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ABSTRACT

With the proliferation of social media, influencer marketing has emerged as a pop-
ular strategy for brands to promote their products. Recent studies have increas-
ingly explored the use of machine learning to recommend suitable influencers for
brands. This typically involves analyzing the compatibility of influencer profiles
with brand attributes. However, for brands entering new markets or promoting
products in unfamiliar categories, existing solutions may be limited due to insuf-
ficient information for accurate compatibility matching.
In this paper, we propose ProdInfluencerNet (PIN), a product-centric framework
designed for influencer recommendation. PIN effectively models the complex re-
lationships between brands, products, and influencers using Heterogeneous Infor-
mation Networks (HINs). We categorize sponsored post images using the Google
Taxonomy through image classification techniques. By leveraging the taxonomy’s
hierarchical structure and adopting an inductive learning approach, PIN can accu-
rately recommend influencers for brands, even in new markets or with innovative
products. We validate PIN’s effectiveness and superiority over existing methods
using two Instagram datasets. Furthermore, our analysis reveals that text features
in profiles are more critical than images for identifying cooperative relationships
between product categories and influencers.

1 INTRODUCTION

Influencer marketing has emerged as a dominant force in modern marketing strategies Campbell &
Farrell (2020). It leverages the trust and authenticity that influencers have built with their audiences
to promote products or services, often through social media platforms like Instagram.

Existing research on influencer recommendation has predominantly focused on analyzing influencer
and brand profiles to identify potential matches (Gan et al., 2019; Elwood et al., 2021; Kim et al.,
2023). For example, if a brand’s profile expresses the brand’s market and the product information
they sell, and some influencer has post a number of articles related to the brand’s products, then
a recommendation system would likely recommend the influencer for marketing the brand’s prod-
ucts. This profile-based matching approach may face a cold-start challenge if there is not enough
information in the profiles: for example, when a brand is lunching a new product, or is entering
a new market. We observe that a typical collaboration post often features the target product being
promoted. By extracting the product information, we can recommend influencers for brand without
resorting much to the brand’s profile. In addition, by classing products into a hierarchical taxonomy,
every product can be attributed to some features such that, the lower category the product can be
classified into the hierarchy, the more detailed information we have about the product. As such, even
when a brand is to put some new product into the market, as long as the product can be classified
into the taxonomy (perhaps in a high level), we can still use the somewhat general information of
the product category to find a suitable influencer to promote the product.

In this paper, we introduce ProdInfluencerNet (PIN), a product-centric framework designed for influ-
encer recommendation. PIN effectively models the complex relationships between brands, products,
and influencers using Heterogeneous Information Networks (HINs). We leverage image classifica-
tion techniques to categorize sponsored post images based on the Google Taxonomy (Google, 2024).
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By adopting an inductive learning approach, PIN can effectively recommend influencers for brands,
even in new markets or with innovative products. We validate our framework’s performance and
compare it to existing benchmarks using real-world datasets collected from Instagram.

2 LITERATURE REVIEW

2.1 OVERVIEW OF INFLUENCER MARKETING

An increasing amount of research has emerged to explore various techniques to enhance the effec-
tiveness of influencer campaigns. These studies can be categorized into several subdomains:

Detecting undisclosed sponsorships Detecting sponsorships in influencer marketing is crucial
for maintaining transparency and trust (Villegas et al., 2023). Prior work has explored detecting
undisclosed sponsorships using multimodal approaches on both Instagram (Kim et al., 2021) and X
(formerly Twitter) (Villegas et al., 2023). Our experiments build upon the Instagram dataset of Kim
et al. (2021), focusing on posts with confirmed sponsorships.

Predicting post popularity Forecasting post popularity is crucial for effective influencer market-
ing. Prior research has explored predicting popularity using features like image, text, and video on
Instagram (Gayberi & Oguducu, 2019). Additionally, modeling user interactions on platforms like
Sina Weibo has also been used to predict content popularity (Cao et al., 2020).

Account and content classification Analyzing influencer content and style helps brands align
with suitable influencers. Previous research has classified influencers based on textual content
(Nebot et al., 2018) or a combination of text and image features (Kim et al., 2020). Building on
this, we leverage product-focused categorization in our work, using the cover image of commercial
posts to identify the specific product being promoted.

Influencer Recommendation Finding the right influencers for a brand is a complex topic that
goes beyond just profiling them. Some research delves into specific tiers for more in-depth analysis
(Gan et al., 2019; Elwood et al., 2021; Wang et al., 2022), while others identify influencers whose
target audience aligns with the brand’s desired audience to maximize the impact of their campaigns
(Farseev et al., 2018; Wang et al., 2022). Since influencer recommendation is central to this research,
we will next provide an overview of the existing literature on this topic.

