
Mechanistic Design and Scaling of Hybrid Architectures

Michael Poli * 1 2 Armin W Thomas * 2 Eric Nguyen * 2

Pragaash Ponnusamy 1 Björn Deiseroth 3 Kristian Kersting 3 Taiji Suzuki 4 5

Brian Hie 6 2 Stefano Ermon 2 7 Christopher Ré 2 Ce Zhang 1 Stefano Massaroli 4 8

Abstract
The development of deep learning architectures
is a resource-demanding process, due to a vast de-
sign space, long prototyping times, and high com-
pute costs associated with at-scale model training
and evaluation. We set out to simplify this pro-
cess by grounding it in an end-to-end mechanistic
architecture design (MAD) pipeline, encompass-
ing small-scale capability unit tests predictive of
scaling laws. Through a suite of synthetic to-
ken manipulation tasks such as compression and
recall, designed to probe capabilities, we iden-
tify and test new hybrid architectures constructed
from a variety of computational primitives. We
experimentally validate the resulting architectures
via an extensive compute-optimal and a new state-
optimal scaling law analysis, training over 500
language models between 70M to 7B parameters.
Surprisingly, we find MAD synthetics to correlate
with compute-optimal perplexity, enabling accu-
rate evaluation of new architectures via isolated
proxy tasks. The new architectures found via
MAD, based on simple ideas such as hybridization
and sparsity, outperform state-of-the-art Trans-
former, convolutional, and recurrent architectures
(Transformer++, Hyena, Mamba) in scaling, both
at compute-optimal budgets and in overtrained
regimes. Overall, these results provide evidence
that performance on curated synthetic tasks can
be predictive of scaling laws, and that an optimal
architecture should leverage specialized layers via
a hybrid topology.

*Equal contribution 1Together AI 2Stanford University
3Hessian AI 4RIKEN 5The University of Tokyo 6Arc Insti-
tute 7CZ Biohub 8Liquid AI. Correspondence to: Michael Poli
<polimic03gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Alongside data quality, the effectiveness of large-scale train-
ing is determined by the quality of a model architecture
[17, 14], which is defined by the set and arrangement of the
computational primitives used to form layers and functional
blocks, as well as their parametrization.

Due to the combinatorial explosion of possible architecture
designs and a lack of reliable prototyping pipelines – de-
spite progress on automated neural architecture search meth-
ods [40] – architectural improvements are obtained through
an opaque development process guided by heuristics and
individual experience, rather than systematic procedures.
Further adding to this issue are the large costs and long
iteration times associated with training and testing new ar-
chitectures, underscoring the need for principled and nimble
design pipelines.

In spite of the wealth of possible architecture designs, the
majority of models rely on variations of the same uni-
form Transformer recipe, based on a regular interleaving
of memory-based mixers (self-attention layers) with mem-
oryless mixers (shallow FFNs) [37, 16]. This particular
combination of computational primitives – originating from
the first Transformer design [38] – is known to improve
quality, with empirical arguments supporting the notion that
these primitives specialize in different sequence modeling
sub-tasks e.g., in-context versus factual recall [10]. Beyond
the Transformer architecture are a class of emerging compu-
tational primitives inspired by signal processing, based on
gated convolutions and recurrences [18, 27, 28, 25, 11, 41],
promising improved quality, cheaper scaling to long se-
quence length, and efficient inference. These new primitives
expand the architecture design space, offering new opportu-
nities to extend capabilities and specializations of models.

In this work, we set out to explore key questions arising
from these observations:

1. Can the architecture design process be streamlined
through a set of simple pretext token manipulation
tasks, providing quick and cheap performance esti-
mates predictive of scaling laws?

1

Mechanistic Design and Scaling of Hybrid Architectures

H
y
en

a
 +

S
w

iG
L
U

M
a
m

b
a

M
H

 H
y
en

a
 +

S
w

iG
L
U

T
ra

n
sf

o
rm

er
+

+

S
tr

ip
ed

 M
a
m

b
a
 +

S
w

iG
L
U

S
tr

ip
ed

 H
y
en

a
 +

S
w

iG
L
U

S
tr

ip
ed

 H
y
en

a
 +

S
H

M
o
E

 E
x
p
er

ts
 +

M
o
E

0.0

0.2

0.4

0.6

0.8

1.0

M
A

D
 p

er
fo

rm
a
n
ce

 (
A

cc
.)

0.73 0.74 0.75 0.76 0.77 0.78

MAD Performance (Acc.)

8.5

9.0

9.5

10.0

P
P

L

 O

p
ti
m

a
l
S
iz

e

MH Hyena + SwiGLU
Transformer++
Striped Mamba + SwiGLU
Striped Hyena + SwiGLU
Striped Hyena + MoE
Striped Hyena Experts + MoE

1019 1020 1021

101

FLOPS

P
P

L

 O
p
ti

m
a
l
S
iz

e

Transformer++

StripedMamba

MH Hyena

StripedHyena

+ MoE

++ Seq. Experts

Filter with MAD scoresIterate on architecture

Recall

Selective Copy

Memorization

Compression

Filtering

Fuzzy Recall

Figure 1.1: Mechanistic architecture design (MAD) is a framework to enable fast iterative improvement of architectures,
including emerging approaches based on recurrences and convolutions. [A]: Design architectures via selection of compu-
tational primitives and topology. [B]: MAD involves an evaluation of architecture designs at small scale on a set of token
manipulation synthetic tasks, curated to unit test a variety of model capabilities. The experimental setup promotes direct
comparison via normalization of total state dimension for recurrent models. [C]: Validate scaling laws of top-performing
models on MAD synthetics in compute-optimal and overtrained regimes. Results in B used to reduce the number of candidate
architectures. [D]: Verify alignment of scaling properties and (MAD) results for each architecture e.g., correlation of
compute-optimal scaling perplexity and aggregate (MAD) score (in the figure, compute-optimal perplexity at 2e19 FLOP
budget is shown). If the scores between target quantity and (MAD) synthetics are correlated, iterate on a single target
architecture.

2. Is it possible to bring together the “best of all worlds”
by arranging different computational primitives into
hybrid architecures, leveraging their respective spe-
cialized capabilities?

In an attempt to provide answers to these questions, we
make the following core contributions:

Mechanistic architecture design We introduce a method-
ology for the fast prototyping and testing of new archi-
tectures, mechanistic architecture design (MAD). MAD is a
collection of synthetic tasks – such as recall, memorization,
and compression – curated to serve as isolated unit tests
for key capabilities of an architecture, requiring only min-
utes of training time. In particular, MAD tasks are inspired
by progress on understanding the inner workings of Trans-
formers and other sequence models via in-context learning,
recall, and other sequence manipulation tasks [26, 8, 3, 2, 1].
We apply MAD to test architectures built with representative
computational primitives such as gated convolutions [28],
gated input-varying linear recurrences [11, 41], and other
operators e.g., mixture of experts (MoEs) [33], as well as
novel ones. With MAD, we are able to filter for promising

architecture candidates (Fig, 1.1, [A,B]). By identifying
which individual tasks computational primitives excel at,
we find and validate several ways to improve designs, such
as striping i.e., sequentially interleaving blocks composed
of different computational primitives with a specified in-
terconnection topology, resulting in hybrid architectures
[21, 8, 7].

Scaling laws of emerging architectures To investigate
the link between MAD synthetics and real-world scaling,
we execute the largest scaling law analysis on emerging
architectures to date, training over 500 language mod-
els between 70 million and 7 billion parameters with dif-
ferent architectures. Our protocol builds and expands on
compute-optimal scaling laws for LSTMs and Transformers
[17, 35, 14]. Our findings show that hybrid architectures
improve on all scaling measures, resulting in lower pre-
training losses at different floating point operation (FLOP)
compute-budgets at the compute-optimal frontier1. We also
verify new architectures to be more robust to large pretrain-

1Found via the optimal allocation of compute to tokens and
model size.

2

Mechanistic Design and Scaling of Hybrid Architectures

ing runs outside the efficient frontier e.g., smaller models
trained for significantly more tokens, which make up a ma-
jority of training settings in practice due to inference cost
considerations [30].

Hybridization insights at scale Building on our scaling
law analysis, we investigate hybridization schedules and
model topology. Our findings uncover optimal hybridiza-
tion ratios for attention [38], Hyena [28], and Mamba [11]
mixtures, as well as the respective placement of these layers
in an architecture.

