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ABSTRACT

Modern LLM pre-training consumes vast amounts of both compute resources and
training data, making the scaling behavior, or scaling laws, of different models a
key distinguishing factor. Discrete diffusion language models (DLMs) have been
proposed as an alternative to autoregressive language models (ALMs). However,
their scaling behavior has not yet been fully explored, with prior work suggesting
that they require more data and compute to match the performance of ALMs.
We study the scaling behavior of DLMs on different noise types by smoothly in-
terpolating between masked and uniform diffusion while paying close attention
to crucial hyperparameters such as batch size and learning rate. Our experiments
show that the scaling behavior of DLMs strongly depends on the noise type and
is considerably different from ALMs. Surprisingly, we find that uniform diffusion
requires more parameters and less data for compute-efficient training compared
to masked diffusion. Moreover, uniform diffusion models scale more favorably in
both compute and data than their masked counterparts, making them a promising
option in both compute- and data-bound training environments. In the process of
deriving the scaling laws, we reformulate the discrete diffusion ELBO in terms of
signal-to-noise ratio, closing the gap to continuous diffusion theory and simpli-
fying both theory and implementation. We also find that DLMs have an optimal
batch size with no signs of saturation, which is in contrast to ALMs, which typi-
cally show diminishing returns from scaling batches beyond 106 tokens. Training
code and models are open-sourced: upon acceptance
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Figure 1: We propose five new scaling laws for discrete diffusion language models, finding that
uniform diffusion scales most favorably in both compute- and data-bound settings.

1 INTRODUCTION

Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive lan-
guage models (ALMs), promising to address some fundamental limitations plaguing ALMs such as
the inability to generate multiple tokens in parallel as well as the inability to revise previously gen-
erated tokens (Li et al., 2025). While DLMs’ performance at small scales lags behind autoregressive
models, they have the potential to solve both of these limitations by decomposing the generative
process into a sequence of denoising steps where the entire generated sequence of N tokens is grad-
ually refined, starting at pure noise and transforming it to pure signal over the course of T denoising
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steps. The freedom to choose T independently of N enables the generation of multiple tokens in
each step, while also retaining the ability to update every token at every step.

Within DLMs, masked diffusion models (MDMs) have emerged as the predominant DLM archetype
next to alternative diffusion processes such as uniform diffusion (Austin et al., 2021) or hybrid-noise
diffusion (von Rütte et al., 2025). MDMs work by gradually masking tokens and training a model to
undo this degradation process by filling in the missing tokens. In contrast, uniform diffusion replaces
tokens with random other tokens from the vocabulary until, eventually, every token in the sequence
is completely random. Hybrid diffusion models lie on the spectrum between masking and uniform
diffusion, utilizing some combination of both noise types. MDMs have gained popularity due to
their superior performance at small scales, but face significant challenges despite their dominance.
Prior work has suggested that MDMs are less efficient to train, requiring 16x more compute in a
compute-optimal setting to match the training loss of ALMs (Nie et al., 2025). Additionally, like
ALMs, MDMs suffer from the inability to revise previously generated tokens. This is due to the fact
that every token experiences exactly one state transition (between its masked and unmasked state),
hence prohibiting any transitions between two unmasked states. This has prompted the realization
that alternative diffusion models were, perhaps, abandoned prematurely.

The performance gap (measured in perplexity, or training loss) between autoregressive, masked
diffusion, and uniform diffusion models can be explained, at least in part, through the lens of task
difficulty: MDMs are trained to generate the data in any random order, which includes, but is not
limited to, generating the data in its natural, autoregressive order and is therefore a strictly more
difficult problem (Kim et al., 2025). Similarly, uniform diffusion can be understood as a strictly
more difficult version of masked diffusion where the model has to predict which tokens are noisy
and which are noise-free in addition to subsequently imputing the noisy tokens. Put differently,
going from autoregression to masking to uniform diffusion imposes progressively less structure on
the generative process and therefore provides less inductive bias, suggesting that a more expressive
model is required to learn the task effectively.Crucially, the scaling behavior of uniform and hybrid-
noise DLMs remains an open question, with existing work being limited to small-scale ablations.
Furthermore, prior work on scaling MDMs (Nie et al., 2025) makes some potentially undesirable
design choices, such as assuming that the training loss can approach zero given infinite compute as
well as fixing the learning rate and batch size to a constant value, which casts doubt on the optimality
of the reported scaling laws.

