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ABSTRACT

Complex machine learning models are increasingly used across various fields, but
gaining insight into their decision-making processes remains a challenge. Numer-
ous explanation methods have been developed in recent years, aiming to clarify
how these models work from different perspectives. Recent studies have shown
that some of these explanation methods may produce misleading results, partic-
ularly when features are correlated, such as with background noise or correlated
features lacking relevant information related to the target. Among different meth-
ods, those based on conditional expected prediction have demonstrated greater
robustness to such features. However, applying these methods requires knowl-
edge of the conditional distribution, i.e., the distribution conditioned on a spe-
cific feature, which is challenging to estimate. Current approximation methods
require additional assumptions about the data and models. We propose a global
model-agnostic explanation method based on conditional expected prediction.
Our method approximates conditional expected predictions through data partition-
ing and kernel-based methods, eliminating the need for additional assumptions.
We validate our method using synthetic data and open-source EEG data, and the
results demonstrate that it is significantly less affected by correlated features.

1 INTRODUCTION

Machine learning has demonstrated remarkable power to solve complex problems in several domains
by analysing large datasets and uncovering hidden information. Although these complex models
are powerful tools, their decision-making processes, such as selecting which features to use, often
remain a ”black box” for humans. This lack of transparency challenges the trust of these models
in practical application. In response to this issue, research on interpretability and explainability has
gained significant attention.

Various methods have been proposed to explain a model from different perspectives. Explanations
can be made through visualisation, which displays the crucial areas in an image (Shrikumar et al.,
2017; Kindermans et al., 2017), or shows how alterations in feature values affect the outcomes
(Friedman, 2001; Apley & Zhu, 2020). The counterfactual method (Mothilal et al., 2020; Stepin
et al., 2021) aims to determine how features change when the model alters its prediction for a specific
instance. A critical aspect of model explanation is measuring feature contributions. Various efforts
have been made to address this issue, like permutation feature importance (Fisher et al., 2019),
Shapley-based methods (Lundberg & Lee, 2017; Covert et al., 2020).

However, the model explanation methods may be misleading when features are correlated. Various
model explanation methods rely on the feature independence assumption, which may not hold in
real applications (Zhao et al., 2024; Herbinger et al., 2023), which may potentially introduce bias. In
Budding et al. (2021), researchers intentionally added classification-irrelevant artefacts to the MRI
images. Models are trained using the altered datasets, along with the implementation of various
explanation methods. The results indicate that these methods are influenced by the MRI images
themselves, highlighting pixels associated with the artefacts.

In Wilming et al. (2022), synthetic datasets with linear relationships are built to test the model ex-
planation methods. The informative features are manually adjusted to ensure that they correlate
with another feature, independent of the target variable. The results indicate that most explanation
methods can produce misleading outcomes, whether at the local or global level. A similar study
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was conducted (Wilming et al., 2023) in which this case of feature correlation is considered as a
suppressor variable, and a theoretical discussion is presented under the assumption of linear separa-
bility and the use of linear classifiers. Methods based on conditional expectations, like the Feature
Importance Ranking Measure (FIRM) (Zien et al., 2009), can be less affected by correlated features,
like suppressor variables, which are correlated with other informative features but provide less or no
information related to the target.

FIRM provides a global-level feature contribution based on the variation of the conditional expected
prediction, which is the expected prediction conditioned on the feature under explanation. One
challenge with this method is that it requires access to this conditional distribution to calculate the
results, which is usually not available, particularly for complex datasets. In Zien et al. (2009), the
authors proposed estimation methods for linear cases by assuming that the data are in Gaussian
distribution. In Haufe et al. (2014), researchers proposed a method that can be seen as a special case
used for linear parametric models, which is not applicable to nonparametric models.

This paper makes three main contributions.

1. Proposes model-agnostic methods for measuring global feature contributions.

2. Introduces two efficient approaches for estimating global feature contributions:
ApprFIRM-quantile, which uses quantile partitions, and ApprFIRM-kernel, which adopts
kernel estimation.

3. Conducts extensive experiments on synthetic and real EEG data, demonstrating that the
proposed methods are more robust than existing approaches when handling data with cor-
related features, such as suppressor variables.

