Facing Off World Model Backbones:
RNNSs, Transformers, and S4

Fei Deng Junyeong Park Sungjin Ahn*
Rutgers University KAIST KAIST
fei.deng@rutgers.edu jyp10987@kaist.ac.kr sungjin.ahn@kaist.ac.kr

https://fdengl8.github.io/s4wm

Abstract

World models are a fundamental component in model-based reinforcement learning
(MBRL). To perform temporally extended and consistent simulations of the future
in partially observable environments, world models need to possess long-term
memory. However, state-of-the-art MBRL agents, such as Dreamer, predominantly
employ recurrent neural networks (RNN5s) as their world model backbone, which
have limited memory capacity. In this paper, we seek to explore alternative world
model backbones for improving long-term memory. In particular, we investigate
the effectiveness of Transformers and Structured State Space Sequence (S4) mod-
els, motivated by their remarkable ability to capture long-range dependencies
in low-dimensional sequences and their complementary strengths. We propose
S4WM, the first world model compatible with parallelizable SSMs including S4
and its variants. By incorporating latent variable modeling, S4WM can efficiently
generate high-dimensional image sequences through latent imagination. Further-
more, we extensively compare RNN-, Transformer-, and S4-based world models
across four sets of environments, which we have tailored to assess crucial memory
capabilities of world models, including long-term imagination, context-dependent
recall, reward prediction, and memory-based reasoning. Our findings demonstrate
that S4WM outperforms Transformer-based world models in terms of long-term
memory, while exhibiting greater efficiency during training and imagination. These
results pave the way for the development of stronger MBRL agents.

1 Introduction

The human brain is frequently compared to a machine whose primary function is to construct models
of the world, enabling us to predict, plan, and react to our environment effectively [51, 39]. These
mental representations, referred to as world models, are integral to essential cognitive functions like
decision-making and problem-solving. Similarly, one of the pivotal tasks in artificial intelligence (AI)
systems that aim for human-like cognition is the development of analogous world models.

Model-Based Reinforcement Learning (MBRL) [42] has emerged as a promising approach that builds
world models through interaction with the environment. As a fundamental component of MBRL,
these world models empower artificial agents to anticipate the consequences of their actions and
plan accordingly, leading to various advantages. Notably, MBRL offers superior sample efficiency,
mitigating the high data requirements commonly associated with model-free methods. Moreover,
MBRL exhibits enhanced exploration, transferability, safety, and explainability [42], making it
well-suited for complex and dynamic environments where model-free methods tend to struggle.

*Correspondence to sungjin.ahn@kaist.ac.kr.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).


https://fdeng18.github.io/s4wm

The effectiveness and characteristics of world models crucially depend on their backbone neural
network architecture. In particular, the backbone architecture dictates the model’s capabilities of
capturing long-term dependencies and handling stochasticity in the environment. Additionally, it
affects the compactness of memory footprint and the speed of future prediction rollouts. Furthermore,
in visual MBRL that finds extensive practical applications, the backbone architecture holds even
greater significance than it does in state-based MBRL. This is due to the need to deal with high-
dimensional, unstructured, and temporal observations.

Nevertheless, choosing the appropriate backbone architecture for visual MBRL has become a consid-
erable challenge due to the rapidly evolving landscape of deep architectures for temporal sequence
modeling. This includes the recent advancements in major backbone architecture classes, notably
Transformers [61, 5] and the Structured State Space Sequence models such as S4 [21] and S5 [57].

Traditionally, Recurrent Neural Networks (RNNs) [7, 33] have been the go-to backbone architecture,
thanks to their efficient use of computational resources in processing sequential data. However, RNNs
tend to suffer from vanishing gradient issues [49], limiting their long-term memory capacity. Recently,
Transformers [61] have demonstrated superior sequence modeling capabilities in multiple domains,
including natural language processing and computer vision [12]. Their self-attention mechanism
grants direct access to all previous time steps, thereby enhancing long-term memory. Moreover,
Transformers offer parallel trainability and exhibit faster training speeds than RNNs. However,
their quadratic complexity and slow generation speed pose challenges when dealing with very long
sequences. To address these limitations, the S4 model has been proposed, offering both parallel
training and recurrent generation with sub-quadratic complexity. In the Long Range Arena [59]
benchmark consisting of low-dimensional sequence modeling tasks, the S4 model outperforms many
Transformer variants in both task performance and computational efficiency.

In this paper, we present two primary contributions. Firstly, we introduce S4WM, the first and general
world model framework that is compatible with any Parallelizable SSMs (PSSMs) including S4, S5,
and other S4 variants. This is a significant development since it was unclear whether the S4 model
would be effective as a high-dimensional visual world model, and if so, how this could be achieved.
To this end, we instantiate the S4WM with the S4 architecture to manage high-dimensional image
sequences, and propose its probabilistic latent variable modeling framework based on variational
inference. Secondly, we conduct the first empirical comparative study on the three major backbone
architectures for visual world modeling—RNNSs, Transformers, and S4. Our results show that S4WM
outperforms RNNs and Transformers across multiple memory-demanding tasks, including long-term
imagination, context-dependent recall, reward prediction, and memory-based reasoning. In terms
of speed, S4WM trains the fastest, while RNNs exhibit significantly higher imagination throughput.
We believe that by shedding light on the strengths and weaknesses of these backbones, our study
contributes to a deeper understanding that can guide researchers and practitioners in selecting suitable
architectures, and potentially inspire the development of novel approaches in this field.

2 Related Work

Structured State Space Sequence (S4) Model. Originally introduced in [21], S4 is a sequence
modeling framework that solves all tasks in the Long Range Arena [59] for the first time. At its core
is a structured parameterization of State Space Models (SSMs) that allows efficient computation
and exhibits superior performance in capturing long-range dependencies both theoretically and
empirically. However, the mathematical background of S4 is quite involved. To address this, a
few recent works seek to simplify, understand, and improve S4 [23, 20, 40, 22, 57, 24, 47]. It has
been discovered that S4 and Transformers have complementary strengths [70, 40, 15, 34, 24]. For
example, Transformers can be better at capturing local (short-range) information and performing
context-dependent operations. Therefore, hybrid architectures have been proposed to achieve the best
of both worlds. Furthermore, S4 and its variants have found applications in various domains, such as
image and video classification [43, 36, 34, 62], audio generation [ 7], time-series generation [69],
language modeling [70, 15, 40], and model-free reinforcement learning [ 10, 38]. Our study introduces
the first world model compatible with S4 and its variants (more generally, parallelizable SSMs) for
improving long-term memory in MBRL. We also investigate the strengths and weaknesses of S4 and
Transformers in the context of world model learning.



World Models. World models [25] are typically implemented as dynamics models of the environment
that enable the agent to plan into the future and learn policies from imagined trajectories. RNNs have
been the predominant backbone architecture of world models. A notable example is RSSM [28],
which has been widely used in both reconstruction-based [29-31, 65, 56, 16, 35, 63, 64, 68] and
reconstruction-free [44—46, 11, 26] MBRL agents. With the advent of Transformers [61], recent
works have also explored using Transformers as the world model backbone [5, 41, 54]. While
Transformers are less prone to vanishing gradients [49] than RNNss, their quadratic complexity limits
their applicability to long sequences. For example, recent works [41, 54] use a short imagination
horizon of ~20 steps. In contrast, S4WM can successfully imagine hundreds of steps into the future
with sub-quadratic complexity. We also develop an improved Transformer-based world model that
can deal with long sequences by employing Transformer-XL [9].

Agent Memory Benchmarks. While many RL benchmarks feature partially observable environ-
ments, they tend to evaluate multiple agent capabilities simultaneously [2, 8, 27] (e.g., exploration and
modular skill learning), and may be solvable with a moderate memory capacity [14, 48]. Addition-
ally, some benchmarks are designed for model-free agents [66, 37, 52], and may contain stochastic
dynamics that are not controlled by the agents, making it hard to separately assess the memory
capacity of world models. The recently proposed Memory Maze [50] focuses on measuring long-term
memory and provides benchmark results for model-based agents. We build upon Memory Maze and
introduce additional environments and tasks to probe a wider range of memory capabilities. Another
recent work, TECO [67], also introduces datasets and a Transformer-based model for evaluating
and improving long-term video prediction. Our work has a different focus than TECO in that we
stress test models on extremely long sequences (up to 2000 steps), while TECO considers more
visually complex environments, with sequence lengths capped at 300. Our experiment setup allows
using relatively lightweight models to tackle significant challenges involving long-term memory. We
include a comparison with TECO in Appendix F.