State-optimal scaling laws The size of the state – the ana-
log of kv-caches in standard Transformers [23] – of emerg-
ing convolutional and recurrent primitives [28, 11] plays a
central role in MAD and our scaling analysis, as it determines
inference efficiency, memory cost, and provably has a direct
effect on recall capabilities [2]. We introduce a state-optimal
scaling analysis, with the objective of estimating how per-
plexity scales with the state dimension of different model
architectures. We find hybrid architectures to balance the
trade-off between compute requirements, state dimension,
and perplexity.

New state-of-the-art architectures Leveraging MAD and
new computational primitives, derived from the insights de-
veloped in this work, we design new state-of-the-art hybrid
architectures, outperforming the best Transformer, convolu-
tional, and recurrent baselines (Transformer++ [37], Hyena,
Mamba) with a reduction of up to 20% in perplexity for the
same compute budget.

Correlation between synthetics and scaling performance
Finally, we provide the first evidence that a curated selection
of MAD synthetic tasks can be used to reliably predict scal-
ing law performance, paving the way to faster, automated
architecture design. In particular, MAD accuracy is rank-
correlated with compute-optimal perplexity at scale (Fig.
1.1, [D]), with particularly strong correlation for models in
the same architecture class (Fig 4.1).

2. Background: Architecture Design
Architecture design refers to the selection and optimization
of (a) computational primitives and their composition into
layers and blocks, and (b) topology i.e., the interconnection
and placement of individual blocks in an architecture.

In the following, we define the bounds of the architecture
design search space explored in this work. In particular,
we provide details on the emerging class of implicit sub-
quadratic models, since their properties drive the design of
the synthetic task and evaluation pipeline in MAD, and moti-
vate the introduction of a state-optimal scaling law analysis.

2.1. Computational primitives

Architectures are compositions of linear and nonlinear
functions with learnable parameters. Common choices
for the former are parametric dense or structured layers
L : RT → RT , y = L(u). As an example,

dense yt =

T∑
t′=1

Wtt′ut′ , W ∈ RT×T

(causal) conv. yt =

t∑
t′=1

Wt−t′ut′ , W ∈ RT .

It is often useful to differentiate between explicitly and
implicitly parametrized layers, depending on whether the
entries Wtt′ are the learnable parameters of the layer or
are themself parametric functions of positional encodings
or of the input, i.e. (t, t′, u) 7→ Wtt′(u) [28]. Implicit
parametrizations disentangle the number of model param-
eters and dimensionality T of the inputs. Further, they
can be leveraged to create complex dependencies on the
inputs in the entries of W(u) such as in self-attention,
Wtt′(u) = σ(⟨Qut,Kut′⟩). This ensures the layer can
be applied to inputs with large T without a prohibitive pa-
rameter and memory cost. We often refer to the implicit
parametrization for an implicit layer as its featurization
path.

On nonlinearities in architecture design Linear prim-
itives are typically interconnected via nonlinearities and
residuals. Common nonlinearities are applied elementwise
or to some specific dimension (e.g., the softmax used in
attention). [20, 38]. Another commonly employed nonlin-
earity is gating, resulting in a polynomial function of the
input. While other lines of work investigate choice and
placement of nonlinearities in a layer to optimize quality, ef-
ficiency, or to minimize the emergence of activation outliers
[34], these quality improvements are smaller compared to
other layer and topology changes2 and are thus outside the
scope of this work.

Implicit primitives Implicitly parametrized computa-
tional primitives are the backbone of most model archi-
tectures of practical interest. An important class of implicit
layers can be described starting from so-called linear atten-
tion [18, 31, 15]3, in its simplest (single-channel, unnormal-

2Many tweaks to activation choice, placement and presence of
biases are carried out to improve numerical stability and reduce
the presence of large outliers in activations, rather than improve
scaling performance.

3We use t for consistency, although in practice these layers
can be applied to both "sequence" dimension, as well as "width"
dimension.

3

Mechanistic Design and Scaling of Hybrid Architectures

ized4) form

recurrence xt+1 = xt + kt(u)vt(u)

readout yt = qt(u)xt

(2.1)

where q, k, v : RT → RT are the featurization path of the
layer. Linear attention is a linear recurrent neural network
(RNN) or state-space model (SSM) with constant identity
state-to-state dynamics, and implicitly-parametrized input-
to-state and state-to-output mappings. Linear attention can
be evaluated in parallel during training or inference prefill-
ing using its parallel form yt = qt

∑t
t′=1 kt′vt′ , without

materializing the state x. Notably, the class of subquadratic
implicit models [28, 11, 41] emerges as generalizations of
(2.1) with a few key differences.

2.2. State, cache, and memory

In autoregressive tasks, such as text generation, recurrent
models enable lower latency and constant memory gener-
ation, since the fixed state xt replaces the cache required
in other generic nonlinear blocks such as attention e.g., the
kv-cache. Indeed, kv-caches can be seen as a state of dy-
namic size, by reformulating attention as a recurrence with
state size T , see [23]. For this reason, we use fixed states
and dynamic states to refer to states and kv-caches in hybrid
architectures.

Nonparametric state expansion tricks The size of the
state and its utilization play a central role in the taxonomy,
analysis, and design of efficient architectures. State size, as
well as the parametrization of a block, determine memoriza-
tion and recall capabilities of a layer, as well as inference
efficiency. For this reason, different approaches have been
developed to expand the state dimension without prohibitive
parameter cost. The main ones are the outer-product head
trick:

xt+1 = xt + (kt ⊗ IM)vt, kt, vt, qt ∈ RM

yt = (IM ⊗ qt)xt, xt ∈ RM2

.

Note that we have used a vectorized notation instead of the
commonly employed matrix notation for models using the
state expansion trick. This configuration linearly increases
the state size from a head dimension M to a total of M2, and
is employed in most linear attention variants [18], Hyena
and RWKV variants [23, 27] as well as GLA [41].

The second method to expand the total number of states per
layer is achieved via the multi single-input single-output

4For simplicity we detail unnormalized layers, as normaliza-
tion simply redefines the operator as the ratio of two recurrences.

(mSISO) layer configuration, which is equivalent to ap-
plying multiple independent recurrences with M states in
parallel.

Given the importance of the total state dimension in deter-
mining the capacity of a layer, we find model comparisons
in an iso-state setting – normalizing for the total number of
states regardless of the specifics of the layer – to be required
to ensure architecture improvements measured on smaller
scale synthetic tasks can transfer to pretraining results at
scale.

Manipulating the state Beyond state expansion tech-
niques, efficient layers can be taxonomized based on their
parametrization of state-to-state dynamics and their implicit
parameters. For example, an input-varying layer introduces
additional featurization path to extend input-variance to
state-to-state transitions e.g., xt+1 = gt(u)xt + kt(u)vt(u).
We choose three state-of-the-art approaches spanning differ-
ent possible combinations shown in Table 2.1.

The layers also vary slightly in their featurization paths
e.g., GLA uses a low-rank elementwise implicit state-to-
state transition, whereas Mamba uses a different low-rank
parametrization and weight-tying.

2.3. Topology

Beyond the specifics of the layer itself, designing architec-
tures involves arranging these computational primitives into
blocks, interconnected with a particular topology, for exam-
ple, sequential, parallel, or hybrid (as illustrated in Fig. 1.1).
In this work, we explore sequential striped topologies i.e.,
where different computational primitives are applied sequen-
tially, as well as sparse parallel topologies i.e., mixture of
experts.

3. Mechanistic Architecture Design
In the ideal case, we would have access to an oracle ca-
pable of quantifying how changes in model design at the
microscopic level – choice of computational primitives,
parametrization, topology – propagate to the macroscopic
scale i.e., scaling laws. Indeed, a key challenge in architec-
ture design is predicting whether new designs will match or
improve quality of existing baselines at scale.

Our working hypothesis is that the performance of an ar-
chitecture primarily stems from its efficiency in performing
an array of smaller token manipulation tasks well. We
show that by probing the performance of architectures in

6Only the input-to-state and output-to-state maps are input-
varying.

6Input-to-state and state-to-output maps are shared across chan-
nels.

