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Abstract

Deep neural networks trained with gradient descent exhibit varying rates of learning
for different patterns. However, the complexity of fitting models to data makes
direct elucidation of the dynamics of learned patterns challenging. To circumvent
this, many works have opted to characterize phases of learning through summary
statistics known as order parameters. In this work, we propose a unifying frame-
work for constructing order parameters based on the Neural Tangent Kernel (NTK),
in which the relationship with the data set is more transparent. In particular, we
derive a local approximation of the NTK for a class of deep regression models
(SIRENs) trained to reconstruct natural images. In so doing, we analytically con-
nect three seemingly distinct phase transitions: the emergence of wave patterns
in residuals (a novel observation), loss rate collapse, and NTK alignment. Our
results provide a dynamical perspective on the observed biases of SIRENs, and
deep image regression models more generally.

1 Introduction

Classical learning theory suggests that models with sufficient capacity - specifically, one whose
parameters outnumber the training samples - tend to "memorise" individual examples rather than
learn underlying patterns, leading to poor generalisation [1]. However, while Deep Neural Networks
(DNNs) are typically over-parameterised, a growing body of research highlights the role of Gradient
Descent (GD) in constraining their effective capacity [2, 3]. A recurring observation is that GD biases
neural networks to prioritise learning simple patterns before more complex ones, resulting in distinct
phases of learning [4, 5]. These phases are characterised by changes in the collective evolution
of the network’s weights, which can be quantified by statistics known as order parameters [6, 7,
8, 9]. Although numerous authors have independently proposed statistics to account for changes
in convergence rate [10, 11] - and correspondingly, the memorisation [12] and over-fitting [13] of
complex/noisy patterns - their interrelationships remain under-explored. More significantly, these
existing approaches provide limited insight into the actual content being learned during each phase -
and consequently, which patterns models systematically struggle to learn. Addressing these gaps is
essential to developing a unified understanding of learning dynamics in DNNs.

A major obstacle in understanding this inductive bias lies in the inherent complexity of GD itself.
While conceptually GD can be viewed as a function mapping from the dataset, hyperparameters,
and initial weights to the final learned weights, in practice, the thousands of iterations through high-
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dimensional parameter space obscure the relationship between order parameters and the underlying
dataset characteristics. In recent years, the Neural Tangent Kernel (NTK) [14] has emerged as an
alternative perspective on the dynamics of learning, recasting them in terms of the evolution of
pointwise errors. Critically, in a phenomenon known as Neural Tangent Kernel Alignment (NTKA),
the eigenspectra of the NTK undergo a sudden transition of their own, spontaneously aligning with
the class structure of the dataset without direct supervision. NTKA has been widely documented
and is suggested as a reason why real-world DNNs often outperform their infinite-width limit
counterparts [15, 16, 17, 18, 19, 20]. However, despite repeated empirical demonstrations of NTKA,
theoretical exploration of the phenomenon has been largely restricted to classification problems with
toy models, such as two-layer neural networks [21, 22], and deep linear networks [22].

In this work, we move beyond these simple classification models and study NTKA in a considerably
more complex setting: deep image regression using multi-layer SIRENs [23]. These Implicit
Neural Representations (INRs) learn mappings from R2 → R, representing images as continuous
functions, and find increasing application in tasks such as super-resolution. Despite the low input
dimensionality, the depth and non-linear (sinusoidal) activations of these networks pose significant
analytical challenges, exceeding the complexity of previously studied models. However, in addition
to facilitating visualisation, this low-dimensionality permits us to leverage insights from computer
vision to introspect the learning process. Our study is structured around three primary contributions:

1. We derive novel approximations for the local structure of the SIREN NTK, allowing us to
approximate: the principal eigenvector (3.3); order parameters such as the minimum value of the
Cosine NTK (3.4); and the correlation lengthscale (3.2). In so doing, we theoretically establish
connections between the onset of NTKA and other dynamical phase transitions.

2. We identify a novel learning phase in deep image regression, characterized by the appearance of
diffusion-like wavecrests in the residuals, and relate this behaviour to the evolution of the NTK.

3. We experimentally verify that the critical points for these different phase transitions cluster in time.
We also empirically investigate the impact of image complexity and SIREN hyperparameters on
the occurrence and timing of phase transitions, and provide evidence that NTK alignment in image
regression tasks occurs in response to difficulties in modelling edges.

2 Preliminaries

In this work, we consider 2D grayscale images, where pixel coordinates and their intensity form
a dataset D of N samples indexed with i, (xi, I(xi)), where xi ∈ R2 and I : R2 7→ R. On
this dataset, we fit SIREN models f(x; θ) of depth Nl, defined recursively by: h(0) = x; h(l) =
sinω0(W

(l)h(l−1) + b(l)); f(x; θ) = W (Nl)h(Nl−1) + b(Nl). Here h(l) denotes the output of the
l-th layer, θ = {W (l), b(l)|l = 1, . . . , Nl} is the set of learnable parameters, and ω0 is a bandwidth
hyperparameter. ω0 is generally chosen to ensure the sin function spans multiple periods (and thus
frequencies) over the inputs. In the continuum limit, we assume the data is distributed uniformly
Pdata(x) = Vol(D)−1. We identify two fields: the local residual field r(x; θ(t)) = I(x)−f(x; θ(t)),
and gradient field ∇θf(x; θ(t)). Dynamics are induced by gradient flow θ̇ = −∇θL on the mean
square error: L(θ) = 1

2Vol(D)

∫
dx r(x; θ)2. Through the chain rule, the residuals evolve as follows:

ṙ(x; θ(t)) = ∇θr(x; θ(t)) · θ̇ (1)

= − 1

Vol(D)

∫
dx′ r(x′)∇θr(x; θ(t)) · ∇θr(x

′; θ(t)) (2)

= −
∫

dx′ r(x′)

(
1

Vol(D)
∇θf(x; θ(t)) · ∇θf(x

′; θ(t))

)
︸ ︷︷ ︸

KNTK(x,x′;θ(t))

(3)

In the last line, we defined the NTK. Equation 3 is a linear dynamical system with a time-varying
kernel. The eigenvectors vk(x, t) represent distinct normal modes of the dataset, each learning at a
rate governed by its associated eigenvalue λk(t). This framework formalizes the intuitive notion that
neural networks learn different patterns at different speeds.
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Figure 1: A Single Phase Transition Through Three Lenses: (a) The magnitude of the residuals
over the training process. Near the critical point we see the formation of wavecrests. (b) Evolution
of evaluation loss rate during training, which reaches a peak at the critical point. (c) Evolution of
the principle eigenvector of the NTK, which reveals a sudden shift from disorder to structure. (d)
Quantification of NTKA in terms of alignment between edges and the principal eigenvector.

Finally, for notational brevity, we will drop the explicit dependence on θ, and write x′ = x+ u. We
also define a kernel closely related to the NTK, the Cos NTK:

CNTK(x, x+ u) =
1

Vol(D)

∇θf(x) · ∇θf(x+ u)

||∇θf(x)|| ||∇θf(x+ u)||
(4)

3 Deriving Order Parameters from the NTK

We illustrate the different phases of learning in Figure 1; we train a (five-layer, 256-unit wide,
ω0 = 60) SIREN model on a 128× 128 grayscale image using full-batch GD (learning rate=10−3).
We evaluate the model on super-resolution at 256× 256. We examine the learning dynamics through
three different lenses, each revealing a sudden shift These shifts are quantitatively identified using
statistics, known as order parameters. We demonstrate below how order paramters for each transition
may be related to a common set of features, which control the local NTK structure. The three lenses
are as follows:

• Spatial Distribution of Residuals: Early in training, the loss decreases uniformly over the dataset
(Drift Phase). However, at a critical point, we observe the formation of "wave-crests" corresponding
to regions of low-loss, which propagate across the dataset (Diffusion Phase). To the best of our
knowledge, we are the first to report this behaviour in SIREN models. We attribute this behaviour
(in sec. 3.1) to changes in the equal-time correlation functions of the gradient field ∇θf(x), whose
parameters we derive in Section 3.2.

• Principal Eigenvectors of the NTK: The principal eigenvector v0 is initially static and appears
highly-disordered (Disordered Phase). However, at a critical point, v0 experiences a brief, sudden
shift, in which it aligns with the edges of the image (Aligned Phase). Although NTKA has
previously been studied in the context of classification problems [24, 25, 26, 27], there are additional
subtleties to consider for a regression task such as INR training. To this end, we introduce a metric,
AUC(|v0|,∇I) in Section 3.3 to identify when alignment occurs. We also derive an approximation
of v0 based on the local structure of the NTK, as outlined in Sections 3.1 and 3.2.

• Training Curve Analysis: There is a rapid shift in the slope of the training curve, which we call
the loss rate L̇. Learning is initially fast (high L̇), but after a critical point, slows abruptly (low L̇).
Several works have studied this transition using order parameters, but in this work, we focus on
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Figure 2: Spatiotemporal Evolution of the Cosine NTK (CNTK ). Left: Global correlation function
of the CNTK at different epochs. Dashed lines show fitted Gaussian approximation from equation
equation 6, and error bars show variance across datasets. Right: Visualization of the CNTK around
three points x ∈ {A,B,C} for small separations, at the beginning and end of training.

the concept of gradient confusion, as described in [13], [11], [12]. In Section 3.4, we derive an
approximation of this parameter based on the local structure of the NTK outlined in Section 3.2.