3 Background

S4 [21] and its variants [20, 40, 57, 15] are specialized parameterizations of linear state space models.
We first present relevant background on linear state space models, and then introduce the S4 model.

Linear State Space Models (SSMs) are a widely used sequence model that defines a mapping from a
1-D input signal u(¢) to a 1-D output signal y(t). They can be discretized into a sequence-to-sequence
mapping by a step size A. The continuous-time and discrete-time SSMs can be described as:

'(t) = As(t) + Bul(t sy = Asy_1 + Bu
s(1) s(t) + Bu(?) (discrete-time) ¥ ot k.

_ _ 1
y(t) = Cs(t) + Du(t)’ = Csp + Dup

(continuous-time)
Here, the vectors s(t) and sy, are the internal hidden state of the SSM, and the discrete-time matrices
A, B,C, D can be computed from their continuous-time counterparts A, B, C, D and the step
size A. We will primarily deal with the discrete-time SSMs, which allow efficient autoregressive
generation like RNNs due to the recurrence in sy.

Unlike RNNs, however, linear SSMs can offer parallelizable computation like Transformers. That
is, given the input sequence uy.7, the output sequence ;.7 can be computed in parallel across time
steps by a discrete convolution [2 1] or a parallel associative scan [57, 4]. In this work, we define the
class of Parallelizable SSMs (PSSMs) to be the SSMs that provide the following interface for both
parallel and single-step computation:

(parallel) yi.7, s = PSSM(u1.7, So) , (single step) yi, s = PSSM(ug, sx—1), (2)
where the inputs uj, and outputs y; can be vectors.

The S4 model aims to use SSMs for deep sequence modeling, where the matrices A, B, C, D and
the step size A are learnable parameters to be optimized by gradient descent. Because SSMs involve
computing powers of A, which is in general expensive and can lead to the exploding/vanishing
gradients problem [49], SSMs with a randomly initialized A perform very poorly in practice [19].

To address these problems, S4 parameterizes A as a Diagonal Plus Low-Rank (DPLR) matrix [21, 17]:
A = A — PP~ where A is a diagonal matrix, P is typically a column vector (with rank 1), and P*
is the conjugate transpose of P. This parameterization allows efficient computation of powers of A,



Training Imagination S4 Block

Generation

Next Step Prediction

E3
ffffffffffffff
Prior S4 Blocks .
(g s

Linear

Context |

Figure 1: We propose S4WM, the first S4-based world model for improving long-term memory. S4WM
efficiently models the long-range dependencies of environment dynamics in a compact latent space, using a
stack of S4 blocks. This crucially allows fully parallelized training and fast recurrent latent imagination. S4WM

is a general framework that is compatible with any parallelizable SSM including S5 and other S4 variants.

Algorithm 1 S4WM Training

Al

gorithm 2 S4WM Imagination

Input: (xg,a,x1,..

1:

-,ar, XT)

> (Obtain posterior latents

for time step ¢t = 0, ..., 7T parallel do
z; ~ q(z;|x;) = Encoder(x;)

end for

> Prepare inputs to S4 blocks

for time stept = 1,...,7T parallel do

Input: context (Xg.c, @1.¢c), qUery ac+1.7

AR S

> Encode context
: for context stept = 0, ..., C parallel do
z: ~ q(z+|x:) = Encoder(x;)
gi+1 = MLP(concat|z;, a;41])
end for
hi.c41,8c41 = S4Blocks(g1.c+1, 50)

5: g+ = MLP(concat|z;_1, a4]) > Imagine in latent space

6: end for 6: Zoq1 ~ p(ZC+1 |Z():C7 a1:C+1) = MLP(hc+1)
> Encode history by S4 blocks 7: for query stept =C +2,...,T do

7: hy.r, 87 = S4Blocks(g1.7, So) 8: g+ = MLP(concat|z;—1, a])
> Compute prior and 9: h¢, s = S4Blocks(g¢, s¢—1)

decode posterior latents 10: zt ~ D(2¢ | Z<4, agt) = MLP(h;)

8: for timestept = 1,...,7 parallel do 11: end for

9: p(z¢|2<t,a<;) = MLP(h,) >Decode imagined latents

10 x; = Decoder(concat[h;, z]) 12: for query stept = C' + 1,...,T parallel do

11: end for 13: %, = Decoder(concat[hy, z;])

12: Compute objective by Equation (9) 14: end for

while also including the HiPPO matrices [ 18], which are theoretically derived based on continuous-
time memorization and empirically shown to better capture long-range dependencies. In practice, S4
initializes A to the HiPPO matrix. To cope with vector-valued inputs and outputs (i.e., ug, yx € R¥),
S4 makes H copies of the SSM, each operating on one dimension, and mixes the outputs by a
position-wise linear layer. Follow-up works further simplify the parameterization of A to a diagonal
matrix [20], and use a multi-input, multi-output SSM for vector-valued sequences [57].

4 S4WM: A General World Model for Parallelizable SSMs

We consider an agent interacting with a partially observable environment. At each time step ¢, the
agent receives an image observation x;. It then chooses an action a;; based on its policy, and
receives the next observation x; ;. For simplicity, we omit the reward here.

We aim to model p(x1.7 | Xo, @1.7), the distribution of future observations given the action sequence.
We note that it is not required to model p(xg), as world model imagination is typically conditioned



on at least one observation. While S4 and its variants have shown remarkable abilities to model
long-range dependencies, they operate directly in the observation space. For example, S4 models
images as sequences of pixels, and directly learns the dependencies among individual pixels. This is
hard to scale to high-dimensional sequences, such as the sequences of images that we aim to model.

Inspired by RSSM [28], we propose S4WM, the first PSSM-based world model that learns the
environment dynamics in a compact latent space. This not only allows fast parallelizable training, but
also enables efficient modeling of long-range dependencies in the latent space. Importantly, S4WM
is a general framework that can incorporate not only the specific S4 model [21] but also any PSSM
defined by Equation (2), including S5 [57] and other variants [20, 40, 15]. It models the observations
and state transitions through a probabilistic generative process:

T
p(x17 | X0, @1:7) = /p(Zo | xo0) Hp(Xt | Z<t, a<t) (2 | 2<t, a<t) dzor 3)
=1

where zo. are the stochastic latent states. We note that computing the likelihood p(x; | Z<y, agt)
and the prior p(z; | z<, a<;) requires extracting relevant information from the history (z<;, a<;).
Therefore, it is crucial to maintain a long-term memory of the history. To this end, we use a stack of
PSSM blocks to encode the history (z, a<:) into an embedding vector h; for each ¢. This can be
done in parallel during training and sequentially during imagination:

(parallel) hl:T, ST = PSSM_BlOCkS(gl:T7 80) s (4)

(single step) h;, s; = PSSM_Blocks(g;, s¢—1) - 5)
Here, g; = MLP(concat|z:—1, a;]) is the input to the PSSM blocks, s; is the collection of all
internal hidden states, and h, is the final output. In our experiments, we use S4 blocks (shown in
Figure 1 Right), a particular instantiation of the PSSM blocks using the S4 model. We find that

adding the final MLP in each S4 block can improve generation quality (see Appendix B.1 for an
ablation and Figure 21 for a detailed illustration of S4 block architecture).

After obtaining h;, we use it to compute the sufficient statistics of the prior and likelihood:
p(z¢ | 2<¢,a<t) = MLP(hy) , (6)
p(x¢ | Zz<t,a<t) = N(%¢,1), % = Decoder(concat[ht,z,]) . @)

For training, we use variational inference. The approximate posterior is defined as:

T
q(zor | xor,ar.r) = [ [ alze | x¢),  where q(z0 | x0) = p(zo | xo) - ®)
=0

We use a CNN encoder to compute the sufficient statistics of the posterior from image observations.
This allows all posterior samples zg.7 to be obtained in parallel, thereby fully leveraging the parallel
computation ability offered by PSSMs during training. We also provide an alternative design of the
posterior in Appendix B.1. It is conditioned on the full history, and can obtain better generation
quality at the cost of more computation.

