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Accelerated Projection Algorithm Based on
Smoothing Approximation for Distributed
Nonsmooth Optimization

You Zhao, Xiaofeng Liao

Abstract—In this article, a distributed smoothing accel-
erated projection algorithm (DSAPA) is proposed to ad-
dress constrained nonsmooth convex optimization prob-
lems over undirected multiagent networks in a distributed
manner, where the objective function is free of the assump-
tion of the Lipschitz gradient or strong convexity. First,
based on a distributed exact penalty method, the original
optimization problem is translated to a problem of standard
assignment without consensus constraints. Then, a novel
DSAPA by combining the smoothing approximation with
Nesterov’s accelerated schemes, is proposed. In addition,
we provide a systematic analysis to derive an upper bound
on the convergence rate in terms of the objective func-
tion based on penalty function and to choose the optimal
step size accordingly. Our results demonstrate that the
proposed DSAPA can reach O(log(k)/k) when the optimal
step size is chosen. Finally, the effectiveness and correct-
ness of the proposed algorithm are verified by numerical
and practical application examples.

Index Terms—Convergence rate, nonsmooth convex,
projection operators, smoothing approximation.

[. INTRODUCTION

ISTRIBUTED optimization has always received much
D attention from a mass of communities, such as sensor
networks [1], [2]; machine learning [3]; and sparse signal recon-
struction [4], [5], etc. Unlike centralized optimization settings,
distributed optimization has solved some engineering problems
in a distributed manner, i.e., each agent can only access lo-
cal information about itself and its neighbors, but not global
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information. Thus, the aim of the distributed optimization is,
in general, to minimize the global objective which is only
accessible by the cooperation between individual agent and
their neighbors upon multiagent networks. Until now, numerous
distributed optimization algorithms have been presented, which
can be generally classified into primal consensus algorithms and
dual decomposition algorithms. Typical algorithms include the
distributed subgradient algorithm [6], distributed primal-dual
subgradient algorithm [7], asynchronous distributed gradient
algorithm [8], distributed push-sum subgradient algorithm [9],
distributed dual proximal gradient (DDPG) algorithm [10], EX-
TRA [11], D-ADMM [12], primal-dual method of multipliers
(PDMM) [13], and so on.

The gradient-based algorithms are widely used to design
optimization algorithms due to nonexpensive computational
costs. Nedi¢ et al. [6] first designed a distributed (sub)gradient
algorithm (DGA) by combining a weighted averaging of local
information with gradient descent algorithm. Later, the dis-
tributed projected subgradient algorithm (DPGA) was proposed
in [14] based on DGA to solve distributed nonsmooth con-
vex optimization problems with set constraints. On the basis
of push-sum technology or surplus value, DPGA was further
employed for distributed convex optimization problems under
directed communication networks equipped with row random
weight matrices in [9] and [15]. On the basis of the Nesterov-type
accelerated technique, the fast distributed gradient method and
its proximal version have been investigated in [16]. However,
in the above algorithms, they precisely converge to the optimal
solution, but require either a decreasing step size, or a significant
increase in the multistep average communication burden in each
iteration. These issues can be solved by introducing the gradient
tracking scheme [19], [20], [21]. In addition, a fixed step size can
be selected to obtain the same convergence rate as the centralized
algorithms.

Convergence rate is used as a basic criteria for evalu-
ating the performance of the distributed algorithms for the
convex optimization problems. DGA [6] has a convergence
rate of O(log(k)/v/k) in solving convex optimization prob-
lems with nonsmooth convex objective functions, and that of
O(log(k)/k) [22] for strongly convex functions with the Lips-
chitz gradient assumption. The distributed dual proximal gradi-
ent (DDPG) algorithm in [10] has a convergence rate of O(1/k)
when solving a “nonsmooth convex” + “nonsmooth strongly
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convex” optimization problem. If the convex objective function
has a Lipschitz continuous gradient, a sublinear convergence
rate of O(1/k) can be achieved with a fixed step size in [11]
and [21]. Moreover, a fast distributed gradient algorithm was
proposed and investigated in [16], which has a convergence
rate of O(1/k?~¢) for the convex objective function with the
Lipschitz gradient assumption, where ¢ is an arbitrarily small
positive constant. Furthermore, when the objective function is
assumed to be strongly convex, the linear convergence rate can
be obtained in [11], [21], and [22].

Nevertheless, with respect to nonsmooth convex optimization
problems, the decaying step size is inevitable for designing
optimization algorithms due to its gradient being non-Lipschitz
continuous (i.e., the appropriate step size selection depends
heavily on the Lipschitz constant of its gradient). Liu et al. [25]
revisited the DPGA under undirected graphs in [14] and obtained
its optimal convergence rate O(1/v/k) when selecting step
size % Xi et al. [15] proposed a directed-distributed projected
subgradient algorithm (D-DPGA) for a constrained nonsmooth
convex optimization problem under directed graph and its con-
vergence rate O (log(k)/v/k) when selecting a diminishing step
size. Li et al. [24] studied a distributed projected subgradient
algorithm to tackle a nonsmooth convex optimization problem
when the communication topology is time-varying, unbalanced,
and directed, and only provided the convergence of their pro-
posed algorithm. Yin et al. [17] presented an asynchronous
distributed dual algorithm based on edges that minimize non-
differential convex optimization problems with partially over-
lapping dependence with a sublinear convergence rate. Shi and
Yang [18] proposed surplus-based dual averaging (SDA) for
solving a nonsmooth constrained convex optimization over a
weight-unbalanced directed graph and obtained a convergence
rate O(1/Vk).

