Under review as a conference paper at ICLR 2025

ROLORA: RANK OPTIMIZATION FOR LOW-RANK
ADAPTATION UNDER MEMORY CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) has emerged as a prominent technique for fine-
tuning large language models (LLMs) with limited computational resources.
However, by injecting low-rank adapters with a rank identical across all layers,
standard LoRA overlooks the varying importance of the weight matrices, often
leading to suboptimal performance. Therefore, discovering an optimal rank con-
figuration that efficiently utilizes limited training resources remains an open ques-
tion. Existing solutions typically compromises computational constraints for per-
formance gains, limiting their practical usage in resource-constrained scenarios.
To address these issues, in this paper, we propose a novel method named ROLoRA
to efficiently discover an effective rank configuration for low-rank adaptation,
while strictly adhering to a constrained computational budget during training. In
particular, our method iteratively prunes saturated adapters and expands under-
fitted ones to increase their capacity until they converge to a highly optimized
configuration. Our approach is delicately designed within the Frank-Wolfe algo-
rithmic framework, which offers potential theoretical guarantees. Experimentally,
we demonstrate that ROLoRA outperforms standard LoRA on common natural
language processing tasks, including the GLUE and SQuAD benchmarks. Addi-
tionally, we provide a comprehensive analysis to explain why ROLoRA surpasses
competing state-of-the-arts.

1 INTRODUCTION

Fine-tuning pre-trained large language models (LLMs) for downstream tasks has become a common
practice to meet customized and domain-specific demands, especially after the recent prevalence
of these models. However, the computational cost during training remains a significant concern,
particularly due to the increasing number of parameters in these models. Naively fine-tuning the
entire models often requires as much computational capacity as training the model from scratch,
which limits the feasibility of fine-tuning LLMs on resource-constrained edge devices.

To fully exploit the advantages of model fine-tuning, recent works have departed from full fine-
tuning towards more light-weighted approaches, also known as Parameter-Efficient Fine-Tuning
methods (or PEFT) (Houlsby et al., 2019} |Karimi Mahabadi et al., [2021; Mao et al.|, |2022). PEFT
methods aim at reducing the number of trainable parameters during the fine-tuning process, which
brings about simultaneously two benefits. First, PEFT methods reduce the memory required to store
trained parameters, enabling the deployment of fine-tuned models for multiple tasks on the same
device. Second, the reduced number of trainable parameters typically lowers the optimization cost
during training, particularly by minimizing the memory required to store optimizer’s states, which
facilitates on-device fine-tuning for these models.

Among many recently developed PEFT methods, Low-Rank Adaptation, or LoRA, proposed by |[Hu
et al.| (2022)) is among the most important. In principle, LoRA freezes the base pre-trained model
and attach updates to each weight matrix of the base model as separate modules, known as adapters,
in form of a product of two matrices of significantly smaller size. Concretely,

W =Wy + AW =W, + BA,

where Wy € R™*? is the base pre-trained weight, AW = BA is the update, A € R™*4 ig called
the down projection matrix and B € R™*" the up projection matrix. Typically the size r is chosen

Under review as a conference paper at ICLR 2025

to be a small constant significantly smaller than n,d. In this way, LoRA is able to reduce the
number of trainable parameters to possibly only 0.5% compared with full fine-tuning while achieves
comparable or even better than the latter (Hu et al., [2022; [Zhang et al.| [2023)).

As simple and efficient as it may seem, LoRA still has its limitations. In particular, it is unclear how
to optimally choose the rank r for each adapter in LoRA. The standard LoRA sets an identical rank
r for all adapters. This strategy ignores the fact that different layers in the model carry different
amount of knowledge (Chen et al.| 2023a) and thus require different level of tuning. In a recent
work, Zhang et al.| (2023) demonstrate that varying the ranks r according to the importance of the
weight matrices can improve the performance of LoRA-style methods. However, existing solutions
often require a greater memory budget during training to provide more buffer to explore a high-
performing adapter configuration. This is especially undesirable for fine-tuning the model on small
devices where the memory allowed during training is strictly limited.

In this work, we study the problem of determining the ranks of the adapters that can improve the
performance of LoRA while imposing a strict memory constraint during training, reflected by a con-
straint on the number of trainable parameters. Towards answering this question, our contributions
can be summarized as follows.

We propose a general framework, named ROLoRA, that iteratively sparsifies and grows the ranks
of the adapters. Specifically, at each iteration, our algorithm performs a flexible rank sparsification
step to determine the importance of the adapted weight matrices. Our framework allows to use any
rank sparsification algorithm as a blackbox. Next, we expand the rank configuration to increase
the capacity of the adapters, while strictly adhering to memory budget, before updating the ranks
following the direction suggested this configuration. Our approach aims to imitate a first order
gradient method (specifically Frank-Wolfe algorithm), which is search-free and highly efficient.