The training objective is to maximize the evidence lower bound (ELBO):

T
log p(x1.7[%0, a1.7) > Eq Zlogp(xt|zgt,agt) — Lx1, <Q(Zt|Xt)> p(Zt|Z<t7a§t))] )
=1

In our experiments, we instantiate S4WM using the S4 model [21]. Figure 1 provides an illustration
of training and imagination procedures, and Algorithms | and 2 provide detailed descriptions.
Hyperparameters and further implementation details can be found in Appendix J.

S Experiments

5.1 Environments

Unlike previous works [14, 48, 37, 52] that primarily evaluate the final performance of model-free
agents on memory-demanding tasks, we seek to understand the memory capabilities of world models



Two Rooms Four Rooms Ten Rooms

Distracting Memory Multi Doors Keys

B |
g

Figure 2: Partially observable 3D (Top) and 2D (Bottom) environments for evaluating memory capabilities of
world models, including long-term imagination, context-dependent recall, reward prediction, and memory-based
reasoning.

Training Episodes per Second Imagination Frames per Second Training Memory Usage (GB) Imagination Memory Usage (GB)

100K 25 30
15
10 15 20
10K
5 - 10
5

TSSM-XL TSSM-XL TSSM-XL
- sewM w00 w0700 (mes512) | RSSM-TBTT

Figure 3: Comparison of speed and memory usage during training and imagination. S4WM is the fastest to
train, while RSSM-TBTT is the most memory-efficient during training and has the highest throughput during
imagination.

in model-based agents in terms of long-term imagination, context-dependent recall, reward prediction,
and memory-based reasoning. We believe that our investigation provides more insights than the final
performance alone, and paves the way for model-based agents with improved memory.

To this end, we develop a diverse set of environments shown in Figure 2, each targeting a specific
memory capability. The environments are based on the 3D Memory Maze [50] and the 2D Mini-
Grid [6], both with partial observations. The world models are learned from an offline dataset
collected by a scripted policy for each environment. This allows the world models to be evaluated
independently of the policy learning algorithms.

Specifically, for each episode, the environment is regenerated. To simplify the evaluation of world
model imagination, we design the data collecting policy to consist of a context phase and a query
phase. In the context phase, the policy fully traverses the environment, while in the query phase, the
policy revisits some parts of the environment. For evaluation, we use unseen episodes collected by
the same policy as training. The world model observes the context phase, and is then evaluated on its
imagination given the action sequence in the query phase. Because the environments are deterministic
and have moderate visual complexity, and the context phase fully reveals the information of the
environment, it suffices to use the mean squared error (MSE) as our main evaluation metric.

In the following, we first motivate our choice of the baselines through a comparison of speed and
memory consumption, and then introduce and present the results for each environment in detail.

5.2 Baselines

RSSM-TBTT. RSSM [28] is an RNN-based world model backbone used in state-of-the-art MBRL
agents [29-31]. Recently, [50] show that training RSSM with truncated backpropagation through
time (TBTT) can lead to better long-term memory ability. We follow their implementation and denote
the model as RSSM-TBTT.



Table 1: Evaluation of long-term imagination. Each environment is labeled with (context steps | query steps).
All models obtain good reconstruction, while S4WM is much better at long-term generation up to 500 steps. All
models struggle in the Ten Rooms environment.

Two Rooms (301 | 200)  Four Rooms (501 | 500)  Ten Rooms (1101 | 900)

Recon. Gen. Recon. Gen. Recon. Gen.
MSE({) MSE{) MSE() MSE (}) MSE ({) MSE (})
RSSM-TBTT 1.7 62.2 1.5 219.4 1.5 323.1
TSSM-XL 2.5 62.9 2.4 224.4 2.6 360.4
S4WM 1.8 27.3 1.7 44.0 1.8 224.4

400 450 500

Truth

t=50 100 150 200 250 300 350

TSSM RSSM

S4WM

ES 2 ¢
==
nitme!
. =,

Figure 4: Long-term imagination in the Four Rooms environment. While RSSM-TBTT and TSSM-XL make
many mistakes in wall colors, object colors, and object positions, S4WM is able to generate much more
accurately, with only minor errors in object positions.

TSSM-XL. TSSM [5] is the first Transformer-based world model for improving long-term memory.
It was originally evaluated on sequences of length ~100. In this paper, we seek to evaluate on much
longer sequences (up to 2000 steps), and it is impractical to feed the entire sequence to the vanilla
Transformer [61]. Therefore, we use Transformer-XL [9] as the backbone and denote the model
as TSSM-XL. It divides the full sequence into chunks, and maintains a cache of the intermediate
hidden states from processed chunks. This cache serves as an extended context that allows modeling
longer-term dependencies.

Speed and Memory Usage. We note that the cache length m is a crucial hyperparameter of TSSM-
XL. A larger m can potentially improve the memory capacity, at the cost of slower training and higher
memory consumption. To ensure a fair comparison in our experiments in the next few sections, we
first investigate the speed and memory usage of S4WM, RSSM-TBTT, and TSSM-XL with several m
values. Details can be found in Appendix I. As shown in Figure 3, S4WM and TSSM-XL trains much
faster than RSSM-TBTT due to their parallel computation during training, while RSSM-TBTT is
much more memory-efficient. For imagination, RSSM-TBTT achieves ~10x throughput compared
to S4WM and TSSM-XL. While S4WM also uses recurrence during imagination, its multi-layered
recurrence structure with MLPs in between slows down its performance. As for memory usage,
the decoder takes up most of the memory decoding all steps in parallel, leading to similar memory
consumption of all models.

Based on our investigation, TSSM-XL with a cache length m = 128 is the closest to S4WM in
terms of speed and memory usage. Therefore, we use TSSM-XL with m = 128 for all subsequent
experiments. We provide a more thorough investigation with larger cache lengths in Appendix B.2.

5.3 Long-Term Imagination

The ability of world models to perform long-term imagination is crucial to long-horizon planning.
While many RL benchmarks can be tackled with short-term imagination of ~15 steps [31], here we
seek to understand the long-term imagination capability of world models and explore their limits by
letting the world models imagine hundreds of steps into the future.



o Two Rooms (301 | 200) Four Rooms (501 | 500) Ten Rooms (1101 | 900)
300

w 600 -
"))
=)
< 100+ 200 A 400 4
k)
=}
o
@ 507 100 A 200 4
=
R
0 1 T T T T T 0 1 T T T T T 0 L T T T T T
0 50 100 150 200 0 125 250 375 500 0 225 450 675 900
Imagination Steps Imagination Steps Imagination Steps
— S4WM —— TSSM-XL —— RSSM-TBTT

Figure 5: Generation MSE per imagination step. Each environment is labeled with (context steps | query steps).
S4WM maintains a relatively good generation quality for up to 500 steps, while RSSM-TBTT and TSSM-XL
make large generation errors even within 50 steps.

Two Rooms (151 | 100) 200 Four Rooms (301 | 200) 550 Ten Rooms (601 | 400)

300
w
g
= 200 A 200 4 4501
2
=]
©
g 1001 : 100‘\\—‘——._0 350“\'\0\,“
=
8
045 i T T g 01+ v v v - 2501 v v T i
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
# Contexts After Teleport # Contexts After Teleport # Contexts After Teleport

—— S4WM —&— TSSM-XL —e— RSSM-TBTT

Figure 6: Evaluation of context-dependent recall in teleport environments. Each environment is labeled with
(context steps | query steps). We provide up to 20 observations after the teleport as additional contexts. TSSM-
XL performs the best in the Two Rooms environment where the context phase is short, and is able to recall
successfully without additional observations. When the context phase is longer, S4WM performs the best.

To this end, we develop three environments with increasing difficulty, namely Two Rooms, Four
Rooms, and Ten Rooms, based on the 3D Memory Maze [50]. The top-down views are shown in
Figure 2. In the context phase, the data collecting policy starts from a random room, sequentially
traverses all rooms, and returns to the starting room. In the query phase, the policy revisits each room
in the same order as the context phase.