4

Mechanistic Design and Scaling of Hybrid Architectures

Hyena [28] weakly input-varying5 mSISO
Multi-Head Hyena [23] weakly input-varying mSISO with heads

Gated Linear Attention [41] input-varying heads

Mamba [11] input-varying mSISO and weight sharing6

Table 2.1: Taxonomy of layers based on recurrence class.

each of these individual tasks at a small scale, one can
recover relative model rankings matching those obtained
via scaling laws analysis in quantities of interest such as
compute-optimal perplexity. We call this process of capabil-
ity identification and evaluation, with the goal of architec-
ture prototyping, mechanistic architecture design (in short
"MAD"). Beyond approximating scaling performance, MAD
provides a means to probe the compositionality of model
skills.

3.1. Synthetic tasks to probe model skills

MAD utilizes synthetic tasks to probe model skills and inform
model design, building on recent works [8, 28, 2] consid-
ering only a single or subset of these tasks. We provide a
schematic for each task, with x representing the input, y the
target sequence, and prompt the evaluation sequence.

3.1.1. IN-CONTEXT RECALL

x
y

prompt

Figure 3.1: Schematic of in-context recall. White tokens are
masked; y represents target sequences during training. At
test time, the model is evaluated on recall of all key-value
pairs that were already presented in the sequence.

To answer a prompt well, language models must be able to
understand and learn from new information presented in the
prompt (so-called in-context learning [6]).

A wealth of empirical work has demonstrated that the as-
sociative recall task, as studied in [8, 28], is well-suited to
test a specific subset of in-context learning ability. Here,
we are using a multi-query variant of this task, as proposed
by [2]: given an input sequence of key-value pairs, models
are tasked with retrieving all values associated with keys
that were already shown in the input sequence.

To solve this task, a model thereby does not need to learn
any information external to the prompt it is provided with at
test time.

x
y

prompt

Figure 3.2: Fuzzy in-context recall. Boxes indicate adjacent
tokens that form a key/value.

3.1.2. FUZZY IN-CONTEXT RECALL

In language, semantic units are often spread out over multi-
ple adjacent tokens (e.g., "blue sky" vs "gray sky"). To test
how capable a model is of semantically grouping together
adjacent tokens, we utilize a variant of in-context recall, in
which keys and values are composed of a variable number
of adjacent tokens.

For each sequence, variable length keys and values are ran-
domly drawn from the vocabulary and then assigned into
pairs. Since the structure of key/value lengths in a sequence,
as well as the mapping from keys to values, change be-
tween sequences, fuzzy recall can be regarded as a more
challenging variant of in-context recall.

3.1.3. NOISY IN-CONTEXT RECALL

x
y

prompt

Figure 3.3: Schematic of noisy in-context recall.

To answer a prompt well, language models must be able to
ignore irrelevant information of the input.

We test this ability with another modification to standard
in-context recall. Here, irrelevant information, represented
by noise tokens from a special subset of the vocabulary, is
added in an arbitrary and variable pattern in between the
key-value pairs. Since the noise tokens are sampled from a
fixed dictionary, this task requires the model to implement
a specific type of memory, in addition to the recall circuits
required for in-context recall. In particular, the model needs
to remember which tokens belong to the set of noise tokens,
as these do not carry relevant information for the task.

5

Mechanistic Design and Scaling of Hybrid Architectures

x
y

prompt

Figure 3.4: Schematic of the selective copy task. Grayed-
out tokens are noise.

3.1.4. SELECTIVE COPYING

In addition to ignoring irrelevant information of an input,
language models must be able to selectively remember rele-
vant information of an input.

In the selective copying task, models are tasked with copy-
ing tokens from one position of an input sequence to a later
position of the sequence, while ignoring irrelevant noise
tokens that are inserted into the sequence. Tokens are al-
ways copied in their order of occurrence. Models thereby
need to not just remember the tokens that are to be copied
but also their specific order of occurrence in the sequence.
The copy positions are gleaned from the structure of each
sample, while the contents change between samples and
must be inferred in-context.

3.1.5. COMPRESSION

x
y

prompt

Figure 3.5: Schematic of the compression task. A sequence
is encoded into a single token, and then decoded to recon-
struct the original sequence.

Recent findings in the mechanistic interpretability litera-
ture [24] indicate that language models are often required
to perform "token concatenation", where early sequence-
mixing layers (e.g., attention) assemble information that is
spread across multiple tokens in an input onto another token
so that the assembled information can then be decoded well
by subsequent channel-mixing layers (e.g., MLPs).

To test this capability we use a compression task, in which
models are tasked with compressing a random sequence
of input tokens into a single aggregation token, in a way
that enables reconstruction via an MLP. In other words, the
compression task tests the ability of a model to compress
token embeddings into a single one with the least amount
of information loss.

3.1.6. MEMORIZATION

In addition to manipulating and retrieving information from
an input sequence, language modeling requires the memo-
rization of factual knowledge.

x
y

prompt

Figure 3.6: Schematic of the memorization task. The model
is tasked with learning a fixed map between tokens (i.e., a
set of “facts”).

To test this skill, we utilize a memorization task, in which
models are tasked with learning a fixed key-value mapping
(resembling facts in language) from the training data. Unlike
recall, the mapping requires no in-context computation as
the ground-truth mapping is constant across samples.

3.2. MAD Protocol

MAD follows a two-step procedure, starting from the design
of a new candidate architecture, followed by its systematic
evaluation according to the following key principles:

i. Each MAD score is obtained by averaging architecture
performances across a range of task difficulty levels. To
manipulate difficulty, we independently vary a set of rele-
vant experimental variables: length of the input sequence,
size of the vocabulary, and size of the training set. Some
tasks have additional variables such as the ratio of noise
tokens in the noisy recall and selective copying tasks (Ap-
pendix B.1 and B.5).

ii. Fixed-state architectures are normalized to an iso-state
and iso-parameter setting, including models featuring
sparsely activated layers such as mixtures of experts
(MoEs) [33]. Here, we normalize all fixed-state architec-
tures to a common total state dimension of 4096 to control
for any differences in model performance driven primarily
by mismatch in model state dimension (Appendix B.3).

iii. To ensure that model performance estimates are not de-
pendent on a specific training setting, we sweep each
architecture in each task setting over a grid of learning
rate and weight decay values. We only include the best
runs in our final analysis (Appendix B.4).

iv. Model performances are always evaluated in an indepen-
dent evaluation dataset, specific to each task setting.

3.3. Candidate architecture designs

We apply MAD to a set of small two-blocks architectures
built from a collection of common primitives such as at-
tention, SwiGLU [32], and variants of efficient implicit
recurrent and convolutional layers described in Sec. 2.2. We
build different types of architectures with these primitives:
sequential, striped, and sparse parallel (mixtures).

6

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

M
ea

n
E

v
al

.
A

cc
.

Not Striped Striped

M
H

 G
L
A

 +
 S

w
iG

L
U

M
H

 G
L
A

 +
 M

oE

H
y
en

a
+

 S
w

iG
L
U

H
y
en

a
+

 M
oE

M
am

b
a

M
H

 H
y
en

a
+

 S
w

iG
L
U

M
H

 A
tt

n
.
+

 M
oE

M
H

 A
tt

n
.
+

 S
w

iG
L
U

M
H

 H
y
en

a
+

 M
oE

S
tr

ip
ed

 M
am

b
a

+
 S

w
iG

L
U

S
tr

ip
ed

 M
am

b
a

+
 M

oE

S
tr

ip
ed

 H
y
en

a
+

 S
w

iG
L
U

S
tr

ip
ed

 M
H

 H
y
en

a
+

 S
w

iG
L
U

S
tr

ip
ed

 H
y
en

a
+

 M
oE

S
tr

ip
ed

 M
H

 H
y
en

a
 +

 M
oE

S
tr

ip
ed

 H
y
en

a
E

x
p
er

ts
 +

 M
oE

0

1

P
er

 T
as

k
E

v
al

.
A

cc
.

Context Recall Fuzzy Recall Noisy Recall Selective Copy Compress Memorize

Figure 3.7: MAD analysis: An extensive evaluation of a suite of model architectures, built from common sequence- and
channel-mixing layer types, across six synthetic tasks, each designed to probe a specific skill relevant for sequence modeling
at scale.

In total, we evaluate 21 distinct architectures, including com-
binations of the primitives described in Sec. 2. Additional
architecture details are provided in (Appendix B).

Mixture of sequence experts We further introduce to
our MAD analysis a layer inspired by sparsely gated channel
mixers, the Hyena experts layer. In a Hyena experts layer
with E experts and K active experts, a router selects from a
set of smaller Hyena mixers, using a router G(u) : u 7→ s
from input sequence u ∈ RT×D to scores s ∈ RT×K :

st = softmax(topK(utWg)), Wg ∈ RD×E

HyenaExperts(u)t =
k∑

k′=1

stk′Hyena(u)tk′ .