In this work, we refine the strategy from Nie et al. (2025) by putting additional care on tuning crucial
hyperparameters and modeling the loss surface as a power law of model size and training tokens.
This way, we determine and compare the scaling behavior of masked, uniform, and hybrid-noise
diffusion models. Our contributions are three-fold:

(1) Diffusion process. To aid with scaling across different noise types, we propose a new family
of hybrid diffusion that allows us to easily and smoothly interpolate between masked and uniform
diffusion by defining a transition point from masking to uniform diffusion depending on the signal-
to-noise-ratio (SNR). We argue that defining the diffusion process through SNR rather than time
is more natural and more principled, having become the standard for continuous-state diffusion
(Kingma et al., 2021; Kingma & Gao, 2023; Karras et al., 2024). To derive the ELBO of the pro-
posed diffusion process, we frame it as an instance of generalized interpolating discrete diffusion
(GIDD) (von Rütte et al., 2025) and reparameterize the GIDD ELBO in terms of SNR. This repa-
rameterization simplifies both theory and implementation, while also closing the gap to continuous-
state diffusion theory and showing that discrete diffusion, like continuous diffusion, is invariant to
the noise schedule (Kingma et al., 2021).

(2) Methodology. We then systematically analyze the scaling behavior across all noise types (mask-
ing, uniform, and hybrid), model sizes, training durations, and batch sizes. To aid with scaling, we
utilize CompleteP (Dey et al., 2025) for stable learning rate transfer across model width and depth.
Instead of fixing the batch size to a constant value, as is often done in prior work on scaling laws,
we find it to be a crucial hyperparameter with an optimal value depending on the training token
budget. Thus, it requires careful tuning at each scale, leading us to estimate the scaling laws without
learning rate annealing in order to cope with this additional scaling dimension. This is motivated by
the recent trend of treating pre-training and annealing as two distinct training stages conducted on
potentially different datasets (Project Apertus, 2025; Allal et al., 2025), as well as our own ablations
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showing that training with and without annealing yields similar optima and a similar loss, up to
some constant factor.

(3) Scaling behavior. The discovered scaling laws paint a picture that is exceedingly favorable
for uniform diffusion: Not only does its compute-optimal loss scale most favorably with increased
training compute, it also requires fewer training tokens per parameter compared to both masked
diffusion and ALMs, making it more data efficient at compute-optimality. Furthermore, the scaling
behavior across noise types changes smoothly, with MDMs having the most similar scaling coeffi-
cients to ALMs, albeit slightly more parameter-heavy. Beyond pure masking, increasing levels of
uniform noise scale progressively better. This makes uniform diffusion a potential competitor to
the predominant autoregressive paradigm, with the potential to even outperform ALMs at very large
scales. Beyond the loss surface, we also find that the optimal values for batch size and learning
rate are remarkably predictable, with the optimal batch size being a function of dataset size, optimal
learning rate being a function of batch size and step count, and both being independent of model
size and noise type.

The paper is structured accordingly. We will first introduce discrete diffusion, rederive the diffusion
ELBO in terms of SNR, and introduce the diffusion process to be used in subsequent experiments.
We then outline our methodology for estimating scaling laws, motivating and justifying our design
choices. Finally, we present our experimental results, providing an overview of the model architec-
ture and training procedure and analyzing the observed scaling behavior. An overview of related
work is provided in App. B.

2 DISCRETE DIFFUSION

Diffusion models (Sohl-Dickstein et al., 2015) decompose the generative distribution into a Markov
chain of progressively more noisy versions of the data, and train a neural network to reverse this
degradation process. In its most general form, this Markov chain is given by an initial state z0 = x
which represents the data, a state transition distribution qt|s(zt|zs) that defines how the state evolves
between times s and t with 0 ≤ s < t ≤ 1, and finally a prior distribution pprior(z1) that represents
the stationary distribution of qt|s as t approaches 1 and is easy to sample from. For discrete diffusion
models (Austin et al., 2021; Campbell et al., 2022), we consider the special case where states exist in
a discrete space Z and the state-transition distribution can therefore be simply described by a vector
qt|s(zs) ∈ ∆|Z|−1 where ∆k denotes the k-simplex and |Z| is the cardinality of Z .

2.1 GENERALIZED INTERPOLATING DISCRETE DIFFUSION

Generalized interpolating discrete diffusion (GIDD) (von Rütte et al., 2025) provides a unified per-
spective on many existing discrete diffusion processes such as masked or uniform diffusion by ob-
taining a closed-form evidence lower-bound (ELBO) for arbitrary, time-varying mixing distributions
πt ∈ ∆|Z|−1. The marginal and conditional state-transition distributions of GIDD models are

qt(x) = αtx+ βtπt (1)
qt|s(zs) = αt|szs + βt|sπt|s, (2)

with βt = 1− αt, αt|s = αt/αs, and βt|sπt|s = βtπt − αt|sβsπs. Under the condition that αt and
πt are differentiable in time, the diffusion negative ELBO (NELBO) of GIDD is given by

− log pθ(x) ≤ Et∼U(0,1),z∼qt(x) [wt(x)z{DKL(qt(x)∥qt(xθ)) +DIS(qt(x)z∥qt(xθ)z)}] + C,
(3)

with DIS(p∥q) = p/q − log p/q − 1 denoting the (point-wise) Itakura-Saito divergence and wt(x)
is the weighting vector

wt(x) = qt(x)
−1

(
βtπ

′
t −

α′
t

αt
πt

)
. (4)