3.1 Correlation Functions and the Onset of Diffusion

The form of equation 3 is reminiscent of the linear response functions in statistical field theory [28, 29]:
to find the rate of change of the residual field at a point x, the kernel K aggregates information
about the residual at points x+ u. To quantify the range of these interactions, we examine the local,
equal-time correlation functions for the gradients ∇θf(x) separated by a distance ϵ:

k(x, ϵ) = Eϕ

[
∇θf(x) · ∇θf(x+ ϵêϕ)

]
= Eϕ

[
KNTK(x, x+ ϵêϕ)

]
(5)

Here, êϕ denotes a unit vector in direction ϕ. Similarly, the global, equal-time correlation function is
given by k(ϵ) = Ex

[
k(x, ϵ)]. We may define similar quantities for the CNTk, which we denote by

c(x, ϵ) and c(ϵ). We expect the range of these interactions to be short, as INRs are often carefully
designed to ensure a diagonally dominant NTK[30, 31, 32]. To verify this, we group pairs of
datapoints based on their distance, and then compute the mean CNTk value. An example of this
empirical correlation function is shown in Figure 2. The observed structure motivates the following
proposition, which we examine qualitatively in Figure 12 and validate numerically in Appendix F.1.
Proposition 3.1. For SIREN models, the equal-time correlation functions of the NTK are well-
approximated by Gaussians of the form:

c(ϵ) ≈ (1− c∞)e−ϵ2/2ξ2corr + c∞, (6)

k(x, ϵ) ≈ ||∇θf(x)||2
[
(1− c∞(x))e−ϵ2/2ξ(x)2 + c∞(x)

]
. (7)

Our approximation introduces two important order parameters: the first, the correlation length-scale
ξcorr, controls the rate at which correlations decay with distance, defining the range of interactions.
The second, the asymptotic value c∞, describes the interactions between points at separations ϵ much
greater than ξ. Suspending a consideration of anisotropic effects, the above correlation functions are
consistent with the following form for the full NTK:
Proposition 3.2. Gaussian Approximation of the SIREN NTK. The NTK may be be approximated
as a Gaussian kernel with spatially-varying amplitude ||∇θf(x)||2(1 − c∞(x)), bandwidth ξ(x),
and asymptotic value ||∇θf(x)||2c∞(x):

KGauss(x, x+ u) ≈ ||∇θf(x)||2(1− c∞(x)) exp(−||u||2/ξ2(x)) + ||∇θf(x)||2c∞(x) (8)

Dynamically, we see from the left of Figure 2 that both ξ and c∞ evolve during training, and we shall
demonstrate that changes in these values account for the onset of diffusion.
Theorem 3.1. Diffusive Evolution of the Residuals: Let the mean residual be denoted by µr ≡ Ex[r],
and let K∞ denote the mean contribution to the KNTK at large distances ||u|| ≫ ξ(x). Then, as
µrK∞ → 0, assuming KNTK ≈ KGauss, the residuals approximately evolve under the following
diffusion equation:

d

dt
r(x, t) ≈ −2πξ2(x)||∇θf(x)||2r(x, t)− πξ4(x)||∇θf(x)||2∆2

xr(x, t) (9)
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Proof Sketch. (Full details in Appendix A.2). As µrK∞ → 0, local interactions dominate the
background in determining the evolution of r(x) in equation 3. Thus we may approximate:

dr

dt
≈ −

∫
dx r(x+ u)K(x, x+ u) ≈

∫
dx r(x+ u)||∇θf(x)||2 exp(−||u||2/ξ2(x)) (10)

The exponentially-decaying NTK will suppress all contributions to ṙ(x) from residuals r(x+ u) for
which ||u|| ≫ ξ(x). When ξ(x) is small, we may perform a Taylor expansion around the point x:

r(x+ u; θ) ≈ r(x; θ) + u⊤∇xr(x; θ) +
1

2
u⊤∇2

xr(x; θ)u (11)

Inserting this into equation 10, the full integral may be solved using Gaussian integration. We obtain:

d

dt
r(x; θ) = −2πξ2(x)||∇θf(x)||2r(x)− πξ4(x)||∇θf(x)||2∆2

xr, (12)

which resembles a standard diffusion equation .

3.2 Beyond the Isotropic Gaussian Approximation

Though the Gaussian approximation of the NTK can account for the appearance of the diffusion
wavecrests, it fails to capture other empirical properties. Namely, whereas the true NTK is anisotropic
(see Figure 2) and can contain negative entries, the Gaussian kernel is isotropic, and satisfies
KGauss(x, x+ u) > 0 for all u. To overcome these limitations, we present the following refinement:

Theorem 3.2. Cauchy Approximation of the SIREN NTK: For small separations u, the Cosine
NTK locally takes the form of a Cauchy Distribution with structure parameters ax, Dx, Hx:

CNTK(x, x+ u) ≈ 2a2x + u⊤Dx

2a2x + u⊤Dx + u⊤Hxu
, (13)

These parameters are obtained from the model gradients as follows:

ax = ||∇θf(x)||; Dx = ∇x||∇θf(x)||2; Hx = (∇x∇θf(x))(∇x∇θf(x))
⊤ (14)

Proof Sketch. (Full details in Appendix A.3). Via the Law of Cosines, the CNTK satisfies:

CNTK(x, x+ u) =
||∇θf(x)||2 + ||∇θf(x+ u)||2 − ||∇θf(x+ u)−∇θf(x)||2

2||∇θf(x)|| ||∇θf(x+ u)||
(15)

The result then follows by Taylor expanding the numerator and denominator to second order in u.

A benefit of this new approximation is that it can be used to predict the correlation length-scale:

Corollary 3.2.1. The correlation length-scale for the NTK about a point x may be constructed from
its local structure parameters ax, Dx, Hx and asymptotic value c∞(x) as follows:

ξ2(x) ≈ 2

(
1− c∞(x)

1 + c∞(x)

)
a2x√

detHx

+
1

4

(
1− c∞(x)

1 + c∞(x)

)2
D⊤

x H
−1
x Dx√

detHx

(16)

Proof Sketch. (Full details in Appendix A.4). Note that the levels sets of equation 13 correspond to
ellipses. For a given value c, the area of the level set can be shown to be:

Aellipse(x; c) = 2π

(
1− c

c

)
a2x√

detHx

+
π

4

(
1− c

c

)2
D⊤

x H
−1
x Dx√

detHx

(17)

The correlation lengthscale is then approximated as ξ(x) ≈
√

Aellipse(x, c)/π, where we choose
c = 1/2 + c∞/2 to account for the asymptotic value of the CNTK .
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3.3 Order Parameters for the Onset of NTK Alignment

In the classification problems typically studied in the NTKA literature, the principle eigenvector v0(x)
is seen to learn class-separating boundaries [24, 25]. Similarly, for our 2D image reconstruction
task, we see the NTK learns information about the distribution of edges in the image (Figure 3). To
quantify this alignment, we use a Canny Edge Detector [33] to estimate connected image edges. We
then quantify the utility of |v0(x)| in predicting edges in terms of average recall, as measured by
the area under the Receiver Operating Characteristic Curve (ROC AUC). We denote this measure
AUC(|v0|,∇I), and it has the advantage of being insensitive to monotonic transformations of |v0|.
This invariance is beneficial in two respects: (1) as a reliability measure for a binary predictor (edges),
it obviates the need to specify a threshold, facilitating comparisons across datasets (see Section 4.1);
and (2) empirically, it saturates during training, facilitating the the identification of a critical point.

Another hallmark of NTKA is early anisotropic growth of the NTK spectrum [25], as the NTK
becomes stretched along a small number of directions correlated with the task. This is especially the
case for the principal eigenvalue λ0, which grows orders of magnitude larger than the next leading
eigenvalue. In Section 4.1, we will demonstrate empirically that this is also true for INRs.

The divergence of λ0 enables a particularly simple approximation of the princpal eigenvector v0:
Corollary 3.2.2. The principal eigenvector v0(x) of the NTK admits the following approximation in
terms of the local asymptotic value c∞(x) and the local correlation lengthscale ξ(x):

v0(x) ≈ a2x

[
c∞(x)Vol(D) + 2πξ2(x)(1− c∞(x))

]
(18)

Proof. Because the principal eigenvalue is so dominant, KNTK becomes effectively low-rank, and
so power iterations converge quickly. Thus, choosing a vector of ones v = 1 as our initial vector, we
expect K1/1⊤1 to have strong cosine alignment with the principal eigenvalue. In the continuum
limit, this is simply given by:

K1/N → Eu[K(x, x+ u)] = Eϵ[Eu[K(x, x+ u)| ||u|| = ϵ]] (19)

=

∫ ϵmax

0

dϵ k(x, ϵ)P (x, ϵ) (20)

Here, P (x, ϵ) denotes the density of points that are located a distance ϵ from the point x, and ϵmax is
an upper bound on the distance that we assume is much greater than ξcorr. Close to this x1, P (x, ϵ)
grows like 2πϵ. Thus, leveraging equations 7 and 14, we have:

v0(x) ≈ 2πa2x

∫ ϵmax

0

dϵ ϵ

[
c∞(x) + (1− c∞(x))e−ϵ2/2ξ2(x)

]
(21)

= 2πa2x

[
c∞(x)ϵ2max + ξ2(x)(1− c∞(x))(1− e−ϵ2max/2ξ

2(x))

]
(22)

≈ a2x

[
c∞(x)Vol(D) + 2πξ2(x)(1− c∞(x))

]
We evaluate the fidelity of this approximation in Appendix F. As we approach the phase transition,
the asymptotic values tend towards 0, and the second term dominates. Considering the approximation
for the correlation length-scale ξ in Corollary 3.2.1, we note that v0(x) grows as O(||∇θf(x)||4).
This implies particular sensitivity to pixels in regions with substantial high-frequency information,
such as edges and corners. As natural images tend to be piecewise smooth, pixels on boundaries
have the strongest spatial gradients, and are therefore the greatest source of information, being
poorly compressible due to the lack of smoothness, and accordingly disagreement in parameter
gradients. Given the inability of models to accurately describe sharp discontinuities these edge
pixels are considered influential datapoints, which accounts for their prominence within the principal
eigenvector. We discuss other parallels between the moments of the NTK and traditional corners
detection algorithms in Appendix E. In particular, we introduce another order parameter, termed
MAG-Ma (Magnitude of the Average Gradient of the Log Gradient-Field Magnitudes), to monitor the
breakdown of stationarity (ie local translation invariance) of the NTK. It is obtained as ||Ex[Dx/a

2
x]||2.