An advantage of the Hyena experts layer is that only a subset
of the total state dimension is used to compose the output
at each time step. We note that sparsely gated recurrences
have also been explored for recurrences in [29], and that
other similar schemes for sparse gating at the state level are
also possible using input-varying recurrent primitives.

3.4. Results

We test a suite of architectures in the MAD protocol. In
addition to ranking overall model performances across the
synthetic tasks (Fig. 3.7), we take a high-level view on gen-
eral patterns in model performances related to their design,
including the presence of specific computational primitives
in an architecture and the architecture’s topology. We in-
dicate a model’s performance by its accuracy in correctly
predicting tokens in the synthetic tasks. Note that model

performances in MAD can likewise be measured through
their evaluation loss (see Appendix B.1). Both performance
metrics yield similar model rankings.

Hybridization to combine specialized layers Inspecting
the performance on individual tasks via a stratified analysis
(Appendix B.5) reveals specialization of architectures built
with a single type of primitive, such as Mamba excelling at
compression and Hyena at fuzzy recall.

Finding 1: Striped architectures outperform all non-
striped architectures on composite metrics, with an
average gain in accuracy of 8.1% across the MAD
synthetic tasks (Fig. 3.7).

We further find MAD performance to increases with models’
total fixed state dimension, underscoring the importance
of normalizing state dimensions when comparing model
capabilities, further motivating a state-optimal scaling law
analysis (Fig. D.2).

Head expansion trick It is beneficial to arrange the fixed
state dimension into larger heads with fewer states instead
of smaller heads with additional states (in the limit case, in
a mSISO configuration).

Finding 2: Architectures that expand their total state
dimension through heads (see Sec. 2.2) outperform
architectures without heads, with an average gain
of 2.3% in accuracy across the MAD synthetic tasks
(Fig. 3.7).

We note that the head expansion trick also linearly increases
the computation in the layer, and for this reason it intro-

7

Mechanistic Design and Scaling of Hybrid Architectures

duces a trade-off between compute-optimality and state-
optimality.

Sparse layers We find sparsely gated layers to outperform
dense layers in MAD synthetics, in line with the literature on
mixture of experts and their benefits.

Finding 3: MAD performance improves with the addi-
tion of sparsely activated mixture of expert channel-
mixing layers, when compared to architectures using
SwiGLU channel mixers, with an average gain in
accuracy of 1.7% across tasks (Fig. 3.7).

In our later analyses, we connect the performance of archi-
tectures on MAD to their performance at scale on The Pile [9]
(Fig. 4.1).

4. Scaling Analysis
We seek to verify the connection between mechanistic de-
sign tasks and performance at scale. For this reason, we
execute an extensive scaling law analysis on language pre-
training, expanding on the framework of [17, 14]. We train
more than 500 models of different architectures.

Let Mw,ξ be a model with parameters w and architecture
ξ. Denote with N = |w| the number of parameters, with
D the total number of training tokens, and the training cost
(in floating point operations, FLOPS) with cξ(N,D). Let
Aξ(C) be the set of tuples (N,D) such that the training cost
is exactly C, Aξ(C) := {(N,D) | cξ(N,D) = C}. Given
a tuple (N,D) ∈ Aξ(C) one can evaluate Lξ(N,D), the
loss achievable for that combination of parameters/tokens. A
point (C, ℓ(C)) in the locus of the compute-optimal frontier
in the loss-compute plane is defined as

(C, ℓ(C)) : ℓ(C) = min
(N,D)∈Aξ(C)

Lξ(N,D)

with ℓ(C) indicating the best loss achievable by training
Mθ,ξ at compute budget C, optimizing the allocation of
compute to model size N and training tokens D, for ar-
chitecture ξ. Relatedly, one may seek the functional form
of the compute-optimal frontier in the parameter-compute
or token-compute planes, composed of tuples (C,N∗) and
(C,D∗), where D∗, N∗ represent the optimal i.e., achieving
lowest loss, allocation subject to the (N∗, D∗) ∈ Aξ(C)
constraint.

A primary objective of scaling law analyses is to determine
such optimal allocation of the computational budget. To
estimate efficient frontiers, we use an IsoFLOP approach,
which explores different allocation ratios of model parame-
ters and number of tokens at each compute budget. The loss
optimum is then estimated via a quadratic fit (see Fig E.2).

4.1. Compute-optimal frontier for new architectures

Our first set of findings is related to the efficient frontier
of the baseline Transformer++ [37] in relation to other ar-
chitectures. [14] finds that when ξ is a standard Trans-
former architecture (combining attention and MLP), the
optimal ratios between the number or model parameters,
training tokens, and compute budget, are explained by a
linear relationship in log-log space, i.e., logN∗ ∝ a logC
and logD∗ ∝ b logC.

Finding 5: Let aH, aT, bH, bT be the parameter size
and data allocation coefficients for striped and Trans-
former models, respectively. We estimate aT > aH
and bT < bH (Fig. E.1).

Optimal allocation of tokens and parameters is relatively sta-
ble under striping, with marginal differences. One notable
difference is that optimal compute allocation in emerging
efficient architectures is skewed towards additional data i.e.,
training smaller models for longer.

Beyond the efficient frontier Next, we look at optimality
gaps when training outside the efficient frontier. By op-
timality gap, we refer to the increase in loss by training
outside the compute-optimal frontier i.e., L(C(Ñ, D̃, ξ))
where Ñ = N∗ + δN∗ and the number of tokens D̃ is
adjusted to preserve the total compute cost.

Finding 6: The off compute-optimal perplexity gap
is proportional to the hybridization ratio (Fig.E.2),
for all IsoFLOP groups.

Intuitively, models with "flatter" IsoFLOP perplexity curves
are preferred for overtraining smaller models, a setting par-
ticularly common in practice, as it results in smaller models
with faster inference. Interestingly, the suboptimality gap
in hybrids is smaller than Transformers, meaning they are
better suited to training outside the optimal frontier.

Striping schedule and topology We study compute-
optimal ratio and allocation of attention operators in striped
architectures, as well as their overall topology (Fig. E.1).

Finding 7: The compute-optimal hybridization ra-
tio for striped models is 25% across all IsoFLOP
groups7(Fig.E.2 and Table E.1).

4.2. State-optimal scaling

Beyond driving MAD synthetics performance, the total state
size in a model is also an important factor in determining in-
ference latency and memory cost. We explore state-optimal
scaling, aiming to provide a coarse estimate of state utiliza-

7Accounting for state-optimality shifts the optimal ratio to
10%.

8

Mechanistic Design and Scaling of Hybrid Architectures

0.65 0.70 0.75 0.80

Mean Eval. Acc. on MAD Synthetics

7

8

9

10

11

12

P
P

L
 |

O
p
t.
 S

iz
e

Hyena + SwiGLU
MH Hyena + SwiGLU
Striped Hyena + SwiGLU
Striped Hyena + MoE
Striped Hyena Experts + MoE

0.8 0.9 1.0

P
P

L
 |

O
p
t.
 S

iz
e

Context Recall

0.0 0.1 0.2 0.3

Fuzzy Recall

0.8 0.9 1.0

Noisy Recall

0.90 0.95 1.00

Eval. Acc.

P
P

L
 |

O
p
t.
 S

iz
e

Selective Copying

0.4 0.5

Eval. Acc.

Compression

0.89 0.90

Eval. Acc.

Memorization

Figure 4.1: Improved performance on MAD synthetics correlates with better compute-optimal perplexity on The Pile. We
highlight progressively improved versions of Hyena that were designed with the MAD pipeline, which translated to improved
perplexity on the Pile (shown for 2e19 FLOPs; see Appendix B.8 for an analysis across IsoFLOP groups).

tion by measuring scaling in perplexity over state dimension
(Fig. D.2, right).

Finding 8: There exists a relation of the type
P ∗ ∝ M c between compute-optimal perplexity P ∗

and total state size M , with c ≈ −0.28 in our scal-
ing experimental setup, consistent across all model
architectures. The model class determines the offset
of the state-optimal curve.