2 RELATED WORK

Multiple studies indicate that correlated features can lead to misleading results from explanation
methods(Wilming et al., 2022; 2023; Apley & Zhu, 2020; Strobl et al., 2008; Molnar et al., 2024).
One form of misleading is caused by suppressor variables. This kind of variable can improve the
predictive power of other variables while showing little connection or no direct contribution to the
target. Suppressor variables, initially studied in regression analysis (Conger, 1974; Friedman &
Wall, 2005), in which these variables present no correlation with the target but indeed enhance model
performance. Recent studies have also explored suppressor variables in contexts beyond regression
(Pandey & Elliott, 2010; Lynn, 2003). In Kim (2019), researchers explore the concept of suppressor
variables from a causality perspective, offering a thorough analysis of the suppression effect across
various causal structures. They indicate that a suppressor variable is similar to the instrumental
variable in the context of causal inference. In causal inference, instrumental variables are essential
for estimating causal effects in the presence of unobserved confounding bias (Wu et al., 2022). These
unobserved confounding biases are caused by the unobserved confounder variable, which influences
both the feature being analysed and the target variable. This can lead to a misleading effect between
the feature being analysed and the target. As noted in some studies (Wooldridge, 2016; Steiner &
Kim, 2016), these variables could be harmful when included in the analysis because the hidden bias
can be amplified. While identifying these suppressor variables may not be essential from a model
performance perspective, it is important in the context of model explanation to understand whether
and how much this instrumental variable relates to the target variable.

In Wilming et al. (2023; 2022), researchers conduct theoretical and experimental analysis of the
explanation methods in linear classification tasks involving suppressor variables. Among the state-
of-the-art explanation methods being tested, most are significantly influenced by the suppressor
variable. However, the FIRM method demonstrates a reduced sensitivity to these influences and
produces results that are less affected. The FIRM (Zien et al., 2009) is a model-agnostic approach de-
signed for generating global-level feature contribution explanations. This method analyses changes
in the model’s conditional expectations, which can reveal how predictions shift in response to spe-
cific features and better handle feature-correlated cases. However, estimating conditional expecta-
tions requires accessing the conditional distribution, which is challenging, especially when facing
high-dimensional data. The research presents several approximation methods based on the assump-
tion of Gaussian distributed data or linear models. In Haufe et al. (2014), a comparable methodology
is introduced from the data generation perspective. Nevertheless, a notable limitation of both meth-
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ods is their applicability solely to linear models. Furthermore, these approaches necessitate model
parameters that are applicable only to specific parameter models. In Zhang et al. (2024), researchers
take a further step by extending this method into kernel space, implementing it to explain kernel-
based SVM models.

Estimating conditional expectation presents significant challenges not only within the framework
of the FIRM method but also extends to various other methods. A common approach is to assume
features are independent, making it easier to implement Monte Carlo estimation. However, this
assumption can introduce biases, such as the extrapolation problem (Molnar et al., 2020), where
the sampling range exceeds the actual data distribution. In Apley & Zhu (2020), a visual approach
for explaining models is presented, which also requires estimating local conditional predictions. To
tackle this issue, they first partition data into small subgroups and assumed that samples in these
subgroups fulfil the associated conditional distribution. This method is straightforward to imple-
ment with low computation cost. However, these approaches require predefined partitions or sample
neighbours, which can affect the efficiency of the explanation results. A method that can auto-
matically partition the data through tree models is proposed in Molnar et al. (2024). However, the
performance of this method declines when applied to continuous features, such as those that are
linearly correlated. Several approaches have been proposed for approximating conditional samples
using alternative models, such as variational autoencoders (Olsen et al., 2022; 2023) and deep learn-
ing models (Chamma et al., 2024). However, one issue with these methods is that the performance
of these alternative models can significantly impact the results of the explanations. Additionally,
training these models typically requires large datasets.

3 METHOD

Various explanation methods utilize marginal distribution to estimate the feature importance, which
may lead to extrapolation problems (Molnar et al., 2024). This issue occurs when using samples
derived from the marginal distribution that does not accurately reflect the actual data distribution.
Those samples may be unrealistic in terms of the actual data distribution. This problem can be
mitigated by employing the conditional distribution instead of the marginal distribution. However,
directly calculating conditional expected scores can be challenging, as obtaining conditional distri-
butions is often infeasible due to the curse of dimensionality and the limited amount of data. Due
to this challenge, we introduce two approximation methods to approximate the conditional expected
prediction; one is based on quantile partitions, and another is based on a kernel estimator. The
feature importance score is obtained based on these approximated results.

Notation Consider a dataset (X,Y), where X ∈ Rn×d is a matrix of n samples and d features,
and Y ∈ Rn is the corresponding target vector. xi ∈ Rd represents the i-th sample. f(x) : Rd → R
represents the model. The s-th feature is represented as Xs, and the value of the s-th feature for the
i-th sample is represented as xi

s, while xi
−s represents the feature values of the i-th sample excluding

the s-th feature.

