is ε-close to the infinite-horizon
case (Kakade, 2003).

2

Truncating Trajectories in Monte Carlo Reinforcement Learning

h. A typical approach for solving (1) is to use stochastic
gradient ascent methods. For instance, the well-known
REINFORCE algorithm (Williams, 1992), at each iteration,
spends its interaction budget Λ = KT in collecting K

i.i.d. trajectories of length T , i.e., {τ (i)
T }Ki=1, and applies

the update rule θ′ = θ + α∇̂θJ(θ), where:

∇̂θJ(θ) =
1

K

K∑
i=1

(
T−1∑
t=0

∇θ log πθ

(
a

(i)
t |s(i)

t

))
G(τ

(i)
T)

represents the estimator of the policy gradient (Sutton et al.,
1999) and α ≥ 0 is the step size.

Importance Sampling Let P and Q be two probability
measures defined over a measurable space (X ,F), and as-
sume that P � Q, i.e., P is absolutely continuous w.r.t.
Q. Let p and q be the density functions corresponding to
P and Q respectively. In this setting, Importance Sampling
(IS, Owen, 2013) is a statistical tool that allows estimating
expectation µ = Ex∼P [f(x)] of a bounded function f (i.e.,
‖f‖∞ < +∞) under the target distribution P with samples
collected with the behavioral distribution Q. More specif-
ically, the IS estimator corrects the distribution mismatch
via the importance weights ωP/Q(x) = p(x)/q(x):

µ̂P/Q =
1

K

K∑
i=1

ωP/Q(xi)f(xi), (2)

where {xi}Ki=1 ∼ Q. The moments of the importance
weights can be expressed in terms of the exponentiated
Rényi divergence. More specifically, let α ∈ [0,+∞], the
α-Rényi divergence between P and Q is defined as:

Dα(P‖Q) =
1

α− 1
log

∫
X
q(x)

(
p(x)

q(x)

)α
dx.

We define dα(P‖Q) := exp (Dα(P‖Q)) as the expo-
nentied α-Rényi divergece, then Ex∼Q

[
ωP/Q(x)α

]
=

dα(P‖Q)α−1. The second order moments can be used to
construct the following confidence intervals on the target
estimation (Metelli et al., 2018) that holds with probability
at least 1− δ:

Ex∼Q [f(x)] ≥ µ̂P/Q − ‖f‖∞
√

(1− δ)d2(P‖Q)

δK
(3)

3. Truncating Trajectoris in Monte Carlo
Evaluation

In this section, we provide the theoretical groundings behind
truncating trajectories in Monte Carlo RL, with a specific
focus on the problem of estimating the discounted return.
Before diving into the details of our approach, we first for-
mally specify how an agent makes use of its interaction
budget. For this purpose, we introduce the novel concept of
Data Collection Strategy (DCS).

Definition 3.1 (Data Collection Strategy). A Data Collec-
tion Strategy (DCS) for a transition budget Λ ∈ N is defined
as a T -dimensional vector m := (m1, . . . ,mT) such that
mh ∈ N for all h ∈ {1, . . . , T}, and

∑T
h=1mhh = Λ.

More specifically, mh represents the number of trajectories
of length h that the agent collects in the environment. We
notice that there is a tight relationship betweenm and the
total number of samples that the agent collects at step t. In
particular, let n := (n0, . . . , nT−1) be the T -dimensional
vector, where each component nt represents the number of
samples collected at time t; then, we have that nt = mt, if
t = T − 1, and nt = nt+1 + mt+1 otherwise.3 It follows
that, givenm, n is uniquely identified, and vice versa; for
this reason, in the rest of this paper, we will use the most
convenient symbol depending on the context. Finally, we
remark that each DCS corresponds to pm(·|θ), which rep-
resents the density function of the data generation process
of the trajectories collected under policy πθ following m,
namely D := {{τ (i)

h }mhi=1}Th=1.

3.1. On-Policy Data Collection Strategy

Let us now consider the on-policy problem of estimating
J(θ) with trajectories collected via Monte Carlo simula-
tion using πθ. We begin by investigating whether, having
fixed an arbitrary DCS, it is possible to build unbiased es-
timators for J(θ).4 The answer turns out to be positive
for a restricted class of DCSs, namely the ones for which
mT ≥ 1 holds. Intuitively, this condition ensures that the
agent gathers at least one sample for each interaction step
t ∈ {0, . . . , T − 1}. Thus, for any DCS m, we design the
following estimator:

Ĵm(θ) =

T∑
h=1

mh∑
i=1

h−1∑
t=0

γt
R(s

(i)
t , a

(i)
t)

nt
, (4)

To provide an interpretation, we notice that, given D ∼
pm(·|θ), Equation (4) sums over the collected trajectories
of different lengths (i.e., the two external summations) a
rescaled empirical truncated return in which each reward
at step t is properly divided by nt, i.e., the number of sam-
ples gathered at step t. Intuitively, this rescaling is required
to prevent the estimate to be biased toward the steps for
which nt is larger. Furthermore, this estimator has sev-
eral interesting properties. First of all, as already antici-
pated, as long as mT ≥ 1, it provides an unbiased esti-
mate of J(θ), namely Epm(·|θ)

[
Ĵm(θ)

]
= J(θ) (proof in

Appendix B). Moreover, given the uniform-in-the-horizon

3Notice that this implies that nt ≥ nt+1.
4Notice that a naı̈ve Monte Carlo estimator such as

1
Λ

∑T
h=1

∑mh
i=1

∑h−1
t=0 γ

tR(s
(i)
t , a

(i)
t) is, in general, biased.

3

Truncating Trajectories in Monte Carlo Reinforcement Learning

DCS, i.e., m =
(
0, . . . , 0, Λ

T

)
, Equation (4) recovers the

usual Monte Carlo on-policy estimator of J(θ). As we shall
later see, these properties will also naturally extends to the
off-policy estimation problem.

At this point, our main objective can be framed as finding
the best possible DCS among the ones that preserve the
unbiasedness property. In this sense, we need to define a
proper index to evaluate the candidates. In this work, we
take a worst-case scenario w.r.t. the underlying MDP and
policy, and we choose to minimize confidence intervals
around the estimated expected return. More specifically,
we derive the following generalization of the Höeffding
confidence intervals (Boucheron et al., 2003) that holds for
a generic DCS (proof in Appendix B). 5

Proposition 3.2. Consider an optimization budget Λ ≥ T ,
a generic DCSm such that mT ≥ 1 and δ ∈ (0, 1). Then,
with probability at least 1− δ it holds that:

∣∣∣Ĵm(θ)− J(θ)
∣∣∣ ≤

√√√√1

2
log

(
2

δ

) T−1∑
t=0

ct
nt
, (5)

where ct = γt(γt+γt+1−2γT)
1−γ .

As we can notice, Equation (5) is always well-defined. In-
deed, mT ≥ 1 implies nt ≥ 1 for all t ∈ {0, . . . , T − 1}.
Furthermore, a single term within the summation ct

nt
relates

the width of the confidence intervals w.r.t. the number of
samples gathered at timestep t. More specifically, we notice
that ct is a decreasing function of time. Intuitively, if we
are given a fixed budget Λ, we expect that, to minimize
Equation (5), more samples should be allocated at the begin-
ning of the horizon, corroborating our initial intuition, i.e.,
the convenience of truncating trajectories. Moreover, we
notice that the discount factor γ plays a crucial role in the
expression of ct. The lower γ, the faster the aforementioned
decreasing rate, meaning that, for small γs, a larger por-
tion of the budget Λ will be allocated to earlier interaction
steps when minimizing Equation (5). Finally, it is possi-
ble to verify that, when Proposition 3.2 is applied with the
uniform DCS, we recover the usual Höeffding confidence
intervals for the Monte Carlo estimation of J(θ). Therefore,
given a fixed budget Λ, if we are able to find the DCS that
minimizes Equation (5), we implicitly obtain a robustness
property w.r.t. the uniform-in-the-horizon strategy. In order
to find the DCS that minimizes Equation (5), we formulate

5We remark that Proposition 3.2 does not directly follow from
a naı̈ve application of the Hoeffding inequality, and some tecnical
manipulations are required to obtain Equation (5).

the following optimization problem:

min
n

f(n) :=

√√√√1

2
log

(
2

δ

) T−1∑
t=0

ct
nt

s.t.
T−1∑
t=0

nt = Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ∈ N+, ∀t ∈ {0, . . . , T − 1}

(6)

where the constraint nt ≥ nt+1 arises from the aforemen-
tioned relationships between m and n. Problem (6) is a
non-linear integer program that, in principle, could be ad-
dressed by means of complex solvers. However, such an
approach would fail to provide an interpretable result (e.g.,
closed-form expression) and, thus, would be of little in-
terest for statistical analysis. For this reason, we follow a
different path and derive an analytical expression for an ap-
proximately optimal DCS, whose form arises from solving
a convex relaxation of (6) in which the integer constraint
on nt is dropped and, then, the obtained optimal relaxed
solution is rounded down and the remaining budget is al-
located uniformly. For the sake of presentation, the fol-
lowing Theorem (proof in Appendix B) summarizes our
result for a sufficiently large budget Λ ≥ Λ0. We refer the
reader to Appendix B for the exact expression of Λ0 and
for the symmetric version of Theorem 3.3 that holds when
T ≤ Λ < Λ0.

Theorem 3.3. Consider an optimization budget Λ ≥ Λ0, let
n∗ be the optimal solution of (6). Let gt =

√
ct∑T−1

i=0

√
ci

Λ, and

let k = Λ −∑T−1
t=0 bgtc. Define the t-th component of the

approximately optimal DCS ñ∗ as ñ∗t := bgtc+ 1{t < k}.
Then, it holds that:

f(n∗) ≤ f(ñ∗) ≤
√

2f(n∗). (7)

Theorem 3.3 deserves some comments. First of all, it pro-
vides a closed form expression for an approximately optimal
DCS ñ∗. Indeed, from Equation (7) we can infer that, up
to constant factors, ñ∗ achieves the same confidence inter-
vals as the true optimal DCS n∗ that minimizes (6) (i.e.,
f(ñ∗) = Θ(f(n∗))). Now, let us focus on the expression
of a single term ñ∗t , whose shape in visualized in Figure 1. 6

Neglecting the indicator function and the floor, which both
arise from technicalities in the analysis, the most relevant
term is given by gt. As one can notice, gt partitions the
available budget Λ among the different timesteps with a
proportion of

√
ct, which is an exponentially decreasing

function of time and whose decrease rate is given by γ. In
this sense, the approximately optimal DCS provably trun-
cates trajectories by allocating more samples to the initial

6Further visualizations are provided in Appendix C.

4

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 200 400 600 800 1,000

200

400

Interaction step

N
u
m
b
e
r
o
f
sa

m
p
le
s

Visualization of ñ∗

γ = 0.9 γ = 0.99
γ = 0.995 γ = 0.999

Figure 1. Visualization of ñ∗ for Λ = 50000, T = 1000, and
different values of γ. More specifically, the x-axis denotes the
interaction timestep t and the y-axis reports, for each value of t,
the number of steps prescribed by ñ∗, namely ñ∗t . As we can see,
the behavior of ñ∗t is monotonically decreasing in t; furthermore,
the smaller γ is, the faster the decrease rate of ñ∗t is.

steps of interactions. Moreover, the smaller γ is, the larger
the amount of samples that will be allocated to earlier steps
t, as aggressive discounting makes the future less relevant.

To conclude this section, we remark that Theorem 3.3
provably shows that truncating trajectories can success-
fully minimize the confidence intervals around the esti-
mated return, for any possible pair of MDP and target
policy. However, the complexity of the expression of the
approximately optimal DCS ñ∗ does not allow to easily
quantify the improvement w.r.t. the uniform strategy. For
this reason, we resort to PAC analysis (Even-Dar et al.,
2002). More specifically, given some desired confidence
level δ ∈ (0, 1) and accuracy ε > 0, we aim at answer-
ing the following question: which is the minimum amount
of budget Λ such that |Ĵm(θ) − J(θ)| ≤ ε holds with
probability at least 1− δ? It is easy to see that, for the uni-
form DCS, Λ = O

(
T log(2/δ)
(1−γ)2ε2

)
is sufficient for enforcing

|Ĵm(θ)− J(θ)| ≤ ε. For our approximately optimal DCS,
instead, we derive the following result:

Theorem 3.4. Let δ ∈ (0, 1) and ε > 0 such that 8Tε2 ≤
log(2/δ)c0 holds. Then, with probability at least 1 − δ,
|Ĵm̃∗(θ)− J(θ)| ≤ ε holds provided that:

Λ = O
(

min

{
T log(2/δ)

(1− γ)2ε2
,

log(2/δ)

(1− γ)3ε2

})
(8)

Theorem 3.4 reveals a PAC bound under an assumption on
the relationship between ε, δ, and T ; technically, this is only
needed to guarantee that Λ ≥ 2T holds, which is clearly

a mild condition. That being said, Theorem 3.4, first of
all, shows a robustness property of m̃∗ w.r.t. the uniform
DCS. Moreover, it improves the standard result whenever
T > O

(
(1− γ)−1

)
, as shown in the following example.

Example 3.5. Suppose that the agent is interested in estimat-
ing the infinite-horizon expected discounted return using
a finite horizon T that guarantees that the final estimate
has bias bounded by 1/ exp

(
(1− γ)−1

)
. In this case, we

need to select T = O
(
(1− γ)−2

)
(Kakade, 2003), and the

improvement of our approximately optimal DCS is given
by a factor O

(
(1− γ)−1

)
factor. This result should not be

surprising. Indeed, intuitively, if the horizon increases, the
difference between the optimal DCS and the uniform one
increases as well (see the expression of ñ∗t vs Λ/T).

At this point, we are ready to extend our result to the off-
policy estimation problem.

3.2. Off-Policy Data Collection Strategy

Consider the off-policy problem of estimating J(θ̄) with
trajectories collected via Monte Carlo simulation using a
possibly different policy πθ. For an arbitrary DCS m, we
extend Equation (4) by proposing the following estimator:

Ĵm(θ̄/θ) =

T∑
h=1

mh∑
i

ωθ̄/θ(τ
(i)
h)

h−1∑
t=0

γt
R(s

(i)
t , a

(i)
t)

nt
, (9)

where ωθ̄/θ(τh) =
∏h−1
t=0

πθ̄(at|st)
πθ(at|st) is the importance

weight for a trajectory of length h. Equation (9) enjoys
the same properties discussed for Equation (4); the only
difference, indeed, stands in ωθ̄/θ(τh), whose purpose is
taking into account the distribution shift. Following the
same rationale of the on-policy setting, we derive a gener-
alization for the off-policy confidence intervals of Metelli
et al. (2018) for the discounted off-policy return J(θ̄) that
holds for a generic DCS m.7 More specifically, we prove
the following result (proof in Appendix B).8

Theorem 3.6. Consider πθ̄ , πθ ∈ ΠΘ such that πθ̄(·|s)�
πθ(·|s) a.s. for all s ∈ S . Consider an optimization budget
Λ ≥ T and a generic DCS m. Then, with probability at
least 1− δ it holds that:

J(θ̄) ≥ Ĵm(θ̄/θ)−

√√√√βδ

T∑
h=1

mhφ2
hd2(p(·|θ̄, h)‖p(·|θ, h)), (10)

where βδ = 1−δ
δ and φh :=

∑h−1
t=0

γt

nt
.

7We remark that for Equation (9), that uses IS, we cannot
easily apply the Höeffding’s inequality since the importance weight
distribution might be heavy tailed (Lugosi & Mendelson, 2019).

8Theorem 3.6 makes use of Cantelli’s inequality and provides
one-sided tail bounds. Two-sided tail bounds can be straightfor-
wardly derived by using Chebyshev’s inequality.