To demonstrate its effectiveness, we show in experiment that our algorithm improves the perfor-
mance of LoRA on common NLP benchmarks, including GLUE (Wang et al.| |2019) and SQUAD
datasets (Rajpurkar et al.l [2016; |2018). We show that our algorithm even outperforms AdaLoRA
which requires more memory during training. We show at the same time that the output adapters
can be smaller in size, reducing the memory storage compared with the standard LoRA.

Finally, to explain the effectiveness of our method, we conduct a comprehensive ablation study. We
demonstrate that a certain type of weight matrices in the transformer architecture, such as value
matrices, plays a more important role than the others (key and query matrices) in fine-tuning. Mean-
while, our approaches could effectively discover the varying saliency pattern and assign proper ranks
accordingly. These advantages contribute to the superior performance we achieved.

2 RELATED WORK

Parameter-Efficient Fine-Tuning. Together with model compression (Jafari et al.l 2021; (Chen
et al., |2021), PEFT is another category of solutions to improving fine-tuning LLMs. One approach
to PEFT is adding adapters between model layers (Houlsby et al.l[2019; Rebuffi et al., 2017} |Pfeiffer
et al.,[2021; [He et al., [2022). Due to the increase in the number of layers, this approach, however,
can introduce latency during inference time. Another direction to PEFT is to directly update the pre-
trained weights, under which falls LoRA (Hu et al.} 2022). We refer the reader to a recent survey on
PEFT methods by Han et al.|(2024) for a more comprehensive comparison.

LoRA and related works. We provide backgrounds on LoRA in Section [3| This seminal work
by Hu et al.|(2022) opens up a plethora of works on PEFT via low-rank adaptation, focusing on ad-
dressing shortcomings of LoRA. For example, QLoRA (Dettmers et al.,|2024) employs quantization
technique to improve the memory consumption of LoRA. [Liu et al.| (2024) uses a weight decom-
position of the pre-trained weight matrices to improve the performance of LoRA. Notably, Hayou
et al.| (2024) show that using different step sizes for different adapters in LoRA can lead to better
performances. This latter work also highlight the need for algorithmic frameworks that exploit the
layer-wise varying importance which our work targets to develop. However, these works are orthog-
onal and can be used jointly for further improvements, which we leave for future investigation. Our
work is inspired by Xia et al.[(2024), which uses multiple runs of LoRA to improve this algorithm.

Under review as a conference paper at ICLR 2025

Most related to our work is DyLoRA (Valipour et al.| [2023), AdaLoRA [Zhang et al.| (2023)) and
SoRA (Ding et al.,2023). DyLoRA focuses on determining an optimal constant for setting the rank
of all adapters in LoRA. This is in contrast to our work which aims at finding ranks for adapters that
can vary across layers when given a budget on the number of trainable parameters. AdaLoRA and
SoRA use different techniques to reduce (sparsify) the ranks initialized by LoRA, which in effect,
gives us a rank configuration that reflects the importances of the adapted weight matrices. However,
both methods violate the budget constraint when starting with a rank higher than the one initialized
by LoRA. Our solution to the problem uses a sparsification method such as AdaLoRA and SoRA as
a subroutine in an iterative framework, while strictly guarantees the budget constraint is satisfied.

3 BACKGROUND AND PROBLEM STATEMENT

3.1 LOW-RANK ADAPTATION

Low-rank adaptation, or LoRA, was introduced by Hu et al.| (2022), as a Parameter-Efficient Fine-
Tuning method, based on the assumption that the incremental update to the pretrained model has
a low intrinsic rank. Specifically, given the pretrained weight W, € R"™*¢, LoRA considers only
updates in the form of a product of two small matrices AW = BA, where B € R"*" and A € R"*¢
with the rank r < min{n, d}. We will refer to r as the rank of the adapter, although r is only an
upper bound on the rank of A or B. For h = Wyz, the forward pass becomes

h=(Wy+ AW)x = Wz + BAz.

In this way, the number of trainable parameters is significantly reduced from nd to r(n + d). For ex-
ample, when the model is trained with commonly used adaptive optimizers such as Adam (Kingma,
2014), the memory required to store the optimizer’s states, e.g., momentums, is proportional to the
number of trainable parameters. By reducing the number of trainable parameters, LoRA saves on
the memory required to fine-tune the model.

In this work, we study a more generalized variation of LoRA by introducing a diagonal matrix to the
update process. Let g € R" be an r-dimensional vector and diag(g) € R"*" be a diagonal matrix
formed by g. We consider an update of the form AW = B diag(g) A. Remark here that when g is
set to 1, this variant becomes numerically equivalent to the standard LoORA. When g is made train-
able, the number of trainable parameters increases marginally by r, which is negligible compared to
the total number of trainable variables in LoRA, i.e., r(n+d). This generic adjustment offers greater
flexibility during training and can often lead to a more favorable optimization landscape, potentially
resulting in improved performance.

3.2 PROBLEM STATEMENT

Suppose that we aim to use K LoRA adapters for K pretrained weight matrices, with corresponding
ranks r1, ..., 7. Our research question is as follows:

Given a strict budget constraint on the memory required during training,
how can we determine the optimal assignment of ranks for these adapters?