Concretely, state-optimal scaling indicates that one may
reach any target perplexity (up to saturation of compute-
optimal scaling laws) with fixed-state architectures, by pay-
ing a FLOP cost multiplier that depends on the model
class – training longer to maximize state utilization. Input-
varying recurrences, multihead and striped hybrid archi-
tectures achieve a favourable trade-off between metrics,
with comparable or improved compute-optimal perplexity
to Transformers++ and a reduced total state dimension.

5. Connecting MAD to scaling metrics
The goal of MAD is to provide a framework that can acceler-
ate the architecture design process by using small synthetic
tasks, which can be evaluated quickly and with little com-
pute, to estimate whether improvements to an existing archi-
tecture, or a new candidate architecture, will perform well
at scale. To gauge this hypothesis, we study the correlation
between MAD scores and scaling properties of interest.

Correlation to compute-optimal perplexity We start
with a case study using the Hyena [28] architecture. MAD
has indicated that the performance of Hyena can be cumula-
tively improved by i) adding heads to the Hyena sequence
mixer, ii) interleaving Hyena and attention layers, iii) us-
ing a sparse MoE channel mixer instead of SwiGLU, and
iv) integrating a sparse routing mechanism into the Hyena
sequence mixer (Fig. 3.7). Using the results of our scal-
ing analysis (Sec. 4), we can investigate the correlation be-

tween the MAD scores of these architectures, as indicated by
their average accuracy across the synthetic tasks, and their
compute-optimal performance on The Pile (Fig. 4.1 left).
We also consider perplexity on MAD tasks as an additional
metric (Appendix B.5).

Finding 9: Aggregate MAD scores are linearly cor-
related with compute-optimal perplexity at scale for
all compute budgets (Fig. 4.1 left, Appendix B.8).

This result suggests that smaller, shallower models unit
tested on MAD synthetics can be used to predict compute-
optimal scaling, as well as to iterate on improvements to
a base architecture. To better understand the contribution
of each MAD task to the predictive power of the scores, we
also report correlation for single-task performances and
compute-optimal perplexity at scale (Fig. 4.1 right).

6. Conclusion
This work explores architecture optimization, from synthetic
tasks designed to probe specific model capabilities to scaling
laws. We introduce mechanistic architecture design (MAD),
a methodology for fast prototyping and verification of new
deep learning architectures based on key token manipula-
tion tasks such as recall and compression. With MAD, we
identify hybridization and new configurations to improve
compute-optimal scaling of new architectures. We carry
out an extensive scaling law analysis of new architectures,
training over 500 models between parameter sizes of 70M
to 7B, verifying the improvements found via MAD, and de-
rive a collection of novel insights on the optimal scaling
of new architectures. Finally, we show how MAD results
are correlated with perplexity in a compute-optimal regime,
paving the way for faster and cheaper architecture proto-
typing. Overall, this work provides evidence of correlation
between scaling and a selection of synthetic token manipu-
lation tasks, as well as of the existence of a variety of hybrid
architectures improving over Transformers at scale.

9

Mechanistic Design and Scaling of Hybrid Architectures

Impact Statement
This paper introduces mechanistic architecture design
(MAD), a methodology for improving the scaling perfor-
mance of deep learning models, and presents several im-
proved architectures. As a consequence of this line of work,
we expect training and inference of large models to become
more efficient, less expensive, and thus more readily avail-
able. Societal consequences related to the existence of large
foundation models based on Transformers also apply when
discussing new improved architectures.

Acknowledgments
We are grateful to the Hessian.AISC Service Center, funded
by the Federal Ministry of Education and Research (BMBF),
for the collaboration and joint use of their supercomputer
forty-two.

References
[1] Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-

context language learning: Architectures and algo-
rithms. arXiv preprint arXiv:2401.12973, 2024.

[2] Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I.,
Poli, M., Zou, J., Rudra, A., and Ré, C. Zoology:
Measuring and improving recall in efficient language
models. arXiv preprint arXiv:2312.04927, 2023.

[3] Bhattamishra, S., Patel, A., Blunsom, P., and Kanade,
V. Understanding in-context learning in transformers
and llms by learning to learn discrete functions. arXiv
preprint arXiv:2310.03016, 2023.

[4] Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek llm:
Scaling open-source language models with longter-
mism. arXiv preprint arXiv:2401.02954, 2024.

[5] Dupont, E., Doucet, A., and Teh, Y. W. Augmented
neural odes. Advances in neural information process-
ing systems, 32, 2019.

[6] Elhage, N., Nanda, N., Olsson, C., Henighan, T.,
Joseph, N., Mann, B., Askell, A., Bai, Y., Chen, A.,
Conerly, T., et al. A mathematical framework for trans-
former circuits. Transformer Circuits Thread, 1, 2021.

[7] Fathi, M., Pilault, J., Bacon, P.-L., Pal, C., Firat, O.,
and Goroshin, R. Block-state transformer. arXiv
preprint arXiv:2306.09539, 2023.

[8] Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards
language modeling with state space models. arXiv
preprint arXiv:2212.14052, 2022.

[9] Gao, L., Biderman, S., Black, S., Golding, L., Hoppe,
T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima,
N., et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

[10] Geva, M., Bastings, J., Filippova, K., and Glober-
son, A. Dissecting recall of factual associations
in auto-regressive language models. arXiv preprint
arXiv:2304.14767, 2023.

[11] Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

[12] Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

[13] Hewitt, J., Hahn, M., Ganguli, S., Liang, P., and Man-
ning, C. D. Rnns can generate bounded hierarchi-
cal languages with optimal memory. arXiv preprint
arXiv:2010.07515, 2020.

[14] Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya,
E., Cai, T., Rutherford, E., Casas, D. d. L., Hen-
dricks, L. A., Welbl, J., Clark, A., et al. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556, 2022.

[15] Hua, W., Dai, Z., Liu, H., and Le, Q. Transformer
quality in linear time. In International Conference on
Machine Learning, pp. 9099–9117. PMLR, 2022.

[16] Jiang, A. Q., Sablayrolles, A., Mensch, A., Bam-
ford, C., Chaplot, D. S., Casas, D. d. l., Bressand,
F., Lengyel, G., Lample, G., Saulnier, L., et al. Mistral
7b. arXiv preprint arXiv:2310.06825, 2023.

[17] Kaplan, J., McCandlish, S., Henighan, T., Brown,
T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., and Amodei, D. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[18] Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret,
F. Transformers are rnns: Fast autoregressive trans-
formers with linear attention. In International con-
ference on machine learning, pp. 5156–5165. PMLR,
2020.

[19] Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O.,
Huang, Y., Krikun, M., Shazeer, N., and Chen, Z.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668, 2020.

[20] Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xi-
ang, B., Zhou, B., and Bengio, Y. A structured

10

Mechanistic Design and Scaling of Hybrid Architectures

self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130, 2017.

[21] Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neu-
big, G., May, J., and Zettlemoyer, L. Mega: mov-
ing average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022.

[22] Massaroli, S., Poli, M., Park, J., Yamashita, A., and
Asama, H. Dissecting neural odes. Advances in Neural
Information Processing Systems, 33:3952–3963, 2020.

[23] Massaroli, S., Poli, M., Fu, D. Y., Kumbong, H., Par-
nichkun, R. N., Timalsina, A., Romero, D. W., McIn-
tyre, Q., Chen, B., Rudra, A., et al. Laughing hyena
distillery: Extracting compact recurrences from con-
volutions. arXiv preprint arXiv:2310.18780, 2023.

[24] Nanda, N., Rajamanoharan, S., Kramár, J., and Shah,
R. Fact finding: Attempting to reverse-engineer factual
recall on the neuron level. Alignment Forum, 2023.

[25] Nguyen, E., Poli, M., Faizi, M., Thomas, A., Birch-
Sykes, C., Wornow, M., Patel, A., Rabideau, C., Mas-
saroli, S., Bengio, Y., et al. Hyenadna: Long-range
genomic sequence modeling at single nucleotide reso-
lution. arXiv preprint arXiv:2306.15794, 2023.

[26] Olsson, C., Elhage, N., Nanda, N., Joseph, N., Das-
Sarma, N., Henighan, T., Mann, B., Askell, A., Bai,
Y., Chen, A., et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

[27] Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Ar-
cadinho, S., Cao, H., Cheng, X., Chung, M., Grella,
M., GV, K. K., et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048,
2023.

[28] Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language
models. arXiv preprint arXiv:2302.10866, 2023.