We adopt the framework of von Rütte et al. (2025) as it allows us to train discrete diffusion models
with different noising properties within a shared framework, reducing precisely to specialized vari-
ants in the literature under an appropriate mixing schedule. However, we improve this framework
by showing how it can be reformulated in terms of signal-to-noise ratio, obtaining a simpler, more
flexible likelihood bound and closing the gap to continuous-state diffusion theory.
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2.2 REFRAMING DISCRETE DIFFUSION IN TERMS OF SNR

It is well-known that continuous-state diffusion models are invariant to the noise schedule (Kingma
et al., 2021), with many approaches relying on this fact to accelerate training via adaptive noise
schedules (Kingma & Gao, 2023; Karras et al., 2024; Dieleman, 2024). This stems from the insight
that the notion of time in diffusion models is spurious and serves only as a proxy for the signal-
to-noise ratio (SNR), and that SNR is sufficient and, arguably, a more natural way to describe the
forward and backward diffusion process. In this section, we show that this invariance continues to
hold for discrete diffusion models through the same proof technique as used by Kingma et al. (2021).

To begin, we define the SNR and log-SNR in terms of the mixing rate (or noise schedule) αt as this
is the quantity that determines the proportion of the data distribution (or signal) that is preserved at
any given time t. Let

SNR =
α

1− α
and λ = log SNR = log

α

1− α
. (5)

Notably, this results in α being a sigmoid function of λ, with

α = σ(λ) =
1

1 + e−λ
. (6)

We will then perform a change-of-variable on the GIDD ELBO, changing the differential from dt to
dλ. Noting the relation between α and λ, we can rewrite the time-derivative of α as

α′
t =

dα

dt
=

dα

dλ

dλ

dt
=

d

dλ
σ(λ) · dλ

dt
= σ(λ)σ(−λ)

dλ

dt
(7)

For wt(x), we then get

wt(x) = qt(x)
−1

(
βtπ

′
t −

α′
t

αt
πt

)
= qt(x)

−1

(
(1− σ(λ))

dπλ

dλ

dλ

dt
− σ(λ)σ(−λ)

σ(λ)

dλ

dt
πλ

)
= qt(x)

−1σ(−λ)
dλ

dt
(π′

λ − πλ) . (8)

Plugging this into Eq. 3, and abbreviating Ez(p, q) := DKL(p∥q) +DIS(pz∥qz) yields

− log p(x) ≤ Et,z [wt(x)zEz(qt(x), qt(xθ))] + C (9)

=

∫ 1

0

dt
dλ

dt

∑
z

σ(−λ)(π′
λ − πλ)zEz(qt(x), qt(xθ)) + C (10)

=

∫ λmax

λmin

dλ
∑
z

σ(−λ)(πλ − π′
λ)zEz(qλ(x), qλ(xθ)) + C. (11)

This reveals that the ELBO is invariant not only to the SNR distribution induced by p(λ) = −dt/dλ
but also to the forward process marginals qλ(x), and that their purpose is to approximate this integral
through importance sampling. Accordingly, we can convert this back to an expectation like

− log p(x) ≤ Eλ,z

[
wλ(x)z
p(λ)

{DKL(qλ(x)∥qλ(xθ)) +DIS(qλ(x)z∥qλ(xθ)z)}
]
+ C, (12)

with λ ∼ p(λ), z ∼ qλ(x), and wλ(x)z =
σ(−λ)(πλ−π′

λ)z
qλ(x)z

denoting the updated weighting term.

2.3 A UNIVERSAL HYBRID MIXING DISTRIBUTION

For our scaling experiments, we are looking for a mixing distribution πλ that allows smoothly
transitioning from masked to uniform diffusion, covering a range of hybrid mixtures in between.
The basic idea is to interpolate between the pure masking and pure uniform noise based on the
current log-SNR λ, thereby controlling how much masking and how much random perturbation
happens proportionally at any point of the noising process. We define

πλ = σ(λ+ b)u+ σ(−λ+ b)m, (13)
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with σ denoting the sigmoid function, u = 1
N−1 (1 − em) and m = em denoting the uniform

and masking probability vector respectively, and b being a hyperparameter that controls the transi-
tion point between masking and uniform noise. Note that this mixing distribution approaches pure
masking as b → −∞ and pure uniform noise as b → ∞, with varying masking-to-uniform mixtures
in between. The reparameterized ELBO enables trivial implementation of this mixing distribution,
only requiring computation of the derivative of π′

λ, which is given by π′
λ = σ′(λ+ b)(u−m).