Formally, let us denote the rank configuration R := (1,72, - , 7k), and the parameters to be fine-
tuned carried out by R as 6. Let Ly, (0r; D) be the loss function we optimize during the training
with regard to parameters 0, given the pretrained weight Wy, and training data D. We let 0 be a
minimizer to Ly, (Or; D), i.e.,

03 € arg rélinLWU (6r; D). (1
R
We measure the performance of the rank configuration R = (ry,79,- -+ ,rk) by evaluating the
objective loss values of 67, measured over the dataset D as follows:
f(R) = Lw, (0%; D). 2)

To express the memory constraint, for simplicity, we assume that all pretrained weight matrices
used for adaptation have the same dimensions n x d. This assumption typically holds in standard
LoRA, where fine-tuning is applied to the key, query, and value matrices, i.e., Wy, W, W, of the

Under review as a conference paper at ICLR 2025

N

'?ﬁ

© JI b(,’&“ o“d é (b) Extend ranks

Emm Eﬁﬂ

Es g

Figure 1: Visualization of an iteration in ROLoRA. Starting the iteration with an initial rank con-
figuration (top left), the algorithm does the following: (a) Sparsify by pruning saturated adapters
(grayed out in top right picture); (b) Extend the sparsified configuration; (c) Interpolate the ranks
at the beginning of the iteration (top left) and the extended ranks (bottom right) to obtain the new
configuration (bottom left); (d) Carry the trained weight during sparification (orange) to the new
configuration and proceed to the next iteration.

(c) Update rank

self-attention modules. However, we can generalize this assumption to matrices of any size. Under
this assumption, we deduce that the memory required to maintain the optimizer’s states depends

. K .
linearly on) _.” ; ;. Therefore, we express the memory constraint as:

K
> ri<K-R, 3)

where R is the average rank we can afford with the memory budget for each adaptor. We obtain the
following main optimization problem to seek the optimal adapter configuration under strict budget:

K
minimize f(R), subject to ;r < R 4)

Remark 1. Standard LoRA typically uses a small constant (e.g., 4, 8, 16) as the value of R and
applies it uniformly across all adapters, i.e., 71 = --- = rxg = R. However, it neglects the varying
importance of different weight matrices and has been shown to result in inferior performance com-
pared to methods like AdaLoRA (Zhang et al., [2023)), which adaptively vary the rank assignments.

Remark 2. To determine the optimal rank configuration, existing methods like AdaLoRA
2023) iteratively prune redundant adapter variables until convergence. However, these meth-
ods require starting with larger adapter ranks, which directly violates the memory constraint outlined
in (3)) during training. In contrast, our method adheres to the memory constraint from the outset and
effectively discovers the optimal rank configuration, provides significant practical advantages under
limited resource situations and distinguishes it from existing approaches.

Efficiently solving problem (@) is challenging for several reasons. First, accurately evaluating the
performance measure f(R) is computationally expensive. Second, standard optimization tools, such
as gradient methods, struggle with discrete variables, while naive search is prohibitively expensive
due to the size of the search space. In the next section, we will introduce a simple but effective
method that is delicately designed to solve problem (@) efficiently.

4 ALGORITHM

Under review as a conference paper at ICLR 2025

Algorithm 1 ROLoRA: Rank Optimized Low-Rank Adaptation

1: Input: Target average rank R
2: Initializery =...rgx = R,vy=0

3: Initialize the adapters, initialize p the parameter of SPARSIFY algorithm according to
SCHEDULE algorithm

4: for iterationt =1...7 do

5: Let(s1,...,5K),0 < SPARSIFY((71,...,7K);0; 1) (e.g.via AdaLoRA)

6: LetS=%(s1 4 +sk);(s1,...,5x) < round ((s1,...,5x) x &)

7: Update r; = (1 — y)r; + 7s;, forall i € [K] fory =1/t

8: Update current model by EXTEND((71,...,7x);)

9: Update y + SCHEDULE(u;t)

10: end for

11: return (rq1,...,7x)

In this section, we describe our algorithm ROLoRA to solve Problem (@) shown in Algorithm [1}
ROLORA is an iterative method to automatically discover an effective rank configuration. After
proper initialization, ROLoRA begins with a given adapter rank configuration, then iteratively identi-
fies saturated and underfitting weights. It adjusts the adapter rank assignment by performing pruning
and growth operations, and is delicately structured within the Frank-Wolfe algorithmic framework
to leverage potential theoretical advantages. Each main step is elaborated as follows, which is also
demonstrated in Figure[I]

Sparsifying / pruning the ranks (Step (a) in Figure [). Given a rank configuration R =
(r1,...,7K), certain weight matrices may become saturated during further fine-tuning, meaning
they might not require as many trainable parameters. To address this, we introduce a sparsification
or pruning operator to identify redundant ranks across the adapter sets. In Algorithm |1} we flexi-
bly employ any rank sparsification algorithm for the SPARSIFY operator, such as AdaLoRA (Zhang
et al.,|2023)) and SoRA (Ding et al., [2023) or pruning approaches based on saliency scores (Chen
et al.,[2023b;|2024). Without loss of generality, we assume that SPARSIFY takes in a pruning aggres-
siveness hyper-parameter p to produce a new trial rank configuration S = (s1,- - , sk). S reflects
more accurately than R the (relative) importance of the corresponding weight matrices (Line 3)).