5

Truncating Trajectories in Monte Carlo Reinforcement Learning

However, Equation (10) is of little practical use to derive
a DCS. Indeed, minimizing Equation (10) as a function
ofm entails computing the Rényi divergence over the tra-
jectory space. This, in turn, requires both to compute the
approximation of a complex integral, and, for stochastic
environments, the knowledge of the transition kernel P of
the underlying MDP (Metelli et al., 2018). Therefore, to
derive a tractable expression, we further bound each term
as d2(p(·|θ̄, h)‖p(·|θ, h)) ≤ d2(p(·|θ̄, T)‖p(·|θ, T)), thus
leading to:√√√√βδd2(p(·|θ̄, T)‖p(·|θ, T))

T−1∑
t=0

ct
nt
. (11)

However, it is easy to verify that, finding the DCS that mini-
mizes this new expression, leads to an optimization problem
with the same structure of Problem (6). Indeed, 2 log(2/δ)
and βδd2(p(·|θ̄, T)‖p(·|θ, T)) can be seen as constants that
do not impact the result of the optimization. For this reason,
it is possible to derive an equivalent of Theorem 3.3 for
the off-policy setting that we defer to Appendix B. Notice,
however, that the form of the approximately optimal DCS
m̃∗ is left unchanged, and, consequently, all the previous
comments about the on-policy solution extends to the off-
policy setting as well. Consequently, one can obtain also
an equivalent of Theorem 3.4 that expresses PAC bounds
for the off-policy setting. Further details on this point are
provided in Appendix B.

To conclude, we remark that, although a further upper
bound has been applied to obtain Equation (11), once the
data has been collected, one can still make use of the
tighter bound of Equation (10) to obtain a confidence in-
terval on J(θ̄). Indeed, since d2(p(·|θ̄, h)‖p(·|θ, h)) ≤
d2(p(·|θ̄, T)‖p(·|θ, T)), this implies a further source of im-
provement w.r.t. the uniform strategy.

3.3. Discussion

We now discuss the choice of our confidence interval met-
rics to optimize the DCS. As we have seen, our method
provably minimizes confidence intervals on the expected
discounted return of a given policy. More specifically, the
choice of the confidence intervals that we adopt, together
with the methodology that we present, leads to a novel fixed
DCS (i.e., m̃∗) that can be adopted for estimation purposes.
Minimizing confidence intervals is well-known to be a ro-
bust solution against heavy-tailed distributions (Lugosi &
Mendelson, 2019), and, consequently, our work comes with
desired statistical properties that hold for any possible pair
of MDP and target policy. Moreover, given that the pro-
posed DCS is pre-determined, it nicely fits situations where
the agent collects its experience (i.e., spends Λ) in parallel
over a cluster of machines, which is a typical scenario for
policy gradient methods. At this point, one might object

that there might exist MDPs in which, intuitively, truncating
trajectories is a sub-optimal solution. In particular, suppose
that the agent gathers rewards different from 0 only in the
last interaction step (e.g., a goal-based problem). In this
situation, we can imagine that the uniform strategy should
be preferred over any other allocation strategy, even in a
discounted setting.9 Our approach does not capture this
problem-dependent feature since it is designed to be agnos-
tic w.r.t. the underlying structure of the MDP and target
policy. However, we remark that, without any sort of prior
knowledge, our method provably minimizes the worst-case
scenario. Furthermore, we also notice that when dealing
with sparse rewards, γ is usually selected to be close to 1 to
avoid nullifying the positive reward gathered at the end of
the trajectory. In such a scenario, m̃∗ tends to the uniform
strategy.

4. Truncating Trajectories in Policy
Optimization via Importance Sampling

In this section, we discuss how to use our approximately
optimal DCS m̃∗ in a policy optimization algorithm. In par-
ticular, given the result from Section 3, Policy Optimization
via Importance Sampling (POIS, Metelli et al., 2018), as
we shall see in a moment, turns out to be an natural choice.
POIS is a recent off-policy optimization algorithm that al-
ternates online interactions with the environment (i.e., data
collection) with offline optimization. In particular, POIS
first makes use of the uniform DCS to collect a batch of K
episodes of length T under the current policy πθ. Then, it
searches, by gradient steps, for the next policy πθ̄ that max-
imizes an empirical version of the statistical surrogate for
the off-policy return derived from Equation (10). Namely,
the agent optimizes for:

Ĵ(θ̄/θ)−

√√√√βδd̂2(p(·|θ̄, T)|p(·|θ, T))

(
T−1∑
t=0

γt

)2

T

Λ
,

where d̂2(p(·|θ̄, T)|p(·|θ, T)) is a sampled-based estima-
tion of the Rényi divergence d2(p(·|θ̄, T)|p(·|θ, T)) (see
Equation 41 in Metelli et al. (2018)). In other words, POIS
limits the update step via an adaptive trust region defined
by the confidence intervals on the estimation of J(θ̄) given
that data have been collected using a different policy πθ.

In this work, we build on POIS, and we propose to employ
our optimized DCS m̃∗, together with the corresponding
estimator, to build a tighter surrogate of the off-policy return.
More specifically, from Equation (10), we define Lδ(θ̄/θ)

9We propose a variance analysis for these scenarios in Ap-
pendix B.

6

Truncating Trajectories in Monte Carlo Reinforcement Learning

as our empirical objective function:

Lδ(θ̄/θ) := Ĵm̃∗(θ̄/θ)

−

√√√√βδ

T∑
h=1

m̃∗h(φ̃∗h)2d̂2(p(·|θ̄, h)|p(·|θ, h)),
(12)

where φ̃∗h =
∑h−1
t=0

γt

ñ∗t
and d̂2(p(·|θ̄, h)|p(·|θ, h)) is a

sampled-based estimation for d2(p(·|θ̄, h)|p(·|θ, h)). No-
tice that TT-POIS, in Equation (12), makes use of the tighter
bound of Equation (10) with the approximately optimal
DCS derived while optimizing Equation (11). This choice
is justified by the discussion at the end of Section 3.2.

In the following, we will refer to the algorithm using Equa-
tion (12) as objective function as Truncating Trajectories in
Policy Optimization via Importance Sampling (TT-POIS).
The pseudo-code, together with other practical implementa-
tion details can be found in Appendix D.

We conclude by highlighting that TT-POIS can make better
use of the collected data from a statistical perspective (i.e.,
smaller confidence intervals), suggesting that the surrogate
loss will be closer to the true return J(θ̄). This implies that
the adaptive trust region over the parameter space defined
by Equation (12) will allow for larger update steps.

5. Experiments
In this section, we numerically validate our approach by
targeting the comparison between POIS and TT-POIS across
multiple domains and varying both the discount factor and
the available budget. In all experiments, we first tuned the
hyper-parameters with POIS, and then, we applied TT-POIS
to the best hyper-parameter configuration of POIS. We now
present our experimental domains, followed by a discussion
of the results. Further details and additional experiments are
deferred to Appendix E.

Dam Control In our first experimental domain, we con-
sider a water resource management scenario (Castelletti
et al., 2010; Parisi et al., 2014; Tirinzoni et al., 2018; Li-
otet et al., 2022). The goal of the agent is to learn a water
release policy that trades off between some external de-
mand D (e.g., the needs of a town) and keeping the water
level below a flooding threshold F . The dam is subject to
an external and stochastic net inflow, that, each day, de-
termines the amount of additional water it that will be
stored (e.g., rain). More specifically, this inflow profile
has a periodic shape defined over a period of one year; the
demand, instead, is kept constant. The state of the system
st evolves according to a simple mass balance principle,
namely st+1 = max{st − at + it, 0}, where at is the
amount of water that the agent intends to release at day
t. The reward R(st, at) is a convex combination of the two

aforementioned objectives: −c1 max{0, st−F} (i.e., flood-
ing control) and −c2 max{0, D − at}2 (i.e., meeting the
demand), where c1, c2 > 0 are domain-dependent constants.

Reacher In the second experiment, we consider the stan-
dard continuous control problem of a two-jointed robot arm
(Todorov et al., 2012), whose goal is to move the robot’s
end effector close to a target spawned in a random position.
The reward is a combination of a control cost together with
a penalization for the end effector being far from the goal.

Multi-Echelon Supply Chain Finally, we consider the
problem of managing the complex inventory of a 4 stage
supply chain (Hubbs et al., 2020). During each day, the
agent needs to decide, for each stage, how many products
it should order from its supplier (i.e., the previous stage).
Once the goods have been ordered at stage i, it takes a given
amount of days ti (i.e., lead time of stage i) so that they are
shipped and delivered to stage i+ 1. Goods at the last stage
are sold according to some stochastic demand. If the retailer
fails to meet the demand, lost orders are backlogged, mean-
ing they are fulfilled later but for lower profit. The agent’s
key challenge is trading off the uncertainty of the demand
(i.e., profit) with the costs incurred for storing products in
the inventory. A mathematical description of the problem
can be found in Hubbs et al. (2020).

Results Figure 2 reports the average discounted return on
the considered domains (mean and 95% confidence intervals
of 5 runs) varying the discount factor γ. More specifically,
the first row has been obtained with γ = 0.999, while the
second one with γ = 0.95 (experiments with additional
values of γ can be found in Appendix E.4). The considered
budget per iteration is Λ = 8640 for the Dam environment,
Λ = 3900 for the Supply Chain, and Λ = 8000 for the
Reacher. As we can notice, independently of the value of γ,
TT-POIS always performs better w.r.t. its original version
POIS. It is worth noting what happens to the training curves
when we change the value of γ. In these scenarios, as
previously discussed, the dissimilarity between our non-
uniform DCS m̃∗ and the uniform one increases. Indeed,
m̃∗ will allocate a larger portion of the budget Λ to the initial
interaction steps. This, in turn, implies a larger difference in
the confidence intervals of the surrogate objective function.
Consequently, as soon as we decrease γ, we observe a larger
performance improvement in each of the domains. This is
consistent with our theory. Due to the tighter confidence
bounds, the agent is able to make better use of the collected
data and takes larger update steps.

For what concerns experiments in which the budget Λ
changes, we report the results in Appendix E.4 for space
constraints. However, we highlight that the behavior of
the algorithms does not display significant differences. TT-

7

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 2 4 6 8

·106

−150

−100

−50

A
v
g
.
D
is
c
.
R
e
tu

rn
(γ

=
0
.9
9
9
)

Dam

0 2 4 6 8

·106

−400

−300

−200

−100

0

Reacher

0 0.5 1 1.5

·106

400

600

Supply Chain

0 2 4 6 8

·106

−15

−10

−5

0

Num. of samples

A
v
g
.
D
is
c
.
R
e
tu

rn
(γ

=
0
.9
5
)

0 2 4 6 8

·106

−30

−20

−10

0

Num. of samples

0 0.5 1 1.5

·106

200

250

300

350

Num. of samples

TT-POIS POIS

Figure 2. Experimental results (mean and 95% confidence intervals of 5 runs). The first row (resp. second row) reports average returns
with γ = 0.999 (resp. γ = 0.95).

POIS always performs better than POIS, and what has been
previously highlighted for Figure 2 replicates consistently.

6. Conclusions and Future Works
In this work, we focused on how to allocate the interac-
tion budget Λ in Monte Carlo Reinforcement Learning. We
started by building on the intuition that the common uniform-
in-the-horizon strategy might not be the best option when
discounted rewards are considered. To study the problem
from a theoretical perspective, we introduced the novel con-
cept of Data Collection Strategy (DCS), and we investigated
alternative non-uniform solutions from the worst-case ro-
bust viewpoint of confidence intervals. More specifically,
starting from the on-policy evaluation problem, we showed
that, to minimize confidence intervals around the estimated
expected return of a policy, non-uniform DCSs, which we
provide in closed-form, represent a more appropriate solu-
tion, thus confirming our initial intuition. After theoretically
analyzing the benefit of the proposed DCS from a PAC per-
spective, we further extended our reasoning to off-policy
evaluation problems by generalizing the confidence bounds
of Metelli et al. (2018), that are directly employed in the
surrogate loss function that a recent algorithm, i.e., POIS
(Metelli et al., 2018), optimizes for. We then proposed an
extension of POIS, TT-POIS, that makes use of our opti-
mized budget allocation, and we verified that it leads to

performance improvements among multiple domains, and
for different values of γ and Λ.

We conclude by remarking that our work roots down to
a main component of RL algorithms; i.e., the interaction
with the environment. More specifically, we showed that
it is possible to find principled strategies that optimize the
collection of the experience with the domain at hand. Our
work, in this sense, does not close the problem but takes
a first step toward this direction, thus paving the way for
several exciting future works.

For example, while in this work we took a robust approach
and derived a fixed data collection strategy that minimizes
confidence intervals around the target return, other choices
are also possible. In this sense, a complementary direction
w.r.t. to the one we followed would be to find a dynamic
DCS that performs online minimization of the MSE of some
estimator while interacting with the environment. This could
be possible by integrating our approach and analysis with
confidence intervals that rely on empirical quantities (e.g.,
Maurer & Pontil, 2009), and, consequently, by designing
strategies that aim at minimizing the MSE in an online
fashion. Moreover, more effective strategies could be de-
rived when restricting to specific subclasses of problems
(e.g., goal-based) and leveraging their problem-dependent
features.

Finally, we notice that our approach is based on Monte

8

Truncating Trajectories in Monte Carlo Reinforcement Learning

Carlo data collection and, therefore, does not deeply exploit
the Markovian properties of the underlying MDP. Empow-
ering the proposed methods with TD approaches that take
into consideration value functions available in actor-critic
algorithms (e.g., Schulman et al., 2017) may lead to further
improvements in the performance of policy-search algo-
rithms.

Acknowledgements
This paper is supported by FAIR (Future Artificial Intelli-
gence Research) project, funded by the NextGenerationEU
program within the PNRR-PE-AI scheme (M4C2, Invest-
ment 1.3, Line on Artificial Intelligence).

References
Baxter, J. and Bartlett, P. L. Infinite-horizon policy-gradient

estimation. Journal of Artificial Intelligence Research,
15:319–350, 2001.

Bhatia, A., Thomas, P. S., and Zilberstein, S. Adaptive
rollout length for model-based rl using model-free deep
rl. arXiv preprint arXiv:2206.02380, 2022.

Boucheron, S., Lugosi, G., and Bousquet, O. Concentration
inequalities. In Summer school on machine learning, pp.
208–240. Springer, 2003.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex opti-
mization. Cambridge university press, 2004.

Casas, N. Deep deterministic policy gradient for urban
traffic light control. arXiv preprint arXiv:1703.09035,
2017.

Castelletti, A., Galelli, S., Restelli, M., and Soncini-Sessa,
R. Tree-based reinforcement learning for optimal water
reservoir operation. Water Resources Research, 46(9),
2010.

Cobbe, K. W., Hilton, J., Klimov, O., and Schulman, J.
Phasic policy gradient. In International Conference on
Machine Learning, pp. 2020–2027. PMLR, 2021.

Dai, B., Nachum, O., Chow, Y., Li, L., Szepesvári, C., and
Schuurmans, D. Coindice: Off-policy confidence interval
estimation. Advances in neural information processing
systems, 33:9398–9411, 2020.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional conference on machine learning, pp. 1407–1416.
PMLR, 2018.

Even-Dar, E., Mannor, S., and Mansour, Y. Pac bounds
for multi-armed bandit and markov decision processes.
In International Conference on Computational Learning
Theory, pp. 255–270. Springer, 2002.

Farahmand, A.-m., Nikovski, D., Igarashi, Y., and Konaka,
H. Truncated approximate dynamic programming with
task-dependent terminal value. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 30,
2016.

François-Lavet, V., Fonteneau, R., and Ernst, D. How to
discount deep reinforcement learning: Towards new dy-
namic strategies. arXiv preprint arXiv:1512.02011, 2015.

Hesterberg, T. C. Advances in importance sampling. Stan-
ford University, 1988.