3 ESTIMATING SCALING LAWS

Scaling laws have become an important ingredient of large-scale neural network training, particu-
larly in the context of training LLMs. Due to the vast costs associated with large-scale training runs,
key decisions are based on forecasts obtained through extrapolating the performance of smaller runs
to the desired, bigger scale. Prior work on the scaling of MDMs (Nie et al., 2025) has made some
assumptions that we would like to revisit. For example, the learning rate and batch size are fixed
to constant values across all experiments, but this may not be optimal for different model sizes and
token budgets (Bergsma et al., 2025). Additionally, the reported scaling law is the result of a power
law fit without constant offset, thereby implicitly assuming that the ideal training loss is zero and
can be reached given infinite compute, which is well-known not to be the case. These limitations
prompt us to rederive the scaling from scratch, dropping any assumptions on the optimal batch size
and learning rate, and applying a more standard power law fit. While our recipe largely follows the
methodology by (Hoffmann et al., 2022), which is well-established and has been widely adopted for
estimating scaling laws (Touvron et al., 2023; Bi et al., 2024; Shuai et al., 2024), there are some key
differences.

Maximal Update Parameterization To aid with the scaling process, we adopt CompleteP (Dey
et al., 2025), a variant of µP (Yang et al., 2022) that parameterizes the model in a way such that opti-
mal learning rates transfer both across width and depth. Unlike the original work, we do not employ
a base width to keep learning dynamics equivalent to some reference model and instead find the opti-
mal values for weight initialization variance and base learning rate through a hyperparameter sweep
on a 25M and 50M parameter model. This results in different optimal values for width-dependent
parameters (bulk parameters) such as weight matrices compared to non-width-dependent parame-
ters such as layer-normalization and bias parameters (auxiliary parameters), with bulk parameters
requiring a larger initialization variance and learning rate. We find optimal values of σbase = 0.4,
σaux = 0.02 and ηbase = 0.3, ηaux = 0.02 · ηbase for initialization variances and learning rates
respectively (at a batch size of 64). These values transfer remarkably well in our experiments, with
only the base learning rate ηbase requiring adjustments depending on the batch size.

Learning Rate Annealing. While adopting CompleteP enables learning rate transfer across model
scales, the same learning rate is not optimal for different batch sizes and training horizons, implying
that it is necessary to sweep the learning rate for each model and batch size in order to find the
compute-optimal Pareto frontier. To cope with the computational demands of sweeping the batch
size in addition to model and data size, we decide to omit learning rate annealing and analyze the
scaling behavior without it, which allows capturing all possible training horizons in a single run
per model and batch size. This decision is justified twofold: First, modern large-scale training of-
ten treats the annealing phase as a distinct phase from pre-training where the data mixture is often
adapted to more closely resemble the test distribution by injecting more high-quality data geared to-
wards the desired downstream tasks (Project Apertus, 2025; Allal et al., 2025). Second, we conduct
small-scale ablations to study the effect of omitting annealing, finding that the optimal hyperpa-
rameters are preserved and that the performance difference is approximately a constant factor (see
Sec. 4.2).

Optimal Batch Size. Sweeping the learning rate across batch and model sizes reveals the clear
existence of a compute- and data-optimal batch size that scales almost linearly in the number of
training tokens (Fig. 3). Similar findings have been reported for ALMs when training below the
critical batch size (Hu et al., 2024; Shuai et al., 2024; Bergsma et al., 2025). The critical batch size
refers to the phenomenon where scaling the batch size past a certain critical point yields diminishing
returns and becomes compute-inefficient. It is worth noting that we find no dependence of the
optimal batch size on the target loss, a claim that has been raised for the critical batch size of ALMs

5
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(Zhang et al., 2024) and also more generally (McCandlish et al., 2018). As our experiments show
no signs of saturation even at batch sizes at 106 tokens, this suggests that the critical batch size of
DLMs lies well above that of ALMs, which has been reported to saturate around 106 tokens (Shuai
et al., 2024; Zhang et al., 2024). Another hyperparameter that is known to have optimal values
depending on the batch size is Adam’s β2 parameter. However, also for this parameter we find little
benefit in deviating from our default value of 0.99: Neither do we observe benefits from using larger
values for small batch sizes1 nor from using smaller values at larger batch sizes.2 We do decrease
β2 to 0.98 starting at batch sizes of 256 as we found this to slightly improve stability without any
noticeable performance degradation.

4 EXPERIMENTS AND RESULTS

4.1 MODEL ARCHITECTURE AND TRAINING

Architecture. Our model architecture follows a standard Transformer (Vaswani et al., 2017) with
some key modifications. As described in Section 3, we implement CompleteP (Dey et al., 2025)
for optimal learning rate transfer across width and depth. To ensure stable training, we add RM-
SNorm (Zhang & Sennrich, 2019) layers without bias before each attention and MLP block follow-
ing LLaMA (Touvron et al., 2023). In the same spirit, we employ both QK-norm (Naseer et al.,
2021; Dehghani et al., 2023) and attention logit soft-capping (Gemma Team, 2024). Finally, we add
attention sinks in the form of attention biases (Sun et al., 2024) to further stabilize training and to
prevent outlier features that can make quantization more challenging (Sun et al., 2024; He et al.,
2024).