2.2 MACHINE LEARNING IN INFLUENCER RECOMMENDATIONS

Most research in influencer recommendation follows the general workflow illustrated in Figure 1.
It begins with collecting commercial posts and account profiles from both influencers and brands.
Next, features are extracted from both the post content and account profiles. These features are
then fused into a multimodal representation, which is used to train a ranking model. The ultimate
goal is to generate an accurate influencer ranking list for brands. While the overall process is sim-
ilar, systems differ primarily in how they analyze influencer/brand features and design the model
architecture.

Figure 1: General Workflow for Influencer Recommendation
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Researchers have explored various approaches to influencer recommendation, utilizing data from
platforms like Instagram and X. For example, Farseev et al. (2018) employed psychographic user
profiling, including demographics, MBTI (Schweiger, 1985), and emotion detection. However, their
closed-source nature limits reproducibility. Gan et al. (2019) focused on micro-influencer ranking
using multimodal embeddings and ListNet(Cao et al., 2007). Their dataset, however, is limited to
micro-influencers. Elwood et al. (2021) built upon Gan et al.’ work Gan et al. (2019), incorporating
Tok2Vec (Honnibal et al., 2020) and VGG-16 (Simonyan & Zisserman, 2014) for feature extraction.
Wang et al. (2022) proposed MORNING, a micro-influencer ranking framework incorporating target
audience and cooperation preferences.

Graph-based approaches have also been employed due to their ability to capture complex relation-
ships. Kim et al. (2023) integrated various entities into a heterogeneous network, utilizing GCN
encoder (Kipf & Welling, 2016) for node embeddings. However, GCN’s reliance on a fixed graph
limits its applicability to dynamic social media environments. Park et al. (2024) introduced GNN-
IR, employing pre-trained models for feature extraction and GraphSAGE (Hamilton et al., 2017) for
link prediction. While GraphSAGE can theoretically handle unseen nodes, its real-world application
remains untested. Our PIN experiment aims to address this gap and use GNN-IR as benchmark.

3 METHODOLOGY

3.1 THE SCHEMA OF PRODINFLUENCERNETWORK

Figure 2: (a) Schema of a movie-recommendation application. (b) Our proposed network structure

Heterogeneous Information Network (HIN) is an abstraction of the real world, connecting different
types of nodes through a network and emphasizing interactions between various entities (Sun &
Han, 2013). Figure 2(a) illustrates a heterogeneous information network schema of movie recom-
mendation (Yu et al., 2014), which links movies with actors, genres, and directors, as well as users
that have given feedback before. Inspired by this, we propose a network structure for influencer
recommendation in Figure 2(b). According to the schema, if two brands offer the same product
category, they can leverage the network structure to share information about previously collaborated
influencers. This expands the pool of potential influencer candidates, providing brands with a wider
range of options to consider.

3.2 NOTATION

A heterogeneous information network G = (V,E) consists of a set of nodes V and a set of edges
E between nodes. Nodes can be further categorized into three types: influencer, product category,
and brand. Given a set of brands’ social media accounts B = {B1, B2, ..., Bm} and influencers’
accounts K = {K1,K2, ...,Km}, we extract the set of products P = {P1, P2, ..., Pm} launched by
the brands and promoted by the influencers.

Each type of node in the network has distinct features, represented as XK , XB and XP for influ-
encers, brands, and products, respectively. The combined feature representation can be expressed
as:

X = [XK ;XP ;XB ] ∈ R{N×d};N = m+ n+ i (1)
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where N is the total number of nodes of all three types, and m,n and i are the counts of brand,
influencer, and product nodes, respectively. d is the total number of node features.

3.2.1 OVERVIEW OF OUR ARCHITECTURE

Figure 3: Our proposed framework (a) Data Pipeline (b) Graph-Based Embedding for Link Predic-
tion and Recommendation

As shown in Figure 3, the overall structure of PIN can be divided into data pipeline and graph-
based embedding for link prediction and recommendation. Since existing datasets we can obtain
primarily focus on influencer and brand data, but lack information about products mentioned in
collaboration posts, our data pipeline extracts features from influencers and brands and defines the
product category associated with each sponsored post. With data on influencers, brands, and product
categories, we can then construct the aforementioned network to facilitate link prediction tasks on
the graph and subsequent influencer ranking.

3.2.2 GOOGLE TAXONOMY CLASS

Figure 4: Examples of Google Taxonomy

Before delving into our framework, we first outline our methodology for defining products within
collaboration posts. We adopt Google Taxonomy, a hierarchical classification system, where prod-
ucts are typically categorized across 4-7 levels. Figure 4 illustrates examples of Google’s taxonomy
for some eye makeup products. Google Taxonomy’s fine-grained detail enables us to identify spe-
cific products rather than just broader categories. For instance, within the Eye Makeup category,
the last-level product categories are further classified into Eye shadow, Eye Primer, and Eyebrow
Enhancers.

All products are assigned a corresponding product category from Google’s product taxonomy. As
previously mentioned, we also aim to address scenarios where manufacturers introduce new product
types to the market. In such cases, lower-level taxonomy classes can be combined with product
descriptions to form new product category nodes. By simply adding an edge linking the brand to
this new node, the graph can aggregate its neighborhood and proceed with subsequent predictions.
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3.2.3 DATA PIPELINE

Our data pipeline can further be described in three part, with two involved in using the images and
captions of posts.

