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Abstract

The remarkable success of the autoregressive paradigm has made significant ad-
vancement in Multimodal Large Language Models (MLLMs), with powerful mod-
els like Show-o, Transfusion and Emu3 achieving notable progress in unified
image understanding and generation. For the first time, we uncover a common
phenomenon: the understanding capabilities of MLLMs are typically stronger than
their generative capabilities, with a significant gap between the two. Building on
this insight, we propose HermesFlow, a simple yet general framework designed
to seamlessly bridge the gap between understanding and generation in MLLMs.
Specifically, we take the homologous data as input to curate homologous prefer-
ence data of both understanding and generation. Through Pair-DPO and self-play
iterative optimization, HermesFlow effectively aligns multimodal understanding
and generation using homologous preference data. Extensive experiments demon-
strate the significant superiority of our approach over prior methods, particularly
in narrowing the gap between multimodal understanding and generation. These
findings highlight the potential of HermesFlow as a general alignment framework
for next-generation multimodal foundation models.
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[36l (18] 145l 144] 23] focused on developing a
unified system capable of both multimodal un-
derstanding and generation. Powerful Multi-
modal Large Language Models (MLLMs) like
Show-o [48]], Transfusion [69], and Emu3 [41]],
employ a single transformer to unify these tasks,
demonstrating remarkable performance across
both domains.
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Figure 2: Motivation of HermesFlow. (a) A general pipeline to quantitatively assess the MLLM’s
performance of multimodal understanding and generation. (b) The imbalance between understanding
and generation capabilities is a common phenomenon in MLLMs, and our method significantly
narrows this disparity. For detailed descriptions, please refer to Section @

beneficial: expanding the data for either understanding or generation enhances the performance of the
other. Furthermore, MetaMorph [40] reveals that understanding data is more effective than generation
data in improving both understanding and generation performance. However, these works jointly
improve the understanding and generation capabilities of MLLMs from a data-level perspective but
fail to consider the gap between them. It remains unclear whether a capability gap exists between
them.

Regarding both task difficulty and architectural constraints, there exists a significant gap between
multimodal understanding and generation. In terms of task difficulty, generation maps textual features
to visual domain, requiring both semantic accuracy and high-fidelity details. However, converting
compressed text into high-dimensional visuals inherently loses features, making generation harder.
In contrast, understanding tasks involve compressing rich visual information into textual domain,
typically focusing on low-frequency semantics. It is important to clarify that visual understanding
is a broad concept; in this paper, we specifically refer to the basic feature understanding of natural
images. Accordingly, generation is fundamentally more challenging. For architectural constraints,
image generation struggles with autoregressive modeling because visual spatiality conflicts with
sequential token prediction, yielding suboptimal results. In contrast, understanding tasks benefit from
the natural alignment with autoregressive text serialization. Thus, generation also encounters greater
architectural challenges.

To quantitatively assess the performance of multimodal understanding and generation, we design a
general pipeline, as illustrated in Figure 2] (a). For any pretrained MLLM, input consists of (image,
prompt/caption) pairs. For understanding tasks, MLLM is presented with multiple questions related
to each image, and the final understanding score is calculated as the average accuracy of its answers.
MLLM generates an image for each prompt, and these images are evaluated by posing the same set of
questions using GPT-4o [16l], with the final generation score calculated based on the average accuracy
of GPT-40’s answers. We employed this pipeline to evaluate multiple MLLMs. As demonstrated in
Figure|2| (b), unified models like VILA-U [47]], Janus [44] and Show-o [48]] exhibit notably stronger
understanding capabilities compared to their generation capabilities. Our experiments highlight a
recurring phenomenon: MLLMs consistently demonstrate superior understanding abilities over
generation abilities, with a significant gap between them.