1The true form of P (x, ϵ) is complicated and varies from point to point, due to edge effects. However, these
effects are suppressed as P (x, ϵ) only appears when multiplied the Gaussian kx.
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3.4 Order Parameters for the Loss Rate Collapse

In [13], [11], [12], and related works, the authors examine the role of gradient alignment statistics
in determining the speed of learning under stochastic gradient descent. They note the emergence of
negative alignments between batches correlates with a reduction in learning speed. Intuitively, when
sample gradients become negatively aligned, the sum of the gradients approaches zero, resulting in a
diminished learning signal. The minimum alignment is simply the minimum value of the CNTK ,
which we may obtain explicitly from Theorem 3.2 as follows:
Corollary 3.2.3. The minimum value of the CNTK admits the following approximation in terms of
the local structure parameters ax, Dx, Hx:

min
u

CNTK(x, x+ u) =
D⊤

x H
−1
x Dx

D⊤
x H

−1
x Dx − 8a2x

(23)

Proof Sketch. (Full details in Appendix A.5). Setting ∂uCNTK(x, x+ u) = 0 yields two solutions:
u = 0, corresponding to the maximum (1), and another corresponding to the minimum.

The minCNTK is then simply the minimum of 23 across the whole dataset.

4 Experimental Results

Setup: We fit SIREN models to a set of thirty 64× 64 downsampled images and evaluate the MSE
Leval on a super-resolution task (at 256× 256). We used five random seeds and also varied the width,
depth and bandwidth ω0 (ranges are given in Appendix B.2). We compute the eigenspectra of the
NTK using Randomized SVD [34]. In addition to the order parameters described in Section 3, we
examine three NTK-based order parameters from the literature: (1) The principal eigenvalue λ0 of the
NTK, which diverges at the critical point; (2) The variance of the gradients σ2

θ , which peak during the
Fast-Slow learning phases [10], and which may be connected (see Appendix A.6) to the trace of the
NTK; (3) The Centred Kernel Alignment (CKA) between the NTK and a task kernel KY . For INR
regression, we use KY (x, x+ u) = exp(−50||I(x)− I(x+ u)||2). The similarity between kernels
is measured using the normalized Hilbert-Schmidt Information Criterion (HSIC), as in [25, 26, 27].
Full experimental details may be found in Appendix B.2.

4.1 Examining the Distribution of Critical Points

Critical points cluster around run-specific times: The left-hand side of Figure 3 illustrates our
procedure for identifying critical points in a given trial. We use a simple peak detector to identify
the region of interest for the loss rate L̇eval and the gradient variance σθ, using the FWHM to define
a confidence region. For the minCNTK , we look for zero-crossings, with a confidence region
constructed from the cumulative variance. For every other order parameter, we fit a sigmoid, where
the inflection point marks the critical point, and the slope defines the confidence region (full details
in Appendix B.2). The right side of Figure 3 demonstrates how frequently these confidence regions
overlap across our experimental sweep2. Remarkably, the phase transitions described by the order
parameters - despite being derived to measure different phenomenon in the literature - consistently
occur at the same time during training.

Hyperparameters alter the timing of run-specific transitions: in Table 1 we observe that both
depth and bandwidth ω0 have critical roles in controlling the shift in the loss rate L̇eval. Generally,
increasing depth and decreasing ω0 result in earlier transition times tcrit. However, these changes
have opposite effects on the model performance: for fixed ω0, deeper models to converge to better
(lower Leval) solutions faster. However, it seems that lower values of ω0 cause models to converge
prematurely. This may be deduced by studying the correlation between the final residuals (details in
Appendix B.2). For equivalent depth (and therefore, equivalent traditional capacity), models with
lower ω0 exhibit more correlations in the residuals. This is indicative of remaining structure in the
residuals, and can be interpreted as evidence of under-fitting.

2In computing the coincidence matrix, we exclude trials where the detection of the critical point was
unreliable. In Appendix C, we comment on how image properties impact the detection rate.
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Figure 3: Alignment of Order Parameters. Left: Order parameter evolution and critical points
during training of a SIREN model on the astro image. The red vertical lines denote the location of
the critical points, and the green vertical lines denote confidence regions. Right: Heatmap showing
the frequency of intersections between the confidence regions. Additional figures in Appendix G.1.

Table 1: Variation in model performance with hyperparamters: Comparing the dependence of
transition times (tcrit), super-resolution performance (log10 Leval), and resdual correlation on depth
and bandwidth. Also featuring expected correlation lengthscale (E[ξcorr(t)]) and correlation between
log ||∇θf(x; θ)|| and ||∇xI(x)||. Values are averaged over the same sweep defined in Section 4.1.

depth
ω0

E[ξcorr(t)] AUC(|v0|, I) Grad. Corr. log10 tcrit log10 Leval Res. Corr.

3/90 0.04± 0.00 0.59± 0.05 0.06± 0.10 2.83± 0.19 −2.01± 0.31 0.35± 0.06
3/60 0.06± 0.00 0.60± 0.05 0.16± 0.11 2.84± 0.12 −2.00± 0.32 0.40± 0.07
3/30 0.11± 0.00 0.60± 0.05 0.27± 0.08 2.44± 0.25 −1.92± 0.30 0.44± 0.07
3/15 0.18± 0.01 0.60± 0.05 0.26± 0.07 2.03± 0.34 −1.83± 0.29 0.48± 0.07

4/90 0.04± 0.00 0.67± 0.07 0.23± 0.13 2.66± 0.17 −2.02± 0.32 0.35± 0.06
4/60 0.06± 0.00 0.69± 0.07 0.29± 0.12 2.61± 0.16 −2.04± 0.33 0.39± 0.07
4/30 0.10± 0.00 0.71± 0.08 0.41± 0.10 2.22± 0.27 −1.99± 0.31 0.41± 0.07
4/15 0.16± 0.01 0.68± 0.09 0.55± 0.08 1.87± 0.35 −1.94± 0.30 0.43± 0.07

5/90 0.03± 0.00 0.68± 0.07 0.24± 0.14 2.54± 0.18 −2.01± 0.32 0.34± 0.06
5/60 0.05± 0.00 0.71± 0.07 0.30± 0.13 2.42± 0.17 −2.05± 0.33 0.39± 0.07
5/30 0.09± 0.00 0.73± 0.08 0.39± 0.12 2.15± 0.12 −2.02± 0.32 0.40± 0.07
5/15 0.15± 0.01 0.72± 0.08 0.52± 0.09 1.85± 0.27 −1.98± 0.31 0.41± 0.07

4.2 Influence of Hyperparameters on Edge Alignment

In the previous section, for fixed depth, we demonstrated that lower ω0 correlates with (1) earlier
phase transitions, (2) higher validation loss, and (3) correlated residuals. Together, these observations
suggest that models with lower ω0 converge prematurely, underutilizing their capacity. A natural
question arises: which patterns do these models struggle to capture? Given the observed concurrence
of loss rate collapse and NTK alignment, we analyse the NTK eigenspectrum to gain some insight.

In Figure 4, we train four SIRENs on the sax dataset with (ω0, depth) ∈ {15, 60} × {3, 5}. We
visualise both the log magnitudes of the parameter gradients, log ||∇θ(x)f ||2, and the principal
eigenvector, v0(x), at the end of training. Additional Figures may be found in Appendix C.2
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Figure 4: Effect of Hyperparameters on Edge Alignment: Left (magma colormap): The norm of
the parameter gradients ||∇θf(x)|| for (ω0, depth) ∈ {15, 60} × {3, 5}, labelled with the Pearson
correlation ρ between the log of the norm and the spatial gradient ∇xI of the target image. Right
(viridis colormap): visualizing the principal eigenvector v0 of the NTK for the same models, labelled
with the edge alignment score AUC(|v0|,∇I). More images in Appendix C.2

Generally, we observe that for low ω0, log ||∇θf(x; θ)||2 swells and concentrates near image edges,
becoming sparser, and more correlated with the spatial gradient magnitudes ||∇xI(x)|| (aggregated
statistics may be seen in Table 1). This edge prominence in v0 matches expectations, as per Corollary
3.2.2, v0(x) ∼ O(||∇θf(x)||4). Overall, while edge alignment is seen across most settings, it is
especially prominent for deeper models with lower values of ω0. This indicates prioritization of these
patterns by the NTK, and correspondingly, the patterns the model is most invested in.

