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ABSTRACT
Bilateral markets, such as those for government bonds, involve de-
centralized and opaque transactions between market makers (MMs)
and clients, posing significant challenges for traditional modeling
approaches. To address these complexities, we introduce TRIBE an
agent-based model augmented with a large language model (LLM)
to simulate human-like decision-making in trading environments.
TRIBE leverages publicly available data and stylized facts to cap-
ture realistic trading dynamics, integrating human biases like risk
aversion and ambiguity sensitivity into the decision-making pro-
cesses of agents. Our research yields three key contributions: first,
we demonstrate that integrating LLMs into agent-based models
to enhance client agency is feasible and enriches the simulation
of agent behaviors in complex markets; second, we find that even
slight trade aversion encoded within the LLM leads to a complete
cessation of trading activity, highlighting the sensitivity of market
dynamics to agents’ risk profiles; third, we show that incorporat-
ing human-like variability shifts power dynamics towards clients
and can disproportionately affect the entire system, often result-
ing in systemic agent collapse across simulations. These findings
underscore the emergent properties that arise when introducing
stochastic, human-like decision processes, revealing new system
behaviors that enhance the realism and complexity of artificial
societies.
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1 INTRODUCTION
"Usually there is only one way to be fully rational, but there
are many ways to be less rational" [27]

Agent-based models (ABMs) are versatile applications for model-
ing complex and dynamic systems, particularly suited for bilateral
markets like government bond markets. These markets, character-
ized by direct transactions between two parties without centralized
exchanges, present modeling challenges due to their decentralized
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nature, complex interactions between heterogeneous agents, and
lack of transparency.

We introduce the TRIBE model, a generative-ABM focused on
Trading Relationships, Interactions, and Bilateral Exchange of
assets. TRIBE incorporates client agency with dynamically assigned
asset distributions and probabilistic trading availability, extending
this approach by integrating a large language model (LLM) for more
human-like decision-making and negotiation behavior.

Our research yields three key findings. First, we demonstrate
the feasibility of using generative ABMs (GABMs) with enhanced
client agency, building on work by [38], which demonstrates that
generative agents can act as human simulacra, and thus advancing
the capabilities of financial market simulations. Second, we discover
that any LLM prompt suggestion of trade aversion results in a
complete cessation of trading, highlighting the sensitivity of market
dynamics to agent risk profiles. Third, and most significantly, by
incorporating synthetic human client variability via an LLM, we
reveal an emergent property where power dynamics shift towards
clients, often resulting in significant systemicmarket collapse across
simulations.

We develop a versatile, agent-based simulation of the over-the-
counter (OTC) bond market, using LLMs to enrich ABMs with
more nuanced, human-like behaviors. Our model focuses on the
Australian government bond market, an ideal subject due to its
decentralized structure and emphasis on liquidity and flow rather
than pricing, building on earlier work by [48]. We have no reason
to suggest that dynamics and results are not generalizable to other
similar markets.

We demonstrate the feasibility and benefits of integrating LLMs
into GABMs, we advance the field beyond traditional deterministic
or simple stochastic approaches used in prior work such as [13]. Our
findings provide valuable insights into the sensitivity of opaque,
decentralized markets to agent heterogeneity and decision-making
processes, with implications for market design and regulatory pol-
icy.

2 LITERATURE AND RECENTWORK
2.1 Agent-based models
The application of agent-basedmodeling (ABM) to financial markets
has evolved significantly, focusing on simulating complex behav-
iors among market participants. Several prior works have explored
ABM applications in trading environments with varying levels of
transparency. For instance [48] apply ABMs to model opaque bi-
lateral bond markets, while [13] investigates liquidity dynamics
in financial market order books. Recent work by [34] introduces
the concept of network agency and the fact that features beyond
an agent’s direct experience can influence their behaviors. How-
ever, many of these models rely on homogeneous agent classes



and observable environments, which are less relevant in over-the-
counter (OTC) bond markets where data availability is limited [46].
Despite no consensus method for calibrating ABMS [4], we propose
an inductive approach using market structure data such as [48]
and [40] to specify agent calibrations. The utility functions and
policies utilized within our simulation approach stem from finance
literature and regulatory requirements.

The Australian Case: The Australian government bond market,
like other global bond markets, involves a diverse range of partici-
pants [35]. In 2023, the Australian government debt (bonds issued)
exceeded $890 billion. By owning a bond, the holder receives re-
turns (interest payments) [22], making the bond market unusual in
that prices are less critical than access to "flow" or "liquidity". Our
work primarily focuses on modeling this "flow" or the movement
of bonds through the market, and we build on work such as [48].
In order for a holder of a bond (i.e. a client) to sell or buy more
of a bond, they must engage directly with an approved "market
maker" for that bond. Their transactions are considered "over the
counter" (OTC) as they do not involve a public exchange such as
seen in stock markets like the NY Stock Exchange. Hence, these
"OTC" bilateral exchanges of bonds pose difficulties for researchers
and regulators alike [40], [35].