Zero-shot classification of product categories We first classified the cover image of each post
into Google Taxonomy. To avoid manually labeling product categories for each post, we opted for
zero-shot classification. Specifically, we employed Sigmoid Loss for Language Image Pre-Training
(SigLIP) (Zhai et al., 2023), a model that has demonstrated superior performance compared to state-
of-the-art models like CLIP (Radford et al., 2021) and OpenCLIP (Ilharco et al., 2021) in both
zero-shot classification and zero-shot retrieval tasks. SigLIP’s advantage lies in its use of a sigmoid
loss function, which operates directly on image-text pairs without requiring global normalization
of pairwise similarities. This characteristic makes SigLIP a well-suited tool for our classification
needs. By simply inputting the complete list of classes from Google Taxonomy, we can leverage
SigLIP to obtain the most relevant taxonomy class for each post image.

Image embedding generation for influencer features We utilize Vision Transformers (ViTs)
(Dosovitskiy et al., 2020) as the tool of our image feature extraction task. ViTs have emerged as a
powerful alternative to traditional convolutional neural networks (CNNs) for image feature extrac-
tion. Images in social media datasets are often difficult to collect due to their large size. Therefore,
we aim to investigate whether incorporating image features, in addition to existing influencer meta-
data (followers, categories, biography, etc.), can improve prediction accuracy.

Word2vec generation based on post caption We now shift our focus to converting post captions
into text features. After SigLIP classification, each post is associated with a product category based
on its cover image. We then aggregate all posts related to each influencer, brand, and product
category, respectively, into a single document. This means that each document is composed of all
the post captions associated with that entity. Utilizing BertTopic (Grootendorst, 2022), we obtain
the TF-IDF representation of the document, and further convert them into text embeddings, serving
as features for the respective entity. BertTopic is suited for our scenario due to its ability to discover
latent topics in a corpus of documents without requiring prior knowledge or labeling. This allows
us to quickly extract key points about each entity.

As illustrated in the lower right corner of Figure 3 (a), each type of nodes comprises distinct feature
sets. Influencer nodes consist of text and image embeddings, as well as attributes extracted from
their account profiles. Product category nodes consist of text embeddings and their corresponding
class encoding. Finally, due to the absence of images in the brands’ data, brand nodes contain only
text embeddings and information from their account profiles. These node data was utilized in the
subsequent graph construction process.

3.2.4 EXAMPLE OF THE DATA PIPELINE

We use an example to illustrate the data pipeline process. Consider Figure 5, where brands A, B,
and C, respectively, have lunched various beauty products:

• Brand A: Perfume, Lipstick
• Brand B: Perfume, Blush
• Brand C: Perfume, Toner

We also have influencers X, Y, and Z. Each collaboration between a brand and influencer results in
an Instagram post promoting the product.

The Instagram post images of promoted products are first classified into differenct product cate-
gories: perfume, lipstick, blush, or toner. Following this, individual documents are created for each
brand (A, B, and C), each influencer (X, Y, and Z), and each product category. In the Figure, “per-
fume A” refers to the post caption of the perfume product launched by brand A. Similarly for “toner
C”, “blush B”, and so on. By aggregating corresponding post captions, a brand’s document contains
all posts promoting that brand’s products, an influencer’s document contains posts published by the
influencer, and a product category’s document contains all posts classified within the category. This
is illustrated in Figure 5, with documents colored according to their types.
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Figure 5: An example of the data pipeline

These documents were then processed using BERTopic to extract text features for each entity. These
features, combined with other features specific to each node type, constituted the final graph data.

3.3 GRAPH-BASED EMBEDDING FOR LINK PREDICTION AND RECOMMENDATION

As illustrated in Figure 3 (b), the workflow of PIN is divided into the following two main stages:

Graph Construction and Embedding Aggregation The data used for graph construction can
be split into two categories: data for inductive learning and data for transductive learning. In the
transductive learning, all the edges connecting product categories and influencers are divided into
training, validation, and testing sets. Consequently, all nodes are included in the training phase,
making it unfeasible for scenarios with unseen nodes.

In contrast, in the inductive learning paradigm, we first divide the product category nodes into train-
ing, validation, and test sets based on predetermined proportions. Then, we obtain edges and their
connected influencer/brand nodes linked to the product nodes. The inductive learning ensures that
the model doesn’t access validation or test data during training, forcing it to learn general patterns
from the available features and graph structure. This approach enables the model to accommodate
unseen product category nodes, thereby addressing the cold-start problem we aim to solve.