5 Discussion

To explain the impact of ω0, in Table 1 we track the expected correlation lengthscale E[ξcorr(t)]
over the course of training. In Figure 17 of the Supplementary Materials, we also examine the
variance in ξcorr(0) with ω0 in all models. Consistently, we observe that lower ω0 is associated
with larger values of the correlation lengthscale. This implies that the NTK integrates information
across larger neighborhoods, implicitly averaging over high-frequency features. Consequently, we
expect these SIRENs to struggle when modeling high-frequency patterns, which is consistent with
other observations in the literature [32]. Following the discussion in Section 3.3, we expect that the
difficulty of modeling edges is responsible for the swelling of the parameter gradients ||∇θf(x)||2.

Intriguingly, we observe that the principal eigenvector becomes sparser as we increase depth, leading
to stronger edge alignment, as seen in Table 1. Yet, this sparsification is associated with completely
different generalization behavior: models achieve lower validation loss, with less correlated residuals,
as we increase depth. We hypothesise a different mechanism underlies this sparsification in compari-
son with ω0. Figure 4 demonstrates increasing ω0 increases the sensitivity of the gradient magnitudes
(and hence the principal eigenvector) to noise in the images. For DNNs, gradient magnitudes decom-
pose into a sum across layers, namely ||∇θf ||2 =

∑depth
l=1 ||∇θ(l)f ||2. In effect, preference is given to

points which are consistently confusing across layers, thus mitigating the effects of noise.

6 Related Work

Fast and Slow Phases of Neural Network Training: The literature highlights a dynamical phase
transition in DNN training between fast to slow learning regimes [10]. The initial fast phase is
characterized by large gradient norms and low fluctuations, yielding rapid loss reduction via broad
agreement across examples. It is followed by a slow phase in which gradient fluctuations dominate
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and progress decelerates. This transition can be tracked by order parameters including gradient
signal-to-noise [10], gradient confusion, [13, 11, 12], and correlation lengthscales [13]. Furthermore,
it reflects a move from learning simple, shared patterns to fitting complex, idiosyncratic ones [4],
and thus offers a window into feature learning. Related work studies the representation dynamics in
ReLU networks [35]; here, we study them via the NTK in SIREN models.

Neural Tangent Kernels for Implicit Neural Representations: Previous research has investigated
the inductive biases of INRs using the Neural Tangent Kernel (NTK), focusing on aspects such as
spectral properties [36] and dependencies on uniformly sampled data [30]. Furthermore, studies by
[37] and [38] have analyzed the eigenfunctions of the empirical NTK to elucidate the approximation
capabilities of INRs. These investigations, however, primarily examine static properties of the NTK
at initialization, which do not account for feature learning dynamics. This is known to be a poor
approximation [39]. In contrast, our work concentrates on the evolution of the NTK, aiming to deepen
our understanding of how INRs learn to model images.

Neural Tangent Kernel Alignment In practical settings, recent studies have shown that during
training, the NTK dynamically aligns with a limited number of task-relevant directions [40, 41,
24, 21, 25, 22, 26, 27]. Concurrently, at the eigenfunction level, the modes increasingly reflect
salient features of the dataset, such as class-separating boundaries [24, 25], and Fourier frequencies
[25]. The widespread occurrence and influence of kernel alignment suggest its critical role in DNN
feature learning, contributing to the superior performance of DNNs over models based on infinite-
width NTKs [26]. Direct optimisation of alignment measures has even been suggested as one way
to enhance the convergence of GD and generalization of models[42, 43]. That said, theoretical
investigation into spontaneous NTKA often focus on shallow networks [21, 22], toy models [26, 25],
and deep linear networks [22]. In contrast, the INRs we study are deep (3-6 layers), nonlinear models
that see frequent use in Computer Vision problems.

7 Conclusion

We have developed new formulations that leverage the NTK to characterise the dynamics of feature
learning in deep image regression models (SIRENs). By analytically deriving approximations for the
local structure of SIREN NTKs - using Gaussian and Cauchy distributions - we were able to obtain
approximate expressions for the correlation lengthscale, the minimum value of the CNTK , and the
principal eigenvector. We related these expressions to order parameters for three phase transitions
identified in different dynamical perspectives on learning: the appearance of diffusion wave-crests
in residual evolution (first identified in this paper); the collapse of the loss rate; the onset of NTK
alignment. We argued, based on these derivations and empirical demonstrations that critical points
cluster in time, that these distinct phase transitions share a common, underlying mechanism.

The following picture emerges from our analysis: as long range correlations between gradients decay,
residuals only interact with their immediate neighbours (onset of diffusion), leading to increased
gradient variance (loss rate collapse) and translational symmetry breaking. In parallel, the growth of
the principal eigenvalue or the NTK leads the principal eigenvector to memorize the distribution of
influential points, as measured by accumulating gradients. In images, one influential class of points
are edges, leading to their prominence in the principal eigenvector (NTK alignment).

In this study, we focused on SIREN models trained on a 2D super-resolution task using full-batch
gradient descent. However, SIRENs are used in a variety of inverse problems, and it remains to be
seen whether our observations extend to these settings. Future work may also explore the impact of
different optimizers, such as ADAM [44], which adaptively adjusts learning rates and may influence
the stability and divergence of the principal eigenvalue - a key factor in our study of NTK alignment.

This work has demonstrated that the NTK provides a rich theoretical tool for deriving and relating
order parameters to understand training dynamics. We provide new methodology to rigorously study
the influence of inductive biases, such as model architectures and hyper-parameters, on the underlying
learning process and may have practical utility in diagnosing causes of poor learning outcomes.

Acknowledgements

Supported by the University of Sussex Be.AI doctoral scholarship, funded by the Leverhulme Trust.

10



References
[1] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer, 1 edition, 2007.

[2] Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
In Neural Information Processing Systems, 2019.

[3] Maxwell Nye and Andrew M. Saxe. Are efficient deep representations learnable? ArXiv,
abs/1807.06399, 2018.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims in the abastract are that (1) we derive a local approximation
of the NTK for SIRENs (all of Section 3); (2) we construct order parameters from this
approximation, namely, in Section 3.1 for diffusion wavecrests, loss rate collapse (Section
3.4), and NTK alignment (3.3). We discuss SIREN biases in section 4.1 and 4.2 and the
Discussion (Section 5). Considering more general deep image regression, we compare
against ReLU+PE in Appendix D.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In addition to the conclusion (which clarifies we only consider full batch
GD), we make numerous assumptions outlined in Section 3 that we only know to hold for
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SIRENs (which we validate in Appendix F). What’s more, as outlined in the introduction,
our analysis is only tractable because we are working in low dimensional domains (ie image
regression).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The main paper, this is all in Section 3. Extra proofs found in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 begins with a summary of our setup, and Appendix B gives the full
details. Our actual experiments are very simple: training a variety of SIREN models and
tracking summary statistics of the NTK. The bulk of the paper is derivations.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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A Deferred Proofs

A.1 Decomposition of the NTK over layers

Consider a feedforward neural network, denoted by f(x) = h(L) ◦ . . . h(1)(x). We furthermore
define:

z(l) = [W (l)]⊤h(l−1) + b(l) (24)

h(l) = σ(z(l)) (25)
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In this way, we may calculate the parametric gradients as follows:

∇W (l)f =
∂f

∂z(l)
[h(l−1)]⊤ (26)

vec(∇W (l)f) =

(
I ⊗ ∂f

∂z(l)

)
h(l−1) (27)

vec(∇W (l)f(xi))
⊤vec(∇W (l)f(xj)) = h(l−1)(xi)

⊤
(
I ⊗ ∂f(xi)

∂z(l)

⊤)(
I ⊗ ∂f(xj)

∂z(l)

)
h(l−1)(xj)

(28)

= h(l−1)(xi)
⊤
(
I ⊗ ∂f(xi)

∂z(l)

⊤
∂f(xj)

∂z(l)

)
h(l−1)(xj) (29)

=

(
∂f(xi)

∂z(l)

⊤
∂f(xj)

∂z(l)

)(
h(l−1)(xi)

⊤h(l−1)(xj)

)
(30)

The first term in this product defines functional similarity between points, while the second defines
representational similarity. Thinking of each term as a separate kernel, the overall layer kernel - ie
the product is defined via an AND operation. A similar formula holds for the other layers. For the
biases, we have, more simply:

∇b(l)f =
∂f

∂z(l)
(31)

∇b(l)f(xi)
⊤∇b(l)f(xj) =

∂f(xi)

∂z(l)

⊤
∂f(xj)

∂z(l)
(32)

The full NTK is then given simply by:

K(xi, xj ; θ) =

Nl∑
l=1

(
∂f(xi)

∂z(l)

⊤
∂f(xj)

∂z(l)

)(
1 + h(l−1)(xi)

⊤h(l−1)(xj)

)
(33)

≡
Nl∑
l=1

K(l)(xi, xj) (34)

In particular, we have:

K(x, x; θ) =

Nl∑
l=1

∣∣∣∣∣∣∣∣∂f(x)∂z(l)

∣∣∣∣∣∣∣∣2
2

(
1 +

∣∣∣∣h(l−1)(x)
∣∣∣∣2
2

)
(35)

Following the same logic, the full NTK is defined as an OR over all the layers. For INRs, these layers
tend to be frequency separated, so that lower layers correspond to lower frequencies.