As shown in Table 1, all models obtain good reconstruction, while S4WM is much better in the Two
Rooms and Four Rooms environment for long-term generation up to 500 steps. We demonstrate the
superior generation quality of S4WM in Figure 4. All models are able to capture the high-level maze
layout. However, RSSM-TBTT and TSSM-XL make many mistakes in details such as wall colors,
object colors, and object positions, while S4WM is able to generate much more accurately, with only
minor errors in object positions. We further show the per step generation MSE in Figure 5. S4WM
is able to maintain a relatively good generation quality for up to 500 steps, while RSSM-TBTT
and TSSM-XL make large generation errors even within 50 steps. We notice a periodic drop in the
generation MSE. This is when the agent moves from one room to another through a narrow corridor
where the action sequence is less diverse.

We also find that all models struggle in the Ten Rooms environment where the context length is 1101
and the query length is 900. This likely reaches the sequence modeling limits of the S4 model, and
we leave the investigation of more sophisticated model architectures to future work.

5.4 Context-Dependent Recall

Humans are able to recall past events in great detail. This has been compared to “mental time
travel” [60, 58, 37]. Motivated by this, we develop a “teleport” version of the Two Rooms, Four
Rooms, and Ten Rooms environments. After the initial context phase, the agent is teleported to a
random point in history, and is asked to recall what happened from that point onwards, given the
exact same action sequence that the agent took.

To succeed in this task, the agent needs to figure out where it is teleported by comparing the new
observations received after the teleport to its own memory of the past. In other words, the content



Table 2: Reward prediction accuracy in the Distracting Memory environments. Each environment is labeled
with (context steps | query steps). S4WM succeeds in all environments. TSSM-XL has limited success when
observing the full sequence, but fails to predict rewards within imagination. RSSM-TBTT completely fails.

Width = 100 (199 | 51) Width = 200 (399 | 101) Width = 400 (799 | 201)
Inference Imagination Inference Imagination Inference Imagination
Accuracy (1)  Accuracy (1)  Accuracy (1) Accuracy (1) Accuracy (1)  Accuracy (1)
RSSM-TBTT 47.9% 49.6% 48.7% 48.4% 50.4% 52.2%
TSSM-XL 100.0% 51.2% 99.9% 51.3% 50.4% 51.0%
S4WM 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

=3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

TSSM RSSM  Truth

Figure 7: Imagination in the Distracting Memory environment of width 100. RSSM-TBTT and TSSM-XL fail
to keep track of the agent’s position, leading to inaccurate reward prediction within imagination.

to recall depends on the new observations. Transformers have been shown to be better than S4 at
performing such context-dependent operations in low-dimensional sequence manipulation tasks [24]
and synthetic language modeling tasks [15]. We investigate this in the context of world model
learning, with high-dimensional image inputs.

To help the model retrieve the correct events in history, we provide up to 20 observations after the
teleport as additional contexts. The generation MSE of the recall is reported in Figure 6. TSSM-XL
performs the best in the Two Rooms environment where the context phase is short, and is able to
recall successfully without additional observations. When the context phase is longer as in Four
Rooms and Ten Rooms, S4WM performs the best. We visually show the recall quality with 20
observations after the teleport in Figure 18. In the Two Rooms environment, both TSSM-XL and
S4WM are able to recall accurately. However, only S4WM is able to maintain such recall quality in
the more challenging Four Rooms environment.

5.5 Reward Prediction

To facilitate policy learning within imagination, world models need to accurately predict the rewards.
In this section, we evaluate the reward prediction accuracy over long time horizons. To decouple the
challenges posed by 3D environments from long-term reward prediction, we use the visually simpler
2D MiniGrid [6] environment.

Specifically, we develop the Distracting Memory environment, which is more challenging than the
original MiniGird Memory environment, due to distractors of random colors being placed in the
hallway. A top-down view is shown in Figure 2. Each episode terminates when the agent reaches
one of the squares on the right. A reward of 1 is given if the square reached is of the same color
as the square in the room on the left. Otherwise, no reward is given. In the context phase, the data
collecting policy starts in the middle of the hallway, then traverses the hallway and returns to the
starting position. In the query phase, the policy goes to one of the two squares on the right uniformly
at random. To accurately predict the reward, the world model must learn to ignore the distractors
while keeping track of the agent’s position.

We report two types of reward prediction accuracy in Table 2. The inference accuracy is measured
when the model takes the full sequence of observations as input (including both the context and the
query phases). This evaluates the model’s ability to capture long-range dependencies independently
of the imagination quality. In contrast, the imagination accuracy is evaluated within the model’s
imagination, conditioned on the observations in the context phase and additionally the action sequence
in the query phase.



Table 3: Memory-based reasoning in the Multi Doors Keys environments. Each environment is labeled with
(context steps | query steps). S4WM performs well on all environments, while others struggle.

Three Keys (76 | 174)  Five Keys (170 | 380)  Seven Keys (296 | 654)

Recon. Gen. Recon. Gen. Recon. Gen.

MSE() MSE({) MSE{) MSE{) MSE({) MSE()
RSSM-TBTT 0.05 5.16 0.04 6.36 0.03 6.28
TSSM-XL 0.05 1.27 0.03 6.05 0.02 9.24
S4WM 0.01 0.04 0.02 0.27 0.02 0.10

Our results show that only S4WM is able to accurately predict rewards within imagination. TSSM-
XL has limited success when observing the full sequence, but fails to imagine future rewards
accurately. RSSM-TBTT completely fails, and its reward prediction is close to random guessing. Our
visualization of model imagination in Figure 7 reveals that the failure of TSSM-XL and RSSM-TBTT
is mainly due to their inability to keep track of the agent’s position.

5.6 Memory-Based Reasoning

In the previous experiments, the model’s memory of the environment can largely be kept fixed after
the context phase. In this section, we explore the setting where the memory needs to be frequently
updated in order to reason about the future.

We develop the Multi Doors Keys environment, where the agent collects keys to unlock doors. A
top-down view is shown in Figure 2. Each time a door is unlocked, the corresponding key will be
consumed, so it cannot be used to unlock other doors of the same color. The agent is allowed to
possess multiple keys. In the context phase, the agent visits all keys and doors without picking up any
keys. In the query phase, the agent attempts to unlock two random doors after picking up each key.
After all keys are picked up, the agent will try to unlock each door once again. To successfully predict
the outcome when the agent attempts to unlock a door, the world model must constantly update its
memory when a key is picked up or consumed.

Since the environment is visually simple, we find the generation MSE to be a good indicator of how
well the model predicts the future door states. As reported in Table 3 and visually shown in Figure 19,
S4WM performs well on all environments, demonstrating its ability to keep updating the memory,
while both RSSM-TBTT and TSSM-XL struggle.

6 Conclusion

In this paper, we introduced S4WM, the first PSSM-based visual world model that effectively expands
the long-range sequence modeling ability of S4 and its variants from low-dimensional inputs to
high-dimensional images. Furthermore, we presented the first comparative investigation of major
world model backbones in a diverse set of environments specifically designed to evaluate critical
memory capabilities. Our findings demonstrate the superior performance of S4WM over RNNs
and Transformers across multiple tasks, including long-term imagination, context-dependent recall,
reward prediction, and memory-based reasoning.

Limitations and Future Work. We primarily focused on visually simple and deterministic environ-
ments to limit the computation cost and simplify the evaluation process. Future work could explore
more sophisticated model architectures and proper evaluation metrics for complex and stochastic
environments. In addition, we mainly evaluated imagination quality and did not test world models
in conjunction with policy learning. Future work could develop and thoroughly test MBRL agents
based on S4WM. To demonstrate the potential of S4WM for policy learning, we provide offline
probing results in Appendix D and conduct a skill-level MPC experiment in Appendix E. We find that
S4WM outperforms RSSM in offline probing when it is instantiated with S5, and leads to higher task
success rates when used for planning. In Appendix G, we additionally demonstrate that the long-term
imagination quality can be further improved by instantiating S4WM with S5, showing the potential
of our general S4WM framework for incorporating more advanced parallelizable SSMs.