Hubbs, C. D., Perez, H. D., Sarwar, O., Sahinidis, N. V.,
Grossmann, I. E., and Wassick, J. M. Or-gym: A rein-
forcement learning library for operations research prob-
lems. arXiv preprint arXiv:2008.06319, 2020.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019.

Kakade, S. M. On the sample complexity of reinforcement
learning. University of London, University College Lon-
don (United Kingdom), 2003.

Kalos, M. H. and Whitlock, P. A. Monte carlo methods.
John Wiley & Sons, 2009.

Kandasamy, K., Dasarathy, G., Poczos, B., and Schneider,
J. The multi-fidelity multi-armed bandit. Advances in
neural information processing systems, 29, 2016.

Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J., and
Poczos, B. Multi-fidelity gaussian process bandit opti-
misation. Journal of Artificial Intelligence Research, 66:
151–196, 2019.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gold-
berg, K., Gonzalez, J., Jordan, M., and Stoica, I. Rllib:
Abstractions for distributed reinforcement learning. In
International Conference on Machine Learning, pp. 3053–
3062. PMLR, 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liotet, P., Vidaich, F., Metelli, A. M., and Restelli, M. Life-
long hyper-policy optimization with multiple importance
sampling regularization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pp. 7525–
7533, 2022.

9

Truncating Trajectories in Monte Carlo Reinforcement Learning

Lugosi, G. and Mendelson, S. Mean estimation and regres-
sion under heavy-tailed distributions: A survey. Founda-
tions of Computational Mathematics, 19(5):1145–1190,
2019.

Maurer, A. and Pontil, M. Empirical bernstein bounds
and sample variance penalization. arXiv preprint
arXiv:0907.3740, 2009.

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M.
Policy optimization via importance sampling. Advances
in Neural Information Processing Systems, 31, 2018.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

Mukherjee, S., Hanna, J. P., and Nowak, R. D. Revar:
Strengthening policy evaluation via reduced variance sam-
pling. In Cussens, J. and Zhang, K. (eds.), Proceedings
of the Thirty-Eighth Conference on Uncertainty in Artifi-
cial Intelligence, volume 180 of Proceedings of Machine
Learning Research, pp. 1413–1422. PMLR, 01–05 Aug
2022.

Nguyen, N. M., Singh, A., and Tran, K. Improving model-
based rl with adaptive rollout using uncertainty estimation.
2018.

Owen, A. B. Monte carlo theory, methods and examples.
2013.

Papini, M., Pirotta, M., and Restelli, M. Adaptive batch size
for safe policy gradients. Advances in Neural Information
Processing Systems, 30, 2017.

Papini, M., Pirotta, M., and Restelli, M. Smoothing
policies and safe policy gradients. arXiv preprint
arXiv:1905.03231, 2019.

Papini, M., Battistello, A., and Restelli, M. Balancing
learning speed and stability in policy gradient via adaptive
exploration. In International conference on artificial
intelligence and statistics, pp. 1188–1199. PMLR, 2020.

Parisi, S., Pirotta, M., Smacchia, N., Bascetta, L., and
Restelli, M. Policy gradient approaches for multi-
objective sequential decision making. In 2014 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp.
2323–2330. IEEE, 2014.

Pirotta, M., Restelli, M., and Bascetta, L. Adaptive step-
size for policy gradient methods. Advances in Neural
Information Processing Systems, 26, 2013.

Poiani, R., Metelli, A. M., and Restelli, M. Multi-fidelity
best-arm identification. In Advances in Neural Informa-
tion Processing Systems, 2022.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 2:331–434,
1990.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shi, W., Wei, X., Zhang, J., Ni, X., Jiang, A., Bian, J.,
and Liu, T.-Y. Cooperative policy learning with pre-
trained heterogeneous observation representations. arXiv
preprint arXiv:2012.13099, 2020.

Sun, W., Bagnell, J. A., and Boots, B. Truncated horizon
policy search: Combining reinforcement learning & imi-
tation learning. arXiv preprint arXiv:1805.11240, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Thomas, P. and Brunskill, E. Data-efficient off-policy pol-
icy evaluation for reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2139–2148.
PMLR, 2016.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. High-
confidence off-policy evaluation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29,
2015.

Tirinzoni, A., Sessa, A., Pirotta, M., and Restelli, M. Im-
portance weighted transfer of samples in reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 4936–4945. PMLR, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3):229–256, 1992.

10

Truncating Trajectories in Monte Carlo Reinforcement Learning

A. Related Works
Before diving into the details of the proofs, we provide a more in-depth discussion of previous works that are linked to ours.

In recent years, there has been a tremendous amount of interest in developing and improving policy search algorithms (e.g.,
Williams, 1992; Baxter & Bartlett, 2001; Lillicrap et al., 2015; Schulman et al., 2015; 2017; Metelli et al., 2018; Cobbe et al.,
2021). Most of these methods interleave the two following phases during the training process: first, a batch of trajectories of
fixed length is collected by interacting with the environment via Monte Carlo simulation, and, second, these data are used to
update the parameters of the policy. Motivated by this setting, we study whether it is possible to optimize Monte Carlo
simulations, by exploiting the reset possibility available in many real-world simulators.

To tackle this budget allocation problem, we started with analyzing the problem of estimating, with finite budget Λ, the
performance of a given policy via Monte Carlo simulation (Kalos & Whitlock, 2009; Owen, 2013). We started with the
on-policy setting by minimizing generalizations of the Höeffding confidence intervals (Boucheron et al., 2003) around the
estimated return. Then, we extended the reasoning to the more intricated off-policy problem, through the lens of importance
sampling (Hesterberg, 1988; Owen, 2013), and by building on top of the recent confidence intervals of Metelli et al. (2018).
We remark that, in this sense, relevant works that are linked to ours can be found in, e.g., Thomas et al. (2015); Thomas &
Brunskill (2016); Dai et al. (2020); Mukherjee et al. (2022). However, it has to be noticed that in previous studies, the focus
was on different aspects of the estimation problem (e.g., building a policy that minimizes the variance of estimation for the
return of a target policy), while we focus purely on the interaction within the environment.

Given our analysis on the estimation problem, we propose to adopt our optimized data collection strategy, together with our
optimized confidence intervals, to extend POIS (Metelli et al., 2018), a recent off-policy optimization algorithm that relies on
Monte Carlo simulation. More specifically, in Metelli et al. (2018) the authors developed a principled off-policy method that
directly models the uncertainty in the update step via controlling (upper bounds on) the variance of importance weights. In
this sense, POIS defines an original concept of trust-region that constraints the target policy to be close to the behavioral one,
thus limiting high-variance estimations problems that typically affect off-policy methods (Owen, 2013). We notice that this
concept of controlling the dissimilarity between the current policy and the next one is at the core of many well-known policy
search methods (e.g., Schulman et al., 2015; 2017). Compared to this line of our work, we improve POIS by optimizing
the dependence on the number of collected data in L(θ̄/θ). In this sense, we remark that, while we minimized confidence
intervals around the empirical off-policy return (i.e., the POIS adaptive trust-region), other choices might better fit other
algorithms: extending well-knowns algorithm such as TRPO and PPO with trajectory truncation mechanisms represents an
exciting line for future works.

We also notice that several works have considered the problem of optimizing policy search methods by setting hyper-
parameters, such as the learning rate (Pirotta et al., 2013), the batch size (Papini et al., 2017), or the amount of policy
exploration (Papini et al., 2020), in a theoretically principled way. Compared to this line of work, in this paper, we are
considering a novel type of hyper-parameter, which is the budget that is spent by the agent to interact with the environment.
To this end, we develop a principled theory that leads to collect truncated trajectories. This concept can be related to the
recent strand of model-based policy optimization literature that simulates short trajectories in an estimated model of the
considered domain to update the parameters of the policy (Janner et al., 2019; Nguyen et al., 2018; Bhatia et al., 2022).
Similar ideas on shortened/adaptive horizon have also arisen in the fields of multi-task reinforcement learning (Farahmand
et al., 2016) and imitation learning (Sun et al., 2018). However, in all these works, the motivation, the idea, the method, and
the analysis completely differ. More specifically, we develop a theory that optimizes the interaction with the environment by
exploiting the structure of the RL return. In this sense, our work is complementary to approaches that evolve the discount
factor online to form a sort of curriculum (François-Lavet et al., 2015). In particular, we notice that our method could be
integrated into these approaches, by evolving the DCS based on the current value of the discount factor. Finally, most
recently, Poiani et al. (2022) have introduced the idea of cutting trajectories while interacting with the environment to
obtain a biased estimate of the return in planning algorithms such as depth-first search. This sort of idea was presented as
an application in the context of multi-fidelity bandits (e.g., Kandasamy et al., 2016; 2019), where the crucial trade-off is
between the introduced bias (i.e., the maximum error due to cutting the search at a given depth) and the cost of acquiring a
given sample (i.e., the number of nodes generated by the algorithm). In this paper, we take a similar perspective, but we
develop an approach that is tailored to Monte Carlo Reinforcement Learning settings.

11

Truncating Trajectories in Monte Carlo Reinforcement Learning

B. Proof and Derivations
In this Section, we provide proofs and derivations for all our theoretical claims. More specifically, Section B.1 provides
results for on-policy evaluation, Section B.2 extends these results to the off-policy evaluation setting and Section B.3
provides further theoretical analysis.

B.1. On-Policy Results

We begin by proving that Equation (4) is an unbiased estimate for J(θ).

Theorem B.1. Consider an optimization budget Λ ≥ T and a DCS such that mT ≥ 1. Consider a policy πθ ∈ ΠΘ. Then:

E
pm(·|θ)

[
Ĵm(θ)

]
= J(θ). (13)

Proof. Let rt,θ be the expected t-th reward under policy πθ. It is easy to verify that:

E
pm(·|θ)

[
Ĵm(θ)

]
=

T∑
h=1

mh E
pm(·|θ,h)

[
h−1∑
t=0

γt
R(st, at)

nt

]
=

T∑
h=1

mh

h−1∑
t=0

γt
rt,θ
nt

At this point, unrolling the summation, we notice that, fixed t̄ ∈ {0, . . . , T − 1} (i.e., the inner summation), its contribution
appears in all h ∈ {1, . . . , T} (i..e, outer summation) such that h > t̄. Moreover, since mT ≥ 1, all t ∈ {0, . . . , T − 1}
appears at least once. Therefore:

T∑
h=1

mh

h−1∑
t=0

γt
rt,θ
nt

=

T−1∑
t=0

γt
rt,θ
nt

T∑
h=t+1

mh.

However, given the relationship between n andm, we have that:

T∑
h=t+1

mh = nt − nt+1 + nt+1 − nt−2 + · · ·+ nT−2 − nT−1 + nT−1 = nt.

Therefore:
T−1∑
t=0

γt
rt,θ
nt

T∑
h=t+1

mh =

T−1∑
t=0

γtrt,θ = J(θ),

which concludes the proof.

We now continue with a key technical Lemma that will be crucial to derive our generalizations of the Höeffding confidence
intervals.

Lemma B.2. Consider an arbitrary DCSm such that mT ≥ 1. Then:

T∑
h=1

mh

(
h−1∑
t=0

γt
nt

)2

=

T−1∑
t=0

ct
nt

(14)

where ct = γt(γt+γt+1−2γT)
1−γ .

Proof. Consider:

T∑
h=1

mh

(
h−1∑
t=0

γt

nt

)2

=

T∑
h=1

mh

(
h−1∑
t=0

γ2t

n2
t

+

h−2∑
t=0

h−1∑
t′=t+1

2γt+t
′

ntnt′

)
. (15)

12

Truncating Trajectories in Monte Carlo Reinforcement Learning

Then, focus on the first component, namely,
∑T
h=1mh

∑h−1
t=0

γ2t

n2
t

. By unrolling the summations, we notice that, since

mT ≥ 1, fixed t̄ ∈ {0, . . . , T − 1} each component γ
2t

n2
t

appears for all h such that h > t. Therefore:

T∑
h=1

mh

h−1∑
t=0

γ2t

n2
t

=

T−1∑
t=0

(
γ2t

n2
t

T∑
h=t+1

mh

)
=

T−1∑
t=0

γ2t

nt
, (16)

where in the last passage, we have used
∑T
h=t+1mh = nt, which directly follow by the relationship between n andm and

the fact that mT ≥ 1.

Then, consider the second part of Equation (15), namely
∑T
h=1mh

(∑h−2
t=0

∑h−1
t′=t+1

2γt+t
′

ntnt′

)
. By unrolling the summations,

we notice that fixed the outer index of the inner summation, i.e., t = t̄ ∈ {0, . . . , T − 2}, its contribution will appear only
for h > t+ 1, thus leading to:

T∑
h=1

mh

(
h−2∑
t=0

h−1∑
t′=t+1

2γt+t
′

ntnt′

)
=

T−2∑
t=0

T∑
h=t+2

mh

h−1∑
t′=t+1

2γt+t
′

ntnt′
.

At this point, fix t̄ ∈ {0, . . . , T − 2} and consider
∑T
h=t̄+2mh

∑h−1
t′=t̄+1

2γ t̄+t
′

nt̄nt′
. Unrolling the summation, we notice that a

given term t′ appears only for h > t′. Therefore:

T∑
h=t̄+2

mh

h−1∑
t′=t̄+1

2γ t̄+t
′

nt̄n
′
t

=

T−1∑
t′=t̄+1

2γ t̄+t
′

nt̄nt′

(
T∑

h=t′+1

mh

)
=

T−1∑
t′=t̄+1

2γ t̄+t
′

nt̄
. (17)

Using Equations (16) and (17) in Equation (15), we have that:

T∑
h=1

mh

(
h−1∑
t=0

γt

nt

)2

=

T−1∑
t=0

γ2t

nt
+

T−2∑
t=0

T−1∑
t′=t+1

2γt
′+t

nt

=

T−1∑
t=0

γ2t

nt
+

T−2∑
t=0

2γt

nt

T−1∑
t′=t+1

γt
′

=

T−1∑
t=0

γ2t

nt
+

T−2∑
t=0

2γt

nt

(
γt+1 − γT

1− γ

)

=

T−1∑
t=0

γ2t

nt
+

T−1∑
t=0

2γt

nt

(
γt+1 − γT

1− γ

)

=

T−1∑
t=0

γt(γt + γt+1 − 2γT)

1− γ · 1

nt

=

T−1∑
t=0

ct
nt
,

which concludes the proof.

At this point, we are ready to prove Theorem 3.2. We first report, for completeness, the Höeffding’s inequality for the sum
of subgaussian random variables.

13

Truncating Trajectories in Monte Carlo Reinforcement Learning

Lemma B.3. Let X1, . . . , Xn be independent sub-gaussian r.v. with mean µ1, . . . , µn and subgaussianity parameters
σ2

1 , . . . , σ
2
n, respectively. Let µ̄n :=

∑n
i=1 µi and µ̂n :=

∑n
i=1Xi. Then, ∀ε > 0, it holds that:

P(|µ̂n − µ̄n| > ε) ≤ 2 exp

(
− ε2

2
∑n
i=1 σ

2
i

)
.

Proposition B.4. Consider an optimization budget Λ ≥ T , a generic DCSm such that mT ≥ 1 and δ ∈ (0, 1). Then, with
probability at least 1− δ it holds that:

∣∣∣Ĵm(θ)− J(θ)
∣∣∣ ≤

√√√√1

2
log

(
2

δ

) T−1∑
t=0

ct
nt
, (5)

where ct = γt(γt+γt+1−2γT)
1−γ .

Proof. First of all, we notice that rewards are bounded in [0, 1]. It follows that, given a trajectory of length h,∑h−1
t=0 γ

t R(st,at)
nt

is a subgaussian r.v. with subgaussianity parameter σ2
h = 1

4

(∑h−1
t=0

γt

nt

)2

.10 It follows that we

can treat Ĵm(θ) as a sum of random variables with expected value J(θ). Therefore, we can apply Lemma B.3 with

ε =
√

2
∑T
h=1mhσ2

h log(2/δ), obtaining that, with probability at least 1− δ:

|Jm(θ)− J(θ)| ≤

√√√√2

T∑
h=1

mhσ2
h log(2/δ) =

√√√√1

2

T∑
h=1

mh

(
h−1∑
t=0

γt

nt

)2

log(2/δ)

The result, then, follow by combining the previous Equation with Lemma B.2.