In the pretraining of MLLMs, simply increasing the training data for understanding or generation
does not yield proportional improvements in both aspects [40], leaving a significant gap between
their understanding and generation capabilities. A truly unified MLLM should excel in both under-
standing and generation, striking a balance rather than favoring one over the other. However, current
unified MLLMs struggle to achieve this equilibrium. To bridge the gap between understanding and
generation in MLLMs, we propose HermesFlow, a self-improvement framework that collects paired
understanding and generation preferences from homologous input data, and then employ a novel
Pair-DPO post-training framework to seamlessly bridge the gap through the paired preference data.
To curate understanding preference data, we enable MLLM to generate multiple captions for a single



input image and filter paired understanding preference data using BERT similarity scores. To curate
generation preference data, we prompt MLLM to generate multiple images from a single prompt and
employ a self-critic-like approach to evaluate the images through self-VQA scoring, thereby filtering
and selecting the paired generation preference data. Finally, we design Pair-DPO for preference
alignment of homologous paired data, and through iterative optimization to simultaneously and
progressively reduce the gap between understanding and generation following the same approach. We
achieve the self-improvement of both understanding and generation of MLLM without incorporating
any external high-quality training data. As shown in Figure[2](b), based on Show-o, HermesFlow
not only reduces the gap between understanding and generation, but also improves both capabilities,
demonstrating the necessity of bridging the gap os these two abilities.

We compare HermesFlow with previous work in Figure[I]and summarize our contributions as follows:

* Aninsightful discovery regarding a significant gap between the understanding and generation
abilities of MLLMs, with understanding consistently outperforming generation.

* We propose a general multimodal self-improvement framework, HermesFlow, using Pair-
DPO based on homologous data to seamlessly close the gap between multimodal under-
standing and generation.

* Self-play iterative optimization paradigm is highly compatible with the multi-round en-
hancement of MLLMs. HermesFlow has potential as a general alignment framework for
next-generation multimodal foundation models.

* Extensive qualitative and quantitative comparisons with previous powerful methods, such as
Show-o, Janus and VILA-U, demonstrate the effectiveness and superiority of our method.

2 Related Work

2.1 Unified Multimodal Understanding and Generation

In recent years, a growing number of studies [3} 16l 146} 57 23| 132]] have explored unified multimodal
models capable of both visual understanding [10, 162, 166} 31, |51]] and generation [65) 52]. Early
methods [3} 140,16 3573 163]] leveraged diffusion models as external tools, where MLLMs generate
conditions for visual generation [54, |39]] without having direct generative capabilities. For instance,
DreamLLM [3] introduces learnable embeddings called dream queries, which encapsulate the
semantics encoded by MLLMs and serve as conditions for the diffusion decoder. More recently,
inspired by the success of autoregressive paradigms, many studies [36} 48169} 26,149,159, [1, 161} 4 1]]
have shifted focus to representing and generating images using discrete visual tokens within a single
transformer framework. For instance, Emu3 [41]] is trained solely with next-token prediction on a
mixture of multimodal sequences using a single transformer. Janus [44] separates visual encoding
into distinct pathways for multimodal understanding and generation while maintaining a unified
transformer architecture. However, no existing research has focused on the relationship between the
strengths of understanding and generation capabilities in MLLMs, which is essential for the balanced
and sustainable development of these models.

2.2 DPO in Multimodal LLMs

Direct Preference Optimization (DPO) [28] 164, 56, 53] enhances the performance of multimodal
LLMs through the post-training process. In Figure[I] we categorize these approaches into three types.
Some methods [[70, 71} 11} 160] utilize DPO to enhance understanding capability, as shown in Figureﬂ]
(a). For instance, CSR [71] enables the model to self-improve by iteratively generating candidate
responses, evaluating the reward for each response, and curating preference data for finetuning. Other
methods [41]] improve the generation capability of MLLMs through DPO as illustrated in Figure|[T](b).
Emu3 [41] generates a data pool and constructs a preference dataset through manual ranking, which
is then used to optimize the model’s generation capabilities via DPO. However, these models focus
exclusively on enhancing either understanding or generation capabilities. In contrast, our approach
uses Pair-DPO to effectively narrow the gap between the two, achieving mutual improvement.
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Figure 3: Pipeline of HermesFlow. We begin by curating paired data that captures both understanding
and generation preferences from homologous input data. Leveraging this homologous preference
data, we design Pair-DPO and employ self-play iterative optimization to seamlessly bridge the gap
between multimodal understanding and generation.

3 Preliminary

3.1 Next Token Prediction

Next token prediction is a fundamental task in sequence modeling, where the goal is to estimate the

conditional probability of the next token z; given its preceding context x s = {x1,z2,..., 241}
Formally, for a sequence x = {x1, 2, ..., z7}, the joint probability is factorized as:
T T
:HP(xt|x1,x27...,mt,1) :HP(xt|x<t) (1)

This factorization relies on the autoregressive assumption, where each token depends solely on its
preceding tokens. During training, the model is optimized by minimizing the negative log-likelihood
loss over the dataset:

T
1
L= —7 ; log P(x¢|x<y) 2)
In autoregressive models, next-token prediction facilitates sequential generation by iteratively sam-
pling tokens from the learned distribution P(x;|2 ). This approach is widely applicable multimodal
domains such as visual understanding and visual generation.