Data. We use Nemotron-CC (Su et al., 2024) without quality filtering as a representative dataset
of internet-scale pre-training. Since it is known that a larger vocabulary facilitates better scaling
(Takase et al., 2024; Huang et al., 2025) and to ensure efficient tokenization, we train a BPE tokenizer
(Gage, 1994; Sennrich et al., 2015) with a vocabulary size of 217 (131,072) tokens on a 256 GB
subset of the data. The trained tokenizer is released with the model.

Diffusion process. We use the mixing distribution proposed in Section 2.3 with shift b ∈
{−1000,−2, 0, 2, 1000}, resulting in pure masking and pure uniform noise for b = −1000 and
b = 1000 respectively, and hybrid noise with transition points at t ∈ {0.12, 0.5, 0.88}, which we
refer to as low-uniform, balanced, and high-uniform noise respectively. To balance training stability
and ELBO tightness, we restrict the log-SNR to λ ∈ [−9, 9].

We design the diffusion process by aiming to maximize flexibility of the resulting model at inference
time, supporting conditional prompt completion, advanced sampling algorithms, as well as flexible
length generation. For conditional prompt completion, we select 20% of samples and leave the first
[N · arccos(r)], r ∼ U(0, 1) tokens noise-free. Attention from prompt queries to completion keys is
masked in order to enable KV-caching of the prompt during inference. To support both isotropic and
anisotropic denoising, we implement diffusion forcing (Chen et al., 2024) by sampling independent
per-token noise levels for 50% of samples. Finally, we augment the context with a random fraction
f ∼ U(0, 0.2) of empty tokens following Wu et al. (2025) to add some flexibility to the length of
generated samples.

Optimization. Instead of directly minimizing the ELBO, we use the unweighted ELBO (Eq. 12
with p(λ) := 1) as a surrogate loss, as this has been found to give better convergence for both hybrid
and masked diffusion models (von Rütte et al., 2025; Sahoo et al., 2025). Following Hafner et al.
(2023), we use LaProp (Ziyin et al., 2020) over Adam for its improved stability on a wider range
of β2 and ϵ values. The learning rate is warmed up over the first 2000 steps of training and held
constant, with most experiments not including a cooldown phase. For the experiments that do have
a cooldown phase, we anneal the learning rate to 0 over the last 20% of training following the WSD
schedule (Hu et al., 2024; Hägele et al., 2024).

1This finding is particular to half-precision training in bfloat16, as we did observe slight benefits from
increasing β2 for full-precision training at low batch sizes.

2This improved consistency may be a result of using the LaProp (Ziyin et al., 2020) variant of Adam, or due
to the CompleteP (Dey et al., 2025) parameterization, although we do not investigate this further.
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Figure 2: Comparing optimal hyperparameters (a, b) and different training horizons (c) both without
and with 20% learning rate cooldown reveals that learning rate annealing does not affect optimal
hyperparameter values and brings a roughly constant-factor improvement across the board.

109 1010 1011

Training tokens (D)

105

106

107

Op
tim

al
 b

at
ch

 si
ze

 (B
* )

L8-D512
L12-D768
L16-D1024
masked
low-uniform
balanced
high-uniform
uniform

trend: B * = 10 2.442 D0.8179 (R2 = 0.965)

88 16 32 64 128 256 512 1024 2048
Batch size

100

Op
tim

al
 L

R 
(

* )
trend: * = 0.078 B0.3733 (R2 = 0.867)

Figure 3: (left) The optimal batch size of discrete diffusion model scales as a power law of training
tokens rather than training FLOPs or model size and has a scaling exponent of ∼ 0.8. (right) The
optimal learning rate with fixed step count (here: 50k steps) scales as a power law of batch size with
an exponent of ∼0.37, which is notably less than the often cited heuristic η∗ ∝ B1/2.

4.2 ABLATING THE EFFECT OF LEARNING RATE ANNEALING

For the sake of reducing the computational burden of scaling law estimation, we use a warmup-
stable learning rate schedule without annealing, as outlined in Section 3. While we argue that this
is a principled choice due to modern pre-training recipes spending most of the steps in the constant-
LR regime and often treating the annealing as a separate phase (Project Apertus, 2025; Kimi Team,
2025; Allal et al., 2025), we empirically investigate the implications of this choice on a small-scale.
Specifically, we investigate two settings: First, we fix the token budget while varying the batch
size, sweeping the learning rate for each batch size both with and without annealing (Fig. 2; a, b).
This reveals that both learning rate and batch size have stable optima that are largely unaffected
by annealing, which only shifts the final loss by a constant factor. Second, we investigate how the
annealed performance evolves over the course of a single training run, again finding that the shape
of the annealed loss closely matches the unannealed trajectory (Fig. 2; c). We therefore conclude
that the chosen simplification of omitting annealing from the scaling law estimation is valid, albeit
that the projected loss will be higher by a constant factor. While these experiments are conducted on
the balanced noise setting, we do not expect the conclusions to change depending on the noise type.