At this point, our focus shifts toward finding our approximately optimal DCS m̃∗. We will derive our results for the general
any-budget case, after which Theorem 3.3 will follow as a special case. Our proofs follow by combining a closed form
solution of a relaxation of (6), where we drop the integer constraints on nt, and some integrality gap arguments. More
specifically, we are interested in the following relaxation of (6):

min
n

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
nt

s.t.
T−1∑
t=0

nt = Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ≥ 1, ∀t ∈ {0, . . . , T − 1}

(18)

where the only difference stands in the fact that nt ∈ N+ has now been replaced with nt ≥ 1. For this reason, we first
present a simplified version of (18), that preserves the optimal solution.
Lemma B.5. Consider an optimization Λ ≥ T . The convex relaxation of the optimization problem (6) can be written as:

min
n

T−1∑
t=0

ct
nt

s.t.
T−1∑
t=0

nt = Λ

nt ≥ 1, ∀t ∈ {0, . . . , T − 1}

(19)

where n = (n0, . . . , nT−1) and ct = γt(γt + γt+1 − 2γT) Furthermore, the optimization problem (19) is convex in n.

10We recall that a r.v. with bounded support over [a, b] (b > a) is sub-gaussian with scale given by (b−a)2

4

14

Truncating Trajectories in Monte Carlo Reinforcement Learning

Proof. First, we prove the equivalence of the objective function. We notice that since the square root is a monotic function,
it does not affect the optimal solution. Moreover, log(2/δ) can be seen as a constant and, therefore, it can be neglected from
the objective function as well. Thus, the optimal solution of the problem is preserved.

Then, we prove the equivalence of the constraints. The only difference between (19) and (18) lies in the fact that nt ≥ nt+1

has been neglected from the formulation. Given the structure of the simplified objective function (i.e.,
∑T−1
t=0

ct
nt

), we notice
that nt ≥ nt+1 will always be satisfied for an optimal solution. Indeed, suppose that nt < nt+1 for some t; then, since
ct > ct+1, we can always improve the value of the objective function by swapping nt with nt+1. Therefore, it is possible to
neglect these constraints given that nt ≥ 1.

Finally, we conclude by proving the convexity of (19). First of all, we notice that all constraints are linear (and, thus,
convex). It remains to prove the convexity of the objective function, i.e.,

∑T−1
t=0

ct
nt

. We begin by remarking that
∑T−1
t=0

ct
nt

is infinitely differentiable over the domain (R− {0})T . In this case, to prove the convexity it is sufficient to ensure that the
Hessian matrix is positive semidefinite. More specifically, in our case, the Hessian matrix is a diagonal matrix where the i-th
element of the diagonal is given by 2ci

n3
i

, which, thus, is positive definite. This concludes the proof.

At this point, we derive a closed-form solution for (18) by analyzing the KKT condition of (19) (Boyd et al., 2004).

Lemma B.6. Consider an optimization budget Λ > T , and consider h ∈ {1, . . . , T}. Let nt(h) = 1 for t ≥ h and
nt(h) =

√
ct∑h−1

i=0

√
ci

(Λ− T + h) for t < h. The optimal value of the objective function of the convex relaxation of (6) can be

computed as:

min
h∈{1,...,T}

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
nt(h)

(20)

and h is such that, for all t ≥ h it holds that:

Λ− T + h ≤
∑h−1
i=0

√
ci√

ct
, (21)

and, for all t < h:

Λ− T + h >

∑h−1
i=0

√
ci√

ct
. (22)

Proof. Due to Lemma B.5, we can study the optimal value of the convex relaxation by analyzing (19). More specifically,
we focus on the following variant:

min
n

T−1∑
t=0

ct
ñt + 1

s.t. ñt ≥ 0 ∀t ∈ {0, . . . , T − 1}
T−1∑
t=0

ñt ≤ Λ′

(23)

where Λ′ = Λ − T , and the fact that nt ≥ 1 has been directly forced in the objective function and in the constraints by
applying the change of variables nt = ñt + 1.

15

Truncating Trajectories in Monte Carlo Reinforcement Learning

At this point, the KKT conditions for the optimization problem (23) are given by:



− ct
(ñt+1)2 − µt + η = 0 ∀t ∈ {0, . . . , T − 1}

µtñt = 0 ∀t ∈ {0, . . . , T − 1}
η(
∑T−1
t=0 ñt − Λ′) = 0∑T−1

t=0 ñt − Λ′ ≤ 0

µt ≥ 0 ∀t ∈ {0, . . . , T − 1}
η ≥ 0

. (24)

Since the problem is convex, the solution to the KKT conditions are the global optimum of the problem. To find it, we begin
with the first equation for a general t ∈ {0, . . . , T − 1}. From algebraic manipulations we obtain:

ñt =

√
ct

η − µt
− 1. (25)

At this point, we split our analysis into two cases that arise from the second equation of the system (24). More specifically,
we notice that when nt > 0, the second equation of the system (24) leads to µt = 0, 11 which reduces Equation (25) to:

ñt =

√
ct
η
− 1. (26)

Therefore, since ct > 0, this implies η > 0. At this point, since η > 0, the third equation of the system (24) leads to:

∑
t:ñt>0

ñt =
∑
t:ñt>0

(√
ct
η
− 1

)
= Λ′. (27)

However, due to the structure of the objective function, for i, j ∈ {0, . . . , T − 1} such that i > j, if ñi > 0, then ñj > 0.
The main intuition is that, otherwise, we could set ñj to the value of ñi, and ñi to 0, and improve the objective function.12

Therefore, we can write Equation (27) as a general function of an integer h ∈ {1, . . . , T} that indicates the first time-step t
for which nh = 0 holds.13 More specifically, Equation (27) reduces to:

h−1∑
t=0

(√
ct
η
− 1

)
= Λ′. (28)

Solving Equation (28) for η, we obtain:

η =

(∑h−1
i=0

√
ci

Λ′ + h

)2

, (29)

which, as we can appreciate is always greater than 0, thus satisfying the constraints imposed so far.

At this point, using Equation (29) in Equation (26), we obtain:

ñt =

√
ct∑h−1

i=0

√
ci

(Λ′ + h)− 1, (30)

11We notice that this satisfies the last constraint µt ≥ 0.
12This follows from the fact that ci < cj .
13We notice that, since Λ′ > 0, we always have at least ñ0 > 0.

16

Truncating Trajectories in Monte Carlo Reinforcement Learning

which holds for a generic t < h, under the constraint that:
√
ct∑h−1

i=0

√
ci

(Λ′ + h)− 1 > 0.

Or, equivalently:

Λ′ + h >

∑h−1
i=0

√
ci√

ct
. (31)

Now, we consider the second case (i.e., ñt = 0) that arises from the second equation of the system (24). In this case, ñt = 0
and µt is possibly different from 0, and we need to ensure that µt ≥ 0 to satisfy the last constraint of (24). More specifically,
this reduces to study:

−ct − µt +

(∑h−1
i=0

√
ci

Λ′ + h

)2

= 0,

for h ≥ t. In particular, we obtain:

µt =

(∑h−1
i=0

√
ci

Λ′ + h

)2

− ct,

which we need to impose as greater or equal than 0, that is:(∑h−1
i=0

√
ci

Λ′ + h

)2

− ct.

Or, equivalently:

Λ′ + h ≤
∑h−1
i=0

√
ci√

ct
. (32)

At this point, we remark that there always at least exists one value of h for which both Equations (31) and (32) are satisfied.
Indeed, due to the Weierstrass theorem, if the objective function is continuous and considered on a closed and bounded
domain, then a global optimum exists. Moreover, the KKT are sufficient conditions for global optimality in convex problems,
from which follows the existence of at least one h satisfying both equations.

Putting everything together, and rescaling ñt to nt concludes the proof.

Lemma B.7. Consider an optimization budget Λ > T , and consider h ∈ {1, . . . , T}. Let nt(h) = 1 for t ≥ h and
nt(h) =

√
ct∑h−1

i=0

√
ci

(Λ− T + h) for t < h. The optimal value of the objective function of the optimization problem (18) can

be computed as:

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
nt(h∗)

(33)

17

Truncating Trajectories in Monte Carlo Reinforcement Learning

where h∗ is the only h ∈ {1, . . . , T} for which the following holds: for all t ≥ h∗:

Λ− T + h∗ ≤
∑h∗−1
i=0

√
ci√

ct
(34)

and, for all t < h∗:

Λ− T + h∗ >

∑h∗−1
i=0

√
ci√

ct
. (35)

Proof. From Lemma B.6, what remains to prove is that there exists a single h ∈ {1, . . . , T} for which Equations (34) and
(35) are satisfied. Since at least one h exists, we need to prove that it is impossible that Equations (34) and (35) are satisfied
for two distinct h̄1, h̄2 ∈ {1, . . . , T}. Suppose w.l.o.g. that h̄1 > h̄2 and proceed by contradiction.

First of all, consider a generic h and focus on Equation (34). A sufficient condition for Equation (34) to hold for all t ≥ h is
given by:

Λ− T + h ≤
∑h−1
i=0

√
ci√

ch
. (36)

Similarly, a sufficient condition for Equation (35) to hold for all t < h is given by:

Λ− T + h >

∑h−1
i=0

√
ci√

ch−1
. (37)

Now, consider Equation (36) for h̄2 and Equation (37) for h̄1, namely:


Λ− T + h̄2 ≤

∑h̄2−1
i=0

√
ci√

ch̄2∑h̄1−1
i=0

√
ci√

ch̄1−1
< Λ− T + h̄1

. (38)

Summing the two equations of System (38), and rearranging the terms we obtain:

h̄1 − h̄2 >

∑h̄1−1
i=0

√
ci√

ch̄1−1

−
∑h̄2−1
i=0

√
ci√

ch̄2

.

However, as we shall show in a moment:

h̄1 − h̄2 ≤
∑h̄1−1
i=0

√
ci√

ch̄1−1

−
∑h̄2−1
i=0

√
ci√

ch̄2

, (39)

always holds, thus leading to a contradiction. Indeed, consider:

∑h̄1−1
i=0

√
ci√

ch̄1−1

−
∑h̄2−1
i=0

√
ci√

ch̄2

=

∑h̄1−1
i=h̄2

√
ci

√
ch̄1−1

+

∑h̄2−1
i=0

√
ci√

ch̄1−1

−
∑h̄2−1
i=0

√
ci√

ch̄2

.

However, ∑h̄1−1
i=h̄2

√
ci

√
ch̄1−1

≥
∑h̄1−1
i=h̄2

√
ch̄1−1√

ch̄1−1

= h̄1 − h̄2.

18

Truncating Trajectories in Monte Carlo Reinforcement Learning

Moreover: ∑h̄2−1
i=0

√
ci√

ch̄1−1

−
∑h̄2−1
i=0

√
ci√

ch̄2

≥
∑h̄2−1
i=0

√
ci√

ch̄2

−
∑h̄2−1
i=0

√
ci√

ch̄2

= 0.

From which it follows Equation (39), thus concluding the proof.

Lemma B.7 deserves some comments. First of all, it provides an O(T) procedure to compute the optimal solution of the
convex relaxation of (6). Indeed, it is sufficient to iterate over the variable h to find the only h∗ for which Equations (34)
and (35) holds. In the rest of this text, we will refer to the optimal solution of the convex relaxation as n̄∗. Secondly, we
notice that Equations (34) and (35) put in a tight relationship n̄∗ with the available budget Λ. In particular, when the budget

is sufficiently small (i.e., Λ− T + h∗ ≤
∑h∗−1
i=0

√
ci√

ct
), n̄∗ will necessarly allocate a single sample (i.e., nt(h∗) = 1) for all

t ≥ h∗, which corresponds to the minimal amount of samples that is required to obtain an unbiased estimate. Conversely,

when the budget is sufficiently large (i.e., Λ− T + h∗ >
∑h∗−1
i=0

√
ci√

ct
), n̄∗ will allocate to all t < h∗ a non-uniform budget

quantity that is given by
√
ct∑h∗−1

i=0

√
ci

(Λ− T + h∗).

At this point, we notice that, to study the solution in its closed form, we relaxed integer constraints. Given the relaxed
solution of Lemma B.7, it is easy to obtain a proper DCS by taking the element-wise floor of the optimal relaxed solution
and allocating the remaining budget uniformly. The resulting DCS, which we refer to as the approximately optimal DCS ñ∗,
will thus differ at most by 1 (element-wise) w.r.t. to the optimal relaxed solution of Lemma B.7. More formally, we define
the any-budget ñ∗ in the followin way.

Definition B.8. Consider an optimization budget Λ > T and consider h ∈ {1, . . . , T}. Let nt(h) = 1 for t ≥ h and
nt(h) =

√
ct∑h−1

i=0

√
ci

(Λ− T + h) for t < h. Let h∗ be the only h such that Equation (34) and Equation (35) are satisfied. Let

k = Λ−∑T−1
t=0 bnt(h∗)c. Then, we define the approximately optimal DCS ñ∗ = (ñ∗0, . . . , ñ

∗
T−1), where:

ñ∗t = bnt(h∗)c+ 1{t < k} (40)

Notice that Definition B.8 reduces to the one of Theorem 3.3 for sufficiently large budget. More specifically, taking

Λ ≥ Λ0 =
∑T−1
t=0

√
ct√

cT−1
, then h∗ = T , from which follows the expression of Theorem 3.3.

Lemma B.9. Consider an optimization budget Λ > T , let n̄ be the optimal solution of optimal solution of the convex
relaxation given in Lemma B.7, and let ñ∗ as in Defintion B.8. Then, for each t ∈ {0, . . . , T − 1}, |n̄t − ñ∗t | ≤ 1.

Proof. Consider t such that t ≥ k holds. Then |n̄t − ñ∗t | = |nt(h∗)− bnt(h∗)c| ≤ 1.

Consider t such that t < k holds. Then |n̄t − ñ∗t | = |nt(h∗)− bnt(h∗)c+ 1| ≤ 1, which concludes the proof.

At this point, what is left is analyzing the quality of the approximately optimal DCS ñ∗, which will to the proof of Theorem
3.3. We begin by reporting the equivalent version of Theorem 3.3 that holds for the generic case of Λ > T .14

Theorem B.10. Consider an optimization budget Λ > T , let ñ∗ be the approximately optimal DCS given in Defintion B.8,

and let n∗ be the optimal solution of the integer optimization problem (6). Moreover, let f(n) =
√

1
2 log(2/δ)

∑T−1
t=0

ct
nt

.
Then,

f(n∗) ≤ f(ñ∗) ≤
√

2f(n∗) (41)

Proof. First of all, focus 1 ≤ f(ñ∗)
f(n∗) . This clearly holds since n∗ is the optimal solution of (6), while ñ∗ is a feasibile

solution.
14Notice that for Λ = T there exists only one DCS that satisfies mT ≥ 1, and, consequently, the problem is trivial.

19

Truncating Trajectories in Monte Carlo Reinforcement Learning

Now, what remains to prove is that f(ñ∗)
f(n∗) ≤

√
2. Let n̄∗ be the optimal solution of the convex relaxation given in Lemma

B.7. Then, first of all, we notice that:
f(ñ∗)
f(n∗)

≤ f(ñ∗)
f(n̄∗)

(42)

holds since n̄∗ is the optimal solution of the same optimization problem but with a removed constraint (i.e., the integer
constraint on nt). Then, consider:

f(n̄∗) =

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
n̄∗t
≥

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t + 1

≥

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
2ñ∗t

=

√
1

2
f(ñ∗) (43)

where the first inequality follows from Lemma B.9 and the second one by ñ∗t ≥ 1. Plugging Equation (43) into Equation
(42) concludes the proof.