3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) provides a straightforward and efficient method by directly
utilizing pairwise preference data to optimize the policy model. Specifically, given an input prompt ,
and a preference data pair (y.,, ¥;), DPO aims to maximize the probability of the preferred output y,,
and minimize that of the undesirable output y;. The optimization objective is formulated as:

To(Ywlx) 5 mo(yi|2)

3
Wref(yw ‘IL’) Wref(yl | ZL’) ( )

Lopo(0) = —E(z,y, y)~p | logo| Blog

where D is the pair-wise preference dataset, o is the sigmoid function, 7y (- | ) is the policy model to
be optimized, ¢ (- | ) is the reference model kept unchanged during training, and the hyperparameter
3 controls the distance from the reference model.

4 Method

In this section, we present our method, HermesFlow, which curates pairwise preference data for both
multimodal understanding and generation using homologous images and prompts, and seamlessly
bridging the gap of multimodal understanding and generation through Pair-DPO training. An
overview of HermesFlow is illustrated in Figure [3] In Section 1] we detail the methods for



curating homologous preference data for multimodal understanding and generation, respectively.
In Section .2 we propose the Pair-DPO training strategy to bridge the gap between multimodal
understanding and generation. In Section[.3] we introduce self-play iterative optimization, enabling
the self-improvement of MLLM over multiple iterations.

4.1 Curating Homologous Preference Data

Homologous Input Data  The curation of both multimodal understanding and generation preference
data begins with homologous data (z, y), where y represents the caption or prompt of the image x.

Understanding Preference Data We focus on the image captioning task to collect understanding
preference data, which reflects the ability of MLLMs to capture visual features, including object
attributes, spatial relationships, and detailed elements of both the subject and background. Give an
image x, a pretrained MLLM is used to generate n different captions according to the input prompt:
"Give a caption for this image.". We then calculate the BERT similarity scores [2] s(y, ) between
the original prompt y and each of the n captions. The caption with the highest BERT similarity score
is selected as the winning sample ¥,,, while the one with the lowest score is chosen as the losing
sample y;. Following this process, we construct the pairwise understanding preference data.

Generation Preference Data Starting with the caption or prompt y, we use the pretrained MLLM
to randomly generate n images. Given that MLLM’s understanding abilities surpass its generation
capabilities, we apply a self-critique or self-selection method for choosing the generated data.

Specifically, given the prompt y, we use TIFA [14]] to generate ¢ visual question-answer pairs, denoted
as {(Q1,41), (Q2,A42),...,(Qq, Aq)}. For each generated image, we evaluate them based on the
accuracy of the VQA responses provided by the MLLM:

1 q
Acc(x;) = EZH(RJ-J =A), Vi=12...,n 4)
=1
Rj; =MLLM(z;, Q;.,:) Q)

where R; ; represents the response of MLLM according to the input of image x; and question Q); ;.
We select the image with the highest accuracy as the winning sample x,, and the one with the lowest
accuracy as the losing sample x;, while also ensuring that the highest accuracy exceeds 0.6. Using
this process, we construct the pairwise generation preference data.

Homologous Output Preference Data After curating understanding and generation preference
data from homologous input (z, y) as mentioned above, where y represents the caption or prompt of
the image x, we obtain the homologous output preference data D, denoted as (x, Y, Zu, L1, Y, Yi)-

In this paper, we focus on exploring a preliminary method to achieve the self-improvement and
self-alignment framework for understanding and generation in MLLMs, without the need for any
external data as supervision. Although we curate preference data for understanding and generation
using different methods, both are designed to capture the model’s inherent biases accurately. These
preference data do not represent two unrelated tasks, but rather offer two distinct perspectives on the
same multimodal semantics.