[29] Ren, L., Liu, Y., Wang, S., Xu, Y., Zhu, C., and Zhai,
C. X. Sparse modular activation for efficient sequence
modeling. Advances in Neural Information Processing
Systems, 36, 2024.

[30] Sardana, N. and Frankle, J. Beyond chinchilla-optimal:
Accounting for inference in language model scaling
laws. arXiv preprint arXiv:2401.00448, 2023.

[31] Schlag, I., Irie, K., and Schmidhuber, J. Linear trans-
formers are secretly fast weight programmers. In Inter-
national Conference on Machine Learning, pp. 9355–
9366. PMLR, 2021.

[32] Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

[33] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis,
A., Le, Q., Hinton, G., and Dean, J. Outrageously
large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538,
2017.

[34] So, D. R., Mańke, W., Liu, H., Dai, Z., Shazeer,
N., and Le, Q. V. Primer: Searching for efficient
transformers for language modeling. arXiv preprint
arXiv:2109.08668, 2021.

[35] Stanić, A., Ashley, D., Serikov, O., Kirsch, L., Fac-
cio, F., Schmidhuber, J., Hofmann, T., and Schlag, I.
The languini kitchen: Enabling language modelling
research at different scales of compute. arXiv preprint
arXiv:2309.11197, 2023.

[36] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

[37] Touvron, H., Martin, L., Stone, K., Albert, P., Alma-
hairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhar-
gava, P., Bhosale, S., et al. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

[38] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

[39] Weiss, G., Goldberg, Y., and Yahav, E. On the practical
computatifonal power of finite precision rnns for lan-
guage recognition. arXiv preprint arXiv:1805.04908,
2018.

[40] White, C., Safari, M., Sukthanker, R., Ru, B., Elsken,
T., Zela, A., Dey, D., and Hutter, F. Neural architecture
search: Insights from 1000 papers. arXiv preprint
arXiv:2301.08727, 2023.

[41] Yang, S., Wang, B., Shen, Y., Panda, R., and Kim,
Y. Gated linear attention transformers with hardware-
efficient training. arXiv preprint arXiv:2312.06635,
2023.

[42] Zhang, B. and Sennrich, R. Root mean square layer
normalization. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

[43] Zhang, M., Saab, K. K., Poli, M., Dao, T., Goel,
K., and Ré, C. Effectively modeling time series
with simple discrete state spaces. arXiv preprint
arXiv:2303.09489, 2023.

11

Mechanistic Design and Scaling of Hybrid Architectures

MECHANISTIC DESIGN AND SCALING OF HYBRID
ARCHITECTURES

Supplementary Material

Contents

1 Introduction 1

2 Background: Architecture Design 3

2.1 Computational primitives . 3

2.2 State, cache, and memory . 4

2.3 Topology . 4

3 Mechanistic Architecture Design 4

3.1 Synthetic tasks to probe model skills . 5

3.1.1 In-context recall . 5

3.1.2 Fuzzy in-context recall . 5

3.1.3 Noisy in-context recall . 5

3.1.4 Selective Copying . 6

3.1.5 Compression . 6

3.1.6 Memorization . 6

3.2 MAD Protocol . 6

3.3 Candidate architecture designs . 6

3.4 Results . 7

4 Scaling Analysis 8

4.1 Compute-optimal frontier for new architectures . 8

4.2 State-optimal scaling . 8

5 Connecting MAD to scaling metrics 9

6 Conclusion 9

A Additional Related Work 15

B Mechanistic Architecture Design 15

12

Mechanistic Design and Scaling of Hybrid Architectures

B.1 Tasks . 15

B.1.1 In-Context Recall . 15

B.1.2 Fuzzy In-Context Recall . 15

B.1.3 Noisy In-Context Recall . 16

B.1.4 Selective Copying . 16

B.1.5 Compression . 16

B.1.6 Memorization . 17

B.2 Manipulating Task Difficulty . 17

B.3 Architectures . 17

B.3.1 Channel-mixing Layers . 17

B.3.2 Sequence-mixing Layers . 18

B.4 Training . 18

B.5 Results . 18

B.5.1 Task Performances . 18

B.5.2 Performance on Individual Tasks . 20

B.6 Extensions and Limitations of MAD . 27

C Scaling Laws 28

C.1 Training Details . 28

C.2 Model architectures . 29

C.3 Model sizes and training hyperparameters . 29

C.4 FLOP calculation . 29

C.4.1 Transformer++ . 29

C.4.2 Hyena . 30

C.4.3 Multi-Head Hyena . 30

C.4.4 StripedHyena . 30

C.4.5 Mamba . 30

C.4.6 StripedMamba . 30

C.4.7 StripedHyena-MoE . 30

C.4.8 StripedHyena Experts + MoE . 31

D Scaling Laws 31

D.1 Training Details . 31

D.2 Model architectures . 32

D.3 Model sizes and training hyperparameters . 32

D.4 FLOP calculation . 32

D.4.1 Transformer++ . 32

13

Mechanistic Design and Scaling of Hybrid Architectures

D.4.2 Hyena . 33

D.4.3 Multi-Head Hyena . 33

D.4.4 StripedHyena . 33

D.4.5 Mamba . 33

D.4.6 StripedMamba . 33

D.4.7 StripedHyena-MoE . 33

D.4.8 StripedHyena Experts + MoE . 34

D.5 State-optimal scaling . 34

E Extended Scaling Results 34

E.1 Optimal hybridization topologies . 34

E.2 Byte-level scaling laws . 34

14

Mechanistic Design and Scaling of Hybrid Architectures

A. Additional Related Work
Synthetics for analysis and design The MAD framework builds on work on synthetic tasks for mechanistic interpretability
of RNNs and Transformers, including associative recall, reasoning tasks, compression. [26] and a number of follow up in
mechanistic interpretability use an induction task to probe into the internals of Transformer model. There is a large body of
work [39, 13] studying the expressivity of recurrent models, either theoretically or empirically, using formal languages and
other token manipulation tasks.

Smaller scale synthetics have been used during the iterative design procedure of new layers and primitives, particularly in
the context of emerging deep signal processing architecture. [5, 22, 12, 8, 43, 28, 2]. Notably, [8] uses associative recall to
identify a key capability gap in previous gated state-space models, and proposes a modification to the layer. [28] extend
associative recall procedure to longer sequences, introducing new synthetic tasks such as counting. However, the pretraining
results only involve smaller models, and are not obtained via compute-optimal scaling.

There exists a long line of work on neural architecture search methods (see [40] for a review). MAD provides a different
approach based on synthetic tasks. MAD metrics are in principle compatible with various search methods.

Synthetics for evaluation Synthetics have also been leveraged to evaluate models and model classes [2, 3, 1]. [28] shows
correlation between synthetics and pretraining results on The Pile. [2] maps associative recall accuracy gaps to a perplexity
gap between pretrained models. A variety of other analyses on synthetics for emerging architectures finds certain classes of
efficient architectures to be on par or outperform Transformers on most tasks, with gaps on tasks involving heavy recall or
copying of tokens. With MAD, we aim to leverage tasks as unit tests with a quantitative connection to scaling properties,
instead of using smaller-scale experiments to only build intuition on potential model differences.

Scaling laws We extend the compute-optimal scaling law analysis protocol of [17, 14] performed on Transformers to
deep signal processing architectures, including hybrids and sparsely gated architectures. We base the scaling analysis in
this work on the compute-optimal protocol, in order to evaluate relative performance and to identify optimal hybridization
ratios. Moreover, we consider extensions such as state-optimal scaling and performance in overtrained regimes (outside the
compute-optimal frontier), both of which have implications for efficient inference.

Other work on evaluation of new architectures experiments in parameter-matched and data-matched regimes, which can
result in a mismatch with scaling results due to different FLOP costs per iteration. Other notable examples of compute-
matched evaluations for new models are provided in [28, 11]. Previous evaluations are not carried out at compute-optimal
model sizes which can vary significantly across architectures see e.g., Figures E.1 and E.6).

B. Mechanistic Architecture Design
B.1. Tasks

B.1.1. IN-CONTEXT RECALL

The in-context recall task is comprised of sequences of key-value pairs (with separate vocabularies for keys and values).
Models are tasked with predicting all values for those keys that were already presented in the sequence:

input example: a b d e f g | a b f g

In this example, keys are drawn from the vocabulary {a, d, f} and values from the {b, e, g} vocabulary. Importantly, the
mapping from keys to values is randomly shuffled between sequences. Models are tasked with autoregressively predicting
all underlined value in this example.