10



Acknowledgments and Disclosure of Funding

This work is supported by Brain Pool Plus Program (No. 2021HID3A2A03103645) through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT. We thank
Jurgis PaSukonis, Danijar Hafner, Chang Chen, Jaesik Yoon, and Caglar Gulcehre for insightful
discussions.

References

[1] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al. DeepMind Lab.
arXiv preprint arXiv:1612.03801, 2016.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] Guy Blelloch. Prefix sums and their applications. Technical report, School of Computer Science,
Carnegie Mellon University, 1990.

[5] Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. TransDreamer: Reinforcement learning
with Transformer world models. In Deep RL Workshop NeurIPS 2021, 2021.

[6] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environ-
ment for Gymnasium, 2018. URL https://github. com/Farama-Foundation/Minigrid.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[8] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International Conference on Machine Learning, 2020.

[9] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, 2019.

[10] Shmuel Bar David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision S4: Effi-
cient sequence-based RL via state spaces layers. In International Conference on Learning
Representations, 2023.

[11] Fei Deng, Ingook Jang, and Sungjin Ahn. DreamerPro: Reconstruction-free model-based
reinforcement learning with prototypical representations. In International Conference on
Machine Learning, 2022.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[13] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transformers for high-resolution
image synthesis. In CVPR, 2021.

[14] Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adria Puigdomenech Badia,
Gavin Buttimore, Charles Deck, Joel Z Leibo, and Charles Blundell. Generalization of rein-
forcement learners with working and episodic memory. In Advances in Neural Information
Processing Systems, 2019.

[15] Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry Hungry Hippos: Towards language modeling with state space models. In International
Conference on Learning Representations, 2023.

11


https://github.com/Farama-Foundation/Minigrid

[16] Xiang Fu, Ge Yang, Pulkit Agrawal, and Tommi Jaakkola. Learning task informed abstractions.
In International Conference on Machine Learning, 2021.

[17] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! Audio generation with
state-space models. In International Conference on Machine Learning, 2022.

[18] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent memory
with optimal polynomial projections. In Advances in Neural Information Processing Systems,
2020.

[19] Albert Gu, Isys Johnson, Karan Goel, Khaled Kamal Saab, Tri Dao, Atri Rudra, and Christopher
Ré. Combining recurrent, convolutional, and continuous-time models with linear state space
layers. In Advances in Neural Information Processing Systems, 2021.

[20] Albert Gu, Karan Goel, Ankit Gupta, and Christopher R€. On the parameterization and
initialization of diagonal state space models. In Advances in Neural Information Processing
Systems, 2022.

[21] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

[22] Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your
HiPPO: State space models with generalized orthogonal basis projections. In International
Conference on Learning Representations, 2023.

[23] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Advances in Neural Information Processing Systems, 2022.

[24] Ankit Gupta, Harsh Mehta, and Jonathan Berant. Simplifying and understanding state space
models with diagonal linear RNNs. arXiv preprint arXiv:2212.00768, 2022.

[25] David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems, 2018.

[26] Jeongsoo Ha, Kyungsoo Kim, and Yusung Kim. Dream to generalize: Zero-shot model-based
reinforcement learning for unseen visual distractions. In AAAI 2023.

[27] Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International Conference
on Learning Representations, 2022.

[28] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, 2019.

[29] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representa-
tions, 2020.

[30] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
discrete world models. In International Conference on Learning Representations, 2021.

[31] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[32] William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood.
Flexible diffusion modeling of long videos. In Advances in Neural Information Processing
Systems, 2022.

[33] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

[34] Md Mohaiminul Islam and Gedas Bertasius. Long movie clip classification with state-space
video models. In ECCV, 2022.

12



[35] Arnav Kumar Jain, Shivakanth Sujit, Shruti Joshi, Vincent Michalski, Danijar Hafner, and
Samira Ebrahimi Kahou. Learning robust dynamics through variational sparse gating. In
Advances in Neural Information Processing Systems, 2022.

[36] David M Knigge, David W Romero, Albert Gu, Efstratios Gavves, Erik J Bekkers, Jakub Mikolaj
Tomczak, Mark Hoogendoorn, and Jan-jakob Sonke. Modelling long range dependencies in
ND: From task-specific to a general purpose CNN. In International Conference on Learning
Representations, 2023.

[37] Andrew Kyle Lampinen, Stephanie C.Y. Chan, Andrea Banino, and Felix Hill. Towards mental
time travel: a hierarchical memory for reinforcement learning agents. In Advances in Neural
Information Processing Systems, 2021.

[38] Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. arXiv
preprint arXiv:2303.03982, 2023.

[39] Marcelo G Mattar and Maté Lengyel. Planning in the brain. Neuron, 110(6):914-934, 2022.

[40] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language
modeling via gated state spaces. In International Conference on Learning Representations,

2023.

[41] Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample-efficient world
models. In International Conference on Learning Representations, 2023.

[42] Thomas M Moerland, Joost Broekens, Aske Plaat, and Catholijn M Jonker. Model-based
reinforcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1-118,
2023.

[43] Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,
and Christopher Ré. S4ND: Modeling images and videos as multidimensional signals with state
spaces. In Advances in Neural Information Processing Systems, 2022.

[44] Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive
coding for model-based planning in latent space. In International Conference on Machine
Learning, 2021.

[45] Masashi Okada and Tadahiro Taniguchi. Dreaming: Model-based reinforcement learning by
latent imagination without reconstruction. In /CRA, 2021.

[46] Masashi Okada and Tadahiro Taniguchi. DreamingV2: Reinforcement learning with discrete
world models without reconstruction. In /ROS, 2022.

[47] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
International Conference on Machine Learning, 2023.

[48] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayaku-
mar, Max Jaderberg, Raphaél Lopez Kaufman, Aidan Clark, Seb Noury, Matthew Botvinick,
Nicolas Heess, and Raia Hadsell. Stabilizing Transformers for reinforcement learning. In
International Conference on Machine Learning, 2020.

[49] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, 2013.

[50] Jurgis PaSukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3D
mazes. In International Conference on Learning Representations, 2023.

[51] Joel Pearson. The human imagination: the cognitive neuroscience of visual mental imagery.
Nature Reviews Neuroscience, 20(10):624-634, 2019.

[52] Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory Gym: Partially
observable challenges to memory-based agents. In International Conference on Learning
Representations, 2023.

13



[53] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

[54] Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
models are happy with 100k interactions. In International Conference on Learning Representa-
tions, 2023.

[55] Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. Clockwork variational autoencoders. In
Advances in Neural Information Processing Systems, 2021.

[56] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In CoRL, 2023.

[57] Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In International Conference on Learning Representations, 2023.

[58] Thomas Suddendorf, Donna Rose Addis, and Michael C Corballis. Mental time travel and the
shaping of the human mind. Philosophical Transactions of the Royal Society B: Biological
Sciences, 364(1521):1317-1324, 2009.

[59] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long Range Arena: A benchmark for efficient
Transformers. In International Conference on Learning Representations, 2021.

[60] Endel Tulving. Memory and consciousness. Canadian Psychology/Psychologie canadienne, 26
(1):1, 1985.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017.

[62] Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay
Hamid. Selective structured state-spaces for long-form video understanding. In CVPR, 2023.

[63] Junjie Wang, Yao Mu, Dong Li, Qichao Zhang, Dongbin Zhao, Yuzheng Zhuang, Ping Luo,
Bin Wang, and Jianye Hao. Prototypical context-aware dynamics generalization for high-
dimensional model-based reinforcement learning. arXiv preprint arXiv:2211.12774, 2022.

[64] Jialong Wu, Haoyu Ma, Chaoyi Deng, and Mingsheng Long. Pre-training contextualized world
models with in-the-wild videos for reinforcement learning. arXiv preprint arXiv:2305.18499,
2023.

[65] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Day-
Dreamer: World models for physical robot learning. In CoRL, 2023.

[66] Marek Wydmuch, Michat Kempka, and Wojciech Jaskowski. ViZDoom competitions: Playing
Doom from pixels. IEEE Transactions on Games, 11(3):248-259, 2018.