Algorithm 1: Algorithm for partition-based approximation of feature importance score
Input: data matrix X, the number of intervals: K , the s-th feature: Xs, model: f(x)

Divide data X into K intervals based on quantiles of feature Xs. Let {xj}k be the j-th sample
in the k-th quantile of feature Xs;

for k = 1 to K do

CScoreks =
∑

xj∈{xj}k f(xj)

The number of samples in k-th partition ;
end
ApprFIRM(Xs) = std({CScore1s, ...,CScoreks});

3.1 APPROXIMATION BASED ON QUANTILE PARTITION

We propose a method to approximate the conditional expected prediction through data partitioning,
which is inspired by (Apley & Zhu, 2020). In this method, the conditional expected predictions of
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Algorithm 2: Algorithm for kernel-based approximation of feature importance score
Input: data matrix X, number of samples n , the s-th feature: Xs, bandwidth: σ, model: f(x)

Calculate the variance of feature Xs as var(Xs);
for i = 1 to n do

for j = 1 to n do

Calculate the normalized distance: d(xi
s, x

j
s) =

√
(xi

s−xj
s)2

var(Xs)
;

Calculate the weight: wij = exp
(
−d(xi

s,x
j
s)

2

σ

)
;

Replace the s-th feature value of j-th sample xj
s, with the feature value of i-th sample

xi
s;

Calculate the prediction using the replaced sample: f(xj
−s, x

i
s)

end

Calculate the conditional score for i-th sample: CScoreis =
∑n

j=1 wijf(x
j
−s,x

i
s)∑n

j=1 wij
;

end
ApprFIRM(xs) = std({CScore1s, ...,CScorens });

feature Xs, represented as CScoreks , are measured at the k-th quantile partition {xj}k. The process
begins by partitioning the data based on the values of Xs, which involves determining K quantiles of
this feature. The samples are then divided into partitions according to these quantiles, with the subset
of samples belonging to the k-th quantile partition denoted as{xj}k. Predictions are then made for
the samples in the k-th partition using the model f(x). The conditional expected prediction for the
k-th partition of feature Xs, denote as CScoreks ∈ R, is approximated by averaging the predictions
within this partition. It should be noted that the data samples within the same partitions are assumed
to have the same conditional distributions. Our algorithm, based on data partitioning, is summarised
in Algorithm 1.

3.2 APPROXIMATION BASED ON KERNEL ESTIMATOR

The quantile partition based method is intuitive and computationally efficient. However, when the
sample size is small, the resolution of results may be compromised due to the need for multiple par-
titions. To address this issue, we propose an alternative approach based on kernel estimators inspired
by (Aas et al., 2021), which are less affected by the sample size but require higher computational
costs compared to the quantile partition-based method.

Instead of measuring the conditional expected score at each partition, the kernel-based method mea-
sures the conditional expected score, CScoreis ∈ R, at each instance xi for feature Xs.

Firstly, the distance between the feature value xs of the current sample xi
s and each of the other

samples xj
s is measured as d(xi

s, x
j
s) =

√
(xi

s−xj
s)2

Var(Xs)
, where j = 1, 2, ..., n and j ̸= i.

The distance is normalised by the variance of the feature Xs, which makes the distance less affected
by different feature ranges. Then, the sample weights based on the above distance measures are gen-
erated through the Radial Basis Function (RBF) kernel as wij = exp(−d(xi

s,x
j
s)

2

σ ). These weights
measure the similarity between the current sample and other samples from the perspective of feature
Xs. The coefficient of σ determines how sensitive the weights are to nearby samples.

The next step involves calculating predictions for the modified data samples. The data sample xj is
modified by replacing the feature value xj

s with the feature value from the current sample xi, which
is represented as xi

s. The modified sample is denoted as (xj
−s, x

i
s) and its prediction is f(xj

−s, x
i
s).