In the baseline setting of this task, we use a vocabulary of 16 tokens and 12, 800 training sequences with a length of 128
tokens. The vocabulary is equally divided into keys and values.

B.1.2. FUZZY IN-CONTEXT RECALL

The fuzzy in-context recall tasks adapts the in-context recall task by representing keys and values by a variable number of
adjacent tokens:

15

Mechanistic Design and Scaling of Hybrid Architectures

input example: (a d) (b) (d a f) (e g) | (d a f) (e g)

In this example, keys are drawn from the vocabulary {a, d, f} and values are drawn from the vocabulary {b, e, g}. We use
brackets for illustrative purposes to indicate adjacent tokens that together represent a key or value but they are not part of
the actual input to the model. In sequential order, the presented keys are ’a d’ and ’d a f’, with associated values ’b’ and
’e g’. For each sequence, keys and values are randomly drawn form the key and value dictionaries, with randomly drawn
lengths (ranging from 1 to 3 tokens in our analyses). We always evaluate with keys of length 3 (the longest length used
in our analyses), to disambiguate whenever a key token appears in two keys of different values. We pad sequences with a
separate pad token if necessary to ensure that all sequences of a dataset are of the exact same length. As for the in-context
recall task, models are tasked with autoregressively predicting all underlined values in this example.

In the baseline setting of this task, we use a vocabulary of 16 tokens and 12, 800 training sequences with a length of 128
tokens. The vocabulary is equally divided into key and value tokens.

B.1.3. NOISY IN-CONTEXT RECALL

The noisy in-context recall task represents another variation of in-context recall, in which noise tokens, from a separate
vocabulary, are randomly inserted into the input sequences:

input example: a b h d e f g | i a b f g

In this example, keys and values are respectively drawn from the vocabularies {a, d, f} and {b, e, g}, while noise is drawn
form the vocabulary {h, i}. As for in-context recall, models are tasked with autoregressively predicting the underlined values
in this example.

In the baseline setting of this task, we use a vocabulary of 16 tokens, which are equally divided into keys and values, 12, 800
training sequences with a length of 128 tokens, and a share of 20% noise tokens in the input from a separate noise vocabulary
of size 16.

B.1.4. SELECTIVE COPYING

The selective copying task comprises sequences of randomly sampled tokens, with randomly inserted "blank" and "insert"
tokens:

input example: a c [b] t [b] [i] [i] [b] [i] | a c [b] t [b] a c [b] t

In this example, tokens are drawn from the vocabulary {a,c,t}, while [b] and [i] indicate the blank and insert token. Given
this example, the task of the model is to copy all non-special tokens to the positions of the insert tokens, in the order they
were presented in the sequence. The purpose of the randomly inserted blank tokens is to force models to learn to selectively
memorize or ignore information from the input.

In the baseline setting of this task, models are tasked with copying 16 randomly drawn tokens from a vocabulary of 16
tokens, and are provided with 12, 800 training sequences with a length of 256 tokens.

B.1.5. COMPRESSION

The compression task consists of random token sequences, each ending with a dedicated "compression token":

input example: a e c b h g i [c] | [c] + [pos0] -> a

In this example, tokens are randomly drawn from the vocabulary {a, b, c, e, g, h, i}, while [c] indicates the compression
token. Given this input, models are tasked with compressing all relevant sequence information into the compression token
[c], such that a subsequent two-layer MLP can fully recover each token of the input sequence, given the model’s output for
the compression token. To indicate the position i that is to be recovered from the input, we add a non-learnable sin-cos
position embedding (indicated by [posi]) to the models output for the compression token before feeding it to the MLP
decoder.

In the baseline setting of this task, we use a vocabulary of 16 tokens and 12, 800 training sequences with a length of 32
tokens.

16

Mechanistic Design and Scaling of Hybrid Architectures

B.1.6. MEMORIZATION

The memorization task uses a fixed key-value dictionary, representing the facts to be learned:

key-value dictionary example: {a:b, c:d, e:f}

Input sequences comprise key-value pairs that are randomly sampled form this dictionary. Importantly, all values are masked
out form the input sequences with a dedicated "insert token":

input example: a [i] c [i] e [i] a [i] | a b c d e f a b

In this example, the values that are to be inserted at the positions of the insert tokens are: ’b’, ’d’, ’f’, and ’b’. Models are
then tasked with correctly inserting the masked-out values at the positions of the insert tokens. As the values are never part
of the input sequences, models need to learn the mapping from keys to values over the course of their training.

In the baseline setting of this task, we use a vocabulary of 256 tokens, equally divided into keys and values, and 256 training
sequences with a length of 32 tokens (such that each fact is on average presented 32 times in the training data).

B.2. Manipulating Task Difficulty

For each MAD task, we evaluate model performances across several levels of difficulty. We manipulate task difficulty by i)
increasing the length of the input sequences, ii) reducing the training dataset size, and iii) increasing the vocabulary size. In
addition, we increase the share of noise in the inputs for the noisy in-context recall task as well as the number of tokens that
are to be copied in the selective copying task. Importantly, we only change one task variable at a time, while keeping all
others at their baseline level.

For all variants of in-context recall, we evaluate input sequence lengths of 128, 256, 512, and 1024 tokens, training dataset
sizes with 12, 800, 6, 400, 3, 200, 1, 600 and 800 samples, and vocabulary sizes, which are equally divided into keys and
values, of 16, 32, 64, and 128 tokens.

For noisy in-context recall, we additionally evaluate shares of 20%, 40%, 60%, and 80% noise tokens in the inputs.

For the selective copying task, we evaluate sequence lengths of 256, 512, and 1024 tokens, training dataset sizes with
12, 800, 6, 400, 3, 200, 1, 600 and 800 samples, vocabulary sizes of 16, 32, 64, and 128 tokens, and 16, 32, 64, and 96
tokens of a the input that are to be copied.

For the compression task, we evaluate input sequence lengths of 32, 64, 128 and 256 tokens, vocabulary sizes of 16, 32, 64,
and 128 tokens, and training dataset sizes of 12, 800, 6, 400, 3, 200, 1, 600 and 800 samples.

For the memorization task, we evaluate vocabulary sizes of 256, 512, 1, 024, 2, 048, 4, 096, and 8, 192 tokens, while keeping
the training dataset fixed at 256 samples with an input length of 32 (thereby effectively varying the rate at which each fact
appears in the training data, with average rates of 32, 16, 8, 4, 2, and 1).

B.3. Architectures

We build architectures from a set of common channel- and sequence-mixing layer primitives. Each architecture is composed
of 2 blocks with a total of 4 layers. In general, blocks combine a sequence mixing layer with a subsequent channel mixing
layer, with the exception of Mamba layers, which combine sequence and channel mixing into a single layer [11]. All layers
are set to a width of 128 for our main analysis (if not stated otherwise), with all other architecture settings given below.

Common architecture primitives are composed of two identical blocks combining each sequence-mixing layer with each
of the two channel-mixing layers. Striped hybrid architectures combine each unique block of the common architecture
primitives with a second block composed of multi-headed attention and one of the two channel mixers.

B.3.1. CHANNEL-MIXING LAYERS

• SwiGLU MLP [32]: inner width: 512

• Mixture of Experts MLP [19]: number of experts: 8, expert width: 16, number of active experts: 2

17

Mechanistic Design and Scaling of Hybrid Architectures

B.3.2. SEQUENCE-MIXING LAYERS

We normalize the (fixed) state dimension of all sequence mixers, before running the MAD pipeline. Whenever possible, we
prioritize keeping the shape of the layer fixed, over the state dimension (e.g., reducing state dimension before expansion
factors, or reducting state dimension before number of heads).

• Hyena [28]: filter order: 2, short filter order: 3, filter featurization is implemented following [23].

• Mamba [11]: state dimension: 4, convolution dimension: 4, width expansion: 2, no bias for linear and convolution
layers.

• Multi-head Gated Linear Attention [41]: number of heads: 8, head dimension: 16

• Multi-Head Attention [38]: number of heads: 16, head dimension: 8, no bias for linear layers

• Multi-Head Hyena [23]: number of heads: 16, state dimension of heads: 2, filter order: 2, short filter order: 3.

• Hyena Experts: number of experts: 8, expert width: 16, number of active experts: 2. All other parameters are shared
with standard Hyena.

At these settings, all evaluated architectures that do not include attention layers are normalized to a total state dimension of
4, 096.