Theorem 3.3. Consider an optimization budget Λ ≥ Λ0, let n∗ be the optimal solution of (6). Let gt =
√
ct∑T−1

i=0

√
ci

Λ, and

let k = Λ−∑T−1
t=0 bgtc. Define the t-th component of the approximately optimal DCS ñ∗ as ñ∗t := bgtc+ 1{t < k}. Then,

it holds that:

f(n∗) ≤ f(ñ∗) ≤
√

2f(n∗). (7)

Proof. The proof is a direct consequence of Theorem B.10.

We now continue by providing the PAC analysis for our approximately optimal DCS ñ∗. Before diving into the proof of
Theorem 3.4, we provide two intermediate technical results.
Lemma B.11. Consider an optimization budget Λ ≥ 2T and let ñ∗ be as in Definition B.8. Then:√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≤

√√√√2
log(2/δ)

Λ

(
T−1∑
t=0

√
ct

)2

(44)

Proof. Let n̄∗ be the optimal solution of the convex relaxation given in Lemma B.7. Then, as in Theorem B.10, we have
that: √√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≤

√√√√log(2/δ)

T−1∑
t=0

ct
n̄∗t

Now, plugging in the definition of n̄∗, we have that:√√√√log(2/δ)

T−1∑
t=0

ct
n̄∗t

=

√√√√log(2/δ)

h∗−1∑
t=0

ct
n̄∗t

+ log(2/δ)

T−1∑
t=h∗

ct (45)

=

√√√√log(2/δ)

h∗−1∑
t=0

ct√
ct(Λ− T + h∗)

h∗−1∑
i=0

√
ci + log(2/δ)

T−1∑
t=h∗

ct (46)

where h∗ is the only h that satisfies Equation (34) and (35).

Now, since Λ ≥ 2T , we have that:
h∗−1∑
t=0

ct√
ct(Λ− T + h∗)

h∗−1∑
i=0

√
ci ≤

h∗−1∑
t=0

ct√
ct(Λ− 1/2Λ)

h∗−1∑
i=0

√
ci (47)

≤ 2

h∗−1∑
t=0

ct√
ctΛ

h∗−1∑
i=0

√
ci (48)

≤ 2

Λ

h∗−1∑
t=0

√
ct

T−1∑
i=0

√
ci (49)

20

Truncating Trajectories in Monte Carlo Reinforcement Learning

which, plugged into Equation (45), leads to:√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≤

√√√√log(2/δ)
2

Λ

h∗−1∑
t=0

√
ct

T−1∑
i=0

√
ci + log(2/δ)

T−1∑
t=h∗

ct (50)

At this point, focus on
∑T−1
t=h∗ ct. From Equation (34), we know that for h∗ it holds that:

(Λ− T + h∗)
√
ct∑h∗−1

i=0

√
ci

≤ 1

Therefore,

T−1∑
t=h∗

ct =

T−1∑
t=h∗

ct
1
≤

T−1∑
t=h∗

ct√
ct(Λ− T + h∗)

h∗−1∑
i=0

√
ci ≤

2

Λ

T−1∑
t=h∗

√
ct

T−1∑
i=0

√
ci (51)

where in the last inequality we have used the same arguments of Equation (47).

At this point, plugging Equation (51) into Equation (50), leads to:√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≤

√√√√log(2/δ)
2

Λ

h∗−1∑
t=0

√
ct

T−1∑
i=0

√
ci + log(2/δ)

2

Λ

T−1∑
t=h∗

√
ct

T−1∑
i=0

√
ci

=

√√√√2 log(2/δ)

Λ

(
T−1∑
t=0

√
ct

)2

which concludes the proof.

Lemma B.12. Consider δ ∈ (0, 1) and ε > 0 such that log(2/δ)c0 ≥ 8Tε2 holds. Then Λ ≥ 2T is a necessary condition
to guarantee that |Ĵm̃∗(θ)− J(θ)| ≤ ε holds.

Proof. We proceed by contradiction: suppose that Λ < 2T . Then, we continue by lower-bounding the value of the
confidence intervals when using our approximately optimal DCS m̃∗. More specifically, let n̄∗ be the optimal solution of
the convex relaxation of (6). Then, we have that:√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≥
√

1

2
log(2/δ)

c0
ñ∗0
≥
√

1

2
log(2/δ)

c0
n̄∗0 + 1

≥
√

1

4
log(2/δ)

c0
n̄∗0

where in the first inequality we have removed positive terms, in the second one we have used Lemma B.9 and in the third
one we have used n̄∗0 ≥ 1. At this point, by noticing that n̄∗0 < Λ, we obtain:√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≥
√

1

4
log(2/δ)

c0
Λ

We can now focus on: √
1

4
log(2/δ)

c0
Λ
≤ ε

which, in turn, leads to:

Λ ≥ 1

4
log(2/δ)

c0
ε2

which however, leads to Λ ≥ 2T , thus concluding the proof.

21

Truncating Trajectories in Monte Carlo Reinforcement Learning

We are now ready to prove the PAC bound on our approximately optimal DCS m̃∗.
Theorem 3.4. Let δ ∈ (0, 1) and ε > 0 such that 8Tε2 ≤ log(2/δ)c0 holds. Then, with probability at least 1 − δ,
|Ĵm̃∗(θ)− J(θ)| ≤ ε holds provided that:

Λ = O
(

min

{
T log(2/δ)

(1− γ)2ε2
,

log(2/δ)

(1− γ)3ε2

})
(8)

Proof. First of all, consider the value of the confidence intervals of m̃∗. Due to Lemma B.12, we know that Λ ≥ 2T holds;
therefore, by applying Lemma B.11 we obtain that:√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≤

√√√√2
log(2/δ)

Λ

(
T−1∑
t=0

√
ct

)2

≤ ε

This, in turn, leads to:

2
log(2/δ)

Λ

(
T−1∑
t=0

√
ct

)2

≤ ε2 (52)

At this point, focus on
(∑T−1

t=0

√
ct

)2

:(
T−1∑
t=0

√
ct

)2

=
1

1− γ

(
T−1∑
t=0

√
γt(γt + γt+1 − 2γT)

)2

=
1

1− γ

(
T−1∑
t=0

γt(γt + γt+1 − 2γT) + 2

T−2∑
t=0

T−1∑
t′=t+1

√
γt(γt + γt+1 − 2γT)

√
γt′(γt′ + γt′+1 − 2γT)

)

First, consider
∑T−1
t=0 γt(γt + γt+1 − 2γT):

T−1∑
t=0

γt(γt + γt+1 − 2γT) ≤
T−1∑
t=0

γt(γt + γt+1) ≤
T−1∑
t=0

γt(2γt) ≤ 2

T−1∑
t=0

γ2t ≤ 2
1− γT
1− γ

Then, consider 2
∑T−2
t=0

∑T−1
t′=t+1

√
γt(γt + γt+1 − 2γT)

√
γt′(γt′ + γt′+1 − 2γT):

2

T−2∑
t=0

T−1∑
t′=t+1

√
γt(γt + γt+1 − 2γT)

√
γt′(γt′ + γt′+1 − 2γT) ≤ 2

T−2∑
t=0

T−1∑
t′=t+1

√
γt(γt + γt+1)

√
γt′(γt′ + γt′+1)

≤ 2

T−2∑
t=0

T−1∑
t′=t+1

√
γt(2γt)

√
γt′(2γt′)

≤ 4

T−2∑
t=0

T−1∑
t′=t+1

√
γ2t
√
γ2t′

= 4

T−2∑
t=0

γt
T−1∑
t′=t+1

γt
′

≤ 4

(
1− γT
1− γ

)2

Plugging everything together into Equation (52) leads to:

2 log(2/δ)

Λ

(
T−1∑
t=0

√
ct

)2

≤ 2 log(2/δ)

Λ(1− γ)

(
2

1− γT
1− γ + 4

(1− γT)2

(1− γ)2

)
≤ 12 log(2/δ)

Λ(1− γ)3

22

Truncating Trajectories in Monte Carlo Reinforcement Learning

Solving 12 log(2/δ)
Λ(1−γ)3 ≤ ε2 for Λ leads to:

Λ = O
(

log(2/δ)

(1− γ)3ε2

)
which concludes the first part of the proof.

Concerning the second part of the proof, we can bound:

T−1∑
t=0

γt(γt + γt+1 − 2γT) ≤ 2

T−1∑
t=0

γ2t ≤ 2T

and:

2

T−2∑
t=0

T−1∑
t′=t+1

√
γt(γt + γt+1 − 2γT)

√
γt′(γt′ + γt′+1 − 2γT) ≤ 4

T−2∑
t=0

T−1∑
t′=t+1

γtγt
′

≤ 4T

T−2∑
t=0

γt

≤ 4T
1− γT
1− γ

Plugging everything together into Equation (52) leads to:

2 log(2/δ)

Λ

(
T−1∑
t=0

√
ct

)2

≤ 2 log(2/δ)

Λ(1− γ)

(
2T + 4T

1− γT
1− γ

)
≤ 12T log(2/δ)

Λ(1− γ)2

Solving 12T log(2/δ)
Λ(1−γ)2 ≤ ε2 for Λ leads to:

Λ = O
(
T log(2/δ)

(1− γ)2ε2

)
which concludes the proof.

B.2. Off-Policy Results

As for the on-policy setting, we begin by providing the unbiasedness results for Equation (9).
Theorem B.13. Consider an optimization budget Λ ≥ T and a DCS such that mT ≥ 1. Consider policies πθ̄, πθ ∈ ΠΘ

such that πθ̄(·|s)� πθ(·|s) a.s. for every s ∈ S, then:

E
pm(·|θ)

[
Ĵm(θ̄/θ)

]
= J(θ̄). (53)

Proof. Define rt,θ̄ as the expected t-th reward under policy πθ̄ and consider:

E
pm(·|θ)

[
Ĵm(θ̄/θ)

]
= E
pm(·|θ)

[
T∑
h=1

mh∑
i=1

ωθ̄,θ(τ
(i)
h)

h−1∑
t=0

γt
R(a

(i)
t , s

(i)
t)

nt

]

=

T∑
t=1

mh E
τh∼p(·|θ,h)

[
ωθ̄,θ(τh)

h−1∑
t=0

γt
R(at, st)

nt

]

=

T∑
t=1

mh E
τh∼p(·|θ̄,h)

[
h−1∑
t=0

γt
R(at, st)

nt

]

=

T∑
h=1

mh

h−1∑
t=0

γt
rt,θ̄
nt

,

23

Truncating Trajectories in Monte Carlo Reinforcement Learning

where the first equality follows by the definition of Ĵm(θ̄/θ), the second from the linearity of the expectation together with
the definition of the data generation process pm(·|θ, h), the third one from the IS property (Owen, 2013), and the forth one
by the linearity of the expectation together with the definition of rt,θ̄. At this point, the rest of the proof follows directly
from the one of Theorem B.1.

We now continue by extending the high-probability confidence intervals of Metelli et al. (2018). In the rest of this section,
we assume that rewards are bounded in [−RMAX, RMAX] to allow for a direct comparison with Metelli et al. (2018). We
also notice that, all the following results are derived based on the Cantelli’s inequality, which is an appropriate choice
for one-sided tail bounds. Two-sided tail bounds can be straightforwardly derived by using Chebyshev’s inequality. For
completeness, we begin by reporting the original result of Metelli et al. (2018).

Theorem B.14. Let πθ̄, πθ ∈ ΠΘ such that πθ̄(·|s)� πθ(·|s) a.s. for every s ∈ S. Let us define the off-policy expected
return estimator with K trajectories of horizon T collected with πθ:

Ĵ(θ̄/θ) =
1

K

K∑
i=1

ωθ̄/θ(τ
(i)
T)

T−1∑
t=0

γtR(s
(i)
t , a

(i)
t) (54)

Let Λ = KT , βδ = 1−δ
δ and φ = RMAX

1−γT
1−γ , then, Then, with probability at least 1− δ it holds that:

J(θ̄) ≥ Ĵ(θ̄/θ)− φ

√
Tβδd2

(
p(·|θ̄, T)‖p(·|θ, T)

)
Λ

, (55)

At this point, we are ready to provide our generalization of Theorem B.14 (which, for RMAX = 1, reduces to Theorem 3.6 of
Section 3).

Theorem B.15. Consider πθ̄, πθ ∈ ΠΘ such that πθ̄(·|s)� πθ(·|s) a.s. for all s ∈ S. Consider an optimization budget
Λ ≥ T and a generic DCSm. Then, with probability at least 1− δ it holds that:

J(θ̄) ≥ Ĵm(θ̄/θ)−

√√√√βδ

T∑
h=1

mhφ2
hd2(p(·|θ̄, h)‖p(·|θ, h)), (56)

where βδ = 1−δ
δ and φh := RMAX

∑h−1
t=0

γt

nt
.

Proof. As in Metelli et al. (2018), we split the proof into two parts, i.e., first we upper bound the variance of the estimator,
and then we make use of the Cantelli’s inequality to prove Equation (56).

Let us start with the variance bound. Consider:

Var
pm(·|θ)

[
Ĵm(θ̄/θ)

]
= Var
pm(·|θ)

[
T∑
h=1

mh∑
i=1

ωθ̄,θ(τ
(i)
h)

h−1∑
t=0

γt
R(a

(i)
t , s

(i)
t)

nt

]
.

24

Truncating Trajectories in Monte Carlo Reinforcement Learning

Since the different trajectories are independent, we can write:

Var
pm(·|θ)

[
T∑
h=1

mh∑
i=1

ωθ̄,θ(τ
(i)
h)

h−1∑
t=0

γt
R(a

(i)
t , s

(i)
t)

nt

]
=

T∑
h=1

mh Var
τh∼p(·|θ,h)

[
ωθ̄,θ(τh)

h−1∑
t=0

γt
R(st, at)

nt

]

≤
T∑
h=1

mh E
τh∼p(·|θ,h)

(ωθ̄,θ(τh)

h−1∑
t=0

γt
R(st, at)

nt

)2


≤
T∑
h=1

mh E
τh∼p(·|θ,h)

(ωθ̄,θ(τh)

h−1∑
t=0

γt
RMAX

nt

)2


=

T∑
h=1

mh E
τh∼p(·|θ,h)

[(
ωθ̄,θ(τh)φh

)2]
=

T∑
h=1

mhφ
2
hd2(p(·|θ̄, h)||p(·|θ, h)),

where the last passage follows from the relationship between the moments of the importance weights and the Rényi
divergence. This concludes the first part of the proof.

Concerning the second part, we start from the Cantelli’s inequality applied on the random variable Ĵm(θ̄/θ), namely:

P
(
Ĵm(θ̄/θ)− J(θ̄) ≥ α

)
≤ 1

1 + α2

Varpm(·|θ)[Ĵm(θ̄/θ)]

Set δ = 1

1+ α2

Varpm(·|θ)[Ĵm(θ̄/θ)]

and consider the complementary event. Then, with probability at least 1− δ it holds that:

J(θ̄) ≥ Ĵm(θ̄/θ)−
√

1− δ
δ

Var
pm(·|θ)

[
Ĵm(θ̄/θ)

]

≥ Ĵm(θ̄/θ)−

√√√√βδ

T∑
h=1

mhφ2
hd2(p(·|θ̄, h)‖p(·|θ, h)),

which concludes the proof.

As we can appreciate, using the uniform DCS in Equation (56) we recover exactly Equation (55) of Theorem B.14. At this
point, one might be tempted to directly minimize Equation the confidence intervals around J(θ̄/θ) as a function ofm to
obtain a tighter high-probability bound. However, as noted in Metelli et al. (2018), computing the Rényi divergence over the
trajectory space requires both the approximation of a complex integral, and, for stochastic environments, the knowledge
of the transition kernel P of the underlying MDP. Therefore, to derive a tractable expression that can be optimized as a
function of the DCS, we further bound each term d2(p(·|θ̄, h)‖p(·|θ, h)) with d2(p(·|θ̄, T)‖p(·|θ, T)), which is justified by
the following result.