The nonsmooth convex optimization problem, as a crucial
class of convex optimization problems, plays an important role
in many engineering applications, such as image decomposition
and reduction (e.g., Li-norm minimization problem), visual
coding, compressed perception (e.g., Lasso problem), geologi-
cal exploration (e.g., reconstruction of micro pore structure of
shale), wireless communication (e.g., sensor localization prob-
lem), artificial intelligence (e.g., L;-regularized empirical loss
models), gene expression analysis, and risk management. There-
fore, the nonsmooth convex optimization problems have drawn
more and more attention due to the wide range of applications.
However, how to design a faster distributed accelerated algo-
rithm to address the constrained nonsmooth convex optimization
problems is still challenging. Usually, there are two difficulties
as follows.

1) The first dilemma is that the gradient of the nonsmooth
objective function is non-Lipschitz continuous, which
hinders the selection of the fixed step size of designing dis-
tributed algorithms. How to effectively solve this problem
is the key point to achieve acceleration and convergence
of the proposed algorithms.

2) There exist both optimization variable consensus and set
constraints in the considered optimization problems. It is

difficult to deal with the above constraints effectively in
designing distributed accelerated algorithms.

Inspired by the works in [33], [34], [35], [36], and [37],
we focus on designing an accelerated distributed projection
algorithm based on the smoothing approximation scheme and
Nesterov’s accelerated method for the nonsmooth convex opti-
mization problems with local set constraints, which does not
need to make the assumptions of the Lipschitz gradient and
strong convexity. The contributions are summarized as follows.

1) A novel distributed smoothing accelerated projection al-
gorithm (DSAPA) is developed for solving nonsmooth
constrained convex problems in a distributed manner with
an accelerated convergence rate, where a distributed exact
penalty function method and projection operators are
used to deal with the optimization variable consensus and
set constraints, and the Nesterov’s accelerated strategy
(extrapolation or momentum) is utilized to accelerate the
convergence rate of DSAPA. We theoretically prove the
range of values of the exact penalty parameter, discuss
the step size selection condition of the DSAPA, and offer
the optimal step size of DSAPA to obtain the optimal
accelerated convergence rate.

2) In contrast with the existing state-of-the-art distributed
algorithms in [14], [15], [23], [25], and [27], the proposed
DSAPA has a faster convergence rate of O(log(k)/k)
when selecting an optimal smoothing approximation pa-
rameter, which does not need to make the assumptions
of strongly convex and Lipschitz gradient (see Table I).
To the best of our knowledge, this is a lower iteration
complexity achieved so far for the considered nonsmooth
distributed optimization problems without the strong con-
vexity and Lipschitz gradient assumptions.

3) Different from the distributed algorithms in [6] and [9]
based on subgradients, our proposed DSAPA avoids the
difficulty of derivative selection in the nondifferentiable
point. Compared with distributed algorithms in [27]
and [28] based on the Fenchel-dual method, distributed
algorithms based on proximal operators [29], [30], our
proposed DSAPA has no assumptions of closed-form
solutions for the conjugate function and the proximal
operators of the nonsmooth objective functions. Thus, the
DSAPA has wider applicability.

4) Compared with the algorithms in [31] and [32] based on
the Nesterov’s smoothing method to address nonsmooth
optimization problems, the DSAPA allows convergence
to the optimal solution for nonsmooth optimization prob-
lems when choosing an appropriate parameter, while the
algorithms in [31] and [32] only converge to an e-optimal
solution (i.e., {z|f(x) — f(z*) < ¢,€e > 0}).

The rest of this article is organized as follows. Section II
introduces some necessary preliminaries. In Section III, the
distributed optimization problem with set constraint is refor-
mulated by exact the nonsmooth penalty method. In Section IV,
a novel distributed smoothing accelerated projection algorithm
(DSAPA) is proposed and its convergence rate is also analyzed
carefully. In Section V, some experimental results are obtained to
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TABLE |

COMPARISONS OF DIFFERENT ALGORITHMS

Algorithm Objective function: convex Constraint  Stepsize Gradient Convergence rate
DGA [6]* non-smooth No fixed (¢ > 0)  subgradient O (ﬁ + aC)
Subgradient-push [9]  non-smooth No decreasing subgradient O (lo\g/%k >>
Gradient-push [23] smooth strongly No decreasing gradient @] <1°gk(k>
EXTRA [11] smooth No fixed gradient @) (ﬁ)
DGD [22] smooth No fixed gradient O (%)
FDGM [17] 2 smooth No fixed gradient (0] (k2£ 5)
DDPG [10] non-smooth strongly+non-smooth  Yes fixed proximal gradient 0 (1)
D-DPS [16] non-smooth Yes decreasing subgradient @] (105%9 )>
DPGA [26] non-smooth Yes decreasing subgradient @] <ﬁ>
SDA [19] non-smooth Yes decreasing subgradient @] (%)

, ' ‘ ' 0 %,),ifGe(O,l)
DSAPA (12)3 non-smooth Yes decreasing smooth approximate gradient {O {“Og ( k)) o—1

k 1L U=

1

a and C is a positive constant that depends on Lipscitiz-constant of gradient (From TABLE I, we can see that the DGA in [6] has a convergence rate O (ﬁ + Q) at first

glance. It is worth noting that DGA in [6] equipped with a fixed stepsize cv > O does not converge to the optimal solution of problem (8) without constraint because aC is a
positive constant. Although DGA in [6] does not look perfect now, it is a very important result in the development of distributed optimization algorithms, and based on the results
in [6], a large number of distributed algorithms have been studied); 2 € > 0 arbitrarily small; > 6 € (0, 1] is a parameter of decreasing of step size.

demonstrate the effectiveness of the proposed DSAPA. Finally,
Section VI concludes this article.