The conditional expected prediction for sample xi is the weighted sum of these predictions, with the

associated weights determined in the previous steps. The equation is CScoreis =
∑n

j=1 wijf(x
j
−s,x

i
s)∑n

j=1 wij

The kernel-based algorithm is shown in Algorithm 2.
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3.3 FEATURE IMPORTANCE

After obtaining the conditional expectation score, the approximated global feature importance score
for feature Xs is obtained by quantifying the variation of the scores. Standard deviation (std) is
introduced to measure the variation. A higher feature importance score indicates a significant change
in the expected prediction as the feature value varies. This suggests that the feature holds relevant
information. In contrast, a lower feature importance score means that changes in the feature lead
to minimal changes in the expected predictions, indicating that the feature contains little relevant
information. In summary, the final result for feature Xs, the ApprFIRM(Xs) can be described as:

ApprFIRM(Xs) = Std(CScores), where CScores = E[f(X)|Xs = xs] (1)

4 EXPERIMENT

A major challenge in verifying model explanations is the absence of known ground truth in most
real-world datasets. To address this, synthetic datasets are created to simulate conditions with pre-
defined ground truths. Our method is first tested on these synthetic datasets—covering both linear
and nonlinear cases—then tested on an open-source real EEG dataset. Three machine learning
methods are selected to represent a diverse range of models: Support Vector Machine (SVM), Ran-
dom Forest (RF), and a 3-layer Neural Network (NN). State-of-the-art feature importance meth-
ods are used for comparison, including Local Interpretable Model-agnostic Explanation (LIME)
(Ribeiro et al., 2016), Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017), and Per-
mutation Feature Importance (PFI) (Fisher et al., 2019). LIME scores are calculated for every
feature, while default settings are used for PFI and SHAP. All experiments are conducted on
a desktop with an Intel i7 9700K CPU and 32 GB RAM. The example code can be found at
https://github.com/Zhmq117/ApprFIRM/.

4.1 SYNTHETIC DATA

The simulation task is in a binary classification setting. In each scenario, 100 synthetic datasets,
each with 2000 samples and 5 features, are used. The classification information is provided by
features x1 and x4, while feature x5 is non-informative and independent in both linear and nonlinear
scenarios. In the linear scenario, features x2 and x3 are correlated with x1 from opposite directions.
In nonlinear case, x2 is correlated with x1, whereas x3 is an independent feature. In a linear scenario,
the SVM model uses a linear kernel, while in a nonlinear scenario, it uses an RBF kernel. For the
neural network models, each hidden layer consists of 10 neurons using the ReLU activation function.
A softmax layer is used in the final layer. The explanation results are obtained from a separate test
set.

Datasets are generated to simulate suppression cases in classification settings, in a similar way
as in the works of Wilming et al. (2022; 2023). The features exhibit correlation with other non-
informative features, which arises from either direct correlation or overlapping signals.

4.1.1 LINEAR

The dataset is generated through the multivariate Gaussian distribution framework. It includes five
features, of which features x1 and x4 contain class-related information while the others do not. This
differentiation is achieved by utilizing distinct mean vectors for the two classes when generating the
data. Specifically, the feature values of x1 and x4 are assigned a value of 1 for the positive class
and -1 for the negative class, while all other features are initialized to 0. Additionally, feature x1

exhibits a positive correlation with x2 and a negative correlation with x3. Features x4 and x5 are
independent of feature x1. These dependencies are established by adjusting the covariance matrix
of the Gaussian distribution.

4.1.2 NONLINEAR

The data consists of three parts: signal, overlapped distractor, and random noise. The signal part
contains class-related information (features x1 and x4), While the distractor part (between features

5
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x2 and x1) represents the overlapped class-irrelevant information. The signal is overlapped at x1,
i.e., the sample value of x1 contains both information that comes from the signal part and the over-
lapped distractor part, as well as random noise. This setting introduces a correlation between x1

and x2. x2 can be seen as a suppressor variable since it contains no class-related information but
can potentially be used for denoising. The classes are defined by setting features x1 and x4 as 1 or
-1 for the positive class and 0.25 or -0.25 for negative class, respectively. This setting introduces
the nonlinear relationship. The distractor part is a fixed vector multiply ρ, sampled from standard
normal distribution N(0, 1). Random noise parts are sampled from multivariate Gaussian distribu-
tion with zero means N(0,Σ). To sample the covariance matrix Σ, we begin by generating a 5 by 5
matrix representing the covariance matrix of the multivariate Gaussian distribution that is randomly
sampled from a standard normal distribution. Subsequently, we compute the dot product of this
matrix, which guarantees that the resulting covariance matrix is positive semi-definite. To ensure
standardization, the diagonal elements of this matrix are normalized by dividing each element of the
covariance matrix by the product of the standard deviations of the corresponding rows and columns.
The resulting normalized matrix can thus be interpreted as a correlation matrix.