A.2 Proof of Theorem 3.1: Diffusive Evolution of the Residuals

The motivation for our ansatz in equation 10 is the empirical form of the correlation function in
equation 7. Written fully, we have:

K(x, x+ u) ≈ ||∇θf(x)||2 exp(−||u||2/ξ2(x)) + ||∇θf(x)||2c∞(x) (36)

Thus the residuals evolve according to:

ṙ(x) = −
∫

du r(x+ u)K(x, x+ u) (37)

≈ −||∇θf(x)||2
[ ∫

du exp(−||u||2/ξ2(x))r(x+ u)− c∞(x)

∫
du r(x+ u)

]
(38)

= ||∇θf(x)||2
[ ∫

du exp(−||u||2/ξ2(x))r(x+ u)− µrc∞(x)Vol(D)

]
(39)

When µr ≡ E[r] and c∞ decay to zero, the second, background term in the above equation becomes
dominated by local interactions. Thus, in Section 4, we will track the following order parameter:

µrK∞ ≡ |Ex[r]Ex[||∇θf(x)||2c∞(x)]| (40)
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The order parameter is large in the Drift phase, and small in the Diffusion phase. In Section B, we
overview the specifics of how we detect changes in the phase. For the remainder of this section, we
analytically study kernels of the form:

K(x, x+ u) = A(x)e−u2/2ξ2(x) (41)

= 2πξ2(x)A(x)N (u; 0, ξ2(x)I) (42)

That is, kernels without a background term. Here, N (u;µ,Σ) denotes the d-dimensional; multivariate
Gaussian Distribution:

N (u;µ(x),Σ(x)) =
1√

(2π)d detΣ(x)
exp

(
− 1

2
(u− µ(x))⊤Σ−1(x)(u− µ(x))

)
(43)

For our case, d = 2, and Σ(x) = ξ2(x)I . The determinant of the covariance is as follows:

detΣ(x) = (ξ2)2 detI = ξ4(x) (44)

We now consider the integral of the following quadratic form:∫
du (u⊤Hu) e−u2/2ξ2(x) = 2πξ2(x)

∫
du (u⊤Hu)N (u; 0, ξ2(x)I) (45)

= 2πξ2(x)EN (u;0,ξ2I)[u
⊤Hu] (46)

= 2πξ2(x)tr(HΣ(x)) (47)

= 2πξ4(x)tr(H) (48)

Now, let’s look at the following Taylor expansion:

r(x+ u) ≈ r(x) + u⊤∇xr +
1

2
u⊤(∇2

xr)u (49)

When integrating the above in equation 3, the second term vanishes, because it involves a product of
symmetric and anti-symmetric functions. Thus, we have∫

du r(x+ u)K(x, x+ u) = A(x)

∫
du r(x+ u)e−u2/2ξ2(x) (50)

= A(x)

∫
du

[
r(x)e−u2/2ξ2(x) +

1

2
u⊤(∇2

xr)u e
−u2/2ξ2(x)

]
(51)

Leveraging our result for the quadratic term, we have, finally:∫
du r(x+ u)K(x, x+ u) = 2πξ2(x)A(x)r(x) + πξ4(x)A(x)tr(∇2

xr) (52)

= 2πξ2(x)A(x)r(x) + πξ4(x)A(x)∆2r (53)

Thus, the diffusion equation becomes:

ṙ = −2πξ2(x)A(x)r(x)− πξ4(x)A(x)∆2r

A.3 Proof of Theorem 3.2: Local Cauchy Approximation of the CNTK

A.3.1 Notation and Derivation

We consider an arbitrary vector valued function f(x), and consider the cosine of the angle between
f(x) and f(x + u) for small displacements u. To ease notation, let us make use of the following
shorthands:

a = f(x) (54)
b = f(x+ u) (55)
c = b− a (56)
J = ∇xa (57)

D = ∇x||a||2 (58)

24



To first order in u, we have:

b ≈ a+ u⊤J (59)

c ≈ u⊤J (60)

||b||2 ≈ ||a+ u⊤J ||2 (61)

= ||a||2 + u⊤D + ||u⊤J ||2 (62)

Our goal is to discern the local behaviour of the cosine of the angle θ between a and b (as illustrated
in Figure 5). To that end, our starting point is the law of cosines:

a

b c

ϕ

R

O A

B

C

Figure 5: Triangle with vectors a, b, and b− a, inscribed in a circumcircle.

cosϕ =
||a||2 + ||b||2 − ||c||2

2||a|| ||b||
(63)

≈ 2||a||2 + u⊤D

2||a||2

(
1 +

u⊤D

||a||2
+

||u⊤J ||2

||a||2

)− 1
2

(64)

To proceed, note that, for small scalar ϵ, we have the following identity:

(1 + ϵ)
1
2 ≈ 1 +

ϵ

2
− ϵ2

8
(65)

Thus:

cosϕ ≈ 2||a||2 + u⊤D

2||a||2 + u⊤D + ||u⊤J ||2 − 1
16||a||2 (u

⊤D)2
(66)

(67)

For the NTK, where we will have a = ∇θf , ||a|| is so large that we may ignore the term of order
||a||−2. We illustrate our approximation in Figure 6.

A.3.2 Specialization for Feed Forward Neural Networks

We want to consider the case where, per our previous derivation, a = ∇θf . This procedure is
straightforward for the biases. For the weights W (l)

ij , we have:

∂f(x; θ)

∂W
(l)
ij

=
∂f(x; θ)

∂z
(l)
i

h
(l−1)
j (x; θ) (68)
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Figure 6: Cauchy Approximation of the Cosine NTK. Left: Sample image, and test point x = A.
Middle: visualization of CNTK(x, x+u) in the vicinity of the point A for small separations u. Right:
the Cauchy approximation, capturing both the range, orientation, and the local minima of the true
CNTK .

Therefore:

∂f2(x; θ)

∂xm∂W
(l)
ij

=
∂2f(x; θ)

∂xm∂z
(l)
i

h
(l−1)
j (x; θ) +

∂f(x; θ)

∂z
(l)
i

∂h
(l−1)
j (x; θ)

∂xm
(69)

≜ (J (l)
z )imh

(l−1)
j + (J

(l−1)
h )jm∂

z
(l)
i
f (70)

Before proceeding, let us note that the following holds:

∑
i

(J (l)
z )im(∂

z
(l)
i
f) =

1

2
∂xm

||∇z(l)f ||2 (71)

∑
i

(J
(l)
h )imh

(l)
i =

1

2
∂xm

||h(l)||2 (72)

The covariance matrix in our Gaussian approximation is thus given by:

H
(l)
W =

∑
i,j

∂f2

∂xm∂W
(l)
ij

∂f2

∂xn∂W
(l)
ij

(73)

=
∑
i,j

(h
(l−1)
j )2(J (l)

z )im(J (l)
z )in + (∂

z
(l)
i
f)2(J

(l−1)
h )jm(J

(l−1)
h )jn

+(J (l)
z )im(∂

z
(l)
i
f)(J

(l−1)
h )jnh

(l−1)
j + (J (l)

z )in(∂z(l)
i
f)(J

(l−1)
h )jmh

(l−1)
j

(74)

= ||h(l−1)||2J (l)
z J (l)

z
⊤+||∇z(l)f ||2J (l−1)

h (J
(l−1)
h )⊤

+
1

4
∇x||h(l−1)||2 ⊗∇x||∇z(l)f ||2 +

1

4
∇x||∇z(l)f ||2 ⊗∇x||h(l−1)||2

(75)

The contribution from the bias is comparatively simple:

H
(l)
b = JzJ

⊤
z (76)

A.4 Proof of Corollary 3.2.1: Obtaining the Correlation Lengthscale from the Cauchy
Approximation

To determine the level sets of the Cauchy Approximation, we must solve:

CNTK(x, x+ u) =
2a2x + u⊤Dx

2a2x + u⊤
x D + u⊤Hxu

= c (77)
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Rearranging, and collecting terms, we have:

2a2x + u⊤Dx − c(2a2x + u⊤
x D + u⊤Hxu) = 0 (78)

⇒ 2(1− c)a2x − c

(
− 1− c

c
u⊤Dx + u⊤Hxu

)
= 0 (79)

⇒ u⊤Hxu− 1− c

c
u⊤Dx =

2(1− c)

c
a2x (80)

⇒
(
u− 1− c

2c
H−1D

)⊤

H

(
u− 1− c

2c
H−1D

)
− (1− c)2

4c2
D⊤H−1D =

2(1− c)

c
a2x (81)

⇒

(
u− 1−c

2c H−1D

)⊤

H

(
u− 1−c

2c H−1D

)
2(1−c)

c a2x + (1−c)2

4c2 D⊤H−1D
= 1 (82)

This is the equation of an ellipse centred at u = 1−c
2c H−1D, and with shape matrix:

Σshape =
H

2(1−c)
c a2x + (1−c)2

4c2 D⊤H−1D
(83)

The area of this ellipse is (noting that H is a 2x2 matrix):

Aellipse =
π√

detΣshape

(84)

=
1√

detH

(
2(1− c)

c
a2x +

(1− c)2

4c2
D⊤H−1D

)
(85)