Reassign and grow the ranks (Step (b) in Figure[I)). In addition to certain adapters requiring fewer
ranks due to saturation, some adapters may need their capacity increased instead to learn more
effectively. Therefore, it is essential to identify which adapters should grow to meet this demand.
To achieve this, we use the signals from the pruned rank configuration. Typically, the ranks that
remain unchanged in S indicate that these adapters require more parameters, as no redundancy is
detected. However, because we operate under a strict memory budget, the amount of growth must
strictly adhere to this constraint. Taking these factors into account, we scale up S to align with the
target average rank R (Line|[6).

Intuitive connection to gradient estimation to f. The sparsification and growth steps in our algorithm
effectively identify adapters that require more capacity or exhibit redundancy. Consequently, it
builds on the intuition that the new rank configuration output S suggests a favorable search direction
that can enhance the performance measure f(R) of the current rank configuration R.

Update the ranks and adapters (Step (c-d) in Figure[I)). Once obtaining the new trial configuration
S, we update the current configuration R by moving it towards S, i.e., taking an interpolation
step with step size v (Step (c)). This step is a reminiscence of the update step in the Frank-Wolfe
algorithm (Frank et al.l [1956)) for solving constrained optimization problems. To update the adapter
weights, we can carry over the trained adapters obtained from the SPARSIFY algorithm (Step (d)).
Since the some of trial ranks in S are increased during the rank growth step, additional rows and
columns will be added to the up and down projection matrices, as well as additional entries to the
diagonal matrix, requiring only the initialization of these extended parts. These extended parts are
initialized in the same way as LoRA adapters so that their product is 0 to ensure computational
invariance after the adapter growth.

Scheduling the sparsification. After each sparsification-growth-update step, we update the sparsi-
fication parameter of the SPARSIFY operator via SCHEDULE. One approach is to keep the sparsifi-

Under review as a conference paper at ICLR 2025

cation parameter as a constant. Alternatively, we can employ a sparsification schedule that gradually
reduces the pruning aggressiveness over time. Intuitively, as the model converges to a better rank
configuration over time, it requires fewer adjustments to determine an update direction.

5 OUTLINE FOR CONVERGENCE ANALYSIS

In this section, we present the outline for the convergence analysis of ROLoRA to solve the target
problem @]) Towards this end, we first show that under certain assumptions on the SPARSIFY
operator, Algorithm [T will improve the performance measure f over iterations.

Assumption 1. The SPARSIFY (R; 0; u) operator has the following properties: 1. During the course
of the algorithm, SPARSIFY satisfies the memory budget, indicated by)", r;. 2. For any rank
configuration R and initial weight 0, there exists a sparsification parameter . such that if S, 6 +
SPARSIFY(R; 0;) then f(S) < f(R).

We interpret this assumption as follows. As a rank configuration can contain redundant information,
the SPARSIFY operator with a well chosen sparsification parameter can remove this redundancy
without sacrificing the model performance. In the trivial case, we can choose (so that no sparsifica-
tion happens, thus the loss function is not increased (yet in which case the algorithm will terminate
without updating the rank configuration). In practice, if the model has saturated weights, keeping
fine-tuning these weights can easily result in overfitting problem, which further degrades the model
performance. Hence, yielding proper sparsity over the adapters can promote the model performance

instead, i.e., f(S) < f(R).
We then show the following Proposition.

Proposition 1. Ler R(0) = (R,...,R), and R®) be the rank configuration output by Algorithm
after iteration t. Forallt > 1, f(R®) < f(R®),

Proof. Let S®) be the sparsified ranks from R(*) and 0% be a collection of optimal adapters

weights for S(*). We apply the EXTEND operator and initialization so that for each triple of adapters
(BM, g, AM) € 0%, we have B diag(g 1) At+D = B diag(g(")A"). Therefore, we
have f(R1D) < £(S®W) < f(R®), where the last inequality is by the assumption. O

Connection to Frank-Wolfe algorithm and Convergence rate. We now show the connection
between Algorithm|[T]and Frank-Wolfe algorithm [Frank et al. (1956). To minimize a function f over
a convex domain &', in iteration ¢, Frank-Wolfe algorithm finds a solution in s € X’ that minimizes
(5, V f(2®)), with z(*) being the current solution, and update z(**1) « (1 —~)2(*) + s with some
step size . Jaggil (2013) shows that Frank-Wolfe with appropriate step sizes converges with rate
O(+) for convex smooth functions; later Lacoste-Julien| (2016) shows a O(ﬁ) convergence rate of

the duality gap for nonconvex smooth functions. Our algorithm is driven by this Frank-Wolfe type
of update. Our problem (@) while being a discrete problem can be relaxed to a continuous convex
domairﬂ Although we do not have access to the exact gradient V f(R), we approximate the update
direction s using the dedicated designed joint sparsification and growth step as the proxy described in
Section[d] Consequently, we could incorporate with the existing theoretical framework of [Lacoste-
Julien| (2016) to indicate that within a finite number of iterations, the proposed ROLoRA could find
a high-performing rank configuration, which is further numerically demonstrated in Section [6]