Lemma B.16. Consider two policies πθ̄, πθ ∈ ΠΘ such that πθ̄ � πθ a.s. for every s ∈ S . Consider h ∈ {1, . . . , T − 2},
then:

d2(p(·|θ̄, h)‖p(·|θ, h)) ≤ d2(p(·|θ̄, h+ 1)‖p(·|θ, h+ 1)).

Proof. Focus on h+ 1. Due to the link between d2(p(·|θ̄, h+ 1)‖p(·|θ, h+ 1)) and the second moment of the importance
weights, we have that:

25

Truncating Trajectories in Monte Carlo Reinforcement Learning

d2(p(·|θ̄, h+ 1)‖p(·|θ, h+ 1)) = E
τh+1∼p(·|θ,h+1)

[
h∏
t=0

(
πθ̄(at|st)
πθ(at|st)

)2
]

= E
τh+1∼p(·|θ,h+1)

[
h−1∏
t=0

(
πθ̄(at|st)
πθ(at|st)

)2(
πθ̄(ah|sh)

πθ(ah|sh)

)2
]
.

Now, since τh+1 = (s0, a0, . . . , sh, ah, sh+1), we can write the last expectation as:

E
(s0,a0,...,sh−1,ah−1)∼p(·|θ,h)

[
h−1∏
t=0

(
πθ̄(at|st)
πθ(at|st)

)2

E
(sh,ah,sh+1)∼ph(·|θ,h+1)

[(
πθ̄(ah|sh)

πθ(ah|sh)

)2
]]

. (57)

where with ph(·|θ, h+ 1) we denote the h-th step (i.e., the last one) in a trajectory of length h+ 1. With a little abuse of
notation, we drop the dependency on ph(·|θ, h+ 1) and we write:

E
sh,ah

[(
πθ̄(ah|sh)

πθ(ah|sh)

)2
]

= E
sh

[
E

ah∼πθ(·|sh)

[(
πθ̄(ah|sh)

πθ(ah|sh)

)2
]]
≥ inf
s∈S

E
a∼πθ(·|s)

[(
πθ̄(a|s)
πθ(a|s)

)2
]
≥ 1, (58)

where the last inequality follows from the fact that Ea∼πθ(·|s)

[(
πθ̄(a|s)
πθ(a|s)

)2
]

can be interpreted as the exponentiated Rényi

divergence with α = 2 at state s. At this point, plugging Equation (58) in Equation (57), it follows that:

d2(p(·|θ̄, h+ 1)‖p(·|θ, h+ 1)) ≥ E
(s0,a0,...,sh−1,ah−1)∼p(·|θ,h)

[
h−1∏
t=0

(
πθ̄(at|st)
πθ(at|st)

)2
]

= E
τh∼p(·|θ,h)

[
h−1∏
t=0

(
πθ̄(at|st)
πθ(at|st)

)2
]

= d2(p(·|θ̄, h)‖p(·|θ, h)),

which concludes the proof.

At this point, combining Lemma B.2 with Lemma B.16 and Theorem B.15, we obtain the following contrained optimization
problem.

min
n

√√√√βδd2(p(·|θ̄, T)||p(·|θ, T))

T−1∑
t=0

ct
nt

s.t. nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
T−1∑
t=0

nt = Λ

nt ∈ N+, ∀t ∈ {0, . . . , T − 1}

(59)

Notice that (59) is equivalent, up to constant factors, to the one of the on-policy case. Consequently, it can be solved using
the same methodology applied in the previous section. More specifically, following the same proof scheme, it is possible to
derive the following result.

Theorem B.17. Consider an optimization budget Λ > T , let ñ∗ be the approximately optimal DCS given in Defin-
tion B.8, and let n∗ be the optimal solution of the integer optimization problem (59). Moreover, let f(n) =√
βδd2(p(·|θ̄, T)||p(·|θ, T))

∑T−1
t=0

ct
nt

. Then,

f(n∗) ≤ f(ñ∗) ≤
√

2f(n∗) (60)

26

Truncating Trajectories in Monte Carlo Reinforcement Learning

B.3. Further analysis

In Theorem B.10, we have seen that f(ñ∗) ≤
√

2f(n∗). We have now ask ourselves if we can obtain tighter values for the
constant. The following results provides a positive answer.

Proposition B.18. Consider an optimization budget Λ > T , let ñ∗ be the approximately optimal DCS given in Defintion
B.8, let n∗ be the optimal solution of the integer optimization problem (6), and let n̄∗ be the solution of the convex relaxation
of (6) given in Lemma B.7. Define X = {x ∈ (0, 1) : n̄∗T−1 ≥ 1

1−x}. Then, if n̄∗T−1 > 1 holds, we have that:

f(ñ∗) ≤ min
x∈X

√
1

x
f(n∗) (61)

Proof. Let us analyze: f(ñ∗)
f(n∗) . For the same reasoning of Theorem B.10, we have that:

f(ñ∗)
f(n∗)

≤ f(ñ∗)
f(n̄∗)

(62)

Then, we provide an upper bound on f(ñ∗) that holds whenever n̄∗T−1 ≥ 1. More specifically, consider a generic x ∈ X :15

f(ñ∗) =

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
ñ∗t
≤

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
n̄∗t − 1

≤

√√√√1

2
log(2/δ)

T−1∑
t=0

ct
xn̄∗t

=

√
1

x
f(n̄∗) (63)

where, in the first inequality we have used Lemma B.9 together with n̄∗T−1 > 1 16, and in the second one we have used the
definition of X .

Plugging Equation (63) into (62) concludes the proof.

Proposition B.18 provides a tighter upper bound that depends on the number of samples allocated to n̄∗T−1 by the solution of
the convex relaxation of (6). Due to Lemma B.7, we know that there is a tight relationship between n̄∗t and the available
budget Λ. More specifically, we can appreciate that, as the budget increase, so does n̄∗T−1. Due to Equation (61), this, in turn,
implies tighter upper bounds on the quality of the approximately optimal DCS. As an example, suppose that n̄∗T−1 = 100.
Then, we have that:

f(ñ∗) ≤
√

100

99
f(n∗)

We now provide some variance analysis for settings in which rewards are gathered at the end of the episode.

Proposition B.19. Consider the MDP of Figure 3 together with the indicated policy. Fix a DCS m such that mT ≥ 1.
Then, it holds that:

Var
pm(·|θ̄)

[
Ĵm(θ̄/θ̄)

]
=
γ2(T−1)

nT−1
. (64)

Proof.

Var
pm(·|θ̄)

[
Ĵm(θ̄/θ̄)

]
= Var
pm(·|θ̄)

[
T∑
h=1

mh∑
i=1

h−1∑
t=0

γt
R(s

(i)
t , a

(i)
t)

nt

]
15Notice that when n̄∗T−1 > 1, X is a non-empty set.
16Notice that n̄∗T−1 > 1 implies n̄∗t > 1 for all t ∈ {0, . . . , T − 1}.

27

Truncating Trajectories in Monte Carlo Reinforcement Learning

s0

s1,b

s1,l

s2,b

s2,l

...

...

sT,b

sT,l

0.5/0

0.5/0

1/0

1/0

1/0

1/0

1/+1

1/−1

Figure 3. MDP example with a fixed policy πθ̄ in which rewards are gathered only at the end of the episode. Each edge reports the
probability of taking that action, together with its associated reward. For states in which there is a single edge that is followed with
probability 1 (e.g., s1,l), other actions have been masked.

Since the different trajectories are independent, we can write:

Var
pm(·|θ̄)

[
T∑
h=1

mh∑
i=1

h−1∑
t=0

γt
R(s

(i)
t , a

(i)
t)

nt

]
=

T∑
h=1

mh Var
p(·|θ̄,h)

[
h−1∑
t=0

γt
R(st, at)

nt

]

=

T∑
h=1

mh E
p(·|θ̄,h)

(h−1∑
t=0

γt
R(st, at)

nt
− E
p(·|θ̄,h)

[
h−1∑
t=0

γt
R(st, at)

nt

])2


=

T∑
h=1

mh E
p(·|θ̄,h)

(h−1∑
t=0

γt
R(st, at)

nt

)2


=

T∑
h=1

mh E
p(·|θ̄,h)

[
h−1∑
t=0

γ2tR(st, at)
2

n2
t

+

h−2∑
t=0

h−1∑
t′=t+1

γt+t
′R(st, at)R(st′ , at′)

ntnt′

]

= mT
γ2(T−1)

n2
T−1

=
γ2(T−1)

nT−1

which concludes the proof.

From Equation (64), we can make the following consideration. As noticed in Section 3, the uniform strategy is intuitively a
good choice for settings such as the one of Figure 3. Indeed, the only relevant data is gathered at the end of the episode, and,
therefore, we need to interact with the environment as much as possible at time t = T − 1. The variance of the uniform
strategy will be given by:

γ2(T−1)T

Λ
(65)

At this point, what can we say about our approximately optimal DCS? The following proposition summarizes the result.

Proposition B.20. Consider the MDP of Figure 3 together with the indicated policy. Suppose that T ≥ log(1
(1−γ)γ)

log(1
γ)

holds.

Consider m̃∗ as in Definition (B.8). Then, for sufficiently large values of Λ, it holds that:

Var
pm̃∗ (·|θ̄)

[
Ĵm(θ̄/θ̄)

]
≤ 2γ

1
2 (T−1)T

Λ
. (66)

28

Truncating Trajectories in Monte Carlo Reinforcement Learning

Proof. Due to Proposition B.19, we are interested in studying:

γ2(T−1)

ñ∗T−1

Let n̄∗ be the solution of the convex relaxation given in Lemma B.7. Then,

γ2(T−1)

n̄∗T−1

≥ γ2(T−1)

ñ∗T−1 + 1
≥ γ2(T−1)

2ñ∗T−1

Which leads to:

γ2(T−1)

ñ∗T−1

≤ 2γ2(T−1)

n̄∗T−1

(67)

At this point, due to Lemma B.7, for sufficiently large values of Λ, we can substitute n̄∗T−1 with:

2γ2(T−1)

n̄∗T−1

=
2γ2(T−1)

∑T−1
t=0

√
ct

Λ
√
cT−1

≤ 2γ2(T−1)T

Λ
√
γT−1(γT−1 − γT)

=
2γ2(T−1)T

Λ
√
γ2(T−1)(1− γ)

(68)

where in the inequality step we have used the definition of ct. Moreover, since T ≥ log(1
(1−γ)γ)

log(1
γ)

holds by assumption, we

have that (1− γ) ≥ γT−1, therefore, we can further upper-bound Equation (68) with:

2γ2(T−1)T

Λ
√
γ3(T−1)

=
2γ

1
2 (T−1)T

Λ

which concludes the proof.

We now make some remarks both on the setting and the comparison between the uniform strategy and our approximately
optimal DCS m̃∗. First of all, from Equation (64) we notice that the variance tends to 0 with an exponential rate w.r.t.
the horizon T , meaning that, when the horizon is sufficiently large, any method will enjoy numerically low variance.
Furthermore, Equation (66) shows that, for sufficiently large values of Λ, the variance of Ĵm(θ̄/θ̄) displays a very similar
behavior w.r.t. the one obtained by the uniform approach; the only difference, indeed, stands in a different power of γ.
Furthermore, we remark that, in such sparse reward settings, γ is usually very close to 1 to avoid nullifying the rewards that
are gathered at the end of the episode. However, whenever this happens, m̃∗ will tend to the uniform strategy.

Finally, we conclude with some remarks on off-policy PAC bounds that can be derived using our approximately optimal
DCS. More specifically, given some desired accuracy level ε > 0, we aim at answering the following question: what is the
minimum amount of budget Λ such that |Ĵm(θ̄/θ)− J(θ̄)| ≤ ε holds with probability at least 1− δ? First of all, to answer
this question we notice that we need to rely on two-sided tail bounds. To this end, it is sufficient to modify the proof of
Theorem 3.6 by using Chebyshev’s inequality, rather than Cantelli’s one. The result that it possible to obtain is the following
one:

|J(θ̄)− Ĵm(θ̄/θ)| −

√√√√β̄δ

T∑
h=1

mhφ2
hd2(p(·|θ̄, h)‖p(·|θ, h)), (69)

where β̄δ = 1
δ and φh :=

∑h−1
t=0

γt

nt
. At this point, define, for brevity: ω = d2(p(·|θ̄, T)‖p(·|θ, T)). It is easy to see, that

the uniform-in-the-horizon m̄ strategy requires:

Λ = O
(

ωβ̄δT

(1− γ)2ε2

)
, (70)

to satisfy |Ĵm̄(θ̄/θ)− J(θ̄)| ≤ ε with high probability. Concerning our approximately optimal DCS, instead, under the
assumption that ωβ̄δc0 ≥ 4Tε2 holds, we have that:

Λ = O
(

min

{
ωβ̄δ

(1− γ)3ε2
,

ωβ̄δT

(1− γ)2ε2

})
. (71)

29

Truncating Trajectories in Monte Carlo Reinforcement Learning

0.6 0.7 0.8 0.9 0.9995

20

40

60

80

100

B
o
u
n
d

Im
p
ro
v
e
m
e
n
t

γ ∈ [0.6, 0.9995]

0.99 0.9925 0.995

20

40

60

80

100

γ ∈ [0.99, 0.995]

0.995 0.9975 0.999
60

70

80

90

100

Discount Factor γ

B
o
u
n
d

Im
p
ro
v
e
m
e
n
t

γ ∈ [0.995, 0.999]

0.999 0.99925 0.9995
80

85

90

95

100

Discount Factor γ

γ ∈ [0.999, 0.9995]

T = 100 T = 500 T = 1000

Figure 4. Visualization of the confidence interval improvements reported as a function of γ for different values of T , when using Λ = 10k.

The proof follows directly from the ones of Theorem 3.4 by substituting 1
2 log

(
1
δ

)
with β̄δω. The main conceptual difference

between these bounds and the on-policy ones is that these results are only descriptive and not prescriptive (i.e., we cannot
make a budget decision accordingly). Indeed, the Rényi divergence depends on the unknown transition model, which is
unknown to the learner, and the two considered policies. To get a prescriptive result, one might look for an upper bound on
this divergence. However, we notice that whatever upper-bound one might use, our method will still enjoy robustness and
improvements over the uniform strategy. We thank the reviewer for highlighting this interesting detail. We will include such
comments in the final version of the paper.

C. Visualizations
In this Section, we provide some visualizations of the improvement in the confidence intervals in Figure 4 when varying γ
and T , and keeping fixed Λ. The improvement is reported as 100f(ñ∗)

f(nu) , where nu is the uniform allocation strategy and

f(n) =
√

1
2 log(2/δ)

∑T−1
t=0

ct
nt

. Moreover, Figure 5 provides visualizations on ñ∗ as a function of γ and for different
values of Λ when T = 10.

D. Additional details on POIS and TT-POIS

D.1. Pseudo-code and other details

The pseudo-code for our algorithm, TT-POIS, can be found in Algorithm 1. As one can notice, by replacing m̃∗ with the
uniform-in-the-horizon DCS, we recover the original pseudo-code of POIS (Metelli et al., 2018). We remark that, as in
POIS, δ is treated as an hyper-parameter, and that in Line 6, the step size is computed online via line search.

30

Truncating Trajectories in Monte Carlo Reinforcement Learning

0.2 0.4 0.6 0.8 0.99

20

40

60

80

100
n

∗

Λ = 100

0.2 0.4 0.6 0.8 0.99

200

400

600

800

1,000

Λ = 1000

0.2 0.4 0.6 0.8 0.99
0

0.2

0.4

0.6

0.8

1
·105

Λ = 100k

n∗
0 n∗

1 n∗
2 n∗

3 n∗
4

n∗
5 n∗

6 n∗
7 n∗

8 n∗
9

Figure 5. Visualization of n∗ for different values of γ and Λ when using T = 10.