After constructing graph by different learning paradigm settings, our model utilizes a three-layer
GraphSAGE Convolutional Layer, employing the Mean Aggregation Function in Eq. (2) to generate
node embeddings. For a given node v, the function first computes the mean of the feature vectors
of all neighboring nodes u within the neighborhoodN (v), represented as hk−1

u . The vector hk−1
u is

the representation of neighbor node u at the previous layer k − 1, which encapsulates information
aggregated from its own neighborhood in the previous layer. This mean is then combined with
the feature vector of node v from the previous layer, hk−1

v , ensuring that the node’s own features
contribute to its updated embedding. The aggregated vector, containing information from both the
node v and its neighbors, is subsequently multiplied by a learnable weight matrix W to capture
important feature interactions and is passed through a non-linear activation function σ(·) to introduce
non-linearity. This iterative process across multiple layers refines the node embeddings, allowing
the model to encode both the local structure and higher-order information from the graph into the
final node representation hk

v .

hk
v ← σ

(
W ·MEAN

({
hk−1
v

}
∪
{
hk−1
u | ∀u ∈ N (v)

}))
. (2)
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Link Prediction and Ranking Probabilties Since our goal is to predict the existence of an edge
between product category and influencer nodes, representing whether or not an influencer has pro-
moted the product category, we utilized only the embeddings of these two types of nodes. We use
Eq. (3) to compute the link score by first multiplying the product and influencer feature vectors
element-wise (edge feat product and edge feat influencer). The resulting edge feat is then linearly
transformed and the final score is obtained by summing the transformed features, which is subse-
quently mapped into the range of 0 to 1 using the sigmoid function in Eq. (4). With probability
scores for each edge, we can rank influencers for each product category, ultimately obtaining the
top-K influencer list.

edge feat = edge feat product× edge feat influencer
reduced feat = linear(edge feat)

link score = sum(reduced feat)
(3)

σ(x) =
1

1 + e−x
; x : link score (4)

4 EXPERIMENT

4.1 EXPERIMENT DATASETS

Influencer and Brand (I&B) Dataset Kim et al. (2021)’s dataset includes details of 38,113 in-
fluencers, 26,910 brands, and over 1.6 million posts where influencers tagged brands on Instagram.
Each entry contains an influencer’s account, the name of the JSON file storing the post content, a
list of image file names associated with the post, and a sponsorship label. The sponsorship label is
used to identify whether a post is a commercial collaboration.

Since our study focuses on commercial collaborations, we neglect posts without sponsorship rela-
tionships. This initial filtering leaves over 180,000 posts for further analysis. To enhance the quality
of model training and mitigate noise, we exclude influencers with insufficient data (fewer than ten
collaborative posts) from the dataset. After data cleaning, our study utilizes a total of 3,281 influ-
encers with 14,801 brands and their corresponding 70,417 collaborative posts for the experiment.
After applying Google Taxonomy classification, the dataset encompasses 2,356 product categories,
resulting in the generation of 45,792 Brand-launch-ProductCategory edges and 47,944 Influencer-
promote-ProductCategory edges.

iKala Dataset We partner with iKala Corp. to collect Instagram posts disclosing sponsorship us-
ing the branded content tag from July 1, 2022, to May 12, 2023. In total, 164,022 posts with 18
gigabytes of post metadata and 67 gigabytes of corresponding images were collected. Aligning with
the I&B dataset, we filter out data with fewer than 10 collaborations and the corresponding influ-
encers. This results in a final dataset of 15,214 brand nodes, 3,422 influencer nodes, 3,083 product
category nodes, and 83,038 Brand-launch-ProductCategory edges, and 104,121 Influencer-promote-
ProductCategory edges.

The initial features for each node type are illustrated in the bottom right of Figure 3 (a). The product
category is represented using two key attributes: product category text embeddings (512 dimen-
sions) and product category (11 dimensions). This results in a total dimensionality of 523 for each
product category. Brands are represented using brand text embeddings (512 dimensions) and brand
profile (4 dimensions), resulting in a total dimensionality of 516 for each brand. Influencers are
characterized by a combination of three attributes: influencer text embeddings (512 dimensions),
influencer profile (32 dimensions), and influencer image embeddings (640 dimensions). This leads
to a total dimensionality of 1184 for each influencer representation.

4.2 EXPERIMENT SETTINGS AND EVALUATION METRICS

The experiment was set up in Python 3.9.19 and utillized PyTorch Geometric 2.5.3. Regarding
hardware, a RTX 3090 GPU with CUDA version 12.2 was employed. The model configuration
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was based on GraphSAGE as the backbone architecture, with 3 convolutional layers and a hidden
channel size of 128. The optimization process used the Adam optimizer and a binary cross-entropy
loss function, with a batch size of 1024.

The data was split into three parts for training, validation, and testing, with proportions of 80%, 10%,
and 10%, respectively. Additionally, negative link sampling was performed at a 1:1 ratio relative to
positive links.

Our experiments and evaluation were conducted in two parts as shown below. To facilitate a direct
comparison with GNN-IR (Park et al., 2024), we aligned our metrics with theirs.

1. Link Prediction: The goal is to predict the existence of each link within the graph struc-
ture, along with the associated probability of the link’s existence. We employed ROC AUC,
Precision, Recall and F1-Score to assess the performance of our link prediction tasks.