The correlation lengthscale is then obtained from:

ξ =
√

Aellipse/π (86)

A.5 Proof of Corollary 3.2.3: Minimum Value of CNTK

We consider minimizing the following function:

f(u) =
Q(u)

P (u)
(87)

Q(u) = 2a2 + u⊤D (88)

P (u) = Q(u) + u⊤Hu (89)

Here, H is non-degenerate and positive definite. Thus:
∂f

∂u
=

∂uQP −Q∂uP

P 2
= 0 (90)

=⇒ ∂uQP = Q∂uP (91)

Thus:

(u⊤Hu)D = (4a2 + 2u⊤D)Hu (92)

Clearly u = 0 is a solution, and knowing that our expression locally approximates the cosine, we
expect this to be a maximum. To find the other solution, which will be a minima, we take the dot
product of both sides of the above equaiton with u. After simplifying, we obtain:

u⊤D = −4a2 (93)

If we insert this into equation 92, we get:

(u⊤Hu)D = −4a2Hu (94)

⇒ (u⊤Hu)H−1D = −4a2u (95)

⇒ (u⊤Hu)(D⊤H−1D) = 16a4 (96)

⇒ u⊤Hu =
16a4

DH−1D
(97)
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Armed with an expression for u⊤D and u⊤Hu, we derive the following formula for the min:

fmin =
2a2 + u⊤D

2a2 + u⊤D + u⊤Hu

∣∣∣∣
u=argminf

(98)

=
2a2 − 4a2

2a2 − 4a2 + 16a4

DH−1D

(99)

=
DH−1D

DH−1D − 8a2
(100)

A.6 Relating Loss Gradient Variance to the NTK

Our goal is to quantify the amount of noise in the gradients of the local loss L(xi) =
1
2r(xi; θ)

2. We
have, in terms of the Jacobian Jip = ∂θpf(xi), the following sample matrix for the gradients:

G = RJ (101)

Here we have defined:
R = diag(r) (102)

For a dataset with N samples, the sample mean and covariance are given by:

µ =
1

N
G⊤1N (103)

=
1

N
J⊤r (104)

C =
1

N
J⊤R2J − µµ⊤ (105)

From the cycle property of the trace, we have:

tr(J⊤R2J) = tr(R2JJ⊤) (106)

= tr(R2KNTK). (107)

We also have:

Tr(µµ⊤) = ||µ||2 (108)

=
1

N2
r⊤JJ⊤r (109)

=
1

N2
r⊤KNTKr (110)

Thus the variance of the loss gradients is given by:

σ2
θ =

1

N
Tr(R2KNTK)− 1

N2
r⊤KNTKr (111)

B Experimental Details

B.1 Model Training

All our SIREN models are trained on the images shown in Figure 7, which we obtain through the
python package scikit-image [45], and the ImageNet dataset [46]. These images are down-sampled to
a resolution of 64× 64 for training, but as a validation task, we track the reconstruction error on the
images downsampled to 256× 256 resolution. Our SIREN models are implemented using Pytorch
[47], and trained using NVIDIA RTX A6000 48GB GPUs for 10000 epochs, using full batch gradient
descent with a learning rate of 1e-3. In our experimental sweeps, we consider the following ranges:

• Random seeds from interval [0, 5].
• Width from set {64, 128}.
• Depth from set {3, 4, 5}.
• ω0 from set {15, 30, 60, 90}.
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Figure 7: Fifteen of the thirty images used for training INRs

B.2 Order Parameter Estimation

Analytical Order Parameters: To compute the NTK, we use a manual implementation of back-
propagation to compute the gradients ∇z(l)f(x) for each layer, along with the hidden activations
h(l)(x). The NTK is then constructed efficiently using the decomposition across layers outlined in
Section A.1. To evaluate the local structure components a and D defined in Theorem 3.2, we obtain
the spatial gradients using functorch [48]. We also assemble the H defined in Theorem 3.2 in this
way, except we leverage the decomposition outlined in Section A.3.2 to streamline this process, and
occupy less memory.

Empirical Order Parameters: Below we describe the estimation procedure for each of the empirical
order parameters.

• To estimate the correlation functions empirically, we group pairs of datapoints into 50 bins
based on a uniform division of the range of distances. Based on the coordinate range, the
minimum distance is 0, and the maximum distance is 2

√
2. Within each bin, we evaluate the

mean of the CNTK , defining c(ϵ). Based on these groups, we estimate our order parameters
as follows:

– To estimate the asymptotic value c∞, we compute the mean value of c(ϵ) over the last
ten bins (corresponding to points with the furthest separation).

– Given the asymptotic value, we rescale all c(ϵ) → c̃(ϵ) = c(ϵ)
1−c∞

, and then use linear
interpolation to find the value of ϵ for which c̃(ϵ) = 0.5, the FWHM. We then have
ξcorr = FWHM√

2 ln 2
.

• As an additional measure of the correlation length-scale (which we will use in Appendix
D), we may calculate the number of points NC for which CNTK is greater than some cutoff
(we use 1

2 (1 + c∞)). The effective correlation lenght-scale is then given by
√

NCdA/π,
where dA is the area of the coordinate grid cells. We denote this estimate ξFWHM .

• To estimate AUC(|v0|,∇I), the ground truth edges are identified using the Canny Edge
Detector distributed through scikit-image [45]. We then evaluate the Area Under the Receiver
Operating Characteristic Curve (ROC AUC) using the implementation in scikit-learn [49].
The principal eigenvector v0, and the principal eigenvalue λ0, are both computed using our
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own implementation of the Randomized Singular Value Decomposition built with pytorch
[47], using 3 iterations and 10 oversamples.

• To evaluate the Centred Kernel Alignment, in order to prevent zero modes from obscuring
alignment, the following centred-variant of the normalized Hilbert-Schmidt Information
Criterion (HSIC) is employed:

CKA(K,K ′) =
Tr(KcK

′
c)√

Tr(KcKc)Tr(K ′
cK

′
c)

(112)

Here, Kc denotes that a centrering operation has been applied, and is defined as:

Kc = (I − 1

n
11⊤)K(I − 1

n
11⊤) (113)

For both KX and KY , we use bandwidths κ = 0.1.
• To determine the residual correlations in Table 1, we randomly sample (and flatten) 15000
15× 15 patches from the validation residuals, and compute the pearson correlation matrix.
We then record the mean correlation between all pixels in the patch and the patch centre.

Identifying Critical Points:

• For the gradient variance σ2
θ , the loss rate L̇eval, and the background contribution µrK∞ the

location, and confidence region, for the critical points are identified using the peak detection
algorithm distributed through scipy.signal [50]. For the gradient variance, we filter for peaks
with a prominence of 0.2, loss rate we use 0.4, and for the background we use 0.2. In the
case where multiple peaks are found, we select the peaks which appear closest in time.
Finally, for µrK∞, the phase transition occurs not at the peak itself, but after the signal
decays to zero. Thus we use as confidence region the interval between the identified peak
and the right-most boundary.

• For the minCNTK , we linearly interpolate to find the time t where minCNTK crosses
0. To compute the confidence interval, we also track the cumulative std of minCNTK ,
denoted ϵ(t). We then use the same linear interpolation strategy to find the times where
minCNTK = ϵ(t) and minCNTK = −ϵ(t).

• For all other parameters, we fit a sigmoid using the curve fitting function from scipy.optimize,
with the default settings. The curve we fit has the form:

f(x;A,B, µ,w) = A+ (B −A)

(
1 + e−(x−µ)/w

)−1

(114)

We identify the time t = µ with the critical point, with confidence region defined by µ± 2w.
For MAG-MA, where the goal is to detect deviation from zero, we fit this sigmoid to the
cumulative STD.

C Occurrence Rates of Phase Transitions

C.1 Impact of Image Features

There are three main cases in which a critical point cannot be reliably identified in an order parameter
trajectory:

1. Peaks in the gradient variance σθ may be absent, or not prominent enough, to be detected
using a standard peak detector.

2. A zero-crossing cannot be found for the minCNTK because, at initialization, it is already
less than 0.

3. The order parameters do not saturate, and thus, are poorly represented as sigmoids. This
is really only a problem for the edge alignment AUC(|v0|,∇I) and the task alignment
CKA(KY ,KNTK). In the latter case, in some trials we see CKA steadily decrease after the
inflection point of the loss. Numerically, we omit runs where the mean squared error of the
fitted sigmoid is greater than 0.01.
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Table 2: Proportion of runs with errors: Frequency at which runs were ommitted in constructing
Figure 3, as a function of depth and bandwidth ω9.

depth ω0 AUC(|v0|,∇I) CKA(KY ,KNTK) σθ minCNTK

3 90 0.570 0.293 0.007 1.000
3 60 0.447 0.177 0.023 1.000
3 30 0.503 0.157 0.093 0.700
3 15 0.643 0.773 0.583 0.600

4 90 0.117 0.067 0.000 0.500
4 60 0.067 0.013 0.000 0.500
4 30 0.043 0.057 0.037 0.500
4 15 0.257 0.693 0.170 0.343

5 90 0.017 0.017 0.000 0.470
5 60 0.037 0.003 0.000 0.203
5 30 0.033 0.060 0.000 0.083
5 15 0.070 0.643 0.070 0.093

The occurence rates, as a function of the hyperparameters used, are shown in Table 2. It is important
to note, phase transitions may still occur even during these failure modes - the shift in the order
parameter may be simply too weak3 to be identified by the change detection algorithm outlined in
Section B.2. It is for this reason that we employ multiple order parameters to identify the same
transition (ex the minCNTK and the gradien variance θ). Nevertheless, it is instructive to identify
what properties of image datasets may be used to predict the aforementioned failure modes. To this
end, for each experimental run, we determine if any of the previously mentioned failure modes has
occurred, and then record the frequency of success for each image studied. In Figure 8, we see
that these frequencies correlate with the complexity of the image, as measured the variance of the
spatial gradient magnitudes ||∇xI||. Namely, we see that more complex images result in sharper
peaks of the parameter gradient variance σθ, but collapse of the kernel alignment as measured by
CKA(KY ,KNTK). This is reflected in their strong negative/positve spearman correlations. These
same properties correlate strongly with the best model performance achieved across all hyperparams
(left of Figure 8). These correlations give additional support to the mechanism described in Section
3.3, whereby SIREN models struggle to fit edges as they have sharp gradients. Finally, we note that the
image complexity seems to have little impact on the error rates for the edge alignment AUC(|v0|,∇I)
(spearman correlation -0.017) and the minimum value of the CNTK (spearman correlation -0.1320).
By contrast, these parameters are more sensitive to the model architecture.