4.2 Unified Enhancement with Pair-DPO

Homologous preference paired data of understanding and generation indicate the optimized directions
for both capabilities of a pretrained MLLM within the same semantic space. To achieve joint opti-
mization and alignment of understanding and generation, we introduce Pair-DPO. The optimization
objective of Pair-DPO can be formulated as:

Lpairopo(0) = ~E(z.y.00 21,90 .5)~D 1080 (AvndAcen)] ©)
To(Yw | T ™ T
AUnd _ Blog O(y ‘ ) _ ﬂlog Q(yl | ) (7)
7rref(yw | {L‘) 7Tref(yl | x)
Agey = Blog 71'9(1'71; |y) —Blo 71—9(17 |y) 8)
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Algorithm 1 The pseudocode of HermesFlow

Input: Homologous data (x, y), pretrained model MLLM, with parameters 6
1: fori=0,...,iter do

2 if i = 0 then 4

3 Yw, Y = MLLMg(z) // Und preference data

4: Ty, 2] = MLLM}(y) // Gen preference data

5: else A _

6: Y1, b, Y5 = MLLMg™ ! ()

7 yrlnax = argmaXgec{1,..n} S(y]lgvl')

8 Update und-preference data using Equation

9: xi,ah, ..., 2l = MLLM, ' (y)

10: xl = arg MaXge(1,... n} Acc(xh)
11: Update gen-preference data using Equation (10)
12: end if ' '
13: Optimize MLLM}, ! to MLLM}, using Equation @
14: end for

where Age, and Ay g represent the preference differences in generation and understanding of
MLLM, respectively. By using Pair-DPO to optimize homologous preference data jointly, we not
only ensure mutual improvement in the understanding and generation capabilities of MLLM but
also effectively narrow the gap between them. We provide the detailed derivation of the Pair-DPO
optimization objective in Appendix [A]

4.3 Self-Play Iterative Optimization

To achieve comprehensive optimization and achieve a convergence gap in understanding and genera-
tion of MLLMs, we introduce a novel yet easy self-play iterative optimization using Pair-DPO with
multiple turns.

Take understanding preference data as an example. We denote the preference data curated in round
1 — 1 in Section as (yi,71, yli_l). In the optimization of round ¢, the optimized MLLM generates
n new captions (v, ¥, ..., y") from the input of image z. The preference data is selected based on
the following rules:

L i 9

Ymax arg ke?ll,ax,n} S(yk’ y) )

( [ AN (yéamyzu_l) if S(yrinaxyy)>8(y7i)_l7y) 0

Y Y1) = (i g : (10)
Ymax> Y; ) otherwise

where s(y,i, y) denotes the BERT similarity score between the generated caption y}C and the homolo-
gous input caption y. Select the caption 3’ . with the highest similarity score, which represents the
local upper bound of the optimized MLLM’s understanding capability. If s(y’..,y) > s(y% 1, y),
MLLM has effectively learned preference knowledge from the previous round. Therefore, it needs to
be updated and further optimized using the higher-quality sample ¥ . as the benchmark. Conversely,
if s(yluxs ¥) < s(yi 1, y), effective optimization was not achieved in the previous round. In this
case, it is necessary to update with simpler and clearer preference data y’,,, as the winning sample to
provide a smoother learning gradient. Through iterative optimization, we achieve self-improvement
of MLLM without relying on any external high-quality training data.

5 Experiments

5.1 Experimental Setup

Training Setup We randomly select 5,000 image-caption pairs from JourneyDB [33]] as our
homologous input data. For the Visual Question Answering (VQA) data corresponding to each pair,
we combine the VQA from JourneyDB with the VQA generated from TIFA [14]] for a comprehensive
evaluation. Our HermesFlow is trained upon Show-o [48]], using a batch size of 4 for both caption
and generation data over 3,000 steps. We employ the AdamW optimizer with a weight decay of 0.01,



Table 1: Evaluation on multimodal understanding benchmarks. The baseline data is quoted from
Show-o [48]].

Model \ #Params POPET MME?T Flickr30k? VQAV2(esnT GQAT MMMU?T
Gemini-Nano-1 [37] 1.8B - - - 62.7 - 26.3
Emu [35] 13B - - 77.4 57.2 - -
NEXT-GPT [46] 13B - - 84.5 66.7 - -
SEED-X [6] 17B 84.2 1435.7 52.3 - 47.9 35.6
Chameleon [36] 34B - - 74.7 66.0 - -
Show-o [48] 1.3B 80.0 12329 67.6 74.7 61.0 27.4
HermesFlow (Ours) 1.3B 81.4 1249.7 69.2 75.3 61.7 28.3

Table 2: Evaluation on visual generation benchmarks: GenEval [[7] and DPG-Bench [13].