All signal, distractor, and noise sections will be normalised by their respective Frobenius norms. The
proportion of signal, coefs is set to 0.3, while proportion of distractor and noise coefd = coefn =
(1− coefs)/2. The overall data is: X = coefs ∗signal+coefd ∗ρ∗distractor+coefn ∗noise

4.2 REAL DATA

To evaluate the effectiveness of our method on real data, we validated it using open-source EEG
data (Wakeman & Henson, 2015). This dataset is collected during a visual task focused on face
perception. During the data collection process, participants were presented with images of famous
faces, unfamiliar faces, and scrambled faces, which are organized into three categories. The dataset
involves sixteen participants, each contributing approximately 300 samples per class. For our vali-
dation, we specifically focused on the famous faces and scrambled face class.

Preprocessing The preprocess involves the application of a bandpass filter within the frequency
range of 1 Hz to 40 Hz with windowed sinc Finite Impulse Response (FIR) filters. This procedure
effectively mitigates noise originating from other activities occurring at other frequencies. Sub-
sequently, the data is re-referenced utilizing the average reference method. Channels that do not
directly capture brain signals, such as those for Electrocardiogram (ECG) and Electrooculography
(EOG), are excluded from the dataset. To enhance computational efficiency, the signal undergoes
downsampling and segmentation in accordance with the event file associated with the dataset. Each
segment represents a sample that includes 500 ms before the images are presented and 1000 ms
afterwards. Baseline correction is applied during the time window from 500 ms to 0 ms before the
images are displayed. This step helps to reduce the effects of temporal drifts. A total of 70 channels,
or electrodes, are retained as sensor-level features.

For classification tasks, we selected two time intervals: Interval 1 spans from 80 ms to 120 ms,
representing the P100 component (Boutros et al., 1997; Earls et al., 2016); and Interval 2 ranges
from 150 ms to 190 ms, which corresponds to the N170 component (Brunet, 2023; Hinojosa et al.,
2015). The signal within the selected time interval is averaged as a feature for the models.

After preprocessing, the experiments for synthetic data are conducted separately, using RF, RBF-
SVM, and Neural Network models. Unlike synthetic data, the EEG data are normalised using a
standard scaler for model training and explanation.

5 RESULTS

As for the convenience of comparing different results, all scores are normalised to 0 and 1 using the
min-max scaling method.

5.1 SYNTHETIC DATA

The results are shown in a box plot to indicate the effectiveness and stability of the results. All results
are min-max scaled between 0 and 1 for the convenience of presentation. As the data generation
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Figure 1: Results of the linear scenario. All results are min-max scaled between 0 and 1 for the
convenience of presentation. Feature x1 and x4 contain class-related information and should receive
high scores. All methods give x1 highest scores and x5 the lowest. Our approaches, both based on
kernel estimator and quantile partitions, successfully assign a high score to feature x4. The other 3
methods assign significant lower scores except in RF models.

procedure shows in the previous section, the features x1 and x4 contain class-related information
and should receive high scores, while the other 3 features should receive low scores.

The results for the synthetic data experiments are shown in Figure 1 for the linear scenario. Our
approaches, both based on kernel estimator and quantile partitions, successfully assign a high score
to both features x1 and x4 and a low score to the other three features. While the kernel-based
method demonstrates less stability in scoring informative features, it is more effective at suppressing
the scores of class-irrelevant features compared to the quantile partition-based method. The other
3 methods also give higher scores to x1 but struggle to identify feature x4, with the exception
of RF models. Additionally, these methods assign relatively higher scores to x2 and x3 across all
experiments with different models, indicating that they are influenced by the class-irrelevant features
that are correlated with x1.

Figure 2 illustrates the results for the nonlinear scenario. All methods exhibit less stability compared
to those in the linear scenario. Our methods successfully identify the informative features x1 and
x4, while assigning relatively low scores to the other features. The kernel-based methods exhibit
instability in their scores for x1 compared to the quantile partition-based method. However, the
score for x1 remains significantly higher than those of other class-related features. The other three
methods can roughly identify the informative features, but the results are notably unstable in exper-
iments involving SVM and NN models, particularly regarding the informative features x1 and x4.
Additionally, PFI and SHAP assign relatively high scores not only to x2, which is correlated with
x1, but also to the other two independent features. Among all comparable methods, LIME is less
affected by the correlated feature; however, its results still display significant instability compared
to our methods.

Additional experimental results of different combinations of the correlating coefficient and sample
amount are shown in the appendix.