C.2 Additional Figures: Impact of Hyperparameters

The broad effects of varying depth and ω0 on AUC(|v0|,∇I) are summarized in Table 1. To gain
deeper insight into how these parameters influence the principal eigenvector, we examine the two case
studies illustrated in Figures 10-11. A lower ω0, by broadening the correlation lengthscale, inducing
a smoothing effect, retaining only the sharpest edges. Increasing depth also removes noise.

3Also note, even when AUC(|v0|,∇I) is weak, edges are still visible in the principal eigenvector, as seen in
Figure 9

31



0.02 0.04 0.06
std(|| I||)

2.4

1.8

m
in

lo
gL

ev
al

African_grey

Arabian_camel

aircraft_carrier

astro

baseball

bassinet

binder
birdhouse

bonnet

camera

cat

catamaran

cauliflower

chain

china_cabinet

coffee

coins

common_iguana

ear

espresso_maker

golf_ball

groom

hay

microphone

pretzel

sax

squirrel_monkey

syringe

violin

viper

corr=0.684

0.02 0.04 0.06
std(|| I||)

0.25

0.50

CK
A(

K Y
,K

N
TK

) e
rro

r r
at

e

African_greyArabian_camel

aircraft_carrier

astro

baseball

bassinet

binder

birdhouse

bonnet

camera

cat

catamaran

cauliflower

chain

china_cabinet

coffee

coins

common_iguana

ear

espresso_maker

golf_ball

groom

hay

microphone

pretzel

sax

squirrel_monkey

syringe

violin

viper

corr=0.702

0.02 0.04 0.06
std(|| I||)

0.0

0.2

0.4

 e
rro

r r
at

e

African_grey
Arabian_camel

aircraft_carrier

astro

baseball

bassinet

binder

birdhouse

bonnet

camera

cat

catamaran

cauliflowerchain

china_cabinet

coffee coins

common_iguana

ear
espresso_maker

golf_ball

groom

hay

microphone

pretzel sax

squirrel_monkey
syringe

violin

viper

corr=-0.771

Figure 8: Image Complexity Affects Detection of Phase Transitions. We measure the image
complexity according the standard deviation of the magnitude of the spatial gradients (||∇xI||).
Dashed red line indicates line of best fit. Legend records spearman correlation. Left: higher
complexity images are positively correlated with higher losses (and therefore, worse performance).
Middle: higher complexity images do not saturate the target kernel alignment, causing errors in
our sigmoidal fits. Right: higher complexity images lead to sharper peaks in the paramter gradient
variance, making their identification easier.
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Figure 9: Variation in NTK Alinment with Hyperparameters (coffee). Principle eigenvectors of
the NTK at the end of training. Best performing architecture highlighted in blue.

D Comparison with ReLU Activations

To justify our focus on sinusoidal neural networks, in this section we examine the learning dynamics
of ReLU-MLPs, based on the positional encoding scheme used in [51]. The positional encoding
layer is kept static, and we pre-compute the nyquist frequencies corresponding to our image size
(64× 64), as is done in [23]. We denote this architecture ReLU-PE. All other architectural choices
are identical to those described in Appendix B. We observe a number of differences between SIRENs
and ReLU-PEs (visualized in Figure 13):
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Figure 10: Effect of Hyperparameters on Edge Alignment: Reproduction of Figure 4 for the
microphone dataset
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Figure 11: Effect of Hyperparameters on Edge Alignment: Reproduction of Figure 4 for the coins
dataset

• Firstly, SIREN models exhibit strong locality: over the course of training, the asymptotic
value of the CNTK decays to 0, whereas it grows in ReLU-PE models. What’s more, the
range of interaction as measured by ξFWHM is larger in ReLU-PE models. An example
comparing the correlation functions for both architectures is shown in Figure 12.

• Secondly, learning is much slower in ReLU-PE models than it is in SIRENs. One explanation
for this is that there is more gradient confusion [11], that is, the minimum value of the
CNTK is lower. In particular, minCNTK is less than zero across all ReLU-PE runs, so that
these models are always operating in the "slow" phase of learning.

• The principal eigenvalue λ0 of the NTK grows to be orders of magnitude larger for SIREN
models than for ReLU-PE models. That said, tangent kernel alignment still occurs in
ReLU-PE models, it is just a much slower process. In Figure14, we train a 7-layer deep,
128-unit wide MLP full-batch with a learning rate of 1e− 3 for 250k epochs, varying only
the activation function. To reach the edge-alignment achieved by a SIREN model after 453
epochs, the ReLU-PE model must train for 239986 epochs. We also see that more of the
edges are present in the principal eigenvector of the SIREN model’s NTK.
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Figure 12: Effect of Hyperparameters on Correlation Functions At Initialization: In ReLU-PE
models, the Gaussian approximation of the CNTK correlation function is poor for all depths, due to
high-variance, long range interactions. By contrast, for SIREN models, there is much less variance,
and the range of the interactions shrinks for increasing ω0.
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Figure 13: Learning Trajectories for SIREN and ReLU-PE models: Histograms visualizing the
distribution of various order parameters throughout training. See Section B for full details on models
and datasets used.

• At initialization, MAG-Ma is orders of magnitude lower for SIREN models than for Relu-PE
models, indicating the latter are already operating in a phase where translational symmetry
is broken.

In summary, while ReLU-PE models exhibit Neural Tangent Kernel alignment, it is a much slower,
non-local process, that does not coincide with loss-rate collapse or translational symmetry breaking.

E Implications of Local Image Structure on Feature Learning

E.1 On the Relationship Between Structure Tensors and Tangent Kernels

We are now positioned to elucidate the features learned during NTK alignment. As proposed in
Section 3.3, the local structure of the NTK adapts to the spatial variations in parameter gradients.
In this section, we delve into the spectral consequences of this adaptation. We contend that the
principal eigenvectors evolve into edge detectors, resembling the auto-correlation structure tensors
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Figure 14: NTK alignment in SIREN and ReLU-PE models: The principal eigenvectors of the
NTK at the end of training. Final AUC(|v1|,∇I) for the ReLU-PE is 0.754, whereas AUC(|v0|,∇I)
for the SIREN model is 0.804. The training time required to achieve an edge-alignment score greater
than 0.75 for the SIREN model was 453 epochs, whereas for the ReLU-PE model it was 239986
epochs.

commonly employed in traditional computer vision. This observation reinforces the concept of
translation symmetry breaking: in computer vision, the utility of auto-correlation structure tensors
stems from the premise that the most informative features are those that minimize redundancy. The
auto-correlation function quantifies this through metrics of translational symmetry breaking.

Per the discussion in Section 3.3, the principal eigenvector is closely related to the auto-correlation
function. By leveraging the decomposition of the NTK in equation 30, we may relate to the features
considered in computer vision. Let us define:

w(l)(u;x) = 1 + h(l−1)(x)⊤h(l−1)(x+ u) (115)

so that the largest contribution comes from the immediate neighbourhood of x. This motivates us to
perform a Taylor expansion of the remaining terms as follows:

Kl1 =
∑
u

Kl(x, x+ u) (116)

=
∑
u

wl(u;x)
∑
d

∂f(x)

∂zld

∂f(x+ u)

∂zld
(117)

≈
∑
u

wl(u;x)
∑
d

(
∂f(x)

∂zld

∂f(x)

∂zld
+ h.o.t

)
(118)

= tr(Al(xi)) + h.o.t (119)

Here, Al denotes the structure tensor used in the Harris-Corner detector [52]. Accordingly, we see
that K1 - and thus, the principle eigenvector - assess the extent of local translational symmetry
disruption near a point x. This principle underlies feature selection in computer vision, a concept
mirrored in NTK feature learning, as evidenced by the principal eigenvectors that are predominantly
maximized around dataset edges and corners.