Maintaining an efficient and liquid bond market is crucial for
Australia’s economic stability [24]. By modeling the flow (liquidity)
of bonds rather than focusing on price dynamics, our ABM pro-
vides insights into market stability and the role of market makers
in these interactions. This approach builds on the works of [41] and
[12], who explore bilateral negotiations and liquidity flows in simi-
larly non-transparent markets, with industry bodies contributing
similarly in [21] and [37].

Additionally, methods for calibrating ABMs are challenging [7].
Many approaches applied to transparent markets, such as those cal-
ibrated with regulatory data [5, 6, 14], are not directly transferable
to OTC bond markets. Further work in the same vein includes [40]
and [16]

2.2 Large Language Models (LLMs)
Pre-trained Large Language Models (LLMs), such as GPT-3 [10]
and GPT-4 [32], have demonstrated proficiency in tasks like dia-
logue generation and natural language interactions, making them
promising tools for designing agent-based systems with enhanced
communication capabilities and [53]. However, while LLMs ex-
cel in generating coherent text, they face notable limitations in
areas such as reasoning, numerical understanding, and optimal
prompting methods [44, 55]. Numerical reasoning ([2], [29], [31])
in particular, is a source of concern for financial applications. Ad-
ditionally, ’reasoning’ in negotiation remains a challenge [1, 55] -
showing LLMs under performing on negotiation tasks and strategic
reasoning within agent-based systems and struggling to correctly
understand financial trading intentions in [? ]. In a bright spot for
this research, however, work by [17] shows that LLMs can adeptly
learn to interpret corporate financial reports.

Another challenge in working with LLMs is prompt design,
which remains an evolving research area. Studies such as [53] have
observed that non-expert users often adopt opportunistic, rather

than systematic, approaches to prompting. To improve LLM out-
comes, prompt engineering techniques are continually being
refined. One promising technique involves prompting LLMs to
re-read the input, which significantly enhances performance by
leveraging the bidirectional nature of LLM architectures [52]. An-
other advanced method for improving LLM reasoning is Chain-of-
Thought (CoT) prompting. CoT prompting elicits a step-by-step
reasoning process in the model’s output by providing "worked ex-
amples" that guide the LLM through complex tasks [51]. Inspired by
human learning theories, this approach has been shown to enhance
the LLM’s ability to handle multi-step reasoning problems [51, 52].

One area that garners a lot of curiosity is the phenomena of "hal-
lucinations". Several approaches and interpretations exist ([54],[50]),
and suggestions around faithful reasoning are posited [15]. Work
looking at the improvement from multi-step reasoning are covered
in [23]. However, we seek to avoid these issues by selective and
opportunistic prompting in the same vein as [53].

These limitations highlight the need for improved strategies to
maximize the effectiveness of LLMs in complex simulations. There
is also the concern that foundation models, such as ChatGPT, are
prone to updates with little warning 1 and extensive work can be
based on models that are quickly deprecated. Following research
into bias and the importance of model sub-version testing [49], we
manage model risk by focusing on the SOTA GPT4o-mini-2024-
07-18 and by developing a framework, rather than a fine-tuning of
such third-party software.

Our model aims to enhance the realism of the agent behaviors
in the simulated environment, enabling more faithful "human"
variation in client behaviors (specifically) without relying on fine-
tuned or domain-specific models that may well become outdated
by the date of implementation.

2.3 Human Trading behaviors: Aversions and
Delays

Whilst limited work within computer science exists on human
trading behaviors, ABMs traditionally have been specified with
clear utility or numeric conditions to determine trading. Newer
models may describe and analyze probabilistic behaviors [13]. With
the advent of LLMs, we open ourselves to the possibility of richer
human-based dynamics for more realistic and nuanced modeling,
such as detailed in [? ]. Outside the realm of computer science, there
is a rich, if nuanced, body of literature focused on trading behaviors
in a variety of financial markets e.g. such as the importance of
reputation [33] and dealer behaviors in corporate bond markets
[20].