6 EXPERIMENTS

We implement ROLoRA (Algorithm E]) for fine-tuning RoBERTa-base (Liu et al. 2019) and
DeBERTa-v3-base (He et al., 2021) on the GLUE Benchmark (Wang et al., 2019) and SQUAD
datasets (SQUADvVI1 (Rajpurkar et al.l 2016) and SQUADvV2 Rajpurkar et al.|(2018))). We describe
the Algorithm implementation and baselines below.

"For any two feasible R* and R? satisfying the budget constraint, their convex combination still satisfies
the budget constraint since Zfil (Mi+(1=XNrf) <AK-R+(1—AK-R=K - Rforany A € [0,1].

Under review as a conference paper at ICLR 2025

Table 1: Results for RoBERTa-base and GLUE benchmark. The target average rank is R = 8. For
AdalLoRA, the initial average rank is set to 12. { represents the vanilla version of the algorithm. %
means the algorithm is executed in 7' = 3 iterations; in each iteration, the model is initialized to
the best checkpoint. We report Pearson correlation for STSB, Matthews correlation for CoLA and
Accuracy for the remaining datasets. We report the mean and standard deviation across 5 runs.

Method MRPC RTE CoLA QNLI MNLI QQP SST2 STSB

LoRAT 89.904 73 78.7041.21 64.341 78 93.084 20 87.574 .11 90.924 109 95.344 27 90.794 16
LoRA* 89.364+ 80 79.2111.30 64.911 95 93.224 18 87.604 g9 91.21 4+ 09 95.624 21 90.961 11
AdaLoRAT 88.5341 g9 76.104+ 42 58.874 46 93.564 07 87.57+ 06 90.03+ 04 94.844 7 90.264 12
AdaLLoRA* 89.014 36 79.424 g5 62.624 g1 93.724 2 87.66+ 06 90.424 95 95.181 21 90.924 9

ROLoRA 90.15. 35 81.731 37 64.98.1.9093.71 1 o7 87.761 05 91.25, 04 95.301 15 91.18 4 13

Table 2: Results for DeBERTa-base and GLUE benchmark. The target average rank is R = 8. For
AdalLoRA, the initial average rank is set to 12.

Method MRPC RTE CoLA QNLI MNLI QQP SST2 STSB

LoRAf 90.744 39 86.43+ 98 T1.1641 49 94.244 27 90.324 96 92.23 4+ 04 96.54 4 09 90.75+ 16
LoRA* 90.884 42 87.65+1.03 70.95+ 45 94.404 14 90.394 04 92.344 06 96.514 21 90.794 19
AdaLoRAT 91.08 90 87.224 37 70.394+ 50 94.704 11 90.764 04 91.894 02 96.24+ 17 91,174 15
AdaLLoRA* 91.27:‘:,12 87.80:|:.27 7178i73 94.72:‘:,(]3 90-93:|:.()5 92.17:‘:.()3 9661i1() 9144:|:13
ROLoRA 91.724 45 88.66.11.30 71.17+ 61 94.721 97 90.78 1 05 92.38 95 96.701 22 91.48 1 13

Models. We use pre-trained RoBERTa-base (Liu et al., [2019) and DeBERTa-v3-base (He et al.,
2021) publicly available on HuggingFace Transformers library (Wolf] |2019). For the former, we
fine-tune query and value matrices. For the latter, we fine-tune key, query and value matrices.

Sparsification Algorithm and Scheduling. We use AdaL.oRA [Zhang et al.|(2023)) as the SPARSIFY
operator. We start with the level of sparsify that reduces the average rank to R/2 and gradually

increase the average rank after sparsification by a factor of (1 + %ﬂ) after iteration .

Number of iterations. We use a small number of iterations to balance the tradeoff between the
improvement in the model performance and the increase in the training time. In all experiments, we
use three iterations (1" = 3).

Baselines. We compare our algorithm with two algorithms LoRA (Hu et al) [2022) and
AdalLoRA(Zhang et al.,[2023). For LoRA, we use the same target average rank R across all adapters.
For AdaLoRA, we initialize the rank configuration the same across all adapters to be 1.5R as rec-
ommended in|Zhang et al.[(2023)) and sparsify it to the target average rank R. However, one should
also note that by initializing the total ranks to 1.5 RK, this baselines violates the memory constraint.
We also compare with two other baselines by repeating LoRA and AdaLLoRA T iterations. In each
iteration, the model is initialized to the best checkpoint so far.

6.1 GENERAL LANGUAGE UNDERSTANDING EVALUATION (GLUE) BENCHMARK

Datasets. The GLUE Benchmark is a collection of natural language understanding tasks, consisting
of two single-sentence classification tasks, three similarity and paraphrase tasks and four natural
language inference tasks.