2. Recommendation: We leveraged the link probabilities obtained from the previous part to
generate recommendations. We evaluated the recommendation performance using rank-
based metrics like Precision@K, Recall@K and F1-score@K.

Each experiment explored the following two settings, resulting in a total of six (2 * 3) experimental
configurations:

1. Learning Paradigm
• Transductive Learning: The model learns from the entire graph structure, including

both labeled and unlabeled nodes.
• Inductive Learning: The model learns from a subset of labeled nodes and generalizes

to unseen nodes.

2. Influencer Feature Set
• Text: Use only textual features extracted from influencer profiles and posts.
• Image: Use only visual features derived from influencer images.
• Multimodal: Combine both textual and visual features for a comprehensive represen-

tation of influencers.

4.3 EXPERIMENT RESULTS

The experiments were conducted on two distinct datasets, with the results presented in separate
tables. Each table summarized the outcomes of the six experimental configurations applied to the
respective dataset.

Model ROC AUC Prec. Recall F1

PINtext
transductive 0.8026 0.8029 0.802 0.8025
inductive 0.9639 0.9474 0.9823 0.9645

PINimage
transductive 0.7975 0.8146 0.8009 0.7876
inductive 0.7293 0.785 0.65 0.9882

PINmulti
transductive 0.8083 0.803 0.8171 0.81
inductive 0.855 0.7751 1 0.8733

GNN-IR (Kim et al., 2021) 0.8951 0.8709 0.8045 0.8364

Table 1: Link Prediction on I&B Dataset

Model ROC AUC Precision Recall F1-Score

PINtext
transductive 0.8144 0.8323 0.7876 0.8093
inductive 0.9516 0.9117 1 0.9583

PINimage
transductive 0.8051 0.801 0.812 0.8065
inductive 0.8182 0.7373 0.9887 0.8447

PINmulti
transductive 0.8131 0.8227 0.7981 0.8103
inductive 0.8433 0.7614 0.9999 0.8646

Table 3: Link Prediction on iKala Dataset

Table 1 and 2 demonstrate the performance comparison on I&B Dataset. For link prediction, models
with inductive learning consistently outperform GNN-IR across all metrics, particularly excelling in
recall performance. This suggests that PIN with inductive learning is capable of accurately predict-
ing the suitability of a particular influencer for a given product by a brand. On the other hand, for
recommendation, GNN-IR demonstrates high precision@K but suffers from low recall@K, indi-
cating it might not recommend enough relevant influencers. In contrast, PIN achieves a balanced
overall performance as reflected in its F1-score, consistently around 0.7, while GNN-IR’s best per-
formance is only around 0.2. This demonstrates that PIN maintains a high level of performance in
both retrieving relevant influencers and ensuring recommendation accuracy.
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Model Metric k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

PINtext

transductive

P@K 1 0.8479 0.7969 0.7679 0.7344 0.7295 0.7326 0.7334 0.7249 0.7128

R@K 0.2028 0.3192 0.4262 0.5266 0.6153 0.6651 0.7072 0.7481 0.7898 0.8334

F@K 0.3372 0.4638 0.5554 0.6248 0.6696 0.6958 0.7197 0.7407 0.756 0.7684

inductive

P@K 1 0.8391 0.7739 0.7917 0.8523 0.9058 0.9292 0.9387 0.956 0.9642

R@K 0.4231 0.5956 0.6537 0.6647 0.6318 0.5943 0.5966 0.5915 0.5883 0.5915

F@K 0.5946 0.6967 0.7087 0.7227 0.7257 0.7177 0.7266 0.7257 0.7284 0.7332

PINimage

transductive

P@K 1 0.8624 0.7977 0.764 0.7385 0.7257 0.7274 0.7262 0.7122 0.7051

R@K 0.1908 0.3154 0.4294 0.5238 0.6103 0.6682 0.7175 0.7667 0.8108 0.8379

F@K 0.3205 0.4619 0.5583 0.6215 0.6683 0.6958 0.7224 0.7459 0.7583 0.7658

inductive

P@K 1 0.761 0.693 0.7368 0.8101 0.8508 0.8634 0.89 0.9144 0.9169

R@K 0.3658 0.518 0.602 0.5833 0.5703 0.5853 0.6099 0.6094 0.6065 0.6116

F@K 0.5357 0.6164 0.6443 0.6511 0.6694 0.6935 0.7148 0.7234 0.7293 0.7338

PINmulti

transductive

P@K 1 0.8665 0.8075 0.7658 0.7322 0.7275 0.7329 0.7267 0.7121 0.697

R@K 0.1907 0.3158 0.4288 0.5251 0.608 0.6616 0.7106 0.758 0.8045 0.838

F@K 0.3203 0.4629 0.5601 0.623 0.6643 0.693 0.7216 0.742 0.7555 0.761

inductive

P@K 1 0.7464 0.6667 0.6894 0.7704 0.8118 0.8537 0.8948 0.9094 0.919

R@K 0.4647 0.5653 0.6207 0.6353 0.5852 0.5689 0.5869 0.5632 0.5806 0.5918

F@K 0.6345 0.6433 0.6429 0.6612 0.6651 0.669 0.6956 0.6913 0.7087 0.72

GNN-IR (Kim et al., 2021)