Notations: Let R be the set of real numbers and R™ be a set
of n-dimensional column vectors. The superscript 7" indicates
the transpose operation. ||z||; = Y_I"; |z;| denotes the 1-norm
of z. ||lz|| = (>2, 22)2 denotes the Euclidean norm. ||z, is
the O-norm. Let 1,0 be a vector with all entries being 1 and 0,
respectively. For p = diag{p1, .. ., ft } € R™™™™" with p; €
R"™ i=1,...,m, one has i = diag{i7 ce N%} and L €
R™ ™ L = diag{Ly,..., Ly}, %= diag{%, - z—:} and
lz||2 = 2" Le. x < y means z; < y;,i=1,...,m. Let £ x
... X {2, be the Cartesian product of sets {21, ..., §2,,. Forx €
R,sgn(x) = —1,if © < 0,sgn(x) = 1,if > 0, and sgn(x) =
[—1,1],if z = 0.

[l. PRELIMINARY RESULTS
A. Projection Operator

For a nonempty, closed, and convex set {2 € R", the projec-

tion operator of {2 is defined by Py, (x) = arg min||u — x||. The
ues?

normal cone of set {2 is given by Np(z) = {v € R*|vT (y —
x) < OVy € 2}, where “cl(-)” is the closures of set -, and d, ()
is min|jz — ul|.

ue

Lemma 1: When the constrained set {2 is a box or affine set,
there exists a closed-form solution of its projection operator as
follows:1) If 2 is abox set, i.e., 2 = {z € R" | Zjmin < ; <
Timax, ¢ = 1,...,n}, then

Pq (131) = max {min {xia xi,max} 7xz‘,min} . ()

2) If (2 is an affine set, i.e., 2 ={z € R" | Ax =b} and A
satisfies A € R™*™, and Rank(A) = m, such that

Po(z) =z + AT (AAT) ™" (b— Ax). )

B. Convex Analysis

Letg(z) : R™ — Rbealocally Lipschitz function and D, be
a set at which g is differentiable, the Clarke generalized gradient
of g(x) is given by

dg(z) = co{

where co(S) is the convex hull of set S.
A function ¢ : 2 — R is generally convex (possible nons-
mooth) if it satisfies

g(u) — g(w) > (u— w)T gr(w)Vu,w € 2 3)

lim
rp—xirgEDy

Vog (z1,) }

where g¢(w) € g and {2 C R™ is a convex set.

C. Smoothing Approximation

Definition 1: [35] Let §: £2 C R"™ x (0,+00) — R be a
smoothing function of g, where g : {2 C R" — R is locally
Lipschitz and g enjoys the following properties.

i) (Continuous differentiable property) §(-, ¢) is continuous
differentiable in R with any fixed p > 0, and g(z, -) is differ-
entiable in (0, +oo] with any fixed x € 2 C R".

ii) (Approximation property) llrg+g(m, 1) = g(x) for any

e

fixedz € {2 C R".
iii) (Gradient boundedness with respect to u) There exists a
positive kg > 0, such that
Vg (z,p)| < kg Ve (0,+00), z€2CR"
iv) (Gradient consistency) { lim Ovzg(z, w)} € dg(x).
Z—T, [
In addition, for any fixed x € R™, smoothing function g

satisfies the following properties.
v) (General approximation property)  lim Og(z, w) = g(x).
2T, —

vi) (Lipschitz continuous with respect of u) |g(x,p1) —
9(@, p2)| < Kglpa — pa| Vpur, p2 € (0,00], 2 € £2 C R™.
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vii) (Lipschitz continuous of gradient) ¢(z,u) is a con-
vex function, and there exists [ > 0, such that ||Vg(z,pu) —
Vily,wll < 5 llz —y|Ve,y € 2 C R™.

Next, an important property of the combination of smoothing
functions is provided by the following.

Lemma 2 ([36]): Let g1, ..., G, be smoothing functions of
Jis- -, Gm» @; > 0 and g; be regular for any ¢ =1,2,...,m,
then > " | a;g; is a smoothing function of ", a;g; with
Ry ? aig: = Z:il Aikg;-

A smoothing approximation function of |s|, s € R, presented
in [35] is used in this article as follows:

R Is],
g(svu)Z{sz L

2u

if [s| > u

4
if |s| < p. @

Note that lim g(s,u) = |s| [see Fig. 1 (left)] from ii) in
u—0t

Definition 1.
Moreover, we can obtain the derivative of §(s, ) with respect
to s [see Fig. 1 (middle)] as follows:

vsg (Svp’) = {Ssgn(S)’

ﬁa

if [s| >

5
if [s] < p. )

The derivative of function §(s, i) with respect to  [see Fig. 1
(right)] is represented as

02 04 06 08 1 12 14 16 18 2

0 02 04 06 08 1 0
N P

Smoothing function §(s, 1) with different 1 (left). The gradient of Vg(s, 1) with different 1 (middle). The gradient of Vg (s, 1) with different

[1l. NONSMOOTH CONVEX OPTIMIZATION PROBLEM AND
ITS REFORMULATION

A. Problem Formulation

Consider a scenario that involves in m agents under an undi-
rected network. For every agent, there exists a local nonsmooth
convex objective function f; : R™ — R and a local nonempty,
closed, and convex feasible constraint {2; € R™. With all agents
working together with their neighbors to achieve a consensus
solution to optimize the global objective function »_." ;| f;(z)
in the constraint set (1);~, 2;. Thus, the optimization problem
can be modeled as follows:

m m
min F(z) = Y fi(x), st.a € )2 (6)
i=1 i=1

Note that the problem (6) encompasses many practical appli-
cation problems, such as signal processing and sensor network
localization problems.