5.2 EEG DATA

The results are shown in Figure 3 in topography format. Topography is a visualization tool com-
monly used to present brain electrical activity on the scalp. The highlighted areas indicate the
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Figure 2: Results of the nonlinear scenario. All results are min-max scaled between 0 and 1 for
the convenience of presentation. Feature x1 and x4 contain class-related information and should
receive high scores. All method shows less stable results than in linear case. Our method correctly
assign high scores to both x1 and x4 and the variance of the kernel-based method is larger than the
quantile-based method. However, the variance of our methods is smaller than the other 3 methods.
The other 3 methods are influenced by other features and failed to assign a low score to x2, except
in the RF model.

regions that are active during the studied event. For comparison purposes, the results are first taken
in absolute value and averaged among 16 participants, and then rescaled to a range between 0 and 1
using a min-max scaler.

As mentioned in the previous section, two time intervals have been selected. These intervals cor-
respond to two signal components, the P100 and N170, related to the visual face recognition task,
which have been reported in many previous studies (Brunet, 2023; Boutros et al., 1997; Earls et al.,
2016; Hinojosa et al., 2015; Maurer et al., 2008).

The results for the first interval (the P100 component) are presented in Figure 3-A. The P100 compo-
nent is typically detected around 100 ms after the stimulus, indicating the early processing of visual
stimuli. It is sensitive to various low-level properties of visual inputs (Negrini et al., 2017; Rossion
& Jacques, 2008). Channels located at the back of the head primarily measure signals from the oc-
cipital cortex, typically in both the left and right hemispheres. However, as findings in the previous
physiological study (Negrini et al., 2017), the observed signal differences may be asymmetric, with
the right hemisphere often recording larger signal differences. As demonstrated in the results pre-
sented in Figure 3-A, our methods, both kernel-based and quantile partition-based method, identify
active areas that are better consistent with findings in previous studies compared with other meth-
ods. However, the explanation results of our explanation methods in experiments with NN models
involve more area, especially for the quantile partition based method. One potential reason is the
limited samples. Each test set used to calculate the explanation results contains approximately 150
samples, which may result in a decrease in accuracy as model complexity increases. LIME and
SHAP identify a similar active areas for the Random Forest (RF) and Neural Network (NN) mod-
els but highlight different channels when applied to RBF-SVM models. In contrast, Permutation
Feature Importance (PFI) did not identify any meaningful areas when applied to the RF models.

The results for the second interval, which corresponds to the N170 component, are presented in
Figure 3-B. The N170 component is a signal difference occurring approximately 170 ms after the
stimulus in the face recognition study, linked to high-level cognitive processes such as face detection
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Figure 3: The figure shows the results of EEG data. All results are averaged and min-max scaled
between 0 to 1 for the convenience of display. Figure A shows the results of interval 1, which
contains signals between 80 - 120 ms. Figure B shows the results of interval 2, which contains
signals between 150 - 190 ms.

(Rossion & Caharel, 2011). Typically, this component is recorded from channels located over the
posterior temporal and occipitotemporal regions on the lower part of the back head in both hemi-
spheres except the mid-back head area (Caharel & Rossion, 2021). Although the component can be
detected in both hemispheres, the signal may be asymmetric, with a more significant reaction often
observed in the right hemisphere’s occipitotemporal region Rossion & Caharel (2011). The results
in the figure demonstrate that our method emphasizes both hemispheres of the occipital-temporal
region, focusing on the right hemisphere, but the left hemisphere receives comparatively less empha-
sis. In contrast, areas highlighted by the other three methods not only include the occipital-temporal
region but also, to different extents, including the mid-back area, which is the occipital region. Our
methods are more in line with previous physiological studies, suggesting greater consistency and
reliability.

6 CONCLUSION AND LIMITATION

This paper introduces model-agnostic explanation methods that leverage the demonstrated strengths
of FIRM to provide more accurate explanations for correlated features than existing methods. We
present two distinct approximation approaches to address the challenges of estimating conditional
expected predictions. These methods evaluate how conditionally expected predictions of the model
vary as individual features change. Since the scores are approximated under a conditional distribu-
tion, the extrapolation is avoided. Moreover, our methods are less affected by suppressor variables.
Our methods have been validated using both synthetic data and open-source EEG data. A limitation
of the proposed methods is that the kernel based method incurs higher computation costs as sam-
ple size increases. In contrast, the partition based method is computationally efficient but may be
less effective for complex distributions involving discrete features. Future research could explore
partitioning strategies that are more effective for discrete data.
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