Algorithm 1 Truncating Trajectories in Policy Optimization via Importance Sampling (TT-POIS)
Require: Optimization budget Λ, confidence level δ

1: Initialize θ0
0 arbitrarly

2: Compute m̃∗ as in Definition B.8
3: for j = 0, 1, 2, . . . do
4: Collect dataset D ∼ pm̃∗(·|θj0)
5: for k = 0, 1, 2, . . . do
6: Compute∇Lδ(θjk/θ

j
0) and αk

7: θjk+1 = θjk + αk∇L(θjk/θ
j
0)

8: end for
9: end for

We now recall the definition of the objective function Lδ provided in Section 4, namely:

Lδ(θ̄/θ) := Ĵm̃∗(θ̄/θ)−

√√√√βδ

T∑
h=1

m̃∗h(φ̃∗h)2d̂2(p(·|θ̄, h)|p(·|θ, h)), (72)

where φ̃∗h =
∑h−1
t=0

γt

ñ∗t
and d̂2(p(·|θ̄, h)|p(·|θ, h)) is a sampled-based approximation for d2(p(·|θ̄, h)|p(·|θ, h)). More

specifically,

d̂2(p(·|θ̄, h)|p(·|θ, h)) =
1

nh

T∑
i=h

m̃∗i∑
j=1

h−1∏
t=0

d2(πθ̄(·|s
τ

(j)
i ,t

)‖πθ(·|s
τ

(j)
i ,t

)) (73)

Notice that Equation (73), when applied with the uniform DCS, recovers the same approximation used in Metelli et al.
(2018) (see their Equation 41).

As an additional comment, we notice that in Section 3, Equation (72) has been presented for rewards in [0, 1]. For
the more general case in which rewards are defined in [−RMAX, RMAX], it is sufficient to replace φ̃∗h =

∑h−1
t=0

γt

ñ∗t
with

φ̃∗h = RMAX
∑h−1
t=0

γt

ñ∗t
(see Theorem B.15).

D.2. Implementation Details

Our implementation follows directly from the original one of POIS (Metelli et al., 2018). More specifically, the line search
method adopted for performing the update (Line 6 in Algorithm 1) is the same of Metelli et al. (2018). In this sense, the
reader can refer to Appendix E.1 of Metelli et al. (2018) for futher details. Compared to Metelli et al. (2018), however, we
introduce the two following hyper-parameters that have been used, in our experiments, both for POIS and TT-POIS.

31

Truncating Trajectories in Monte Carlo Reinforcement Learning

Minimum-maximum empirical reward In the original version of POIS (Metelli et al., 2018) (and also in our experi-
ments), in L(θ̄/θ), RMAX is replaced with the maximum empirical reward R̂MAX that is collected at the current training
iteration. This leads to a further adaptivity of L(θ̄/θ). However, in domain such as the Reacher, where the rewards tend
to be close to 0 when good policies are learnt, using the maximum empirical reward might lead to numerical instabilities.
Indeed, in these situations, the adaptive trust region will approach 0, and both POIS and TT-POIS will simply maximimize
Ĵ(θ̄/θ), with no control on the variance of the importance weights. For this reason, we define an additional hyper-parameter,
RMIN-MAX, that defines a minimum threshold for R̂MAX. If R̂MAX falls below RMIN-MAX, then RMIN-MAX will be used in
L(θ̄/θ).

Importance weights clipping When employing POIS and TT-POIS in domains with discrete actions (e.g., the supply
chain), it might happen that in some states some actions are highly sub-optimal. In this case, even if we are controlling the
variance of the importance weights, the objective function might lead to shrink their probability to 0. In training, this can
results in NAN gradients and numerical instabilitities. For this reason, we clip the importance weights in Ĵm(θ̄/θ) with an
hyper-parameter IWc.

E. Experiment Details and Additional Results
In this Section, we provide further details on the experiments and additional results. More specifically:

• Section E.1 provides an in-depth description for each environment that has been considered.

• Section E.2 provides results that purely focus on the evaluation setting of Section 3.

• Section E.3 provides ablation experiments on the policy optimization setting.

• Section E.4 provides additional results on the experimental setting of Section 5. More specifically, results with
additional values of Λ and γ are presented.

• Section E.5 provides additional results on the experimental setting of Section 5. More specifically, the undiscounted
return metric is reported.

• Section E.6 provides additional results on the Reacher domain where T and γ varies jointly while keeping γT roughly
constant.

• Section E.7 reports hyper-parameters and other practical details.

E.1. Environment Details

E.1.1. EVALUATION DOMAIN

We now provide a description of the environment that is used to conduct evaluation experiments, whose results are presented
in Section E.2. More specifically, we designed a domain with the following features:

• The performance of any policy can be easily computed in closed form.

• It can easily generalize to any value of T so that we can study the behavior of the algorithm varying T .

Given these general features, we designed the following environment. The state is described solely by the integer variable
t, which represents the step in which the action is taken. The action space is discrete, with 2 possible actions. Con-
cerning the reward function, since we want it to generalize to any horizon T , we made the following design choices.
We restricted ourselves to T ∈ {100, 1000, 2000}. Then, focus for the sake of exposition on T = 100. Define
g1 = (1, 4, 3, 1, 1.5, 0.4, 4, 4.1, 3, 2, 4) and g2 = (4, 1, 1, 3, 4, 1.5, 0.1, 5, 1, 1, 4). Then, if t /∈ {0, 10, 20, . . . , 90, 99},
R(a1, st) = 0 and R(a2, st) = 0. If t ∈ {0, 10, 20, . . . , 90, 99}, denote with i(t) the corresponding index of the element t
within the vector {0, 10, 20, . . . , 90, 99}; then R(a1, st) = N

(
g1,i(t), 0.1

)
and R(a2, st) = N

(
g2,i(t), 0.1

)
.

Similar reasoning extends to the cases in which T is equal to 1000 and 2000 by considering the vectors
{0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 999} and {0, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 1999} re-
spectively. Further details can be found in the code base we provide.

32

Truncating Trajectories in Monte Carlo Reinforcement Learning

E.1.2. CORRIDOR DOMAIN

In order to compare POIS and TT-POIS on very similar domains but with different reward functions we design the following
experiment. More specifically, the domain represents a corridor: the agent starts in the middle, and needs to reach the right
extreme. To this end, it has two possible actions: “go left” and “go right”, which both succeed with a certain probability.
Then, we consider the following reward functions:

• Sparse reward: the reward is equal to 1 only if the agent has reached the right extreme of the corridor, and 0 otherwise.

• Dense reward: if the selected action is “go right”, the agent receives with high probability reward 1, while if the selected
action is “go left”, it receives with high probability reward −1.

More formally, we consider a continuous state space S ∈ [−xMAX, xMAX] for some xMAX > 0. The initial state is fixed,
and equal to 0, namely s0 = 0. Then, denote with a1 the action “go right” and with a2 the action “go left”. Then, consider
p̄ ∈ (0.5, 1) (i.e., the probability of success of a given action). Let xt be the current state, then, if at = a1, xt+1 = 1+xt+q
where q ∼ N (0, 0.1) with probability p̄, and xt+1 = −1 + xt + q where q ∼ N (0, 0.1) with probability 1− p̄. Similarly,
if at = a2, xt+1 = −1 + xt + q where q ∼ N (0, 0.1) with probability p̄, and xt+1 = 1 + xt + q where q ∼ N (0, 0.1)
with probability 1− p̄. Then, we also clip the value of xt to be in the specified range; namely we clip xt in [−xMAX, xMAX].
Then, let the goal state be xg = xMAX. We say that the goal is reached whenever |x− xg| < 0.5 holds. Furthermore, states
for which the goal is reached are modelled as absorbing states.

For what concerns the reward function, instead, let us first consider the sparse reward setting. In this case, let the goal state
be xg = xMAX. Then, R(xt, at) = 1 if |xt − xg| < 0.5, 0 otherwise. Furthermore, we set T = 100 and xg = 12.17

For the dense reward setting, instead, R(x, ·) = 0 for x such that |x − xg| < 0.5 holds. For x such that |x − xg| < 0.5
does not hold instead, R(·, a1) is 0.2 with probability p̄ and −0.2 with probability 1− p̄. Moreover, R(·, a2) is −0.2 with
probability p̄ and 0.2 with probability 1− p̄. Furthermore, we set T = 1000 and xg = 1000.

Further details can be found in the code base we provide.

E.1.3. DAM CONTROL

We now provide additional details on the dam environment. First, we detail the adopted parameters of the environment, then
we describe the state observed by the agents and the action space considered.

The parameters of the environment are the default ones of (Tirinzoni et al., 2018):

• The demand D is fixed and equal to 10.

• The inflow profile it is a period function (i.e., Figure 6) plus Gaussian noise with σ = 2.

• The initial storage s0 is set to 200.

• The flooding threshold F is set to 300.

• The reward is computed as −c1 max{0, st − F} − c2 max{0, D − at}2 with c1 = c2 = 0.5. Moreover, rewards are
rescaled with 0.01 for stability purposes.

The state given by the agent is a 7-dimensional vector given by:

• The storage at the current day, namely st. This quantity is normalized using 2 ∗ st−50
500−50 − 1.

• 6 basis functions φi(t) (with i ∈ {1, . . . 6}) are used to describe the time t. More specifically, φi(t) = |t− ci|, where
ci = {60, 120, 180, 240, 300, 360}. The agent then observes a normalized version of φi(t), namely 2 ∗ φi(t)360 − 1.

The agent always start at day t = 0 with a storage s0 of 200 and the interaction proceeds for 1080 days (i.e., 3 years). The
available actions at are discrete and 21. Each action i represents the amount of water that the agent intends to release at

17As we shall show, at the beginning of the training process, with these parameters, the agent will rarely reach the goal.

33

Truncating Trajectories in Monte Carlo Reinforcement Learning

60 120 180 240 300 360
−0.5

0

0.5

1

1.5

2

Day

In
fl
ow

Figure 6. Mean inflow it per day t of the Dam control environment considered in our experiments. The inflow is considered over a period
of 1 year.

day t. Differently from Tirinzoni et al. (2018), we are considering a case in which there are operational constraints on the
amount of water to release (i.e., the agent cannot take all the possible values at ∈ [0, st], but it is limited to {0, . . . , 20}).
Moreover, we consider a control frequency of 3 days: once an action has been chosen at day t, it is persisted for 3 days in a
row. This is mainly for performance reasons: all the policy-gradient based method that we tried were failing to learn without
this additional trick.

E.1.4. REACHER

The domain is the standard one from the MuJoCo control suite (Todorov et al., 2012). We set the episode duration to
T = 200 timesteps, with a new goal target popping up if the previous one is reached.

E.1.5. MULTI-ECHELON SUPPLY CHAIN

As originally done, we consider the optimization problem over a period of 30 days. All the details concerning this domain
(e.g., demands, lead times, inventory costs, initial states, backlog costs, prices are products are sold) can be found in Hubbs
et al. (2020), indeed, we rely on their publicly available repository for our experiments. We report here, however, a couple of
modifications that we have taken to improve the performances. The state of the agent (i.e., a vector v with dimension 33) has
been normalized according to v

20 − 1. The action space, that was originally a multi-discrete space of dimension [100, 90, 80],
has been shrinked to [25, 25, 25] to speed up the learning process. Indeed, larger action values are highly sub-optimal given
the demand curve and the inventory costs.

E.2. Policy Evaluation Experiments

Figure 7 and 8 report results for our experimental evaluation setting. Figure 7 studies the on-policy evaluation problem,
where we want to evaluate the random policy with data collected from the random policy itself. Figure 8, instead, focuses
on the off-policy setting: we consider the problem of estimating the policy that takes a1 with probability 0.49 and a2 with
probability 0.51 with data collected from the random policy. In both Figures, each picture compares the performance, in
term of MSE, of m̃∗ against the usual uniform-in-the-horizon DCS.18 Each experiment shows the mean MSE, together with
95% confidence intervals, over 100 runs. To conduct exhaustive experimentation, we have varied both the value of Λ abd γ.
The results are consistent with our theory: for small values of γ (or, equivalently, for larger values of T) the benefits of m̃∗

increases.
18Notice that in the considered environment, the exact value of any policy can easily be computed in closed form. It follows that the

MSE can be computed exactly.

34

Truncating Trajectories in Monte Carlo Reinforcement Learning

0.5 1 1.5 2

·104

0

0.2

0.4

A
v
g
.
M

S
E

(T
=

1
0
0
)

γ = 0.95

0.5 1 1.5 2

·104

0

0.2

0.4

0.6

0.8

1

γ = 0.995

0.5 1 1.5 2

·104

0

0.5

1

1.5

γ = 0.999

0.5 1 1.5 2 2.5

·104

0

0.2

0.4

A
v
g
.
M

S
E

(T
=

1
0
0
0
)

0.5 1 1.5 2 2.5

·104

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5

·104

0

0.5

1

1.5

2

1 1.5 2 2.5

·104

0

0.2

0.4

Budget

A
v
g
.
M

S
E

(T
=

2
0
0
0
)

1 1.5 2 2.5

·104

0

0.2

0.4

0.6

0.8

1

Budget

1 1.5 2 2.5

·104

0

0.5

1

1.5

2

Budget

ñ∗ nu

Figure 7. Experimental results (mean and 95% confidence intervals of 100 runs) on the Policy Evaluation domain described in Section
E.1. Each picture reports the average MSE (i.e., y-axis) against the budget that has been spent to collect trajectories (i.e., x-axis). More
specifically, we report results when using our approximately optimal DCS ñ∗ and the uniform data collection strategy nu. The policy that
is estimated is the uniform one, and the data have been collected on-policy. The first row of the figure is obtained with T = 100, the
second one with T = 1000, and the third one with T = 2000. The third column with γ = 0.95, the second one with γ = 0.995, and the
third one with γ = 0.999.

35

Truncating Trajectories in Monte Carlo Reinforcement Learning

0.5 1 1.5 2

·104

0

0.2

0.4

A
v
g
.
M

S
E

(T
=

1
0
0
)

γ = 0.95

0.5 1 1.5 2

·104

0

0.2

0.4

0.6

0.8

1

γ = 0.995

0.5 1 1.5 2

·104

0

0.5

1

1.5

2

γ = 0.999

2 4

·104

0

0.5

1

1.5

2

A
v
g
.
M

S
E

(T
=

1
0
0
0
)

2 4

·104

0

2

4

2 4

·104

0

10

20

0.2 0.4 0.6 0.8 1

·105

0

2

4

Budget

A
v
g
.
M

S
E

(T
=

2
0
0
0
)

0.2 0.4 0.6 0.8 1

·105

0

2

4

6

8

10

Budget

0.2 0.4 0.6 0.8 1

·105

0

10

20

Budget

ñ∗ nu

Figure 8. Experimental results (mean and 95% confidence intervals of 100 runs) on the Policy Evaluation domain described in Section
E.1. Each picture reports the average MSE (i.e., y-axis) against the budget that has been spent to collect trajectories (i.e., x-axis). More
specifically, we report results when using our approximately optimal DCS ñ∗ and the uniform data collection strategy nu. The policy
that is estimated takes a1 with probability 0.49 and a2 with probability 0.51; the data have been collected using the random policy (i.e.,
off-policy evaluation). The first row of the figure is obtained with T = 100, the second one with T = 1000, and the third one with
T = 2000. The third column with γ = 0.95, the second one with γ = 0.995, and the third one with γ = 0.999.