Moreover, the local constraints are necessary or unavoidable
in light of limitations of the agent’s performance in computa-
tional and communication capabilities.

Assumption 1: The function f; is said to be Lipschitz

continuous on the set {2;Vi € 1, ..., m, if it satisfies
Il fi(w) — fi()|| < lifjlu — |, u,v € 25,0 =1,...,m (7)

with a Lipschitz constant [; > 0.

X 0, if [s| > p S e :
Vg (s, ) =19, 2 Is| < Note that the Assumption 1 is easy to be satisfied in practice
2 2pz WISIS A due tothe set £2,Vi € 1, ..., misanonempty, closed, and convex
set.
D. Graph Theory Assumption 2: f;,i = 1,...,m is nonsmooth convex, i.e.,

An undirected communication topology graph G = (V, &, A)
of order m consists of node set V = {vy,va,...,v,}, edge
set £ CV x V,and A = {a;; }.mxm With nonnegative elements
a;; = a;; > 01if (¢,7) € € and a;; = a;; = 0 otherwise. The
couples among the agents are unordered in the undirected graph,
which implies that the information is exchanged between agent
¢ and agent j. The undirected graph path between agent i
and agent j is a sequence of edges from (i,41), (i1,42), ...,
(is,7), where iy, -+, ig, j denotes different agents. Denote
N; = {jl(i,j) € £} as the set of the neighbors of agent i.
If any pair of distinct nodes ¢ and j (i,j = 1,2,...,m) ex-
ists as a path between them, then an undirected graph G is
connected.

it satisfies (3).
Assumption 3: The undirected communication topology
graph is connected.

B. Reformulation

Note that the problem (6) is not a standard distributed problem.
Under Assumption 3, the problem (6) can be equivalent to the
following distributed form:

m

min F(z) = Zfi (2;)

i=1

st. 2, € 2, CR" x; =xj,i€V;,jeN; (8)
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where N; is the neighbor set of agent 4. Further, the penalty
method is used to transform the problem (8) into

min F(l‘)zz ZZH%—MM

i=1 jeN;
s.t. x; € .Qi,i eV 9)

where || - [|1 is 1-norm, 7" > 0 is a penalty parameter.
Lemma 3 (Sufficient condition): If Assumption 1 and
Assumption 3 hold and 7" > \F m max {l;}, then, the optimal

solution x* of the problem (9) is e(;ul\valent to that in problem
(6).

Proof Letz=1/mY " x; andD2( =" e —z|?
LI Sl -l < & S, S s -
Moreover, for any p,q € V, there exists a path P,, C £ owing
to Assumption 3 holds, such that

ZZ s — z;]l, = Z zp — zqll;

i=1 jeN; (p,q)eé'
1
Z 3 Z l2p = zqlly = [lzi — 25l - (10)
(P,a)EPi;
Furthermore, we have D(x)? < mh?(z) = D(z) < /mh(x).
LetY > /m ax {l;}, thus we have
F(z) 4+ Yh(z) > F(x) + max {l;} D(z)
1<ism
=F(z)+ F(x) - F(z )+1I<1122X {li} D(z) = F(z).
(11

The first inequality holds which comes from the condition
(10) and the second inequality is satisfied due to the Lipschitz
continuous property in (7). From (11), one has that minF'(z) 4+
Th(z) > xmi;l F(Z). This means that the equation holds if and

i=7Tj

only if x; = x,1 € V. ]

IV. MAIN RESULTS

For problem (9) with nonsmooth generalized convex func-
tions, we propose the following distributed smoothing acceler-
ated projection algorithm (DSAPA).

A. Distributed Smoothing Accelerated Projection
Algorithm (DSAPA)

For agent ¢ = 1,..., m, the DSAPA is described as follows:

forl = Pq, (yf — lzi: (vfz (yzl‘g7ﬂi'€)
FT S e, Vi (8 = b))

y“l k+1 + ak+1 ( k+1 _ :v’-“)

alk+1 tk 1 ko 9 EZ(O 1] (12)
i - tk+1 7.u‘z (k+1)9 9 ?

thtt =gy mt’“ € (0,1]

x? = y? S Qi,t? = 1,,“;‘ € (0, +00)

where L; = ([%WD with [; is a Lipschitz constant of fl and
|V;| means the number of neighbors of the agent i

n
vyhi (yf - yf7u7],€) = Z VyiLi,T (yf,-r - y;irnuf)

T=1
vyilv T (qur - y;‘iq—a /L']LC)
| sen (v = wie) i e — g >
Ll if [y, —ybo| < uf.

The compact form of DSAPA (12) is given by
YhHL = gkl Rt (ghtt k)
= Po (v~ VI (v, 1Y)

m)

13)

=diag(«w k+1, RUYe"

k

pk ), and HT = diag (L—l, o ER
Remark 1: It should be noted that the parameter 7" of DSAPA
(12) is related to the Lipschitz constant of objective functions

since T > \/mlgzi%{li}. For 1I<n¢%)§n{li}’ it can be obtained in

the following distributed manner, i.e., the agent i,¢ = 1,...,n
only communicate with their neighbors (the agent j, j € N;)
once after running the max{-} operation of ;, [;. In addition,
the parameters 6, a, and m of DSAPA (12) can also be obtained
by using some existing distributed algorithms in advance, for
example, decentralized minimum-time consensus [26] can be
used to estimate 6, a, and m in finite-time under a distributed
manner.

Proposition 1: The sequences o and t* satisfy the following
equation.