4.3 RELATION BETWEEN BATCH SIZE AND STEP COUNT

While the optimal batch size depends solely on the amount of training tokens, we additionally find
that there is a tight relationship between batch size and training steps on ISO-loss curves. Specif-
ically, we find that points with step count S, batch size B, optimal learning rate and the same
observed loss L closely follow the relation([

S

Smin

]α
− 1

)([
B

Bmin

]α
− 1

)
= 1, (14)

which describes a hyperbola with asymptotes at Smin and Bmin as well as a “stiffness” term α that
control how fast the asymptotes are approached. This has some surprising implications: Not only
does there appear to be a minimum step count and a minimum batch size required to reach a certain
target loss for a fixed model size, but there also exists a token-optimal batch size and step count.
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Noise type P ∗ ∝ CαP D∗ ∝ CαD L∗ ∝ C−αL L(P,D)

masked 0.554 0.446 0.139 2.22 + 43.8
P 0.252 + 634

D0.313

low-uniform 0.55 0.45 0.131 2.17 + 35.8
P 0.238 + 433

D0.291

balanced 0.539 0.461 0.129 2.17 + 36.8
P 0.239 + 365

D0.28

high-uniform 0.616 0.384 0.109 2.01 + 16.8
P 0.178 + 397

D0.285

uniform 0.654 0.346 0.0963 1.83 + 12
P 0.147 + 355

D0.278

MDM (Nie et al., 2025) 0.634† 0.366† 0.0615† -
AR (Nie et al., 2025) 0.644† 0.356† 0.0633† -
AR (Hoffmann et al., 2022) 0.452 0.548 0.154 1.69 + 406.4

P 0.34 + 410.7
D0.28

AR (Shuai et al., 2024) 0.464 0.536 0.153 1.48 + 314.4
P 0.331 + 460.5

D0.286

†Scaling coefficients are parsed from the provided plots as the original paper does not report them.

Table 1: We find that uniform noise has the best scaling behavior not only among diffusion mod-
els, but also in comparison to other scaling laws for autoregressive (AR) models on internet-scale
datasets. The scaling behavior reported by Nie et al. (2025) differs considerably, which is likely due
to the idealized assumption that the minimum achievable training loss is zero.

Optimizing the relation from Eq. 14 to minimize the token budget D = BS, we get optimal values
B∗ = 2

1
αBmin, S∗ = 2

1
αSmin, and D∗ = 4

1
αBminSmin. We find that α remains relatively constant

across target losses, typically ranging between 0.1 and 0.2, while Smin and Bmin appear to follow a
power law in the target loss, growing to 104.31 and 109.9 respectively as the target loss approaches
zero.3 An illustrated example is given in App. A.1. This is in stark contrast to the often cited notion
that small batches give better test accuracy (Keskar et al., 2016; Masters & Luschi, 2018; Smith
et al., 2020). The tension can be explained by the fact that the cited results are in the context of
better generalization in multi-epoch training due to gradient noise acting as a regularizer, whereas
we operate under a sub-epoch training assumption where overfitting is not a concern. Indeed, more
recent work corroborates the existence of optimal batch sizes as a function of training tokens in the
context of ALM pre-training (Hu et al., 2024; Shuai et al., 2024; Bergsma et al., 2025). We leave
the investigation of the dependence of this relation on the target loss and number of parameters to
future work.

4.4 SCALING LAWS AND COMPUTE-OPTIMAL FRONTIER

To derive the scaling laws for the proposed class of diffusion models, we train models of five differ-
ent sizes, ranging from 25M to 570M non-embedding parameters. For each model size, we sweep
the learning rate across seven different batch sizes ranging from 214 to 220 tokens at a sequence
length of 2048 tokens. We run smaller batch sizes for 105 optimizer steps, while reducing the num-
ber of steps to 5× 104 starting at a batch size of 256 sequences.

We find that both the optimal batch size and the optimal learning rate follow a very predictable
trend. The optimal batch size appears to depend primarily on the training horizon, with a remarkably
strong, almost linear fit in the total number of training tokens. Similarly, the optimal learning rate
follows a predictable trend in the batch size (Fig. 3). Recent work on scaling ALMs has reported
similar predictable trends for both batch size and learning rate (Bi et al., 2024; Bergsma et al., 2025).
Due to the predictability of the optimal learning rate, we sweep between only 2–3 different learning
rates around the known optimal values for each batch size. Across all five noise types the resulting
grid search spans 450 runs, of which 411 have completed as of the time of writing. See App. A.2
for details.