It is crucial to highlight that Al pertains to the structure tensor of a specific layer l. Collectively, the
entire DNN’s NTK facilitates feature selection across a scale pyramid.
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Figure 15: Evolution of spatial variation of the parameter gradients. At initialization, there is a very
small amount of variance (note the scale of the variations). As the variance grows, translational
symmetry is broken, and a dynamical phase transition occurs.
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Figure 16: Evolution of the Cosine NTK: We visualize CNTK(x, x + u) around three points
x ∈ {A,B,C} for small separations u. At initialization, CNTK locally resembles an isotropic,
translation-invariant RBF. However, as training progresses, these symmetries are broken. MAG-Ma
(described in Section E.2) is an order-parameter that monitors the original symmetry, and changes at
the critical point.

E.2 MAG-MA: Order Parameters From Translational Symmetry Breaking

While previous sections have focused on bottom-up construction of order parameters, this section
adopts a top-down approach rooted in symmetry principles. In Sections 3.1-3.4, we expressed several
order parameters in terms of the parameters a,D,H , characterizing the local structure of the CNTK .
Notably, each of these parameters is now a function of the spatial variation of the parameter gradients,
whose evolution is showcased in Figure 15. This suggests it is a translation symmetry which is broken
at the phase transition. Indeed, from Figure 16, we observe the CNTK is an approximately stationary,
isotropic kernel - a desirable property for INRs [30]. As such, the Kernel exhibits no bias for location
or direction. Over the course of training, we may monitor the emergence of such a bias with the
following metric :

||Ex[∇x log ||∇θf ||2]||2 = ||Ex[Dx/a
2
x]||2 (120)

We refer to this statistic as MAG-Ma: the Magnitude of the Average Gradient of the Log Gradient-
Field Magnitudes. Intuitively, this order parameter captures the statistical preference for a spatial
direction in the dataset. The evolution of this quantity is plotted in Figure 16, and its alignment with
the other order parameters is shown in Figure 3. We see that throughout the Fast Phase of training
(before the peak in the loss rate L̇eval), the local structure of the CNTK is statistically translation
invariant, and MAG-Ma is close to zero. However, just after the critical point, it grows rapidly -
coinciding with the edge memorization described in Section 3.3.

F Evaluating Fidelity of Approximation

F.1 Local Structure of the NTK

As described in Section 3.1, INRs are often carefully designed to ensure a diagonally dominant
NTK [30, 31, 32]. In higher dimensions, diagonal dominance is equivalent to a bias towards local

36



15 30 60 90
0

0.15

0.30

co
rr
(0

)

3 4 5
depth

15 30 60 90
0

0.15

0.30

C
(0

)

3 4 5
depth

Figure 17: Hyperparameters Affect Local NTK Structure. Boxplots visualizing the distribution of
structural parameters for the CNTK . Top row: variation in the initial correlation lengthscale ξcorr(0).
Bottom row: variation in the initial asymptotic value of the CNTK (C∞(0)).
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Figure 18: Visualization showing the empirical correlation function for the normalized parameter
gradients. On the left-hand side is the global correlation-function for the CNTK . On the right is the
local-correlation function for the KNTK around a test point x. Dashed lines show fitted Gaussian
approximation, and error bars show variance across dataset. Over the course of training, both the
global correlation lengthscale ξcorr, and the terminal value c∞, evolve.

interactions. We see in Figure 17 the hyperparameters that most affect this local structure: we observe
that, while depth has a small impact on the initial correlation lengthscale ξcorr(0), higher values of
ω0 cause the CNTK to become dramatically more localized. The converse is true for the asymptotic
value C∞(0): ω0 has a minor effect, but increasing depth leads to stronger interactions across large
distances.

Beyond initialization, in Figure 18, we examine the evolution of the correlation function for a five-
layer deep, 128-unit wide SIREN model on a 128× 128 grayscale image of a cat, with bandwidth
ω0 = 30. Emprirically, we see that the Gaussian approximation described in Section 3.1 remains
valid across training, with the asymptotic value c∞ of the CNTK decaying to zero.

F.2 Cauchy Approximation

To ascertain the fidelity of the Cauchy Approximation, we estimate the Pearson correlation between
the true values of the correlation lengthscale ξ and minCNTK , and the prediction based only on the
local model. We choose this metric because the identification of critical points is insensitive to linear
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Table 3: Fidelity of Cauchy Approximation: Pearson correlation between the true order parameter
and predictions using the local Cauchy Approximation. Mean and standard deviation are calculated
over the spread of models and datasets described in Section B.

depth ω0 ξ minCNTK v0

3 15 0.980± 0.017 0.889± 0.068 0.980± 0.011
30 0.924± 0.110 0.909± 0.063 0.985± 0.006
60 0.830± 0.208 0.946± 0.043 0.988± 0.004
90 0.856± 0.220 0.967± 0.020 0.986± 0.006

4 15 0.983± 0.015 0.925± 0.059 0.982± 0.009
30 0.964± 0.036 0.956± 0.039 0.985± 0.007
60 0.920± 0.152 0.955± 0.036 0.986± 0.008
90 0.974± 0.026 0.961± 0.031 0.984± 0.009

5 15 0.985± 0.011 0.921± 0.049 0.978± 0.010
30 0.969± 0.023 0.953± 0.038 0.983± 0.008
60 0.947± 0.066 0.966± 0.033 0.982± 0.028
90 0.959± 0.037 0.974± 0.026 0.982± 0.010

transformations. The results are shown in Table 3. Similarly, we evaluate our approximation of the
principle eigenvector v0, by looking at the absolute cosine distance between our approximation and
the ground-truth.

Finally, in Section 3.3, we approximated the principal eigenvector v0 of the NTK K with the row
mean K1/1⊤1. The median cosine alignment between the row mean and the true v0 was found to
be 0.99995 across all epochs surveyed, across all models and datasets. The IQR is 0.00446. The
strength of this approximation is a testament to the extreme spectral gap of the NTK, which itself is a
consequence of NTK alignment.

G Additional Experimental Results

G.1 Order Parameter Trajectories for Single Runs

This section contains additional illustrations of the order parameter trajectories, and the corresponding
confidence region estimates, similar to the left side of Figure 3. The results are shown in Figure 19.
Each model is a 5 layer deep, 128-unit wide SIREN network, trained with full-batch gradient-descent
with a learning rate of 1e-3.

G.2 Influence of Hyperparameters on Order Parameter Trajectories

In this section, we perform an ablation study to understand the impact of different hyperparameters on
the order parameter trajectories. The baseline model is a 5-layer 128-unit wide SIREN with ω0 = 60.
Figures 20-22 showcase the effect of depth. Figures 23-25 showcase the effect of the bandwidth
parameter ω.

When depth (and therefore model capacity) is decreased, we observe a corresponding increase
in the validation error. In shallower models, the initial gradient confusion (minCNTK) is lower,
delaying learning, and thus, the peak in the loss rate L̇eval. While the location of the phase transition
changes, the trajectory of the order parameters shapes remain consistent, and exhibit less variance
with increased depth. By contrast, there is dramatic change in the shape of the trajectories as we vary
ω0. When ω0 is high, ξcorr starts very low, favouring interactions with immediate neighbours, leading
to low overlap with the RBF. During training, the range broadens rapidly, causing CKA(KX ,KNTK)
to grow sigmoidally at the critical point. Conversely, with low ω0, the range starts large but shrinks
during training.

We additionally track the CKA between the NTK and a static RBF kernel with fixed bandwidth KX ,
as described in 4.1. The evolution of this hyperparameter reflects the evolution of the correlation
lengthscale ξcorr. When this value is large (as it is when ω0 is small), the NTK has a broad diagonal,
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Figure 19: Alignment of Order Parameters. Order parameter evolution and critical points during
training of a SIREN model. The red vertical lines denote the location of the critical points, and the
green vertical lines denote confidence regions.

and thus overlaps well with the RBF. Over the course of training, ξcorr shrinks, and thus, so does
CKA(KX ,KNTK).
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Figure 20: Effect of depth on Critical Behaviour (Microphone): Average MSEs, in order of
ascending depth: 2.561e−2 ± 9.355e−5, 2.555e−2 ± 8.970e−5, 2.572e−2 ± 7.209e−5. Dashed
vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 21: Effect of depth on Critical Behaviour (Sax): Average MSEs, in order of ascending
depth: 1.628e−2 ± 1.312e−4, 1.513e−2 ± 3.384e−5, 1.494e−2 ± 6.605e−5. Dashed vertical lines
denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 22: Effect of depth on Critical Behaviour (Violin): Average MSEs, in order of ascending
depth: 6.885e−3 ± 1.677e−4, 5.930e−3 ± 5.016e−5, 5.665e−3 ± 3.640e−5. Dashed vertical lines
denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 23: Effect of ω0 on Critical Behaviour (Microphone): Average MSEs, in order of ascending
ω0: 2.601e−2 ± 1.804e−4, 2.566e−2 ± 1.327e−4, 2.572e−2 ± 7.209e−5, 2.807e−2 ± 7.688e−4.
Dashed vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase
transition.
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Figure 24: Effect of ω0 on Critical Behaviour (Sax): Average MSEs, in order of ascending ω0:
1.680e−2± 1.666e−4, 1.561e−2± 6.552e−5, 1.494e−2± 6.605e−5, 1.639e−2± 3.938e−4. Dashed
vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 25: Effect of ω0 on Critical Behaviour (Violin): Average MSEs, in order of ascending ω0:
7.223e−3±1.503e−4, 6.305e−3±3.139e−5, 5.665e−3±3.640e−5, 6.698e−3±3.359e−4. Dashed
vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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