GenEvalT DPG-Bencht
Methods ‘ #params | Single Obj. Two Obj. Counting Colors Position Color Attri. ~ Overall Average

Diffusion Model

LDM [30] 1.4B 0.92 0.29 0.23 0.70 0.02 0.05 0.37

DALL-E 2 [29] 4.2B 0.94 0.66 0.49 0.77 0.10 0.19 0.52 -

SD 1.5 [30] 860M 0.94 0.37 0.27 0.72 0.05 0.07 0.40 63.18

SD 2.1 [30] 865M 0.97 0.50 0.46 0.80 0.07 0.14 0.49 68.09
Autoregressive Model

LlamaGen [34] 775M 0.87 0.25 0.23 0.51 0.06 0.04 0.32 65.16

Emu [35] 14B 0.87 0.34 0.26 0.56 0.07 0.06 0.36 -

Chameleon [36] 34B 0.89 0.39 0.28 0.66 0.08 0.07 0.40

LWM [21] 7B 0.93 0.41 0.46 0.79 0.09 0.15 0.47

SEED-X [6] 17B 0.97 0.58 0.26 0.80 0.19 0.14 0.49 -

Show-o [48] 1.3B 0.98 0.77 0.58 0.81 0.23 0.44 0.64 67.48

Janus [44] 1.3B 0.97 0.68 0.30 0.84 0.46 0.42 0.61 -

HermesFlow (Ours) 1.3B 0.98 0.84 0.66 0.82 0.32 0.52 0.69 70.22

and an initial learning rate of 2e-5 with a cosine scheduling. The parameter S for Pair-DPO is set to
0.2. All experiments are conducted under 8*NVIDIA A100 GPUs.

Notably, while we use JourneyDB’s prompts and images solely to construct preference data, we do
not treat them as direct supervision targets. Instead, our supervision stems from preference pairs
generated by the model itself, making HermesFlow a self-improvement framework for MLLMs. The
JourneyDB data merely serves as model input, while training and alignment are driven by the model’s
own output quality. This design enables the framework to work with arbitrary image-prompt pairs,
enhancing its flexibility and applicability.

Evaluation Metrics To assess multimodal understanding capabilities, we evaluate using POPE [20]],
MME [3]], Flickr30k [25]], VQAV2 [8]], GQA [15], and MMMU [58]]. For visual generation capabilities,
we use GenEval [7] and DPG-Bench [13] to evaluate the model’s prompt-image alignment. We further
assess image fidelity with FID [12] and CLIP-Score [27]. Additionally, we conduct a comprehensive
user study to objectively compare our model with other baselines.

5.2 Main Results

Multimodal Understanding Performances Table [I| summarizes the comparison between our
method and other leading MLLMSs on multimodal understanding benchmarks. Notably, HermesFlow
achieves similar or superior understanding performance compared to larger models like SEED-X
and Chameleon, using less than 1/10 of the parameters. Additionally, HermesFlow demonstrates
significant strengths across all metrics compared to Show-o, indicating that Pair-DPO effectively
reduces the understanding-generation gap while maintaining or even enhancing understanding ability.
For more qualitative examples on multimodal understanding, please refer to Section

Image Generation Performances As shown in Figure[d] HermesFlow achieves superior generation
results compared to three powerful Multimodal LLMs: VILA-U [47]], Janus [44], and Show-o [48]].
Compared to its backbone, Show-o, HermesFlow demonstrates superior performance in generating
object attributes and accurate counting. This improvement stems from its stronger understanding
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Figure 4: Qualitative comparison between our HermesFlow and three outstanding Multimodal LLMs
VILA-U [47]], Janus [44], and Show-o [48]]. Colored text denotes the advantages of HermesFlow in
generated images.

Table 3: MSCOCO zero-shot FID and CLIP-Score.

Method | #Params FID| CLIP-Scoret Ours vs Show-o 18% 24%
LDM [30] 1.4B 12.64 - ours vs Janus 10% 21%
DALL-E 2 6.5B 10.39 -

SD 1.5 [30] 860M 9.62 30.23 ours vs VILA-U 7% 24%
SD 2.1 865M 8.03 30.87

LlamaGen [34] 775M 945 29.12 Ours vs Chamelon N
Emu 14B 11.02 28.98 0%  20%  40%  60%  80%  100%
LWM “2-_1-] 7B 12.68 - E Win Tie Loss
SEED-X 17B 14.99 -

Show-o 1.3B 9.24 30.63 .