(i) For k=1, i=1,...,

gt [t ¢ GOV g g

where ub = diag(p¥

C S 2t <

3

(i) tf“(uf“) < WO (k+ 1), i =1,...,m.
(iii) (aF)? < “;k ,i=1,...,m.
(iv) P (R 1) < uf(tf){i =1,...,m.
k+1 g
() (aF )2 < (M) =\ () b for > 257, i =
1,...,m.
Proof: The proof is shown in Appendix A. |
Proposition 2: Let q(y, u) = Po(y — %V I'(y, 1)), then for
anyz,y € R™",and p; ; € (0,00),0=1,....m,j=1,...,n
the following condition holds:
. . %
F(.’L‘,[,l.) - F(q (%H)JL) + 1TfIQ(‘r)
>~ gy o (@~ o)
2\ \T=qYy, 1 2u$ q\y, n
L
T
—@-y) - (r—y (14)
(@0 5 =)
where I'(q(y, 1), )=f (a(y, 1), ) +Th(q(y, p), ), I'(, p)
= f(a, ) + Th(z, p), L) = (o, (@1),.. 1o, (zm)T €
mn N O,Xl S .Qi, B
R™ 1. (x;) =4 oo,z & O, i=1,....,m

Authorized licensed use limited to: Southwest University. Downloaded on December 17,2024 at 07:24:26 UTC from |IEEE Xplore. Restrictions apply.



ZHAO et al.: ACCELERATED PROJECTION ALGORITHM

1687

Proof: For proof, see Appendix B. |
Proposition 3: Let W (k)= I'(z*, p*) + k17 p*1 +
(zF — k_l)T L__ (2% — 2*~1), then it is nonincreasing and

-z
lim W (k) ex1sts In addition, the sequence {z*} is bounded.
k—+00

Proof: The proof can be found in Appendix C. |
Theorem 1: Under Assumptions 1-3 and let 7" >

\/ﬁlinax {1}, any clustering point {2*} generated by DSAPA

(13) is an optimal solution to problem (9), i.e., problem (8), and
the DSAPA (13) has an arithmetical convergence rate

F (@) +Th(2F) = (f (2°) + Th(z"))
O (7).if 6 € (0,1)
o) (‘Og(’f ) £0=1.

Proof: Since I(2*) = 0 and let ¢(y*, u*) = 2**1 in (45),
one can get
(o, p*) — I ("1, )

L
> (yk k+1)T ﬁ ( k k+1)
+ (xk o yk)T % (yk xk+1) ) (15)

Using £ 17 pF1> k17 #4711 and letting 2% = (2%, ")
+ kp1TpP1 — I(2*) with 2* = migf(x), we deduce that
xe

K k+1 K kT L k E+1
zr—z >(y - ) ﬁ(y —x )
k w? L k k+1
@) gh ) e
Next, let z = z*, y = y* and p = p* in (14), one has
f(m “uk) F( k+1 Nk)
e pu") +Th( p")
( i+ Jr Th ( k1 u}c))
k T L k k+1
> (y ) Ik (y" —=")
" T L
+ (2 =) — (F =) (17)
uk
dueto I (z*) = 0. X
In addition, from (Yi) in Definition 1: ie., |’ x*,uk) —
()| < pplT P, Db phbt ) — Db ph)] <
w17 (pk — pF+1)1, the condition I'(z*, p¥) — I'(a+1, pk)
becomes
I (x*,uk) -r (mk+1,uk) < =Ry 2fif1Tuk1. (18)

Replacing (18) into (17) yields
242k 217 Pk
L

T
2 (yk: _ xk-’rl) ﬁ (yk _ xk-’rl)
L
+ (1[,'* o yk)T E (yk _ xk+1) . (19)

Multiplying (16) by 17¢¥(¢* — I) and (19) by 17¢¥, then
adding them together to get

1780 (85 — 1) 28 — 17 (£)° 2P 4 2 1 78R k1

L (&%)
> (yF — 2F 1 T _ okt
(v" =) = (0 =)
k ko gkk o oo T L
+ (" —1)a" =ty +2*) —( ). (20)
Since
||b7a||2L +2(a—b)" o (¢c—a)
= llb—e%_—lla—e|2._
2p 2
with [[b —a|?,_ = (b —a)" 52 (b — a).
P
Setting w” = thF~1tak — (71 — Nkl — g, whtl =

thak+1 — (% — I2* — 2* in the right hand of (20), we get

L (t’f)2
(y* — ab+1) o (y* — z5+1)
k
+ (= I) " — gt + a:*)T % (y* — 2"+
_ (wk+1)TL k1 _ (wk)TL k Q1)

By combining (21) and (20) with (iv) in Proposition 1, i.e.,
pEtE(th — 1) < pb (N2 =1, .,m and 251 = 0, we
have

T £wk+1 1Tk (tk)2 SRl

wh £ 17 k1 (tk71)2 s
M1
By performing recursion on (22), one has
(wk+1)T £wk+1 T+ 17k (tk)2z
T L

< ()" Tt 1 ()2

k

+26p Y 1Tt (p
j=1

+ 26177 (p (22)

k+1

j>21

(23)
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where the first and second items in the right-hand of (23)
becomes

p°) + Th (z*, 1)
—f(a*) = Th(z*) + rp1 T p'1)
<@ =) F 6 o)
170 (f (o8 1) + Th (o, 1)

—f @) = Th(a") +rp1"p'1)

* T L * 2
<@ =9") 5@ =) + 21t (00)7 1 24
where the first inequality holds by using (14) and ,u < uY, and
the second inequality is satisfied since I'(z*, u0) — F(x ) <
Kp 17101,

In addition, based on (ii) in Proposition 1, the third item in
the right-hand side of (23) becomes

k
2 thfiflT (y,i)2 1
j=1

2
2k (4 —0) 1” (HO) 1 /kJr1 $1-20 7
h (2-0) 1

2% (4—0)17 (u°)° 1
S (2-6)(2-20)

(k+1)>72% if 6 € (0,1)

or

k
2th/€ﬁ1T (uj)z 1
j=1

1T 021 k41

gw/ 1
2_9 .