P@k 0.9956 0.9934 0.9926 0.9939 0.9946 0.9948 0.9951 0.9952 0.9951 0.9949

R@K 0.0268 0.0368 0.0471 0.0576 0.0677 0.0777 0.0876 0.0975 0.1072 0.1169

F@K 0.0522 0.071 0.0899 0.1089 0.1268 0.1441 0.161 0.1776 0.1935 0.2092

Table 2: Top-k Recommendation on I&B Dataset

Model Metric k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

PINtext

transductive

P@K 1 0.9 0.8627 0.8389 0.8275 0.8192 0.8469 0.8031 0.7934 0.7874

R@K 0.1033 0.1829 0.2341 0.2883 0.3336 0.3792 0.4218 0.4677 0.5071 0.5445

F1@K 0.1873 0.3034 0.3716 0.426 0.4737 0.5166 0.5575 0.5898 0.6208 0.6534

inductive

P@K 1 0.8008 0.7338 0.714 0.7 0.6988 0.6944 0.6923 0.6879 0.69

R@K 0.2474 0.2879 0.3233 0.3565 0.3974 0.4286 0.4632 0.5388 0.5029 0.5699

F1@K 0.3967 0.4234 0.4473 0.4744 0.5182 0.5466 0.5588 0.6034 0.5914 0.6287

PINimage

transductive

P@K 1 0.8963 0.8675 0.8626 0.8552 0.8498 0.8423 0.8331 0.8204 0.812

R@K 0.1047 0.1675 0.2216 0.2729 0.3219 0.3706 0.416 0.4604 0.5029 0.5421

F1@K 0.1896 0.2823 0.353 0.4146 0.4677 0.5161 0.5569 0.5931 0.6236 0.6502

inductive

P@K 1 0.8153 0.7474 0.7223 0.7095 0.7045 0.7072 0.7054 0.7021 0.7031

R@K 0.1384 0.2622 0.2971 0.3301 0.3691 0.4054 0.4431 0.4799 0.5129 0.5311

F1@K 0.2431 0.3968 0.4252 0.4533 0.4856 0.5146 0.5448 0.5712 0.5928 0.6051

PINmulti

transductive

P@k 1 0.9112 0.8794 0.8682 0.8583 0.8497 0.8429 0.833 0.8231 0.8163

R@K 0.1033 0.1685 0.2276 0.2814 0.3316 0.3816 0.4272 0.4738 0.5154 0.5575

F1@K 0.1873 0.2844 0.3616 0.425 0.4784 0.5267 0.567 0.604 0.6339 0.6625

inductive

P@K 1 0.7463 0.7141 0.6921 0.6802 0.6648 0.6572 0.6518 0.6523 0.6498

R@K 0.064 0.118 0.1824 0.2451 0.2941 0.358 0.4102 0.4476 0.4926 0.5369

F1@K 0.1203 0.2038 0.2906 0.3647 0.4122 0.4607 0.5056 0.5314 0.5602 0.5812

Table 4: Top-k Recommendation on iKala Dataset
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Next, we used the iKala dataset to further verify the robustness of PIN. In both the iKala Dataset and
the I&B Dataset, the overall performance of PIN was similar. PINtext with inductive learning con-
sistently yielded better results, achieving a recall rate close to 1. Additionally, in our experimental
setup using the inductive learning paradigm, the product category nodes in the testing phase include
nodes that were not seen during training. This indicates that the model maintains high accuracy even
when processing unseen product category nodes.

We used inductive learning to address the cold-start scenario, as it is well-suited for launching new
product categories. Given its effective performance, we applied the inductive learning settings to
further analyze the effectiveness of different features. As can be seen from Table 1 & 3, in both
datasets, PINtext consistently outperforms PINmulti, which in turn outperforms PINimage. We attribute
this to the fact that images lack the context to fully convey an influencer’s expertise in a particular
domain. Text, on the other hand, provides a more comprehensive understanding of an influencer’s
proficiency with a specific product category. Although previous research on brand-influencer pair-
ings often prioritized visual style and emphasized image features (Arifianto et al., 2018; Gan et al.,
2019; Elwood et al., 2021; Kim et al., 2023), our product-centric research shows that text features
are more effective in revealing the connection between influencers and product categories, thereby
diminishing the importance of images in this context.

It’s important to note that these findings do not imply that influencers should avoid using images in
their posts. Images can enhance user experience and increase engagement, but text appears to be
more effective for matching product categories with influencers in our PIN framework.

In conclusion, the appealing performance of PIN, with roc auc consistently exceeding 0.95 across
diverse datasets, validates the effectiveness of a product-centric approach in influencer marketing.
Moreover, the framework’s overall F1 score averages around 0.7 for influencer recommendation,
not only exhibits a significant improvement over previous work, but also demonstrates the efficacy
of using heterogeneous network structures and text features for modeling influencer marketing rela-
tionships and identifying product-influencer connections.