In a phenomena reported in transparent markets (US equity
markets), there is a high number of observed trades placed and a
low percentage that actually become a confirmed transaction (as
few as 1 in 20) [43]. This is best described as a difference between
intention and action. Analysis of these features from the point of
view of trader behaviors includes work into the trading psychol-
ogy [28] and aversions (in particular to ambiguity) [8] with earlier
work by [18]. In our work, we use the broad common definition

1https://www.techradar.com/computing/artificial-intelligence/chatgpt-just-got-a-
surprise-update-but-openai-cant-explain-how-this-new-ai-is-better Accessed 12 Oct
2024



of "aversion", taken to mean for one to be, simply, ’averse’ to an
action. These strands of literature all try to ascribe causation to
these observed differences between intention and human action
in financial transactions. Even market regulators view this as a
significant issue worth investigation [19]. More recent efforts to
use methods such as reinforcement and policy learning aim to try
to learn how decisions are made [26], markets remain domains with
imperfect information and associated risk. Our unique contribution
is to contribute a framework and example of how an LLM imple-
mentable within an ABMmarket simulation can add, and represent,
these human differences. We do not attempt to ascribe cause or
reasoning to aversions or other responses to imperfect information
or the perception of unequal distribution of market information,
such as that in [33] and [42].

3 TRIBE: ARTIFICIAL SOCIETY AND
TRADING MARKETPLACE MODEL

We introduce TRIBE, an ABM where we simulate heterogeneous
market makers trading a single stylized Australian government
bond. Later in this work, we build TRIBE(LLM) (Experiment 3) with
the added feature of one specific component referencing an LLM
(ChatGpt’s GPT4o-mini-2024-07-18) for a model choice, drawing
from . Each market maker is modeled as an individual agent with
its own adaptive utility function. Agents acquire bonds from clients
- represented as unique (x,y) semi-passive grid-based agents, who
respond to market maker inquiries, though they do not, themselves,
traverse the grid. Building on work by [48], we incorporate signifi-
cant improvements to enhance realism in client agency. We do this
by allowing these client grid (agent) locations to have additional
features (detailed in the next section).

In summary:

(1) Clients have bonds and cash sourced from a log normal
distribution (in line with public data)

(2) Many clients are simply not available for a market market
to contact at any time step (we model "client availability")

(3) Within TRIBE(LLM) we try to capture a synthetic client’s
personal preference to trade "right now". Rather than us-
ing a distributional assumption with no available data for
parametrization, we rely on an LLM for this choice with
limited prompt information.

(4) Trade direction: despite bond and cash holdings many clients
have needs outside of the model to buy and sell, we ascribe
a Bernoulli distribution to the desire to be a buyer or seller
at any point.

Definition 3.1. TRIBE ABM:

M = ⟨𝑁,L,S,P,D,A, 𝑓 ,𝑇 ⟩ ,

where: 𝑁 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} is the set of market-making agents,
with𝑛 = 4 in this case.L represents the set of client landscape states,
following the log-normal distribution of assets observed where each
landscape state contains assets 𝑅 = {𝑏𝑟 , 𝑐𝑟 }, corresponding to the
bond (𝑏𝑟 ) and cash (𝑐𝑟 ) quantities held by individual clients. Each
agent 𝑎𝑖 has a state S𝑖 , which includes bond and cash usage rates
𝑚𝑏 ,𝑚𝑐 (representing individual cost structures), accumulations
𝐴𝑏 , 𝐴𝑐 (representing bond and cash accumulations over time), and

a client base breadth 𝑣𝑖 , which describes the range of clients the
agent interacts with.

The perception functions P𝑖 map the landscape and other agents’
states to a perceived state, defined as 𝑝𝑖 𝑗 : L∪S → R. This function
models how agent 𝑎𝑖 perceives the landscape and the states of other
agents. The decision rules D𝑖 map the perceived states and an
agent’s own state to actions, 𝑑𝑖𝑘 : P𝑖 ×S𝑖 → A𝑖 , where the actions
A𝑖 for agent 𝑎𝑖 include servicing clients (e.g. accepting orders and
managing trading requests), trading with other market makers, and
ceasing operations when necessary.

The landscape evolves according to a transition function 𝑓 :
L × A → L, which dictates how the landscape (i.e., the market
environment) changes in response to agent actions. In this model,
there is no replenishment of bonds or cash, reflecting a closed
system. The model progresses through discrete time steps, denoted
by 𝑇 = N, where each time step represents a round of interactions
between agents and updates to the landscape, and we limit this
model to 1500 time steps.

Our contribution: Enriching the Landscape of
Clients
Clients in the simulation are represented as grid cells, each initial-
ized with bonds and cash according to a log-normal distribution.

Definition 3.2. Client Definition: A client 𝐶 𝑗 is defined by:

𝐶 𝑗 = {(𝑥 𝑗 , 𝑦 𝑗 ), 𝐵 𝑗 ,𝐶 𝑗 , 𝐷 𝑗,𝑡 , 𝐴 𝑗,𝑡 }

Where (𝑥 𝑗 , 𝑦 𝑗 ) is the grid position, 𝐵 𝑗 and 𝐶 𝑗 are the amounts of
bonds and cash, respectively, 𝐷 𝑗,𝑡 indicates the desire to trade, and
𝐴 𝑗,𝑡 is the trading availability, determined probabilistically at each
time step.