Implementation details. In our experiment, the target average rank is set to R = 8. The initial aver-
age rank for AdaLoRA is set to 12. We reuse hyper-parameters such as learning rate, sparsification
parameters, etc, as recommended in the original papers by Hu et al.|(2022); Zhang et al.[(2023).

Main results. We report the performances of our algorithm in comparison with the baselines using
RoBERTa-base (Liu et al] [2019) in Table [T[] and DeBERTa-v3-base (He et all [2021) in Table 2}
For both models, almost across the board, ROLoRA outperforms both vanilla LoORA and AdalLoRA

Under review as a conference paper at ICLR 2025

Table 3: Results for ROBERTA-base on MRPC, RTE and CoLA when the target average rank R =
16 and R = 4. In the former case, the initial rank of AdaLoRA is set to 24, and in the latter 6.

R=16 R=14
Method MRPC RTE CoLA MRPC RTE CoLA

LoRAT 88. 774 57 777714134 63.211 94 89.314 59 79.2341 02 64.744 53
LoRA* 89.164 73 77.8341.24 63.951 g6 89.854+ 65 80.434+ 77 65.994 o9
AdaLoRAT 87.01i.31 75-67i.67 58.50i,71 88.33i,74 77-55i2.11 59-59i.44
AdalLoRA* 89.71i.35 79~49i1.24 61-51i,62 89.26i,39 80.431,93 63.07i,30

ROLoRA 90.49 72 80.36.11 52 63.98. 53 90.00. 33 82.384 45 65.5711.26

Table 4: Average rank of the output adapters for Experiment shown in Table |1} using ROBERTA-
base, for target rank R = 8. For LoRA and AdalLoRA, the average output rank is fixed to R. For
ROLOoRA, we report the mean across 5 runs.

Method MRPC RTE CoLA QNLI MNLI QQP SST2 STSB
LoRA & AdalL.oRA 8.0
ROLoRA 55 59 73 49 80 64 6.6 6.5

(marked with T in Tables [I|and . On RTE dataset, for example, for both models, ROLoRA shows
more than 1.5% improvement compared with vanilla LoRA and AdaLoRA. This shows that setting
identical ranks for all layers as in the standard LoRA is clearly a sub-optimal strategy. Even when
we are allowed to violate the budget constraint and go beyond the search space as does AdaLoRA, a
single step sparsification algorithm does not result in much improvements. We should also note that,
while increasing the number of iterations for LORA and AdaLLoRA (marked with x in Tables|l|and
E]) leads to some improvements compared with the vanilla versions, for most instances, ROLoRA
still edges out on the model performance.

Varying target average rank. In Table [3] we report the performances of our algorithm and the
baselines using RoBERTa-base when we use the target average rank R = 4 and R = 16. We
discover the same pattern as when R = 8, showing that the ranks discovered by ROLoRA can
significantly improve LoRA.

Analysis of the output rank. In Table 4] we report the average ranks of adapters output by each
algorithm. Note that for LoORA and AdalLoRA, the average output rank is fixed to R, which means
there is no saving in the memory. On the other hand, ROLoRA can output adapters with significantly
lower ranks. For example, for the QNLI dataset, the average rank of the output adapters is reduced by
62% while ROLoRA still achieve 0.6% improvement in the performance compared with LoRA. This
rank reduction can both benefit memory storage and computational time at inference. This benefit
comes inherently from the way the algorithm works by always maintaining the number of trainable
parameters within the budget and continually sparsifying and updating the rank configuration.

Varying sparsification algorithm. We experiment with SoORA Ding et al.| (2023) as the SPARSIFY
algorithm and show the algorithm performance in Table This version of ROLoRA generally
demonstrates improvement over LoORA. However, we should note that since SORA uses a threshold-
ing based strategy for pruning the ranks as opposed to a ranking based strategy used by AdaLoRA,
it is more difficult to control the sparsity of the solution. For this reason, in this experiment, we
keep the same threshold across all iterations of the algorithm (for the SCHEDULE operator). The
performance of the algorithm could be improved with a better SCHEDULE operator.

6.2 QUESTION-ANSWERING (SQUAD) BENCHMARK

Datasets. SQUAD consists of two datasets for a Question-Answering task, in which we predict the
probability of each token being the start and end of the answer to the question.

Under review as a conference paper at ICLR 2025

Table 5: Results when varying the sparsification algorithm, using ROBERTA-base model. We com-
pared our algorithms with the vanilla (marked with T) and iterative (marked with x) versions of
LoRA (part of Table . Superscript 4 represents ROLoRA with AdaLoRA as the SPARSIFY oper-
ator, and © represents ROLORA with SORA as the SPARSIFY operator.