[67] Wilson Yan, Danijar Hafner, Stephen James, and Pieter Abbeel. Temporally consistent Trans-
formers for video generation. In International Conference on Machine Learning, 2023.

[68] Chengyang Ying, Zhongkai Hao, Xinning Zhou, Hang Su, Songming Liu, Jialian Li, Dong Yan,
and Jun Zhu. Reward informed dreamer for task generalization in reinforcement learning. arXiv
preprint arXiv:2303.05092, 2023.

[69] Lingi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent state
space models for time-series generation. In International Conference on Machine Learning,
2023.

[70] Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, and Jianfeng

Gao. Efficient long sequence modeling via state space augmented Transformer. arXiv preprint
arXiv:2212.08136, 2022.

14



A Environment and Dataset Details

For each 3D environment (i.e., Two Rooms, Four Rooms, and Ten Rooms), we generate 30K
trajectories using a scripted policy, of which 28K are used for training, 1K for validation, and 1K for
testing. For each 2D environment (i.e., Distracting Memory and Multi Doors Keys), we generate 10K
trajectories using a scripted policy, of which 8K are used for training, 1K for validation, and 1K for
testing. All reported results are obtained from the test trajectories, using the model checkpoints that
achieve the best validation loss. The image observations are of size 64 x64 x 3 for 3D environments,
and 40x40x 3 for 2D environments.

B Ablation Study

In this section, we investigate alternative architectural choices for S4WM and different cache lengths
m for TSSM-XL. We conduct these ablation studies on the Four Rooms and Ten Rooms environments.

B.1 Alternative Architectures of S4WM

S4WM-Full-Posterior. In our main experiments, we have chosen to use the factorized posterior

T
Q(ZO:T | X0:T C"1:T) = H (I(Zt ‘ Xt) (10)
t=0

for simplicity and parallel training ability. However, we note that it is possible to condition on the full
history while maintaining the parallel training ability:

T

q(zor | X0, ar:7) = [ [ a(ze | x<1,0<0) - (I
=0

We illustrate this architecture in Figure 8. Here, we first use a CNN encoder to obtain a deterministic
embedding e, for each image observation x;, and then use a stack of S4 blocks to encode the history
and compute the sufficient statistics of the posterior for all ¢ in parallel:

q(z¢|x<t,a<¢) = MLP(h;) , ho.r, s7 = S4Blocks(go.7,5-1), g+ = MLP(concat[e;, ay]) .

12)
We have defined the dummy action ay = @ and the initial S4 hidden state s_;, which are both
implemented as vectors of all zeros. We note that the S4 blocks in the posterior are not shared with
those in the prior.

S4WM-No-MLP. In our implementation, each S4 block consists of two S4 layers and one MLP. We
note that the MLP is not used in the original S4 [21] for the Long Range Arena tasks [59], but is
commonly used in language modeling and audio generation [17]. Hence, we consider a model variant
without the MLP in the S4 blocks to investigate the importance of this MLP in world model learning.

Results. We report results on the non-teleport Four Rooms and Ten Rooms environments in Table 4
and Figures 9 and 10. Results on teleport environments are reported in Figures 11 and 12. We also
show a comparison of speed and memory usage in Figure 13. Our results suggest that S4WM-Full-
Posterior performs similarly as S4WM on the Four Rooms environment, and becomes better in the
more challenging Ten Rooms environment where the episode length is longer. However, it is more
computationally demanding than S4WM during training. In contrast, while S4WM-No-MLP is the
most computationally efficient, its performance is much worse than S4WM, indicating the importance
of the MLP in S4 blocks to both long-term imagination and context-dependent recall.

15



Training

Next Step Prediction

Prior

(parallel)

[ S4 Blocks

Posterior

Figure 8: Architecture of S4WM-Full-Posterior. It maintains the parallel training ability while computing the

Imagination

Generation

Context

posterior from the full history. & denotes dummy actions.

Table 4: Comparison of alternative S4WM architectures on long-term imagination. Each environment is
labeled with (context steps | query steps). S4WM-Full-Posterior is comparable to S4WM on the Four Rooms
environment, but is better on the more challenging Ten Rooms environment. In contrast, S4WM-No-MLP

S4 Blocks
(single step)

S4 Blocks L
(single step)

performs much worse, suggesting the importance of the MLP in the S4 blocks to long-term imagination.

Four Rooms (501 | 500)

Ten Rooms (1101 | 900)

Recon. Gen. Recon. Gen.
MSE (}) MSE ({) MSE () MSE (1)
S4WM 1.7 44.0 1.8 224.4
S4WM-Full-Posterior 1.7 38.0 2.0 171.1
S4WM-No-MLP 2.3 68.6 2.5 277.0

16



Four Rooms (501 | 500) Ten Rooms (1101 | 900)

w 450 A

0

=

= 100 1 300

o

=

©

@ 50 150

c

S
0- T T T T T 0- T T T T T

0 125 250 375 500 0 225 450 675 900
Imagination Steps Imagination Steps

— S4WM S4WM-Full-Posterior S4WM-No-MLP

Figure 9: Generation MSE per imagination step of alternative S4WM architectures. Each environment is labeled
with (context steps | query steps). S4WM-Full-Posterior performs the best as imagination horizon increases.

S4WM  Truth

S4WM-

S4WM-
No-MLP Full-Post.

Figure 10: Long-term imagination from alternative S4WM architectures in the Four Rooms environment.
S4WM and S4WM-Full-Posterior have similar imagination quality in this environment, while S4WM-No-MLP
makes more mistakes in wall colors and object positions.

17



Four Rooms (301 | 200) 480 Ten Rooms (601 | 400)

w
2
< 1201 400+
k)
©
@ 601 320
C
(]
R R S S R s . === |
0 5 10 15 20 0 5 10 15 20
# Contexts After Teleport # Contexts After Teleport
—— S4WM #— S4WM-Full-Posterior S4WM-No-MLP

Figure 11: Comparison of alternative S4WM architectures on context-dependent recall in teleport environments.
Each environment is labeled with (context steps | query steps). We provide up to 20 observations after the
teleport as additional contexts. S4WM-Full-Posterior performs similarly as S4WM when the context phase is
short, and becomes better when the context phase is longer. S4WM-No-MLP performs the worst, suggesting the
importance of the MLP in the S4 blocks to context-dependent recall.

K
S -
E.H
'_
z e
= 5
<
)
L
=3 -
=2
n >
[T
=3
=3
S o
0z

Figure 12: Context-dependent recall from alternative S4WM architectures in the Four Rooms teleport environ-
ment. 20 observations after the teleport are provided as additional contexts. S4WM and S4WM-Full-Posterior
perform similarly in this environment, while S4WM-No-MLP makes more mistakes in wall colors and object
positions.

Training Episodes per Second Imagination Frames per Second Training Memory Usage (GB) 30 Imagination Memory Usage (GB)

25

10K 20
15
5K 10

N S4WM [ S4WM-Full-Posterior S4WM-No-MLP

15K

15

10

v
]
H
]
H
v

=

Figure 13: Comparison of speed and memory usage for alternative S4WM architectures. S4WM-Full-Posterior
is more computationally demanding than S4WM during training, while S4WM-No-MLP is the most efficient.



Table 5: Comparison of TSSM-XL with different cache lengths m on long-term imagination. Each environment
is labeled with (context steps | query steps). Larger cache lengths show better generation quality, at the cost of
more computation.

Four Rooms (501 | 500)  Ten Rooms (1101 | 900)

Recon. Gen. Recon. Gen.

MSE ({) MSE () MSE ({) MSE ({)
TSSM-XL (m = 128) 2.4 224.4 2.6 360.4
TSSM-XL (m = 256) 2.4 124.4 2.5 295.1
TSSM-XL (m = 512) 2.4 38.4 2.5 277.6

Four Rooms (501 | 500) 600 Ten Rooms (1101 | 900)

w 300 A

0

= 400 A

-g 200 A

=1

©

@ 100 4 200 1

C

9]

o 0 L T T T T T 0 L T T T T T

0 125 250 375 500 0 225 450 675 900
Imagination Steps Imagination Steps

TSSM-XL TSSM-XL TSSM-XL
(m=128) (m =256) (m=512)

Figure 14: Generation MSE per imagination step of TSSM-XL with different cache lengths m. Each envi-
ronment is labeled with (context steps | query steps). Increasing the cache length helps improving long-term
imagination.