Note, within our TRIBE(LLM) version, 𝐷 𝑗,𝑡 is replaced with a call
to an LLM and a boolean response, ’yes’ or ’no’.

Bonds and cash are initialized as:

𝐵 𝑗 ∼ LogNormal(𝜇𝐵, 𝜎2𝐵), 𝐶 𝑗 ∼ LogNormal(𝜇𝐶 , 𝜎2𝐶 )

Parameters 𝜇𝐵 , 𝜎𝐵 , and corresponding values for cash are set based
on available data, such as from the Australian superannuation reg-
ulator [3]

Client availability at any given time step 𝑡 for position (𝑥 𝑗 , 𝑦 𝑗 )
is modeled as:

𝐴(𝑥 𝑗 ,𝑦 𝑗 ) (𝑡) =
{
1 with probability 𝑝
0 with probability 1 − 𝑝

where 𝑝 is the preset availability probability, and Clients’ roles
as buyers or sellers are probabilistically drawn from a Bernoulli
distribution, as is 𝐷 𝑗,𝑡 hence an even chance of being a buyer or
seller, and an even chance of deciding to trade, determined at each
time step. Together, these three components 𝐷 ( 𝑗,𝑡 ) , 𝐴(𝑥,𝑦) and
Buy/sell make up the proxy for a utility function.

This model enhancement actively engages clients with varied
states, including random assignments as buyers or sellers at each
time step, reflecting real-world trading complexities.

We present a graphical description of the model in Figure 1 with
the green boxes showing the TRIBE (LLM) implementation.



Select Paramatervalues

Build the Financial Landscape

Initialise Bankers

Bankers engage with Clients

Clients determine: direction, choice, availability

LLM response: Positive LLM response: Averse

Bankers must trade if Clients are Positive towards them

Banker facilitated trade occurs

Figure 1: Tribe Architecture

Calibration of Clients: Data
Results derived from the Australian Prudential Regulator show
in Figure 2 that as of December 2023 there were 1701 regulated
pension asset holders alone, of which 1529 report their total asset
holdings [3]. Whilst not a comprehensive direct relationship to
bond holder sizes, given the practice of holding a very large percent
of pension assets in local government bonds, the asset size of a
pension fund does produce a proxy calculation for the distribution
of government bonds. Furthermore, some 250 funds ask that their
data be withheld from public view for privacy reasons, suggesting
there are at least some 1950 bond clients. As such we include the
data from December 2023 to illustrate the non-normal nature of
the distribution.

Figure 2: APRA data: Balance in $ Billion Australian dollars

4 THE EXPERIMENT AND CHALLENGE
4.1 Experiment 1: TRIBE Traditional ABM

(benchmark)
We begin with an experiment to benchmark our traditional ABM
version, TRIBE, across 200 simulations of an artificial trading society.

Our unique contribution with this test is the enhancement of client
agency through areas of active modeling. We rely on the parameter
sets in Table 1 for all our tests. Much of this data is derived from
various stylized facts in literature ([40] and [48] in particular) and
also data published by the Australian and UK governments ([35],
[3] and [36] respectively). This benchmark essentially looks at a
simple coin toss of yes/no to trading desire, having been sampled
from a Bernoulli distribution. The direction of trading, should an
agent desire to trade, is then also determined by sampling from
a Bernoulli distribution. In this week, we decompose direction of
trade from intention to trade. Later on, we utilize an LLM to enhance
the intention component of this model.

Table 1: TRIBE ABM: Simulation Parameters

Parameter Category Value

Grid Size General 50 x 50 (2500 clients)
Number of Bankers MM Settings 4
Client Base grid size MM Settings 1 to 50
Business costs MM Settings 0.1 to 0.5
Initial Bonds Range MM Settings 1 to 5
Initial Cash Range MM Settings 1 to 5
Maximum Bonds Client Settings 100
Mean Bonds Client Settings 2.5 (log-normal dis-

tribution)
Standard Deviation Bonds Client Settings 1
Maximum Cash Client Settings 5.0
Mean Cash Client Settings 1 (log-normal distri-

bution)
Standard Deviation Cash Client Settings 0.5
Client Availability for
Trade

Client Settings 20%

Client Trade Desire Utility function Variable

Results
We test 200 simulated trading societies with a maximum possible
1500 time steps. We present a summary of key results in Table 2
and draw attention to MaxLife, a measure of how long agents
persist and keep trading. A goal of any marketplace is to facilitate
the transaction of as many assets as possible. We see that over 75%
of simulations were able to service 100% of all client bond volumes
in the landscape. This is especially high and can be thought of as
"successful" against the requirement that market makers service
clients. Market maker to market maker trading (so-called "inter
bank" trading, or MM-2-MM) accounted for a mean of 9 - 10% of
all traded assets - below that reported in [48]. Whilst beyond the
scope of this paper, we surmise this lower share of volumes could
be addressed by fine-tuning parameters in future model versions.
However, we make use of this test as a benchmark and have fol-
lowed methods used in work such as [9] and look to establish an
artificial society that appears to be stable and capable of carrying
the capacity of trading volume clients desire - a concept explored
in ABMs for financial market simulation in [25].