Method MRPC RTE CoLA SST2

LoRAT 89.904 73 78.7011 21 64.344 75 95.34 o7
LoRA* 89.36:|:.80 7921:!:1.30 64.91:|:.95 95.62:|:.21

ROLORA“ 90.15 35 81.734 57 64.98.11 20 95.304 15
ROLORA® 89.904 57 80.041 50 65.1411 33 95.344 9o

Table 6: Results for DeBERTa-v3-base on SQUADv1 and SQUADV2 datasets when the target aver-
age rank is R = 8 and R = 4. We report Exact Match for both datasets.

Rank R=28 R=4
Method SQUADvI SQUADv2 SQUADvI SQUADV?2
LoRAT 87.73 84.71 87.71 85.05
LoRA* 87.85 84.61 87.73 85.13

AdaLoRAT 87.90 85.72 87.74 85.26
AdalLoRA* 88.25 86.20 87.90 85.35

ROLoRA 88.29 85.87 87.97 85.60

Implementation details. We experiment with the target average rank setto R = 8 and R = 4. In
the former case, the initial average rank for AdaLLoRA is set to 12, and in the latter, it is set to 6.

Main results. We report the results using DeBERTa-base model. In both cases R = 8 and R = 4,
our algorithm outperforms both vanilla LoRA and AdaLoRA. The improvement over LoRA is more
than 1.1% on SQUADvV2, when R = 8. Even though in this case, AdaLoRA with 7" iterations shows
a better performance, we should note that AdalLoRA does not adhere to the memory constraint.

6.3 ABLATION STUDY

We conduct an in-depth study to show why ROLoRA outperforms LoRA and AdaLoRA.

To understand how ROLoRA assigns ranks, we plot the rank distribution of the output adapters for
DeBERTa-v3-base on CoLA and QNLI datasets in Figure Eka) (same experimental results in Table
[2). We compare these distributions with the configurations discovered by AdaLoRA in Figure 2(b),
which also serves as the base SPARSIFY operator in our algorithm. We observe the following:

(1) ROLORA finds a configuration that allows ranks to go beyond the upper limit set by AdaLoRA.
In particular, in the plot for CoLA in Figure [J(a), some adapters have ranks higher than the initial
rank 12 set by AdaLoRA in the same experiment in Figure 2(b). This means, ROLoRA can go be-
yond the search space set by a vanilla sparsification algorithm, and thereby achieves improvements.

(2) ROLoRA focuses significantly on the value matrices. The overall ranks assigned to the
value matrices are significantly higher than those to the key and query matrices. Compared with
AdalLoRA, which shows a similar pattern, ROLoRA further accentuates this difference.

We further investigate this latter point to see the role each type of matrices plays in fine-tuning.

In Figure [3] we plot the gradient norm of the pretrained DeBERTA-v3-base model by making one
backward pass over the corresponding datasets (CoLA and QNLI). We can see that in each layer,
the value matrices have much larger gradient norms than the others. Intuitively, this implies that
these matrices are much more sensitive and thus require higher level of tuning. Therefore, one could
expect that the value matrices play a more important role in fine-tuning and by assigning higher ranks
to the adapters for them relatively to the other matrices, we could achieve a better performance.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

To verify this hypothesis, we train separately three sets of Table 7: Results when fine-tuning
adapters: for each type of matrices (key, value, query), we inject key, query and value matrices
a LoRA adapter for each matrix of that type of rank R = 8 and separately with LoRA adapters
fine-tune the model. We report their performances in Table m and rank R = 8.

The result in Table [7] shows that fine-tuning only value matri-
ces can give us better performances than doing so with key and
query matrices. This confirms out hypothesis that value matri-
ces play a more important role in fine-tuning LLMs. CoLA 69.7 68.9 67.1
QNLI 94.3 93.7 93.7

Value Key Query

Returning to Figure[2] the performance of ROLoRA can by ex-
plained by its accentuation on the ranks of value matrices.

(a) ROLoRA
CoLA QNLI
E mkey 5.0
| | JJJJJIJJI]HH - . JJJJ"HIU
0 0.0 -“J
0 3 Layef 9 12 0 3 Layere 9 12
(b) AdaLoRA

QNLI

CoLA

10.0
7.5

key

Fhod 5.0
2.5
0.0

0 3 6 9 1 0 3 6 9 12

2
Layer Layer

Rank
@

0

Figure 2: Distribution of ranks across layers obtained by (a) ROLoRA and (b) AdaLoRA on CoLA
and QNLI using DeBERTA-v3-base. Both algorithms give higher rank to adapters for value matri-
ces, though ROLoRA further accentuates this feature.

CoLA QNLI
60
90
E 40
z
E] Wkey 60
9] Hquery
S| Hvalue
£ 20
Q 30
o -JA,J_JiIJJ_JJ o ,Jk-‘-JJJJJJJ
0 3 6 9 12 0 3 6 9 12
Layer Layer

Figure 3: Distribution of gradient norms across of the pre-trained model across layers. Value ma-
trices have higher significantly gradient norms than key and query matrices, implying that these
matrices are much more sensitive and require more tuning.