HermesFlow (Ours)  1.3B  9.07 31.08 Figure 5: Results of user study.

capabilities, which are utilized to filter generated images and achieve mutual refinement through
Pair-DPO iteratively.

We compare HermesFlow with other visual generation models on GenEval [7] and DPG-Bench [13]],
as shown in Table[2] Compared to the diffusion-based generative model SD 2.1 [30], HermesFlow
demonstrates remarkable performance across all benchmarks. Furthermore, it surpasses larger
autoregressive models, such as Chameleon [36] and LWM [21]]. When compared to Show-o [48]],
HermesFlow exhibits significant strengths in object counting and positions, this is attributed to
the critique of its superior understanding capability, which greatly enhances its visual generation
performance in aspects such as object quantity, location, and attributes. We present the zero-shot FID
[12]] and CLIP-Score [27] of HermesFlow on MSCOCO-30K in TableEl The results clearly show
that after the iterative optimization with Pair-DPO, HermesFlow achieves improved performance in
both image fidelity and prompt-image alignment.

We also conducted a comprehensive user study to evaluate the effectiveness of HermesFlow in
visual generation. As illustrated in Figure[5] we randomly selected 25 prompts for each comparison,
and invited 35 users from diverse backgrounds to vote on image generation quality, collecting a
total of 3,500 votes. Alignment between the generated images and the prompts was used as the



Table 4: Quantitative assess of MLLM’s Understanding and Generation Gap.

Method \ #Params Understanding Scoret  Generation Score T Gap |
VILA-U [47] [48] 7B 0.646 0.477 0.169
Janus [44] 1.3B 0.599 0.417 0.182
Show-o [48] 1.3B 0.520 0.433 0.087
HermesFlow (Ours) 1.3B 0.533 0.497 0.036

Table 5: Comparison of Pair-DPO vs. DPO and the Effect of Pair-DPO Iterations.

Understanding Bench Generation Bench
Methods POPET MME{T MMMUYT | GenEval (Overallyt DPG-Bench (Average)!
Show-o [48] 80.0 1232.9 27.4 0.64 67.48
DPO (Understanding) 80.8 1242.2 27.8 0.58 67.88
DPO (Generation) 80.5 1239.3 27.5 0.70 70.03
Pair-DPO (Iter. 0) (Show-o0) 80.0 1232.9 274 0.64 67.48
Pair-DPO (Iter. 1) 81.1 1246.7 28.0 0.68 70.19
Pair-DPO (Iter. 2) 81.3 1248.3 28.1 0.69 70.21
Pair-DPO (Iter. 3) 814 1249.7 28.3 0.69 70.22

primary evaluation criterion, with aesthetic quality and detail completeness considered under the
same conditions. The results demonstrate that HermesFlow received widespread user approval in
visual generation.

Quantitative assess of MLLM’s Understanding and Generation Gap As shown in Figure[2] we
use homologous data consisting of caption/prompt y and image x as input to evaluate the capability
of understanding and generation respectively. The homologous data is randomly selected from
JourneyDB [33]]. For the understanding task, to ensure comprehensive and high-quality question-
answer (QA) pairs, we first use TIFA [14] to generate QA pairs based on the image and caption.
These are then augmented with QA pairs from JourneyDB to create a more thorough and in-depth
dataset. The final understanding score is calculated as the average accuracy of the answers. For the
generation task, we use the prompt as input to generate an image for each prompt. These generated
images are evaluated by posing the same set of questions to GPT-40 [[16], with the final generation
score determined by the average accuracy of GPT-40’s answers. Since the generation capabilities of
MLLMs are relatively limited, strict evaluation criteria are applied in cases of severe object blurring
or significant loss of details. Therefore, GPT-40 is required to carefully analyze the completeness
and authenticity of the objects involved in each question before providing answers. This evaluation
pipeline was applied to multiple MLLMs, with the results presented in Table

It is clear that a significant gap exists between multimodal understanding and generation in MLLM.
HermesFlow seamlessly bridges this gap through self-play iterative optimization using Pair-DPO
from homologous preference data.