5 CONCLUSION AND FUTURE WORK

We proposed PIN, a product-centric framework for influencer recommendation that utilizes het-
erogeneous information networks (HIN) to expand the pool of potential influencers and uncover
non-obvious collaborations for new products. Our experimental results using two different datasets
confirm that the network structures can effectively model the complex relationships inherent in be-
tween influencers, product categories, and brands. In addition, we showed that text features are more
crucial than images for identifying cooperation relationship between product categories and influ-
encers. This helps reduce resources that are need to build the framework in real work applications.
In short, this research contributes a novel and effective solution for influencer marketing, enabling
businesses to discover new partnership opportunities and maximize the impact of their campaigns.

Future research may enhance product category prediction using supervised models trained on man-
ually labeled data or leveraging unlabeled data from Instagram’s shopping feature. Linking product
categories to e-commerce descriptions could further improve text embeddings. Additionally, as
brand profiles become richer, incorporating brand influence analysis could offer a more compre-
hensive understanding of influencer marketing dynamics. Further exploration into diverse brand
types and their interaction with different influencer tiers could pave the way for more sophisticated
machine learning applications in influencer marketing.

REFERENCES

Anditya Arifianto, Qhansa Di’Ayu Putri Bayu, Mahmud Dwi Sulistiyo, N Ignatius Wendianto, Na-
ufal Dzaky Anwari, Muhammad Adhi Satria, D Ni Gusti Ayu Mirah Eka, Admining Hastuti,
Isma Dewi Liana, Pima Hani Safitri, et al. Endorsement recommendation using instagram fol-
lower profiling. In 2018 6th International Conference on Information and Communication Tech-
nology (ICoICT), pp. 470–475. IEEE, 2018.

Colin Campbell and Justine Rapp Farrell. More than meets the eye: The functional components
underlying influencer marketing. Business horizons, 63(4):469–479, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. Popularity prediction on
social platforms with coupled graph neural networks. In Proceedings of the 13th international
conference on web search and data mining, pp. 70–78, 2020.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pp. 129–136, 2007.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Adam Elwood, Alberto Gasparin, and Alessandro Rozza. Ranking micro-influencers: A novel multi-
task learning and interpretable framework. In 2021 IEEE International Symposium on Multimedia
(ISM), pp. 130–137. IEEE, 2021.

Aleksandr Farseev, Kirill Lepikhin, Hendrik Schwartz, Eu Khoon Ang, and Kenny Powar. Somin.
ai: Social multimedia influencer discovery marketplace. In Proceedings of the 26th ACM inter-
national conference on Multimedia, pp. 1234–1236, 2018.

Tian Gan, Shaokun Wang, Meng Liu, Xuemeng Song, Yiyang Yao, and Liqiang Nie. Seeking micro-
influencers for brand promotion. In Proceedings of the 27th ACM International Conference on
Multimedia, pp. 1933–1941, 2019.

Mehmetcan Gayberi and Sule Gunduz Oguducu. Popularity prediction of posts in social networks
based on user, post and image features. In Proceedings of the 11th International Conference on
Management of Digital EcoSystems, pp. 9–15, 2019.

Google. Google taxonomy. https://www.google.com/basepages/producttype/
taxonomy.en-US.txt, 2024. Accessed: 2024-07-05.

Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, Adriane Boyd, et al. spacy: Industrial-
strength natural language processing in python. 2020.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, et al. Openclip. URL
https://doi. org/10.5281/zenodo, 5143773:29, 2021.

Seungbae Kim, Jyun-Yu Jiang, Masaki Nakada, Jinyoung Han, and Wei Wang. Multimodal post
attentive profiling for influencer marketing. In Proceedings of The Web Conference 2020, pp.
2878–2884, 2020.

Seungbae Kim, Jyun-Yu Jiang, and Wei Wang. Discovering undisclosed paid partnership on social
media via aspect-attentive sponsored post learning. In Proceedings of the 14th ACM international
conference on web search and data mining, pp. 319–327, 2021.

Seungbae Kim, Jyun-Yu Jiang, Jinyoung Han, and Wei Wang. Influencerrank: Discovering effective
influencers via graph convolutional attentive recurrent neural networks. In Proceedings of the
International AAAI Conference on Web and Social Media, volume 17, pp. 482–493, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Victoria Nebot, Francisco Rangel, Rafael Berlanga, and Paolo Rosso. Identifying and classifying
influencers in twitter only with textual information. In Natural Language Processing and Informa-
tion Systems: 23rd International Conference on Applications of Natural Language to Information
Systems, NLDB 2018, Paris, France, June 13-15, 2018, Proceedings 23, pp. 28–39. Springer,
2018.