128) Truth

TSSM

256) (m

TSSM

TSSM
(m=512)(m

Figure 15: Long-term imagination from TSSM-XL with different cache lengths m in the Four Rooms environ-
ment. TSSM-XL (m = 512) works well in this environment and is comparable to S4WM, while TSSM-XL
(m = 128) and TSSM-XL (m = 256) make many mistakes.

19



Four Rooms (301 | 200) 450 Ten Rooms (601 | 400)

w 210
2
c 140 1 360 1
]
©
T 701 2401
C
< -\.\.\.—. ”
G} oL Y E 120 4 - ® & :
0 5 10 15 20 0 5 10 15 20
# Contexts After Teleport # Contexts After Teleport
TSSM-XL TSSM-XL TSSM-XL
* (m=128) & (m=256) © (m=512)

Figure 16: Comparison of TSSM-XL with different cache lengths m on context-dependent recall in teleport
environments. Each environment is labeled with (context steps | query steps). We provide up to 20 observations
after the teleport as additional contexts. Increasing the cache length improves context-dependent recall. With a
sufficiently large cache length, TSSM-XL without observing additional contexts can outperform S4WM.

Truth

TSSM  TSSM  TSSM
(m=512) (m=256) (m=128)

Figure 17: Context-dependent recall from TSSM-XL with different cache lengths m in the Four Rooms teleport
environment. 20 observations after the teleport are provided as additional contexts. TSSM-XL (m = 256) and
TSSM-XL (m = 512) perform similarly in this environment, and are both better than TSSM-XL (m = 128).

B.2 Cache Length of TSSM-XL

In our main experiments, we have used the cache length m = 128 for TSSM-XL, because it is close
to S4WM in terms of computational cost. Here we provide a more thorough investigation with larger
cache lengths.

We report results on the non-teleport Four Rooms and Ten Rooms environments in Table 5 and Fig-
ures 14 and 15. Results on teleport environments are reported in Figures 16 and 17. We find that
increasing the cache length generally improves generation quality, at the cost of slower training and
imagination speed. Notably, TSSM-XL with m = 512 shows better context-dependent recall than
S4WM on the Ten Rooms teleport environment, consistent with the findings in previous work [24, 15]
that Transformers are better than S4 at performing context-dependent operations.

20



C Additional Experiment Figures

TSSM RSSM Truth

S4WM

Two Rooms Four Rooms

Figure 18: Context-dependent recall in the teleport environments. 20 observations after the teleport are provided
as additional contexts. TSSM-XL and S4WM perform similarly in the Two Rooms environment, while only
S4WM is able to maintain good recall quality in the Four Rooms environment.

Figure 19: Imagination in the Multi Doors Keys environment with seven keys.

D Offline Probing on Memory Maze

Pasukonis et al. [50] recently proposed the Memory Maze offline probing benchmark for evaluating
the representation learning ability of world models. For completeness, we report the benchmark
results in Table 6. Our implementation is based on the newer DreamerV3 [31], and the results of
RSSM-TBTT are slightly better than reported in the original Memory Maze paper.

For RSSM-TBTT, TSSM-XL, and S4WM, we use concat[h¢, z;] as the input to the probing network,
where h; is the output of the final Transformer/S4 block for TSSM-XL and S4WM. The probing
network is an MLP with 4 hidden layers, each consisting of 1024 hidden units and followed by layer
normalization [1] and SiLU [53] nonlinearity.

Table 6: Memory Maze offline probing benchmark results.

Memory 9x9  Memory 15x15 Memory 9x9 Memory 15x15
Walls (Acc. 1)  Walls (Acc. 1)  Objects (MSE |)  Objects (MSE )

Constant Baseline 80.8% 78.3% 23.9 64.8
RSSM-TBTT 95.0% 81.7% 5.4 32.6
TSSM-XL 86.4% 79.8% 10.2 35.1
S4WM 88.4% 80.2% 8.9 34.8
S5WM 98.3% 81.8% 1.8 25.3

21



Both TSSM-XL and S4WM underperform RSSM-TBTT. We conjecture that this is because in
RSSM-TBTT, h; captures more global information, while in TSSM-XL and S4WM, h; captures
more local information for each .

Comparing RSSM-TBTT and S4WM, we find that the S4 hidden state s; plays a similar role as the
h; in RSSM-TBTT by carrying over information from previous time steps. Therefore, we conjecture
that s; will capture more global information and concat[s, z;] can be a more suitable embedding
for probing. However, the S4 hidden state s; has a much higher (typically 64 x) dimension than hy,
making the above solution impractical.

Fortunately, S4WM is a general framework that works with many S4 variants. In particular, S5 [57]
uses a hidden state s; that is of similar dimension as h;. Hence, we replace the S4 layers in S4WM
with S5 layers, and call this model SSWM. We extract the S5 hidden state of the last S5 layer in each
S5 block, and concatenate them with z; to form the input to the probing network. Our results show
that this model outperforms RSSM-TBTT by a large margin on the 9x9 maze. Nevertheless, the
larger 15x 15 maze remains challenging for all models.

E Skill-Level Model-Predictive Control

To show the potential of S4WM for planning, we consider a skill-level Model-Predictive Control
(MPC) agent, with predefined skills and an offline-trained world model. Specifically, we consider the
Multi Doors Keys environments. The predefined skills are (1) picking up a key at a specific position,
and (2) going to a door at a specific position and attempting to unlock it. The agent will return to
its starting position at the end of each skill. The task is to unlock a door specified by a goal image,
which shows the door in unlocked state (see Figure 20 for an illustration). The agent is allowed to
execute two skills: pick up one key and then attempt to unlock one door. Hence, planning has two
stages. First, the agent enumerates all allowed skill sequences (of length 2), and uses the world model
to predict which skill sequence is most likely to unlock the correct door. Then the agent executes the
first skill in the environment and replans. We show the success rate of RSSM-TBTT, TSSM-XL, and
S4WM in Table 7. The MPC agent equipped with S4WM is able to unlock every door in all three
environments, while RSSM-TBTT and TSSM-XL succeed roughly half of the time.

Start

Goal

(First Person View)

(Top-down View)

Figure 20: Illustration of the task solved by the skill-level MPC agent. The task is to unlock the door specified
by the goal image on the left. The agent is allowed to execute two skills: pick up one key and then attempt to
unlock one door. We use MPC to plan the optimal skill sequence with the offline-trained world model.

Table 7: Success rate of skill-level MPC agents in the Multi Doors Keys environments.

Three Keys Five Keys Seven Keys

RSSM-TBTT 0% 60% 42.86%
TSSM-XL 100% 40% 57.14%
S4WM 100% 100% 100%

22



Table 8: Comparison of generation quality on DMLab following TECO evaluation protocol.

DMLab
PSNR (1) SSIM (1) LPIPS (}) #Params
CW-VAE [55] 12.6 0.372 0.465 111M
Latent FDM [32] 17.8 0.588 0.222 31M
S4WM 20.6 0.667 0.196 41M
TECO [67] 21.9 0.703 0.157 169M

Table 9: Evaluation of long-term imagination. Each environment is labeled with (context steps | query steps).

Two Rooms (301 | 200)  Four Rooms (501 | 500) Ten Rooms (1101 | 900)

Recon. Gen. Recon. Gen. Recon. Gen.

MSE({) MSE({) MSEQ) MSE ({) MSE () MSE (})
S4WM 1.8 27.3 1.7 44.0 1.8 224.4
S5WM 1.5 10.6 1.3 19.2 1.3 159.2

F Comparison with TECO

We provide a quantitative comparison with TECO [67] and relevant baselines in Table 8. This
comparison is done on DMLab following the TECO evaluation protocol. TECO and other baselines
use a pretrained VQGAN [13] encoder/decoder, while S4WM uses a jointly trained simple CNN
encoder/decoder (see Appendix J and Table 10 for architecture details and hyperparameters). S4WM
significantly outperforms Clockwork VAE [55] and Latent FDM [32] (a diffusion-based model), and
is close to TECO despite having much fewer parameters.