6k 17 () 1

g%log(k—i—l),ifQ:l

that is
- 2
QthnflT (;ﬂ) 1
j=1
2k (4-0)17 (u°) "1

== (k+1)>72% if 6 € (0,1)

(25)
6k 17 (1 ) llog(k+1), if6=1.

According to (24) and (25), the inequality (22) can be rewrit-
ten as

(wk+1)T

Ewkﬂ 17y (tk)2 s

2ep GO (W) 192720 46 ¢ (0, 1)

<C+ (2-9)(2-20)
6rp17 (1 ) llog(k+1), ifé=1
(26)
where C' = ( * y())TL( * ()) +2“ﬁ1T(ILO)21~
Moreover, from 17 (t%)21 > 42(12 g‘)ol (k+1)2%in (i) of
Proposition 1 and I'(zF+1, o +1) — I(a*) + kp1 T pk 411 >
I(z*+Y) — I'(x*), we obtain
r (xk+1) —I'(z%)
= f (") + Th (") — £ (2%) = Th(z")
2(2 - 9)2 0—2 ( 0\~ * 0
\a21T/L01(k+1) ({,C _y) L(:,C _y)
8(2—0) Ky
4 MO R 00 (g 41y
Kp(2— —0)17 (p® _
A ?2(4@23 W k1), if0 e (0,1)
k~1T (0 o
S )
(27)
In the end, we obtain
r ((Ek) —I'(z%)
=f (zk) +Th (xk) — f (") =Th(z")
O(%), if 6 € (0,1)
= . 28)
O(f=0), iro=1 (
Thus, the proof is completed. |

Theorem 2: Suppose Assumptions 1-3 hold and let 7" >
v/m max {l;}, the sequence {z*} generated by DSAPA (13)

1<i<m
satisfies
too -1
T : Z (Xk - kal)T (Quktf) (Xk — kal) < 400
k=K
1+
ifh>K=2
a

O(W) if 6 € (0,1)

log(k+1) 0 —
o( e ) ifo=1.

(IT) : [+ — <) =

Proof: (I): With the use of (48), (v) in Proposition 1 and
9
ok < ke Then for k> K = 227 it follows that

f(xk,uk) +Th (2%, 1*) + K p17 pk1

L

T _
+ (xk gk 1) o= (xk gk 1)
_ ( f(xkﬂ k+1) + Th( k+1’uk+1>
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2pk
k E-1\T L k k-1
> (x —T ) 5 (u’“lt’“) (x T ) (29)
ie.,
2 E-1\T L k k-1
(«* —2") 2 (b 1tF) (" —2")
+W(k+1) <W(k),if k > K. (30)
. _ 0 20,9 .
Since pf ! = (kiil)e < ﬁ =20uk i=1,...,m, sum-
ming the above inequalities from X to +o0, we have
+oo 01
2L
Z (xk — xkfl)T T (xk — xkil) < 4o0. 31
= 7

(IT): The inequality (26) implies
(wk+1)T £wk+1
2

K 7 - T :
2pUOLT ()L gL )220 e e (0, 1)

<O+ (2-6)(2-20)
6rp17 (u0)° Llog (k+1),  if6=1
(32)
due to 17 pk (£)224+11 > 0.
Furthermore, (32) becomes
L
(t (25— 2%))" L@ - <Br0
2 (4-0)17 (u°)"1 2-20 .
+ W(iﬂ—l) , if6e(0,1) (33)
6rp1T (u0)  1log (k+1),  iff=1

k _ . \TL/( .k __ ..x <l i ¥
due to (2% —2*)" 5 (2" —2") < 211grliz%>§n{Ll}r£16a()2(||z x|

= B < +00 which is satisfied from (50) (the sequence {x"}
is bounded).
Since tF > W, i=1,...,m, we finally get
8(B+C)
i . 2 2
min {Li} (k+1)"a

1

165 1 (4-0)17 (u0) 1 (k+1) 2

@-0)(2—20)a% min (L] if 6 € (0,1)
T 48k 217 (1) " 1log(k+1) 01 34
1I<nii§n{Li}(k+1)2a2 ’
i.e.,
1 .
e [© (tw), o) 5
O (P2, g =1.
Thus, the proof is completed. |

V. NUMERICAL SIMULATIONS

In this section, we use DSAPA (13) to deal with distributed
constrained optimization problems to demonstrate its effective-
ness and superiority.

Example 1: Consider a nonsmooth constrained convex opti-
mization problem over an undirected annular connected graph
as follows:

min F(z) =Y |z —i|,st z € £2. (36)
1=1

Let z; be an estimate variable which is only known
to the agent ¢, the problem (36) can be illustrated as
follows: F(x) =Y "", fi(x;), fi(x;) = |x; —i] and the set
x; =21—1},i=6,...,10, 2, ={z € Rlz; <i+2},
i=11,...,15, ; ={x € R|||z;]|o < 10},i=16,...,19.
For the simulation, we set m = 19 and three step sizes, i.e,
# = 0.5,0.8, and 1 in DSAPA and make a comparison test with
DPGA [25]. Fig. 2 (left) displays the convergence trajectories
of z in DSAPA (13) with various parameters (¢ = 0.5,0.8,1)
and DPGA [25] with its optimal step size %, C > m. As can
be seen from the results, DSAPA and DPGA [25] can converge
to the same optimal solutions. Fig. 2 (middle) shows that the
DSAPA (13) a faster rate of convergence when the parameter
0 € (0,1] keeps increasing. Moreover, DPGA [25] provides
a faster convergence rate than DSAPA (13) with §# = 0.5 and
is less than DSAPA (13) with # = 0.8, 1. Furthermore, Fig. 2
(right) presents convergence rates of ||z*+! — 2*||2 of DSAPA
(13) and DPGA [25].