11

https://www.google.com/basepages/producttype/taxonomy.en-US.txt
https://www.google.com/basepages/producttype/taxonomy.en-US.txt


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jinhee Park, Hyeongjin Ahn, Dongjae Kim, and Eunil Park. Gnn-ir: Examining graph neural net-
works for influencer recommendations in social media marketing. Journal of Retailing and Con-
sumer Services, 78:103705, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

David M Schweiger. Measuring managerial cognitive styles: On the logical validity of the myers-
briggs type indicator. Journal of Business Research, 13(4):315–328, 1985.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yizhou Sun and Jiawei Han. Mining heterogeneous information networks: a structural analysis
approach. ACM SIGKDD explorations newsletter, 14(2):20–28, 2013.

Danae Sánchez Villegas, Catalina Goanta, and Nikolaos Aletras. A multimodal analysis of influ-
encer content on twitter. arXiv preprint arXiv:2309.03064, 2023.

Shaokun Wang, Tian Gan, Yuan Liu, Jianlong Wu, Yuan Cheng, and Liqiang Nie. Micro-influencer
recommendation by multi-perspective account representation learning. IEEE Transactions on
Multimedia, 25:2749–2760, 2022.

Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon
Norick, and Jiawei Han. Personalized entity recommendation: A heterogeneous information
network approach. In Proceedings of the 7th ACM international conference on Web search and
data mining, pp. 283–292, 2014.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 11975–11986, 2023.

A APPENDIX

The Appendix presents some prediction results using the PINtext model with inductive learning
paradigm on iKala dataset. The study aims to demonstrate the model’s ability to predict the suit-
ability between a given product-category and an influencer, rather than illustrating the end-to-end
prediction results of the entire system. First, we illustrated examples of correct predictions. Fig-
ure 6 displays a product from the category Health & Beauty > Personal Care > Cosmetics >
Skin Care > Lip Balms & Treatments > Lip Balms on Google Shopping. Figure 7 shows two
accounts predicted by PIN as suitable for promoting this product category. The match is evident
by the influencers’ main pages featuring extensive beauty-related content, including lip balms and
lipsticks. The ground truth also confirms that the two influencers have indeed promoted this product
category.

As mentioned earlier, if a new product does not fit into the existing taxonomy categories, it can be
assigned a shorter category path to be included in the network. To illustrate, we present two product
categories with incomplete taxonomy paths. The first is Animals & Pet Supplies > Pet Supplies
> Cat Supplies, encompassing cat-related products such as those shown in Figure 8. This category
can be further divided into subcategories like Cat Litters, Cat Foods, and Cat Toys. The influencers
predicted to be suitable for endorsing this category are shown in Figure 9. Although @stupidbank’s
main page in Figure 9 primarily features dog-related content, by clicking through their pages, we
found that they also own a cat and have indeed promoted cat food. Thus, recommending them for
promoting cat-related products is acceptable.

While the previous examples demonstrate the effectiveness of our model, we also want to highlight
instances where our model made incorrect predictions. We again use cat-related products as ex-
ample. Although our framework successfully predicted influencers for the broader Cat Supplies
category, an incorrect prediction was made within the more specific category of Animals & Pet
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Figure 6: Products of the lip-balm cate-
gory on Google Shopping

Figure 7: Influencers’ Instagrams for the lip-balm
product category

Figure 8: Products of the cat-supplies cate-
gory on Google Shopping

Figure 9: Influencers’ Instagrams for the cat-
supplies product category
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Supplies > Pet Supplies > Cat Supplies > Cat Food. The influencer @doudou1109 in Figure 10,
predicted to be suitable for promoting cat food, is actually a dog influencer and should not be paired
with this product category. This mismatch may be attributed to our overreliance on text information
alone. Since both cats and dogs are categorized as pets and animals, their text embeddings may be
too similar to effectively differentiate them. This highlights a potential area for improvement in our
model, such as incorporating additional data modalities or refining our text embedding techniques.

Figure 10: Products of the Cat Food category on
Google Shopping and its predicted influencer

Figure 11: Products of the Studio Stand &
Mount Accessories category on Google Shop-
ping and its predicted influencer

Finally, we present another incorrect prediction, where our model predicted a collaboration that does
not exist. Figure 11 shows some products in category Cameras & Optics > Photography > Light-
ing & Studio > Studio Stand & Mount Accessories. Common products in this category include
photography stands and lighting equipment used for makeup tutorials or live streaming. Figure 11
shows an influencer who has never promoted products in this category, yet our model predicted a
potential collaboration. While this is technically an incorrect prediction, it highlights the potential
for PIN to expand the candidate pool of influencers. In this case, a beauty influencer could plausi-
bly promote lighting equipment designed for makeup application, illustrating the model’s ability to
identify less obvious, but still relevant, influencer-product pairings.

The examples above demonstrate that PIN can effectively identify suitable influencers across various
product categories. Although some predictions may be marked as incorrect due to the lack of prior
collaboration, a closer manual inspection, such as in Figure 11, reveals that the predicted influencers
are indeed appropriate for promoting the given product category. This highlights PIN’s capability to
match influencers to product categories based on their text content.
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