7 FUTURE WORK AND CONCLUSION

In this work, we propose a novel iterative algorithm that optimizes rank configurations to enhance
the performance of the popular fine-tuning algorithm LoRA. Our approach leverages a new insight
that value matrices in the transformer architecture are more critical for fine-tuning on downstream
tasks than key and value matrices. We leave further investigation on the applications of the our
method and its theoretical convergence guarantee to future work.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321—
29334, 2021.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large
language model structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356,
2023a.

Tianyi Chen, Luming Liang, DING Tianyu, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic,
generic, user-friendly. In International Conference on Learning Representations, 2023b.

Tianyi Chen, Xiaoyi Qu, David Aponte, Colby Banbury, Jongwoo Ko, Tianyu Ding, Yong Ma,
Vladimir Lyapunov, Ilya Zharkov, and Luming Liang. Hesso: Towards automatic efficient and
user friendly any neural network training and pruning. arXiv preprint arXiv:2409.09085, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. In Conference on Empirical Methods
in Natural Language Processing, 2023.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95-110, 1956.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
In International Conference on Machine Learning, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=XPZIaotutsD.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Aref Jafari, Mehdi Rezagholizadeh, Pranav Sharma, and Ali Ghodsi. Annealing knowledge distil-
lation. In Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pp. 2493-2504, 2021.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427-435. PMLR, 2013.

11

https://openreview.net/forum?id=XPZIaotutsD

Under review as a conference paper at ICLR 2025

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022—
1035, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv preprint
arXiv:1607.00345, 2016.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Interna-
tional Conference on Machine Learning, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692,

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Scott Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6253-6264, 2022.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 487-503, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In Jian Su, Xavier Carreras, and Kevin Duh (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP, pp.
2383-2392. The Association for Computational Linguistics, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 784-789, 2018.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631-1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274-3287, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR 2019, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112—1122. Association for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/N18-1101.

12

http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/D13-1170
http://aclweb.org/anthology/N18-1101

Under review as a conference paper at ICLR 2025

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-
ference on Learning Representations, 2023.

13

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters are identical for all methods.

Model Hyperparams MRPC CoLA RTE QNLI MNLI SST2 QQP STSB
Epochs 30 25 50 25 25 30 25 25
Warm-up Ratio 0.06
RoBERTa-base Bath—sue 32 32 32 16 . 16 16 16 32
Learning rate le-3 Se-4 Se-4 S5e-4 5Se-4 Se-4 5e-4 Se-4
Max Seq. Length 128
Epochs 30 30 50 25 30 25 25 25
Warm-up Ratio 0.06
DeBERTa-v3-base Batcl;—sme 32 32 32 16 . 16 16 32 32
Learning rate Se-4
Max Seq. Length 128

Table 9: Sparsification parameters for AdaLoRA and ROLoRA.

Model Hyperparams MRPC CoLA RTE QNLI MNLI SST2 QQP STSB
5 01 05 03 01 01 01 01 01
t; 600 600 600 2000 8000 600 8000 600
RoBERTa-base ty 1800 3500 1800 8000 50000 22000 25000 2000
Ar 110 1 100 100 100 100 10
5 01 05 03 01 01 01 01 01
t; 600 600 600 2000 8000 600 8000 600
DeBERTa-v3-base 1800 3500 1800 8000 50000 22000 25000 2000
Ar 110 1 100 100 100 100 10

A DATASET DETAILS

GLUE benchmark. GLUE benchmark consists of: MNLI (inferenceWilliams et al.[(2018))), SST-
2 (sentiment analysis,|Socher et al.[(2013)), MRPC (paraphrase detection, Dolan & Brockett|(2005)),
CoLA (linguistic acceptability, Warstadt et al.| (2018))), QNLI (inference, Rajpurkar et al.| (2018)),
QQP8 (question-answering), RTE (inference), and STS-B (textual similarity, Cer et al.| (2017)).

SQUAD. SQUAD consists of two Question-Answering datasets: SQUADvI1 (Rajpurkar et al.,
2016) and SQUADV2 Rajpurkar et al.[(2018)).

B HYPERPARAMETERS

B.1 GLUE BENCHMARK

Hyper-parameters choices are shown in Tables [§|and [0

B.2 SQUAD BENCHMARK

Hyper-parameters choices are shown in Tables[TI0]and [T1}

14

Under review as a conference paper at ICLR 2025

Table 10: Hyperparameters are identical for all methods.

Hyperparams SQUADv1 SQUADv2

Epochs 12
Warm-up 1
Batch-size 16
@ 8
Learning rate le-3
Max Seq. Length 128

Table 11: Sparsification parameters for AdaLoRA and ROLoRA.

Hyperparams SQUADv1 SQUADv2

ol 0.01
t; 5000
ty 25000
Ar 100

15

	Introduction
	Related Work
	Background and Problem Statement
	Low-Rank Adaptation
	Problem Statement

	Algorithm
	Outline for Convergence Analysis
	Experiments
	General Language Understanding Evaluation (GLUE) Benchmark
	Question-Answering (SQUAD) Benchmark
	Ablation Study

	Future work and Conclusion
	Dataset details
	Hyperparameters
	GLUE Benchmark
	SQUAD benchmark