Example 2: For this example, an classical sparse signal
reconstruction problem in compressed sensing is considered as
follows:

min ||z|1,s.t. Az =b 37
TeER™
where A € R™*"™ and b € R™.

Note that the problem (37) is not a standard distributed
optimization problem. According to Assumption 3, distributed
consensus theory, and the restricted isometry property in com-
pressed sensing, solving problem (37) is equivalent in solving a
distributed optimization problem as follows:

M
> Il
i=1

s.t. A?,Xz =b; € le,Z: 1,...M
Xi=X,eR"i,j=1,...M

min
XGRJ\IW,

M
A; GRmiX”,Zmi =m

i=1

(38)

where the decomposition matrix A by row is shown in Fig. 3.
Applying DSAPA (13) to dispose of the problem (38) with
n = 128, m = 50, and sparsity s = 10 under five agents. The
(top, left) and (top, middle) in Fig. 4 display the trajectories of
x with 0 = 0.8 and 6§ = 1 are globally asymptotically stable.
Furthermore, the (bottom, left) and (bottom, right) in Fig. 4
demonstrate that it is feasible to reconstruct the sparse signals in
a distributed manner by the stable solution of DSAPA (13). The
(top, right) and (bottom, right) in Fig. 4 show that the approach
DSAPA (13) with § = 1 has a faster convergence rate than that

Authorized licensed use limited to: Southwest University. Downloaded on December 17,2024 at 07:24:26 UTC from |IEEE Xplore. Restrictions apply.



1690 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 4, DECEMBER 2023
25 10° T T T 10° T T T
—DSAPA.6=05 | ——DSAPAS =05 ——DSAPA =05
e DSAPA 6 = 0.8 e DSAPA 6 = 0.8
1 = DSAPAf = 1 — DSAPAf = 1
20 C>m 10 ——DPGA, step size £,C >m 109 ——DPGA, step size £,C > n
; 15 = 109
é 10 3 1010
5 1071
0 ‘0-20
0 05 1 15 2 0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
k x10* k <104 k x10°
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Fig. 4. Decomposition matrix A by row.

with # = 0.8 which matches the conclusions in Theorems 1
and 2.

Example 3: In this example, the proposed DSAPA (13) is
used to optimize a sensor network localization problem in a

distributed manner. We consider a scenario in which there are
five sensors and ten anchors in the plane R2. We label the
locations of the ten anchors with b, € R?*(¢{1,2,...,10}) and
mark the positions of the five sensors by z; = (x},2?) € R%(i €
{1,2,...,5}).Fig. 5 (left) shows the linkages among all sensors
and anchors. As can be seen from Fig. 5 (left) that we employ
yellow solid squares to indicate the anchors’ locations b;(t €
{1,2,...,10}) and red solid pentagrams to represent the optimal
anchors’ locations z}( i € {1,2,...,5}). Moreover, we use the
blue dotted lines to indicate links between sensors, the green
dotted lines to indicate the links between sensors and anchors,
and the orange rectangle to represent feasible region. It is not dif-
ficult to see that the constraint (||x;|| <2, 7 € {1,2,...,5})
makes the optimal values 2} (i = 1, 2, 3,4, 5) within the feasible
domain. There exists an infinite set of specifications for each
sensor to limit the sensor locations. The associated goal is to
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Fig. 5. Topology and optimal location of sensors and anchors (left). Convergence rates of F/(z*) — F(z*) (middle). Convergence rates of ||z*+1 —

x®|2 (right).

minimize the lengths of the connection between the sensors and
the anchors. Thus, the optimization problem is formulated as

5
. 1
min 32 S s = bl + 3l — 2l
=1

LEN; JeN;
st |zl <2, i€ {1,2,...,5},L €N

Applying DSAPA (13) to deal with this problem. For agent 7,
the local objective function f; is

3 | 20 i = lls + > Ml —bulh

JEN; LEN;
where x = (2T, 22 2T o1 21)T.

The middle and right in Fig. 5 display the convergence rates
of F(z*) — F(x*) and ||z*+! — 2% ||2, respectively. It is easy to
see that the proposed DSAPA (13) has a faster convergence rates
of F(z*F) — F(2*) and ||2**! — 2*||? than DPGA in [25].

VI. CONCLUSION

In this article, we have proposed a DSAPA for solving con-
strained nonsmooth convex optimization problems without the
Lipschitz gradient and strong convexity assumptions, where the
optimization variable consensus and set constraints are handled
by exploiting methods based on exact smoothing penalty method
and projection operators. Smoothing approximation technique
is also utilized to deal with the nonsmooth objective function and
the Nesterov’s accelerated technique is applied to accelerate the
proposed DSAPA. Furthermore, we have carefully proven the
convergence rate of the DSAPA when taking different smoothing
parameters (step sizes), and given the optimal convergence rate,
that is, O(log /(k)k). Finally, the effectiveness of the proposed
DSAPA is illustrated by simulations and applications to spe-
cific examples. Considering that the communication topology
in practical engineering applications is directed graph as well as
time-varying, we will study nonsmooth acceleration algorithms
for solving nonsmooth constrained optimization problems over
time-varying directed graphs in our future work. Moreover, dif-
ferentially private distributed online learning over time-varying
digraphs will also be worth considering, and the smoothing

approximation of the 1-norm penalty problem in general case
is to be further investigated in our future work.