5.3 Ablation Study

Pair-DPO vs. DPO Pair-DPO can simultaneously enhance both the understanding and generation
capabilities of multimodal LLMs. As shown in Table[5] compared to DPO methods that rely solely on
understanding or generation preference, a single round of Pair-DPO achieves superior performance
by jointly optimizing both capabilities through the use of multimodal preference data. Furthermore,
we observed that when using preference data from only one modality, whether understanding or
generation, the capability of the other modality also improves. This demonstrates the same findings
in MetaMorph [40] and Liquid [45] that multimodal understanding and generation are synergistic.

Self-play Iterative Optimization As shown in Table[5] we conducted an experimental analysis to
examine the impact of iterations in self-play iterative optimization. It is evident that the first round of
iterative optimization yields the most significant improvements in both understanding and generation.
This is because the notable gap between the understanding and generation capabilities of MLLMs
is most effectively bridged in the initial iteration. When the number of iterations exceeds 2, we
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Figure 6: Influence of the richness of each preference sample.

observed that understanding ability continues to improve slightly, while generation ability remains
almost stable. We argue that since generation is a fine-grained visual task, cross-capability transfer
has limited impact on further enhancing generation ability in subsequent iterations.

The Impact of Each Preference Sample Richness The performance of Pair-DPO is largely
influenced by the number of generated samples n for both understanding and generation data. We
conducted experiments to analyze the impact of n on both understanding and generation in MLLMs,
with results shown in Figure[§] The dashed lines represent the performance of the baseline model,
Show-o [48]].

When n is too small, the model’s understanding and generation performance decline. This is due
to the insufficient number of samples and the limited capability of the baseline model, which leads
to a noisy preference dataset and significantly impacts the results. However, as the sample size
increases, it enables more accurate identification of the model’s optimal local upper bound, which in
turn facilitates the curation of higher-quality preference data, leading to noticeable improvements in
the understanding and generation capabilities of MLLM:s.

Furthermore, Figure [6|reveals that achieving performance comparable to the baseline in generation
requires more sampling data that understanding. This indicates that the generation capabilities of
MLLMs are more sensitive to noise in the preference data, highlighting a greater need for high-quality
generation data.

6 Conclusion

In this paper, we present a new MLLM alignment paradigm, HermesFlow, to seamlessly bridge the
gap between multimodal understanding and generation. By iterative optimized with Pair-DPO using
homologous preference data, HermesFlow successfully Improve the capabilities of both multimodal
understanding and generation while narrowing the gap between them. Our extensive empirical
evaluations across diverse understanding and generation benchmarks demonstrate the effectiveness
of HermesFlow. However, due to current limitations in the number and capabilities of open-source
MLLMSs, HermesFlow has not yet been optimized across a wider range of backbones. HermesFlow
has the potential as a general alignment framework for next-generation multimodal foundation models.
In the future, we plan to extend this framework: (i). Extending HermesFlow to diffusion foundation
models like MMaDA [52] to evaluate its generalization and performance on various backbones; (ii)
Combining with more advanced RL algorithms [42} |67, 43| to enhance multimodal inteligence for
different scenarios.
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A Derivation of the Pair-DPO Optimization Objective

Considering that the optimization objective of standard Direct Preference Optimization is:

Lppo(0) = —E(z,y. ,y,)~D llog o (ﬁ log M —Blog W)] (11)

Tref (Yuw | T) Tret (Y1 | )

Pair-DPO simultaneously optimizes understanding and generation using pairedcpreference data, with
its loss function comprising these two components:

Lpair-ppo(0) = Lund(0) + Laen(6)

(Y, Tw Tl Y Y1 )~D
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Here, Arr,,q and Age,, are defined as:
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Substituting these definitions, the final Pair-DPO objective can be expressed as:
‘CPair—DPO (0) = _E(r,y,xw,zl,yw,yz)ND [IOgO' (AUndAGen)] (]5)
B More Quantitative Results
Table 6: Evaluation on MME-Unify [50].
Understanding Generation | MME-U Score
Methods #params | SIPU MITIU VPU  Avg TIG Avg
GILL [17] 7B 22.18 6.00 3.56 10.58 46.60 6.12
MiniGPT-5 [68] 7B 19.25 1092 1593 15.37 35.48 7.09
Show-o [48] 1.3B 3247 3475 25.66 30.96 43.54 12.74
Emu3 [41] 8B 45775 30.50 23.32 33.19 49.08 13.79
HermesFlow (Ours) 1.3B 4149 33.00 2832 34.27 46.48 14.01