Table 2: Summary Statistics for Maximum agent life, Total
Bond Accumulation as a %, and Cash Accumulation as a %

Statistic MaxLife MM-to-
Client
Bond
Trading
(%)

MM-to-
Client
Cash
Trading
(%)

MM-
2-MM
Bonds
(%)

MM-
2-MM
Cash
(%)

mean 1136 90 90 9 10
std 509 14 14 8 8
25% 1248 90 89 2 3
50% 1264 95 94 4 7
75% 1499 100 100 13 15
max 1499 100 100 35 30

4.2 Experiment 2: TRIBE Incorporating (any)
Aversion in Prompt with LLMs

Aversion, a broad term for the variety of factors that might stop
a human trader from trading at a point in time, has been found
to be so powerful as to stop traders trading altogether [7]. This is
distinct from work into utility maximization. We consider aversion
to represent the observed difference between intention and action,
such as that seen in trading (e.g. [45].

To incorporate the dynamic phenomena, we use a call to an LLM
at the point at which TRIBE is a Client deciding if they want to trade
with a specific MM "right now" at a time step. In this way, we seek
to capture the inexplicable human feature of generalized aversion.
We break this decision down into two components: does the client
want to trade "right now" with this specific market maker, and, if
yes, do they want to buy or sell bonds (for which we revert to using
a Bernoulli distribution as in Experiment 1). In our terminology,
we try to also capture the nuance in [33] where the reputation
of various market makers is shown to drive uncertainty of client
behaviors.

Implementation
We tested a number of prompts opportunistically building form [53].
For optimal processing, cleaning, and normalization of decisions
into boolean states (yes, no) or a three-state model (yes, no, error)
with associated error handling proved most effective. Note: a sample
of full text prompts can be found in the appendix.

In summary, we tested prompts that incorporate phrases like the
following, all of which led to a full aversion response:

• "While you are supposed to at all times be mostly invested,
you also at times consider non numeric issues like risk inertia
and trade aversion."

• "Clients havemany reasons for trading and include behaviors
like risk inertia, aversion, and ambiguity avoidance, that are
non numeric."

• "Should this client buy, sell or not trade right now? If you
are going to say not right now, re think. Answer only: buy
or sell or 0 (not trade right now)."

All prompts with the above details were found to produce 100%
trading aversion, and 0% client trades occurred. We find that simply
including the term "aversion" produces not a single client trade,
across 200 simulated artificial societies, at any time step. This is

quite an astonishing fact that allowing the LLM to produce a de-
cision with the possibility of aversion produces 100% aversion of
all clients across 200 simulations at all points in time. In fact, over
2800 decision requests from "clients" were prompted in the 200
simulations, before trading societies collapsed, and not a single one
responded with anything other than avoidance of trading. Given
that no client ever wanted to trade, the average simulation collapsed
by step 27 (where previously the average simulation life was 1136
steps, i.e. over 75% of the model theoretical maximum). Instead,
when ’aversion’ is even possible for the LLM, societies collapsed at
around 1.7% of the theoretical life.

4.3 Experiment 3: TRIBE(LLM) - Success of
prompting for Timeliness and the emergent
Shift in Society Dynamics

Similar to the previous examples, we employ the parameters out-
lined in Table 1, with one key modification: the availability is dou-
bled to account for an anticipated 50% trading participation rate.
This adjustment ensures comparability between Experiment 1 and
Experiment 3 in terms of the percentage of clients actively engaged
in buying or selling—20% in Experiment 1, and 40% in Experiment
3, adjusted for the expected 50% uptake (being a virtual ’coin toss’).
We apply the following simplified prompt to assess whether clients
are inclined to trade immediately (’right now’) with the engaging
market maker. Drawing on prior work [? ], we distinctly narrow
and focus the concept of aversion to that of timeliness. Although
one might argue that aversion inherently causes a delay in action —
with complete avoidance possibly seen as an extreme form of delay
— we aim to succinctly capture the outcome of delay without nec-
essarily attributing it to causes of aversion. We test the following
sucessful prompt :

Successful Prompt:
"You are a Client with 𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑜𝑛𝑑𝑠 bonds and 𝑐𝑙𝑖𝑒𝑛𝑡𝑐𝑎𝑠ℎ cash, at

position (𝑥,𝑦). A market maker has called you to see if you want to
trade with them right now. Do you want to trade with the market
maker calling you right now. Answer yes, or, no, only?"