To determine compute-optimal settings for each model- and data-size pair, we select a set of target
losses (in terms of ELBO and not the surrogate loss) and scan the observed loss curves for the
minimum number of tokens required to achieve a given target loss across batch sizes and learning
rates, grouped by noise type and model size. For smoothing, we apply a locally linear fit around the
closest point to the target loss and determine the step count at the target loss based on the fit. This
traces a compute-optimal Pareto frontier for each group, to which we fit a power law in the number

3Of course, a loss of zero is not achievable, so it is likely that this power-law relation will break down as the
loss approaches its minimal value.
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Figure 4: (left) According to the estimated scaling laws, we expect that uniform diffusion will out-
perform masked diffusion starting around 3×1021 FLOPs. (right) Compute-optimal scaling config-
urations vary considerably between noise types, with uniform diffusion having the lowest token-per-
parameter ratio, making it the most data-efficient. Shaded regions represent 1σ-confidence intervals.

of non-embedding parameters P and the total number of training tokens D (Hoffmann et al., 2022):

L(P,D) = E +
A

Pα
+

B

Dβ
(15)

We fit the coefficients to our observation using least-squares regression in log-space, employing a
Huber loss for increased outlier robustness. From the fitted coefficients we then derive the compute-
optimal scaling coefficients for the number of parameters P ∗ and training tokens D∗ as well as the
best achievable loss L∗ as a function of training compute C in FLOPs (Tab. 1). As we observe the fit
to be rather brittle and the extrapolation to large compute budgets being sensitive to slight changes
in the scaling exponents, we estimate 1σ-confidence intervals using standard bootstrapping (Fig. 4).

Remarkably, we find a consistent trend in the scaling behavior of different noise types, with more
uniform noise scaling more favorably with increased compute, requiring more parameters and less
data to train compute-optimally. This is especially significant as the size of pre-training datasets is
beginning to saturate while compute is continuing to become more abundant. Moreover, given that
prior work has found comparable scaling behavior between autoregressive and masked diffusion
models (Nie et al., 2025), this suggests that uniform diffusion models have the potential to outscale
existing autoregressive training recipes. This finding is consistent with the notion that going from
autoregressive modeling to masked diffusion to uniform diffusion imposes progressively less struc-
ture on the generation process and therefore less inductive bias, allowing it to scale more effortlessly
with increased compute. Nevertheless, some limitations apply: When comparing scaling behavior
across different datasets, the scaling coefficients can change depending on the data composition (Bi
et al., 2024), thus making our numbers not directly comparable with those of Hoffmann et al. (2022)
and Shuai et al. (2024) due to the use of Nemotron-CC (Su et al., 2024).

5 CONCLUSION

We have presented a comprehensive study of scaling laws of discrete diffusion language models,
comparing different noise types ranging from masking to uniform noise and paying careful attention
to crucial hyperparameters such as learning rate and batch size. The discovered scaling laws paint
a favorable picture for both masked and uniform DLMs. We find comparable to slightly improved
scaling of masked diffusion compared to autoregressive models, and significantly better scaling for
uniform diffusion models. Remarkably, uniform diffusion models have better scaling coefficients
than autoregressive models both in terms of data and compute, making them a strong contender for
both data- and compute-bound scaling. This is consistent with the hypothesis that uniform diffusion
imposes less of an inductive bias on the generative process.

Our findings support the case for discrete diffusion language models (DLMs) as a viable alterna-
tive to autoregressive language models (ALMs), the prevalent paradigm. DLMs can resolve core
limitations of ALMs, enabling parallel generation for improved throughput, possessing the ability
to revise and self-correct previously generated tokens, providing trivial ways of scaling test-time
compute, and now also showing improved scaling behavior with increased training compute. All in
all, we conclude that DLMs in general, and uniform diffusion in particular, are promising candidates
for next-generation LLMs.
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released along with intermediate checkpoints.
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chine Learning. It shares potential societal consequences with much of the work in the general area
of language modeling and foundation models.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
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A APPENDIX

A.1 RELATION BETWEEN BATCH SIZE AND STEP COUNT

We given an example of the discovered hyperbolic relation between batch size and step count in
Figure 5.
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Figure 5: (top) There appears to be a tight relationship between batch sizes and step counts achieving
the same loss, with ISO-loss curves following a hyperbolic relation. (bottom) The minimum batch
size and step count, as per the asymptotes of the fitted hyperbolas, grow with what appears to be
following a power law in the target loss, implying that as we get closer to some minimum achievable
loss, the minimum required step count, but especially the minimum batch size, grow to large values.
Here we display runs of a 85M (L12-D768) model trained on balanced hybrid noise.