To more comprehensively evaluate HermesFlow’s capabilities in both understanding and generation,
we present results on the more extensive MME-Unify [50] benchmark. As shown in Table[6] with
the backbone Show-o, HermesFlow achieves significant improvements in both understanding and
generation, indicating that our approach not only reduces the gap between the two but also facilitates
their joint enhancement. Despite using fewer parameters (1.3B), HermesFlow outperforms larger
models such as Emu3 with 7B parameters, further demonstrating its potential as a general post-training
framework for MLLMs.
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C Example of Paired Preference Data

Homologous Input Data:

Prompt/Caption: Image:
Two samurais, one black and the other white,

fiercely engage in combat as the black samurai

skillfully blocks an incoming sword attack amidst

a city backdrop, creating a scene of intense and

tense action.

Sampled data (n=10): Win Lose

Sampled Captions for Understanding:

Captionl: Two warriors in armor stand in front of a city, holding swords.

Caption2: Two warriors in armor, one with a sword and the other with a spear, are standing
in front of a city.

Caption3: A character in the game Shadowrun stands on a platform with two other characters.
Caption4: A scene of two warriors standing in front of a city. One warrior has a sword in
each hand, and they are facing each other.

Caption5: Two warriors in armor, one with a sword and the other with a spear, are standing
in front of a city.

Caption6: Two knights in armor are standing in front of a city.

Caption7: The two knights are in a dark city, standing on a street with swords in hand.
They seem to have just come out from the shadows, ready for battle.

Caption8: Two warriors in armor, one with a sword and the other with a spear, are standing
in front of a city.

Caption9: Two warriors in armor stand on a platform, holding swords. One of the warriors
has a horned helmet, the other has a helmet with horns, city background.

Captionl0: The image shows two knights on the edge of a cliff. They have two swords and
are facing off, preparing to fight.

Sampled Images for Generation:

Paired Preference Data:

Understanding:

Caption_win: Two warriors in armor stand on a platform, holding swords. One of the
warriors has a horned helmet, the other has a helmet with horns, city background.
Caption_lose: A character in the game Shadowrun stands on a platform with two other
characters.

Generation:

Image_win:

Figure 7: An example of the curation of paired preference data.
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D Qualitative Examples on Multimodal Understanding

Qualitative Example of Multimodal Understanding (1)

Prompt: Please describe this image in
detail.

HermesFlow:

The image features a rusty, old-fashioned, and somewhat
eerie-looking metal sculpture of a hand holding a flower.
The sculpture is placed on a patch of dirt, surrounded by a
barren landscape. The hand appears to be holding a flower,
which is a single, wilted flower. The overall scene gives off
a sense of abandonment and decay, as the sculpture seems
to be a relic from a bygone era.

Qualitative Example of Multimodal Understanding (2

Prompt: Please describe this image in
detail.

HermesFlow:

The image features an astronaut floating in the ocean, with
a large planet visible in the background. The astronaut is
wearing a spacesuit and appears to be floating on the surface
of the water. The scene is set in outer space, with a star-filled
sky visible in the background. The astronaut seems to be
gazing at the planet, possibly contemplating their journey or
the vastness of the universe.
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Qualitative Example of Multimodal Understanding (3)

Prompt: Please describe this image in
detail.

HermesFlow:

The image features a small, adorable bunny wearing a red
sweater, sitting on a white surface. The bunny is surrounded
by beautiful arrangement of white daisies, with some of
the flowers positioned behind the bunny, creating a visually
pleasing scene. The bunny appears to be the main focus of
the image, with its cute appearance and the contrasting red
sweater standing out against the white daisies.

Qualitative Example of Multimodal Understanding (4)

Prompt: Please describe this image in
detail.

HermesFlow:
The image features a woman with blonde hair, wearing a
black dress, and looking out of a window. She is positioned
in the center of the frame, with her gaze directed towards
something outside the window. The woman is wearing
large earrings, which are noticeable as she looks out the
window. The scene appears to be set indoors, with the
woman standing near a window, possibly in a room.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please see the details in the abstract and introduction sections.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the conclusion part.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper introduces model training and inference algorithms for applications
without theoretical outputs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Justification: Please refer to the details in Section[3
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please see the details in supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to the details in Section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please refer to the details in Section
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to the details in Section
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Please see the whole paper and supplemental material.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please see the whole paper and supplemental material.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: Please see the whole paper and supplemental material.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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