Where ”𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑜𝑛𝑑𝑠”, ”𝑐𝑙𝑖𝑒𝑛𝑡𝑐𝑎𝑠ℎ” and co-ordinates (𝑥,𝑦) are
specified per client, per time step, in each simulation and act as
a unique prompt injection (given that clients do not move grid
locations nor do they replenish their bond and cash accumulations).

Results: Frequent Client Trading Collapse
We simulate 150 artificial trading environments. We report around
50% of previously successful agents (MaxLife) from Experiment 1,
now live only a fraction of their maximum life (recalling that the
max life in the society is 1500 time steps and in this Experiment
3, 50% of agents live 18 or fewer time steps - under 2% of the
possible time). Consequently, it is understandable that extremely
small amounts of client assets are thus traded (an average of just 7%
per simulation in this test compared to 90% in Experiment 1). The
distribution of agent life is significantly alteredwith 75% of agents in
simulations failing to live even 20% of the maximum 1500 time steps.
Nonetheless, a portion of agents, 21%, did reach the maximum life,
but continue to have low client asset trading and servicing levels.
So, whilst many markets can continue to function with one agent
(market maker), that MM is not able to facilitate adequate assets



or make up for the loss of other MM’s to the artificial society. (see
Table 3 for further details.)

Looking at the variable directly controlled by the LLM intro-
duction, desire to trade, we see a slightly different picture, and we
explore this below as an emergent property.

Table 3: LLM in ABMs for Maximum Agent Life, Bond Trad-
ing (%), and Cash Trading (%)

Statistic Max Life
Agents

MM-to-
Client Bond
Trading (%)

MM-to-
Client Cash
Trading (%)

Mean 365 7% 6%
Std 605 4% 4%
25% 6 2% 2%
50% 18 7% 7%
75% 310 8% 8%
Max 1,499 20% 18%

Emergent Properties, Client agency and LLM
choices
The LLM is interspersed within our traditional TRIBE model (see
Figure1), with an option to choose either to trade right now (’yes’
or ’no’) for each client at each time step the agent moves through.
There are many more clients (2500) than market makers (4), so
even the fact that any client that otherwise would have traded will
not (in any given time step), there remain plenty of other clients
nearby MM’s that could also be available for MM trading. What
we see is that, long term, 56.9% of LLM calls respond with ’yes’
to trading in Figure 3. Looking at results in Table 4 we see that
the summary statistics indicate that the average long run yes/no
ratio has a standard deviation of 5%, while the rolling 10 request
average has a deviation of 16% and moves anywhere from 0% to
100%, reflecting significant short-term variability in the statistic.

Across 200 society simulations in Experiment 1, the average
number of MM to client interactions dropped from ≈ 4, 900 (Ex-
periment 1) to < 590 when an LLM was involved - a reduction
of 89% of client interactions, primarily due to the significantly re-
duced life span of agents. Recall each client interaction is a market
maker fulfilling their legal obligation to facilitate the transfer of
liquidity in government bonds from a client, and Experiment 3
was constructed to have the same possible client transfer through
the doubling of the "availability" parameter. Furthermore, MM to
Client Bond trading, representing volumes of bonds, dropped, as a
percentage, from 90% across simulations in TRIBE (Experiment 1)
to less than 7% with the introduction of an LLM. In Experiment 1,
56.5% of all simulations had at least one agent reach the maximum
possible life, but slightly more simulations in Experiment 3 had at
least one agent reach the maximum life (69.3%) with an LLM. In
all cases, with a long run probability of 57% of LLM calls agreeing
to trade, the resulting LLM TRIBE results are significantly more
impacted than otherwise would be expected and point to the emer-
gent property that "unpredictable" or "opaque" Client behavior has
an out-sized impact on society functioning, where agent life-span,
and Client-2-MM bond trading is a measure of societal health. We
propose that this can also be interpreted as a shift in power from

Market makers (the only other agent type in the society) to Clients,
where a client’s unpredictable variations, around a central mean,
can cause significant impact on MM existence.