A.2 SWEEP CONFIGURATION

The exact configurations used for model sizes are given in Table 2 and the hyperparameter sweep
settings are given in Table 3.

B RELATED WORK

B.1 SCALING LAWS

Scaling laws refer to a phenomenon where the performance of increasingly larger neural networks
follows a predictable trend that usually takes the form of a power law in model parameters and
dataset size (Kaplan et al., 2020; Hoffmann et al., 2022). While neural scaling laws have first been
proposed in the context of language modeling (Kaplan et al., 2020; Hoffmann et al., 2022), they
have since been observed across a variety of tasks, data modalities, and model architectures (Zhai
et al., 2022; Bachmann et al., 2023; Peebles & Xie, 2023).

B.2 CRITICAL BATCH SIZE

Batch size is a hyperparameter that is often neglected when studying the scaling behavior of language
models, with many studies fixing it to some constant value (Hoffmann et al., 2022; Hägele et al.,
2024). This methodology is motivated by classical bounds in both convex and nonconvex smooth
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Label Params. P Vocab. size V Layers L Hidden size d Attn. heads H

L8-D512 25M 131,072 8 512 8
L10-D640 50M 131,072 10 640 10
L12-D768 85M 131,072 12 768 12
L16-D1024 200M 131,072 16 1024 16
L20-D1536 570M 131,072 20 1536 12

Table 2: Overview of the five different model sizes that were used in our experiments. Parameter
counts refer to non-embedding parameters.

Parameter Values

Noise type b {−1000,−2, 0, 2, 1000}
Sequence length N 2048
LaProp β1 0.9
LaProp β2 0.99; 0.98 for B ≥ 256
LaProp ϵ 10−8d−1L−1 (CompleteP)
Init. std. (σbulk, σaux) 0.4 · d− 1

2 , 0.02 (CompleteP)
Resid. multiplier 4.0 · L−1 (CompleteP)
Out. multiplier 512 (CompleteP)
Weight decay 0.0
LR warmup steps 2000
LR cooldown steps 0
Bulk LR ηbulk d−1 · ηbase (CompleteP)
Auxiliary LR ηaux 0.02 · ηbase
Param. precision bfloat16
Activation precision Manual mixed precision

Batch size B / 8 / {0.2, 0.3}
base learning rate ηbase 16 / {0.2, 0.3, 0.5}

32 / {0.2, 0.3, 0.5}
64 / {0.3, 0.5, 1.0}
128 / {0.5, 1.0}
256 / {0.5, 1.0}
512 / {0.5, 1.0, 2.0}

Table 3: List of key hyperparameters for our grid search. The parameters that are swept over are
noise type, model size (Tab. 2), batch size, and learning rate.

stochastic optimization (Garrigos & Gower, 2023), and can be understood by analyzing the sta-
tionary distribution of stochastic gradient descent (SGD) on quadratic potentials (Jastrzebski et al.,
2017) – at convergence, loss statistics in this setting are batch size invariant, once the learning rate is
tuned correctly. This basic reasoning can be extended to adaptive methods (Zhang et al., 2019), and
reveals useful scaling strategies for zero-shot adaptation of optimal learning rates as the batch size
increases, see e.g. square root laws for Adam derived in (Malladi et al., 2022; Compagnoni et al.,
2025). The well-known limitation of this analysis is that, as the batch size increases, the number of
steps decreases, when training occurs at the same data budget. As such, it is unrealistic to assume,
as the steps budget decreases, that optimization has reached stationarity, and hence utilizing larger
batches can lead to diminishing returns. Though early works have assessed that indeed smaller
batches are not per-se needed for strong generalization (Smith et al., 2020), it was also noted that
assessing which batch size is critical (i.e., larger batches lead to diminishing returns) based purely
on the number of network parameters is problematic (Shallue et al., 2019) as it is influenced, e.g.,
by the network width (Chen et al., 2018). Therefore, methods were developed (McCandlish et al.,
2018) to empirically estimate the optimal batch size from online gradient statistics.

The method by McCandlish et al. (2018) has also been extended to autoregressive language models
pre-training. However, large pre-training setups pose an additional challenge, as it is unrealistic to
assume optimization is ever reaching a stationary distribution in standard scenarios. Hence, it is
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natural to expect that the critical batch in this setting is a function of the token budget – an intuition
which was recently validated empirically (Zhang et al., 2024; Merrill et al., 2025). Finally, while
it is clear that standard theoretical considerations on the expected loss dynamics predict that, in
early training (“curvature dominated”, as detailed in (Zhang et al., 2019; Smith et al., 2020)), the
optimal batch size is one (i.e. maximizing number of steps is always convenient), recent studies
have suggested that there exists an even stronger notion of optimal batch size, where training both
below and above a specific batch size is compute-inefficient (Hu et al., 2024; Shuai et al., 2024).
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