36

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 1 2

·105

0

20

40

60

80

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
2
.5
k
)

Corridor Sparse γ = 0.999

0 1 2

·105

0

20

40

60

Corridor Sparse γ = 0.995

0 1 2

·105

0

20

40

Corridor Sparse γ = 0.99

0 1 2

·105

0

20

40

60

80

Num. of samples

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
1
.3
k
)

0 1 2

·105

0

20

40

60

Num. of samples

0 1 2

·105

0

20

40

Num. of samples

TT-POIS POIS

Figure 9. Experimental results (mean and 95% confidence intervals of 15 runs) on the Corridor Sparse domain with different values of
γ and Λ. More specifically, the first row is obtained with Λ = 2500 and the second one with Λ = 1300. The first column is obtained
training the algorithm with γ = 0.999, the second one with γ = 0.995, and the third one with γ = 0.99. The reported metric is the
average of the discounted return with the corresponding value of γ.

E.3. Policy Optimization Ablations

Figure 9 and 10 report results on the Corridor domain presented in Section E.1. More specifically, Figure 9 reports the result
for the sparse reward setting, while Figure 10 focuses on the dense reward one. Each plot shows the mean and the 95%
confidence intervals over 15 runs of the average discounted return. To conduct exhaustive experimentation, we varied the
values of γ and Λ.

Some observations are in order. First of all, from Figure 9, TT-POIS shows a robust behavior even in this sparse reward
scenario. Notice that, at the beginning of the learning process, since the performance is close to 0, the agent rarely reaches
the goal (i.e., it sparsely receives positive feedback from the environment). Yet, TT-POIS still obtains the same learning
curves as POIS. Secondly, from Figure 10, we can appreciate a significant benefit of TT-POIS over POIS for the dense
reward setting, especially with small values of γ. This is consistent with what have been highlighted in Section 5. Finally,
Figure 12 and 11 report the undiscounted average return as a metric. The previous considerations extend to these results as
well.

37

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 0.5 1

·107

0

20

40

60

80

100

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
2
5
k
)

Corridor Dense γ = 0.999

0 0.5 1

·107

0

10

20

30

Corridor Dense γ = 0.995

0 0.5 1

·107

0

5

10

15

20

Corridor Dense γ = 0.99

0 0.5 1

·107

0

20

40

60

80

100

Num. of samples

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
1
5
k
)

0 0.5 1

·107

0

10

20

30

Num. of samples

0 0.5 1

·107

0

5

10

15

20

Num. of samples

TT-POIS POIS

Figure 10. Experimental results (mean and 95% confidence intervals of 15 runs) on the Corridor Dense domain with different values of γ
and Λ. More specifically, the first row is obtained with Λ = 25000 and the second one with Λ = 15000. The first column is obtained
training the algorithm with γ = 0.999, the second one with γ = 0.995, and the third one with γ = 0.99. The reported metric is the
average of the discounted return with the corresponding value of γ.

E.4. Additional Optimization Results: varying Λ and γ

In this Section, we provide additional experimental optimization results. More specifically, Figures 13, 14 and 15 reports
results for the Dam, Supply Chain and Reacher environments respectively (average return over 5 run with 95% confidence
intervals), while varying the value of Λ and γ. For the Dam domain we test the following combinations of Λ and γ:
γ ∈ {0.95, 0.995, 0.999} and Λ ∈ {4320, 8640}. For the Reacher domain, instead, we test γ ∈ {0.95, 0.995, 0.999} and
Λ ∈ {4000, 8000}. Finally, for the Supply Chain, we report γ ∈ {0.95, 0.97, 0.999} and Λ ∈ {2400, 3900}.
As one can see, what has been highlighted in Section 5 replicates consistently.

38

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 1 2

·105

0

20

40

60

80

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
2
.5
k
)

Corridor Sparse γ = 0.999

0 1 2

·105

0

20

40

60

80

Corridor Sparse γ = 0.995

0 1 2

·105

0

20

40

60

80

Corridor Sparse γ = 0.99

0 1 2

·105

0

20

40

60

80

Num. of samples

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
1
.3
k
)

0 1 2

·105

0

20

40

60

80

Num. of samples

0 1 2

·105

0

20

40

60

80

Num. of samples

TT-POIS POIS

Figure 11. Experimental results (mean and 95% confidence intervals of 15 runs) on the Corridor Sparse domain with different values of γ
and Λ. More specifically, the first row is obtained with Λ = 2500 and the second one with Λ = 1300. The first column is obtained with
γ = 0.999, the second one with γ = 0.97, and the third one with γ = 0.99. The reported metric is the average of undiscounted return
(i.e., γ = 1.)

39

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 0.5 1

·107

0

50

100

150

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
2
5
k
)

Corridor Dense γ = 0.999

0 0.5 1

·107

0

50

100

150

Corridor Dense γ = 0.995

0 0.5 1

·107

0

50

100

150

Corridor Dense γ = 0.99

0 0.5 1

·107

0

50

100

150

Num. of samples

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
1
5
k
)

0 0.5 1

·107

0

50

100

150

Num. of samples

0 0.5 1

·107

0

50

100

150

Num. of samples

TT-POIS POIS

Figure 12. Experimental results (mean and 95% confidence intervals of 15 runs) on the Corridor Dense domain with different values of γ
and Λ. More specifically, the first row is obtained with Λ = 25000 and the second one with Λ = 15000. The first column is obtained
with γ = 0.999, the second one with γ = 0.97, and the third one with γ = 0.99. The reported metric is the average of undiscounted
return (i.e., γ = 1.)

40

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 2 4 6 8

·106

−150

−100

−50

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
8
.6
k
)

Dam γ = 0.999

0 2 4 6 8

·106

−120

−100

−80

−60

−40

Dam γ = 0.995

0 2 4 6 8

·106

−15

−10

−5

0

Dam γ = 0.95

0 2 4 6 8

·106

−150

−100

−50

Num. of samples

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
4
.3
k
)

0 2 4 6 8

·106

−120

−100

−80

−60

−40

Num. of samples

0 2 4 6 8

·106

−15

−10

−5

0

Num. of samples

TT-POIS POIS

Figure 13. Experimental results (mean and 95% confidence intervals of 5 runs) on the Dam domain with different values of γ and Λ.
More specifically, the first row is obtained with Λ = 8640 and the second one with Λ = 4320. The first column is obtained training the
algorithm with γ = 0.999, the second one with γ = 0.995, and the third one with γ = 0.95. The reported metric is the average of the
discounted return with the corresponding value of γ.

41

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 0.5 1 1.5

·106

0

200

400

600

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
3
.9
k
)

Supply Chain γ = 0.999

0 0.5 1 1.5

·106

200

300

400

Supply Chain γ = 0.995

0 0.5 1 1.5

·106

200

250

300

350

Supply Chain γ = 0.95

0 0.5 1 1.5

·106

0

200

400

600

Num. of samples

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
2
.4
k
)

0 0.5 1 1.5

·106

200

300

400

Num. of samples

0 0.5 1 1.5

·106

200

250

300

350

Num. of samples

TT-POIS POIS

Figure 14. Experimental results (mean and 95% confidence intervals of 5 runs) on the Supply Chain domain with different values of γ and
Λ. More specifically, the first row is obtained with Λ = 3900 and the second one with Λ = 2400. The first column is obtained training
the algorithm with γ = 0.999, the second one with γ = 0.97, and the third one with γ = 0.95. The reported metric is the average of the
discounted return with the corresponding value of γ.

42

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 2 4 6 8

·106

−400

−300

−200

−100

0

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
8
k
)

Reacher γ = 0.999

0 2 4 6 8

·106

−300

−200

−100

0

Reacher γ = 0.995

0 2 4 6 8

·106

−30

−20

−10

0

Reacher γ = 0.95

0 2 4 6 8

·106

−400

−300

−200

−100

0

Num. of samples

A
v
g
.

D
is

c
.

R
e
tu

rn
(Λ

=
4
k
)

0 2 4 6 8

·106

−300

−200

−100

0

Num. of samples

0 2 4 6 8

·106

−30

−20

−10

0

Num. of samples

TT-POIS POIS

Figure 15. Experimental results (mean and 95% confidence intervals of 5 runs) on the Reacher domain with different values of γ and Λ.
More specifically, the first row is obtained with Λ = 8000 and the second one with Λ = 4000. The first column is obtained training the
algorithm with γ = 0.999, the second one with γ = 0.995, and the third one with γ = 0.95. The reported metric is the average of the
discounted return with the corresponding value of γ.

43

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 2 4 6 8

·106

−200

−150

−100

−50

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
8
.6
k
)

Dam γ = 0.999

0 2 4 6 8

·106

−200

−150

−100

−50

Dam γ = 0.995

0 2 4 6 8

·106

−200

−150

−100

−50

Dam γ = 0.95

0 2 4 6 8

·106

−200

−150

−100

−50

Num. of samples

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
4
.3
k
)

0 2 4 6 8

·106

−200

−150

−100

−50

Num. of samples

0 2 4 6 8

·106

−200

−150

−100

−50

Num. of samples

TT-POIS POIS

Figure 16. Experimental results (mean and 95% confidence intervals of 5 runs) on the Dam domain with different values of γ and Λ. More
specifically, the first row is obtained with Λ = 8640 and the second one with Λ = 4320. The first column is obtained with γ = 0.999,
the second one with γ = 0.995, and the third one with γ = 0.95. The reported metric is the average of undiscounted return (i.e., γ = 1.)

E.5. Additional Optimization Results: undiscounted performance

In this Section, we report the undiscounted average return for the experiments of Section E.4. More specifically, Figures 16,
19 and 18 reports results for the Dam, Reacher and Supply Chain environments respectively (average undiscounted return
over 5 run with 95% confidence intervals).

As we can appreciate, in these scenarios, the advantages of TT-POIS over POIS replicates even for the undiscounted return
metric.

44

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 2 4 6 8

·106

−400

−300

−200

−100

0

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
8
k
)

Reacher γ = 0.999

0 2 4 6 8

·106

−400

−300

−200

−100

0

Reacher γ = 0.995

0 2 4 6 8

·106

−400

−300

−200

−100

0

Reacher γ = 0.95

0 2 4 6 8

·106

−400

−300

−200

−100

0

Num. of samples

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
4
k
)

0 2 4 6 8

·106

−400

−300

−200

−100

0

Num. of samples

0 2 4 6 8

·106

−400

−300

−200

−100

0

Num. of samples

TT-POIS POIS

Figure 17. Experimental results (mean and 95% confidence intervals of 5 runs) on the Reacher domain with different values of γ and
Λ. More specifically, the first row is obtained with Λ = 8000 and the second one with Λ = 4000. The first column is obtained with
γ = 0.999, the second one with γ = 0.995, and the third one with γ = 0.95. The reported metric is the average of undiscounted return
(i.e., γ = 1.)

45

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 0.5 1 1.5

·106

0

200

400

600

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
3
.9
k
)

Supply Chain γ = 0.999

0 0.5 1 1.5

·106

0

200

400

600

Supply Chain γ = 0.995

0 0.5 1 1.5

·106

0

200

400

600

Supply Chain γ = 0.95

0 0.5 1 1.5

·106

0

200

400

600

Num. of samples

A
v
g
.

U
n
d
is

c
.

R
e
tu

rn
(Λ

=
2
.4
k
)

0 0.5 1 1.5

·106

0

200

400

600

Num. of samples

0 0.5 1 1.5

·106

0

200

400

600

Num. of samples

TT-POIS POIS

Figure 18. Experimental results (mean and 95% confidence intervals of 5 runs) on the Supply Chain domain with different values of γ
and Λ. More specifically, the first row is obtained with Λ = 3900 and the second one with Λ = 2400. The first column is obtained with
γ = 0.999, the second one with γ = 0.97, and the third one with γ = 0.95. The reported metric is the average of undiscounted return
(i.e., γ = 1.)

46

Truncating Trajectories in Monte Carlo Reinforcement Learning

0 2 4 6 8

·106

−100

−50

0

Num. of samples

A
v
g
.

D
is

c
.

R
e
tu

rn

(γ, T,Λ) = (0.99, 100, 8k)

0 2 4 6 8

·106

−200

−100

0

Num. of samples

(γ, T,Λ) = (0.995, 200, 8k)

0 1 2 3

·107

−400

−200

0

Num. of samples

A
v
g
.

D
is

c
.

R
e
tu

rn

(γ, T,Λ) = (0.9975, 400, 16k)

0 0.5 1 1.5

·108

−1,500

−1,000

−500

Num. of samples

(γ, T,Λ) = (0.999, 1000, 50k)

TT-POIS POIS

Figure 19. Experimental results (mean and 95% confidence intervals of 5 runs) on the Reacher domain varying both γ and T .

E.6. Additional Optimization Results: varying T and γ jointly

In this Section, we provide additional optimization results on the Reacher domain where we vary T and γ jointly. More
specifically, we compare POIS and TT-POIS on the Reacher with (T = 100, γ = 0.99), (T = 200, γ = 0.995),
(T = 400, γ = 0.9975), and (T = 1000, γ = 0.999). Notice that γT is roughly constant across these combinations.
Furthermore, we remark for larger values of T , the optimization process is clearly significantly harder, thus requiring
more training iterations and larger batch sizes to get meaningful learning results. For these reasons, for T = 400 we used
Λ = 16k, while for T = 1000, we used Λ = 50k, while for T = 100 and T = 200, we used Λ = 8k as for Figure 2.

47

Truncating Trajectories in Monte Carlo Reinforcement Learning

E.7. Hyper-parameters and other details

We have run the experiments using 88 Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20GHz cpus and 94 GB of RAM.

We now provide details on the hyper-parameters that were used to generate the results. Table 1, 2, 3, 4 and 5 provides
hyper-parameters for POIS and TT-POIS on the different domains. For all values of γ, we used the same hyper-parameters.
The hyper-parameters on the number of offline iterations refers to Line 4 of Algorithm 1.

Table 1. Corridor Sparse Rewards Hyper-parameters for POIS and TT-POIS
Hyper-parameter Λ = 2500 Λ = 1300

Neural Network Size [64, 32] [64, 32]
Weight Initialization Normc Normc
Activation Function Xavier Xavier
Confidence δ 0.9 0.9
Number of offline iterations 10 10
Importance Weight Clipping 100 100
RMIN-MAX Not applied Not applied

Table 2. Corridor Dense Rewards Hyper-parameters for POIS and TT-POIS
Hyper-parameter Λ = 25000 Λ = 15000

Neural Network Size [64, 32] [64, 32]
Weight Initialization Normc Normc
Activation Function Xaiver Xavier
Confidence δ 0.7 0.7
Number of offline iterations 10 10
Importance Weight Clipping 100 100
RMIN-MAX Not applied Not applied

Table 3. Dam Hyper-parameters for POIS and TT-POIS
Hyper-parameter Λ = 8600 Λ = 4320

Neural Network Size [64, 32] [64, 32]
Weight Initialization Normc Normc
Activation Function Tanh Tanh
Confidence δ 0.7 0.6
Number of offline iterations 10 10
Importance Weight Clipping Not applied Not applied
RMIN-MAX Not applied Not applied

48

Truncating Trajectories in Monte Carlo Reinforcement Learning

Table 4. Supply Chain Hyper-parameters for POIS and TT-POIS
Hyper-parameter Λ = 3900 Λ = 2400

Neural Network Size [100, 50, 25] [100, 50, 25]
Weight Initialization Normc Normc
Activation Function Tanh Tanh
Confidence δ 0.005 0.005
Number of offline iterations 20 20
Importance Weight Clipping 100 100
RMIN-MAX Not applied Not applied

Table 5. Reacher Hyper-parameters for POIS and TT-POIS
Hyper-parameter Λ = 8000 Λ = 4000

Neural Network Size [100, 50, 25] [100, 50, 25]
Weight Initialization Normc Normc
Activation Function Tanh Tanh
Confidence δ 0.8 0.8
Number of offline iterations 20 20
Importance Weight Clipping Not applied Not applied
RMIN-MAX 5 5

49