G Additional Results of Instantiating S4WM with S5

We show a comparison of long-term imagination quality between S4WM and SSWM in Table 9,
where SSWM is our instantiation of S4WM with the S5 model. SSWM demonstrates even better
imagination quality than S4WM, showing the potential of our general framework for incorporating
more advanced parallelizable SSMs.

H Extended Background

In this section, we briefly introduce RSSM and TSSM for completeness. We denote the sequence of
observations and actions as (xg, a1,X1, a2, X2, ..., ar,X7). Namely, the agent takes action a;4 1
after observing x;, and receives the next observation x;,1. We omit the reward for simplicity.

H.1 RSSM

RSSM [28] models the observations and state transitions through the following generative process:

T
p(xo:r | @1.7) = /Hp(xt | z<t,a<t) D(2¢ | Z<t,a<¢) dzor (13)
t=0
where zg.7 are the stochastic latent states. The approximate posterior is defined as:
T
q(zor | X0, ar:7) = [ [ a(2e | 2, ace,x1) - (14)
t=0

The conditioning on previous states z.; and actions a<; appears multiple times. RSSM uses a shared
GRU [7] to compress z.; and a<; into a deterministic encoding h:

h; = GRU(h;_1,MLP(concat[z;—_1,a¢])) . (15)

23



This is then used to compute the sufficient statistics of the prior, likelihood, and posterior:

p(z¢ | z<t,a<¢) = MLP(hy) , (16)
p(x¢ | z<i,a<i) = N(%4,1), %X = Decoder(concat[h,z,]) , (17)
q(2¢ | Z<t, a<t, x¢) = MLP(concat[hy, e;]) , e; = Encoder(x;) . (18)

The training objective is to maximize the evidence lower bound (ELBO):

T
log p(x0:7 |@1.7) > Eq lz log p(x¢|z<s, a<t) — Lk, (Q(Zt|z<t7a§t7xt)7 P(Zt|Z<t»agt))
t=0
(19)

H.2 TSSM

Our implementation of TSSM [5] uses the same generative process, approximate posterior, and
training objective as S4WM. For convenience, we repeat them below. The generative process is:

T

p(x1r | X0, @1.7) = /P(Zo | o) Hp(Xt | 2<t,a<) p(2¢ | Z<t, a<t) dzor (20)
t=1

where z.7 are the stochastic latent states. The approximate posterior is defined as:
T
q(zo.r | Xo:r, @r:7) = H(J(Zt | x¢), where q(zo | x0) = p(zo | x0) - 2D
t=0

The training objective is to maximize the evidence lower bound (ELBO):

logp(xlzT |X0a al:T) > Eq

T
ZIng(Xt|Z§tva§t) — Lk, (Q(Zt |x¢), p(z |z<t;a<t))] . (22)

t=1

The main difference from S4WM is that in TSSM the prior p(z; | z<:, a<;) is computed by a stack
of Transformer [61] blocks. Specifically, the Transformer blocks output an embedding vector h;
through self-attention over the history:

h; = TransformerBlocks(g1.t) , g+ = MLP(concat|z;_1,ay]) . (23)
The h; is then used for predicting the next latent state z; and decoding the latent state into image X;:

p(z¢ | Z<t,a<;) = MLP(h;) , %, = Decoder(concat[h;,z]) . (24)

I Speed and Memory Usage Evaluation Details

All results in Figure 3 are obtained on a single NVIDIA RTX A6000 GPU. We make sure that the
models have comparable number of parameters. For training, we use a batch size of 8, sequence
length of 1000, and image size of 64 x64. We report the number of episodes per second processed by
each model, averaged over 100 batches, and also the peak memory usage. For imagination, we use
a batch size of 64, context length of 500, generation length of 500, and image size of 64x64. We
report the number of frames per second, averaged over 8 batches.

J Implementation Details and Hyperparameters

We base our implementation on the publicly available code of S4 [21] and DreamerV3 [31]. We
provide the hyperparameters used for 3D and 2D environments in Tables 10 and 11 respectively.
For 3D environments, we largely follow the hyperparameters used in Memory Maze [50]. For 2D
environments, we follow the architecture of DreamerV3-S. We use a linear warmup (1000 gradient
steps) and cosine anneal learning rate schedule for S4WM. Figure 21 shows the detailed architecture
of an S4 block. For TSSM-XL and RSSM-TBTT, we use constant learning rates following the
original papers. To ensure a fair comparison, all models use the same CNN encoder and decoder,

24



with convolutional and transposed convolutional layers of kernel size 4 and stride 2, layer normaliza-
tion [1], and SiLU [53] nonlinearity. The latent states zg.r are vectors of categorical variables [30]
optimized by straight-through gradients [3]. To facilitate stable training, we parameterize the cate-
gorical distributions as mixtures of 1% uniform and 99% neural network output [31]. We use KL
balancing [30] to scale the gradient of the KL loss Lx1,(q, p) with respect to the posterior ¢ and prior

Lxr(q,p) = a-KL[stop_grad(q) || p] + (1 — a)-KL[q || stop_grad(p)] . (25)

Here, stop_grad denotes the stop-gradient operator, and we set a = 0.8 to put more emphasis on
learning the prior toward the posterior than the other way around.

K Broader Impact

The proposed S4WM and other world models investigated in this paper are fundamentally deep gener-
ative models. Therefore, they inherit the potential negative social impacts that deep generative models
may have, such as generating fake images and videos that can contribute to digital misinformation
and deception. Caution must be exercised in the application of these models, adhering to ethical
guidelines and regulations to mitigate the risks.

25



Linear

LayerNorm

LayerNorm

Figure 21: Detailed architecture of an S4 block.

26



Table 10: Hyperparameters for 3D environments.

S4WM TSSM-XL RSSM-TBTT
Training
Optimizer AdamW AdamW AdamW
Batch size 8 8 32
Epochs o7 57 o7
Learning rate 1x1073 1x107* 3x 1074
Weight decay 1 x 1072 1x 1072 1 x 1072
Gradient clipping 1000 1000 200
TBTT steps - - 48
Model
Stochastic discrete latent size 32 x 32 32 x 32 32 x 32
History encoding blocks 6 12 1
History encoding dyodel 512 512 2048
History encoding dy 2048 512 -
History encoding cache length m - 128 /256 /512 -
CNN layers 4 4 4
CNN multiplier 48 48 48
MLP hidden units 1000 1000 1000
Total parameters 41.1M 43.8 M 54.1M
Objective
KL balancing « 0.8 0.8 0.8
Table 11: Hyperparameters for 2D environments.
S4WM  TSSM-XL RSSM-TBTT
Training
Optimizer AdamW AdamW AdamW
Batch size 8 8 32
Epochs 100 100 100
Learning rate 1x1073% 1x1074 3x 1074
Weight decay 1x1072 1x 1072 1x1072
Gradient clipping 1000 1000 200
TBTT steps - - 50
Model
Stochastic discrete latent size 32 x 32 32 x 32 32 x 32
History encoding blocks 6 10 1
History encoding dyyodel 512 512 2048
History encoding dg 2048 512 -
History encoding cache length m - 128 -
CNN layers 3 3 3
CNN multiplier 32 32 32
MLP hidden units 512 512 512
Total parameters 28.1 M 27.1M 31.2M
Objective
KL balancing o 0.8 0.8 0.8

27



	Introduction
	Related Work
	Background
	S4WM: A General World Model for Parallelizable SSMs
	Experiments
	Environments
	Baselines
	Long-Term Imagination
	Context-Dependent Recall
	Reward Prediction
	Memory-Based Reasoning

	Conclusion
	Environment and Dataset Details
	Ablation Study
	Alternative Architectures of S4WM
	Cache Length of TSSM-XL

	Additional Experiment Figures
	Offline Probing on Memory Maze
	Skill-Level Model-Predictive Control
	Comparison with TECO
	Additional Results of Instantiating S4WM with S5
	Extended Background
	RSSM
	TSSM

	Speed and Memory Usage Evaluation Details
	Implementation Details and Hyperparameters
	Broader Impact