Delving into LLM thoughts: Whilst an exciting area for fu-
ture research, we did note that by exploring intermediate thoughts
in a simple test of 5 sequential calls to the LLM, it allowed us to
examine the decision-making process of the LLM in more depth
(see Appendix ’Detailed thought responses for full text). We asked
the LLM the same prompt for TRIBE LLM, but allowed it to pro-
vide more than a "yes or no" answer only. The examples provided
showcase varying levels of decision-making complexity by the LLM
in response to market conditions. Example 1 demonstrates a deci-
sive inclination to trade, with a firm "Yes" to trade, and reasoning
based on current asset holdings. Example 2 takes a more analytical
approach, considering multiple factors like bond holdings, cash
position, market conditions, and investment strategy, ultimately
concluding that "it might be best to hold off". Example 3 presents
a cautious stance, emphasizing the need for further information
before trading, ultimately deciding "I will not trade with the market
maker right now". Example 4 is a straightforward refusal to trade,
stating "not" wanting to trade at the moment. Example 5 features
a balanced evaluation of the situation, deciding "I want to" trade
if conditions align, but clearly outlines the lack of context as a
hindrance. Together, these examples highlight diverse (synthetic)
trading preferences ("right now"), ranging from straightforward
assertions to nuanced deliberations based on available financial
context and strategic alignment.

In summary: To conclude this topic, we analyzed individual,
ordered calls to an LLM. We present Figure 3. While the non-linear
impact of introducing an LLM decision requires further work, we
believe that it can be initially attributed to the fact that over shorter
request windows, the distribution of yes to no answers is signifi-
cantly not evenly distributed. We can see in Figure 3 that the dark
line represents the average over time of yes-to-no ratios for the first
10,000 calls, hovering around 57% (see Table 4 also). However, the
graphic shows that over a rolling 10 sequential requests, the ratio
of yes to no response can be as low as 0% and as high as 100% with
significant variation from period to period. This is akin to a Client
being highly variable and unpredictable in the short term but "pre-
dictable" or "rational" in the longer term. This lack of uniformity is
both a proof of concept of the usefulness of capturing non-linear
aspects of human aversions (and timeliness), but also a source of
much potential further study to harness the power of LLMs and
their inherent, human-like uncertainty and unpredictability. In the
realm of finance, this also provides a framework to analyse the
impact of future regulations that may affect only one agent type
and various market design changes such as those of "All-2-ALL"
trading that would do away with the systemic function of market
makers potentially [11]

5 FUTUREWORK
The power of a slightly skewed long-term distribution, with unpre-
dictable short-term high volatility for one group in our artificial
sociality, can have an out sized impact on financial market trading
simulations. This unpredictability is held by the clients, a somewhat
more passive large set of agents in the system, with the "power"



Figure 3: Yes/no Ratio through time vs Yes/no Rolling 10
Requests

Table 4: Summary Statistics for Yes/No Ratio and Rolling 10
Requests

Statistic Yes/No Ratio (%) Rolling 10 Requests
(%)

Mean 57% 57%
Std Dev 5% 16%
Min 36% 0%
Max 74% 100%

to stop 79% of our simulated MM agents trading beyond just 20%
of their maximum life, when an LLM is introduced to determine a
preference for trading "right now".

In our recent and ongoing research, we are investigating the
capabilities of LLMs to generate probability distributions, imple-
ment sampling methods for API calls within ABMs, and assess the
variability in LLMs’ susceptibility to model subversion. These ex-
plorations aim to deepen our understanding of how LLMs can be
integrated into complex simulation environments, while also iden-
tifying potential vulnerabilities in their decision-making processes.
This area remains a focal point of our active research efforts [49].

In financial markets, salespeople are crucial in cultivating prof-
itable, long-lasting relationships with clients, as highlighted by the
reliance of financial services firms on a salesperson’s ability to
develop such relationships [47]. We hypothesize that market mak-
ers may already be aware of the shift in power dynamics toward
their clients, but leave this to future research work. The impact of
unpredictable client micro-behavior, as perceived by market mak-
ers, could explain several emergent features observed in financial
markets, such as those reported in [33].

Collectively, these forces would suggest the need for improved
market design and further work should be done to investigate the
possible formation of coalitions or preferences of clients for one
market maker or another (practically in contravention of market
rules such as the UK government’s "Conflicts of Interest" regime
in equity markets 2. The behavior also may be associated with
path dependency and the potential for market spirals such as those
observed in prior studies around financial market bubbles and col-
lapses [30] and [39]. We leave further investigations into this shift
in network power and its causes to future research.

2https://www.handbook.fca.org.uk/handbook

6 CONCLUSION
In this paper, we present TRIBE, a novel agent-based model that
integrates large language models to simulate bilateral markets with
greater agent realism and flexibility, in particular on the less observ-
able clients’ agents. Building on prior research in financial market
modeling, TRIBE leverages LLMs to generate more human-like
decision-making, advancing the field of GABMs.

Our research outcomes are threefold: First, we demonstrated
that GABM with enhanced client agency is feasible. Second, LLMs
with even slight trade aversion mentioned in a prompt result in no
trading activity. Finally, incorporating human-like variability shows
that shifting power to clients can disproportionately affect system
dynamics, frequently leading to agent trading collapse. Across 150
simulations, we find that short-term variability induced by LLMs
causes significant system instability and a dramatic reduction in
client to market maker asset trading. Introducing short-term non-
uniformity proves highly challenging for our non-linear system to
manage. This emphasizes how introducing human-like variability
can dramatically alter system behavior and that even short-term de-
viations from even distribution significantly impact system stability
and societal health.