APPENDIX A
PROOF OF PROPORTION 1

Proof: i). We will prove i) in two steps.

Since tf™ = 2+ /(& mea L )¢, one has

12 k k‘+1 :uz /u‘z
<Mk+1>t t “ k+1 \l k:+1Z (39)

Step 1: From the right-hand inequality of (39), we have

\/,uiﬁ'ltkJrl < \/,uf + \/pftf. Furthermore, one has
k .
N T Y RN RV T A RV
j=0

k+1 k+1
=/l + \/MZZJ HERVIT <1+/ tzdt)
0

_M(k_A'_ )

2—40

N

m\m

U0 vu a)f(m) 3

= i1 <55

Tias (40)

Step 2: The left-hand equality of (39) implies

[ k41

e P ktk
i My = B T KL

Sy W? eV

13 (k+2)
2 k+3
()
2 a 1

(M5

0 a 0
> 2_“5’ ((k+3)1‘f—1) > 2([9) (k+2)"
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k+1tk+2 \/>0

where the first inequality holds due to a € (0, 1] and he sec-
ond inequality is satisfied by using %ﬁf” > =
(k+3)"3>2k>1

Thus, (40) and (41) imply the condition i) holds.

(k+2)'"%

i) Since FT(ufT)? tk“\/,FW
R HERY (4-6)(12)2
(7)< (), we have ! (ufth)2 < w
(k+ 1)1,
iii) From (39) we have (H‘,ffﬂ)t <M and (t,vle)2 -

iv) The condition ¢#! = g4, /(% k+1 )tk, implies
Iuic+1tk+1(tl_c+1 C1) = (R — uic+1tk+1(1 _a)—

p T thus, we have T (eF ) (¢ T — 1) < pk(5)2.

v) According to §+,/ (ﬂ?il)tf =tF and pb >
T R R . . Y
1= [ - ) -1 < (e -
Further, % < (“;rl) + ﬁ -2 (%)ﬁ In

order to obtain the condition (v), we only need to prove

kt1 . .
ﬁ < (H;LZ? )ﬁ, ie, (k+1)%(455)" > &. Since
(£3)7 = (3)”, we just have to prove (k+1)% > 27 e,
B> 2ot o
= a2 .

APPENDIX B
PROOF OF PROPORTION 2

Proof: Define an auxiliary function of variables x, y, and
matrix p as follows:

H(zyp) =Typ)+VEym' (@-y)
1 + L L
+-(r—y) —(z—y)+ 1" —In(z) (42)
3 (=) (e —y) + 17 o (@)
then, the optimal condition of =z in (42) satisfies 0 €

LY (y, u) + No(z) + x —y. From (I + Ngo)~*
has © = Po(y — £V1'(y, ), ie. a(y, p)
Note that

H (z,y, p)

= P, one
= minH (z,y, u).

—H(q(y,1),y, 1)

>(x—q(y,u))T%(w—Q(y,u)) 43)

holds from the definitions of ¢(y, i) and H(x,y, ) in (42).
In addition

I'(q(y,p), ) + ITEI.Q (q(y,p))

L

L L
= (q(y,p) —y) + 1T;IQ<r) (44)

u

where the second inequality holds according to the convexity
of I'(x, p) with respect to z, the condition (14) is satisfied by
using ¢(y, p) € §2. Therefore, the proof is completed. |

APPENDIX C
PROOF OF PROPORTION 3

Proof: Letting z = z*, y = yy* and pu = p* in (14), we have

[ (ah,1h) = 1 (g (4" 1) 1) +17 2o (a)

57 (@ —y")

pF
L
+ (o — g (v" ")) O (w’“ —q(y* ub)). @)
Combining ohtl = ( i F), y* =2k + af(zF — 2F7 1)
with y* = 2% + o (z o =1y, (45) yields that
F(ac b )—F(mkﬂ,u )—l—]g (m )
T L
> (xk _ xk+1) o (xk _ xk'H)
L (ab)?
_ (xk- -~ xk-—l)T gzk) (mk _ mk-—l) . 46)
Considering that p* 1 < p*, which implies 17 pf 11 <
kp1Tpk1. Moreover, since 20 € 2, aF Tl = Po(y* —
"%Vﬁ(yk, uk)) € 92, ie., Ip(z¥) =0. Thus, we obtain
I (mk,,uk) + IﬂflTp,kl
1 L(ab)® _
(% — 2t W(xk_xk 5
n (xk o karl)T ik (a:k - $k+1) ' (47)

2p
From iii) in Proposition 1, i.e., (a*)? < “’fc—:, we have
W(k)=1 (xk,;tk) +rplTpR1

L
+ (Ik . xk—l)T W

2 ﬁ (ij—‘rl,lj’k-‘rl) _|_ Kjf‘]-TIal}k_‘—l]-

(xk -~ xk—l)

k+1)T L

Ql,ak (.Tk — T

k+1)

+ (z¥ — =Wik+1).

(48)
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_Since W(k) is bounded from below, ie., W(k)>
Pk, pb) + wr1"ph1 > Dok, pb) > (2, p*), thus

lim W (k) exists. (49)

k——+o0

Moreover, according to (48), we obtain

{xk} S {x|ﬁ(a:,,u) < (' p') + kpltptl

L
+ (3:1 — xO)T 200 (xl - xo) Vo € (2} .
By using inequality ['(z',p!) 4+ rp17pl + (2! —
xo)Tﬁ(xl —20) < 1'% p°) 4+ kp1Tpl1,20 = 40 € 0,

we

i.e,

[1]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

have
{«"} € {x € R™| I (x,p) < T (2°, u®)

+rp1Tp01v2? = 0 € 2} (50)

the sequence {z*} is bounded. [ |
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