A financial markets implication of our work is that Clients hold
power by remaining unpredictable; placing control over trade tim-
ing in their hands (albeit virtually through an LLM) shifts the bal-
ance of power across the simulated network. Even slight unpre-
dictability can drastically alter the domain of power, effectively
destabilizing the artificial trading society and halting market trans-
actions and liquidity.

The TRIBE framework provides a robust and versatile platform
for simulating complex financial systems and exploring market
dynamics. By incorporating client agency, dynamic asset distribu-
tions, and probabilistic trading availability, it offers new insights
into decentralized financial markets. Moreover, TRIBE’s adaptabil-
ity extends its potential applications to broader social and economic
systems. By integrating LLM-driven agents with traditional ABM
approaches, TRIBE enhances our ability to model complex, opaque
systems across various domains. This combination of advanced
AI techniques with ABMs not only deepens our understanding of
liquidity dynamics in OTC markets but also contributes to the ad-
vancement of GABMs and the analysis of intricate financial ecosys-
tems. As such, TRIBE serves as a powerful tool for testing regulatory
interventions, examining the effects of agent heterogeneity on mar-
ket stability, and advancing the understanding of complex systems
in finance and beyond.
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APPENDIX
100% Aversion prompts

• Example Prompt 1: You are a asset management client holding
Australian government bonds responsible for investing for re-
turn. While you are supposed to at all times be mostly invested,
you also at times consider non numeric issues like risk inertia



and trade aversion. Today, a market maker has called you.
Your role is to decide if you want to either: buy, sell or not trade
anything with this particular market maker for any reason
whatsoever. Output either yes or no only to the question: do
you want to trade with this market maker right now"

• Example Prompt 2 "Client at position (x, y) has bonds bonds
and cash cash. Clients have many reasons for trading and
include behaviors like risk inertia, aversion, and ambiguity
avoidance, that are non numeric. Should this client buy, sell
or not trade right now? Your mandate is to invest for return
and manage risk. Answer only: buy or sell or 0 (not trade right
now)."

• Example Prompt 3 Client at position (x, y) has bonds bonds
and cash cash. Clients have many reasons for trading and
include behaviors like risk inertia, aversion, and ambiguity
avoidance, that are non numeric. Should this client buy, sell or
not trade right now? If you are going to say not right now, re
think. Answer only: buy or sell or 0 (not trade right now)."

Detailed thought responses:
The following are a selection of the output thought from the LLM: A
variety of complexity, length and supposition is seen in the output,
despite inputs being of the same format and client initially all
holding more bonds than cash as they are "real money" investors
by design.

• Example 1 output: "Yes, I want to trade with this market
maker right now.Based on the information provided i would
decide to trade with this market maker the client has a sig-
nificant number of bonds and some cash available which
suggests that they are in a position to either buy more bonds
or sell existing ones trading could potentially enhance their
investment position or utilize their cash more effectively"

• Example 2 output: " Consider the following factors:
1 current bond and cash position you have 743 bonds and
357 in cash assess whether you want to increase or decrease
your bond holdings or your cash
2 market conditions if the current bond prices are favorable
you might want to buy more bonds conversely if prices are
high selling might be an option
3 market makers offer consider what the market maker is
offering are their prices attractive for buying or selling bonds
4 strategy align your decision with your overall investment
strategy are you looking to hold longterm trade for shortterm
profit or maintain liquidity
ultimately the decision to trade will depend on your current
market outlook financial situation and the specifics of the
market makers offer if the conditions seem favorable and
align with your strategy it may be worth engaging in a trade
if not it might be best to hold off"

• Example 3: "Given the client’s current position with 20.32
bonds and 4.62 cash, I would want to evaluate several factors
before decidingwhether to tradewith themarketmaker. This
includes the current market conditions, the bid-ask spread,
and the potential opportunities for profit or loss. However,
without specific market details, I cannot make an informed

decision. Therefore, in the absence of further information I
will not trade with the market maker right now."

• Example 4: "I do not want to trade with this market maker
right now."

• Example 5: "Based on the information provided, it seems
that the client holds a certain amount of bonds and cash.
However, without additional context regarding the current
market conditions, the pricing offered by the market maker,
the strategies, or the desired outcomes, it’s difficult to make
a definitive decision. If the market maker’s offer is favorable
and aligns with the client’s trading goals, it might be advan-
tageous to trade. Conversely, if the offer is not attractive or
if the market conditions are unfavorable, it may be wise to
refrain from trading at this time. Given the information I
have, my decision would be I want to trade with this market
maker right now"
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