B.4. Training

For each MAD task, we train models according to the setting described in Table B.1, using a standard cross-entropy loss
objective. Note that we sweep all evaluated architectures over a 3× 2 grid of learning rate and weight decay values (see
Table B.1) and only include the best runs in our final analysis (as determined by their evaluation accuracy).

Table B.1: MAD training setting.

OPTIMIZER ADAMW
OPTIMIZER MOMENTUM β1, β2 = 0.9, 0.98
DROPOUT NONE
BATCH SIZE 128
TRAINING EPOCHS 200
LEARNING RATE SCHEDULE COSINE DECAY
NUMBER OF LAYERS 4
NUMBER OF EVALUATION SAMPLES 1,280

BASE LEARNING RATE [0.0001, 0.0005, 0.001]
WEIGHT DECAY [0.0, 0.1]

B.5. Results

B.5.1. TASK PERFORMANCES

18

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

G
ra

n
d

M
ea

n

E
v
a
l.
 A

cc
.

0

2

E
v
a
l.
 L

o
ss

0.0

0.5

1.0

In
-c

o
n
te

x
t

R
ec

a
ll

E
v
a
l.
 A

cc
.

0

2

E
v
a
l.
 L

o
ss

0.0

0.5

1.0

F
u
zz

y
R

ec
a
ll

E
v
al

.
A

cc
.

0

2

E
v
al

.
L
os

s

0.0

0.5

1.0

N
oi

sy
R

ec
al

l

E
v
a
l.
 A

cc
.

0

2
E

v
a
l.
 L

os
s

0.0

0.5

1.0

S
el

ec
ti
v
e

C
o
p
y

E
v
a
l.
 A

cc
.

0

2

E
v
a
l.
 L

os
s

0.0

0.5

1.0

C
o
m

p
re

s-
si

o
n

E
v
al

.
A

cc
.

0

2

E
v
al

.
L
os

s

M
H

 G
L
A

 +
 S

w
iG

L
U

M
H

 G
L
A

 +
 M

o
E

H
y
en

a
+

 S
w

iG
L
U

H
y
en

a
+

 M
o
E

M
am

b
a

M
H

 H
y
en

a
+

 S
w

iG
L
U

M
H

 A
tt

n
.
+

 M
oE

M
H

 A
tt

n
.
+

 S
w

iG
L
U

M
H

 H
y
en

a
+

 M
oE

S
tr

ip
ed

 M
am

b
a

+
 S

w
iG

L
U

S
tr

ip
ed

 M
am

b
a

+
 M

oE

S
tr

ip
ed

 H
y
en

a
+

 S
w

iG
L
U

S
tr

ip
ed

 M
H

 H
y
en

a
+

 S
w

iG
L
U

S
tr

ip
ed

 H
y
en

a
+

 M
oE

S
tr

ip
ed

 M
H

 H
y
en

a
+

 M
oE

S
tr

ip
ed

 H
y
en

a
E

x
p
er

ts
 +

 M
oE

0.0

0.5

1.0

M
em

or
iz

-
at

io
n

E
v
a
l.
 A

cc
.

M
H

 G
L
A

 +
 S

w
iG

L
U

H
y
en

a
+

 S
w

iG
L
U

M
H

 G
L
A

 +
 M

o
E

H
y
en

a
+

 M
o
E

M
am

b
a

M
H

 H
y
en

a
+

 S
w

iG
L
U

M
H

 A
tt

n
.
+

 M
oE

M
H

 H
y
en

a
+

 M
oE

S
tr

ip
ed

 M
am

b
a

+
 S

w
iG

L
U

S
tr

ip
ed

 M
am

b
a

+
 M

oE

S
tr

ip
ed

 H
y
en

a
+

 S
w

iG
L
U

M
H

 A
tt

n
.
+

 S
w

iG
L
U

S
tr

ip
ed

 H
y
en

a
+

 M
oE

S
tr

ip
ed

 M
H

 H
y
en

a
+

 S
w

iG
L
U

S
tr

ip
ed

 H
y
en

a
E

x
p
er

ts
 +

 M
oE

S
tr

ip
ed

 M
H

 H
y
en

a
+

 M
oE

0

2

E
v
a
l.
 L

os
s

Figure B.1: Architecture performances within and across the MAD synthetic tasks, when using evaluation accuracy as a
performance metric (left) or evaluation loss (right).

19

Mechanistic Design and Scaling of Hybrid Architectures

B.5.2. PERFORMANCE ON INDIVIDUAL TASKS

20

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

H
-S

g
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
M

b
-M

b

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-S

g
m

A
lg

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-M

oE
m

A
lg

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-S

g
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
m

A
-M

oE

E
v
a
l.
 A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-M

oE

E
v
a
l.
 A

cc
.

0.0

0.5

1.0

m
H

-M
o
E

m
A

-M
o
E

E
v
a
l.
 A

cc
.

128643216

Vocab size

0.0

0.5

1.0

H
e-

M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

1024512256128

Seq len

800 3200 6400 12800

Num train examples

Figure B.2: In-context recall task model performances. H: Hyena, Mb: Mamba, Alg: Gated Lin. Attention, A: Attention,
He: Hyena Experts, Sg: SwiGLU, MoE: Mixture of Experts MLP, m{H,A,Alg}: multi-headed model variants.

21

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

H
-S

g
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
M

b
-M

b

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-S

g
m

A
lg

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-M

oE
m

A
lg

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-S

g
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
m

A
-M

oE

E
v
a
l.
 A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-M

oE

E
v
a
l.
 A

cc
.

0.0

0.5

1.0

m
H

-M
o
E

m
A

-M
o
E

E
v
a
l.
 A

cc
.

128643216

Vocab size

0.0

0.5

1.0

H
e-

M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

1024512256128

Seq len

800 3200 6400 12800

Num train examples

Figure B.3: Fuzzy in-context recall task model performances. H: Hyena, Mb: Mamba, Alg: Gated Lin. Attention, A:
Attention, He: Hyena Experts, Sg: SwiGLU, MoE: Mixture of Experts MLP, m{H,A,Alg}: multi-headed model variants.

22

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

H
-S

g
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
M

b
-M

b

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-S

g
m

A
lg

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-M

oE
m

A
lg

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-S

g
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
m

A
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

128643216
Vocab size

0.0

0.5

1.0

H
e-

M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

1024512256128

Seq len

800 3200 6400 12800
Num train examples

0.80.60.40.2
Frac noise

Figure B.4: Noisy in-context recall task model performances. H: Hyena, Mb: Mamba, Alg: Gated Lin. Attention, A:
Attention, He: Hyena Experts, Sg: SwiGLU, MoE: Mixture of Experts MLP, m{H,A,Alg}: multi-headed model variants.

23

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

H
-S

g
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0
M

b
-M

b
M

b
-M

b

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-S

g
m

A
lg

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
H

-M
oE

E
v
a
l.
 A

cc
.

0.0

0.5

1.0

m
A

lg
-M

oE
m

A
lg

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-S

g
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
m

A
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
o
E

m
A

-M
o
E

E
v
a
l.
 A

cc
.

128643216
Vocab size

0.0

0.5

1.0

H
e-

M
o
E

m
A

-M
o
E

E
v
a
l.
 A

cc
.

1024512256

Seq len

800 3200 6400 12800
Num train examples

96643216
Num tokens to copy

Figure B.5: Selective Copying model performances. H: Hyena, Mb: Mamba, Alg: Gated Lin. Attention, A: Attention, He:
Hyena Experts, Sg: SwiGLU, MoE: Mixture of Experts MLP, m{H,A,Alg}: multi-headed model variants.

24

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

H
-S

g
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
M

b
-M

b

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-S

g
m

A
lg

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

o
E

H
-M

o
E

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-M

o
E

m
A

lg
-M

o
E

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-S

g
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

o
E

m
A

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

128643216

Vocab size

0.0

0.5

1.0

H
e-

M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

2561286432

Seq len

800 3200 6400 12800

Num train examples

Figure B.6: Compression model performances. H: Hyena, Mb: Mamba, Alg: Gated Lin. Attention, A: Attention, He:
Hyena Experts, Sg: SwiGLU, MoE: Mixture of Experts MLP, m{H,A,Alg}: multi-headed model variants.

25

Mechanistic Design and Scaling of Hybrid Architectures

0.0

0.5

1.0

H
-S

g
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
M

b
-M

b

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
H

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-S

g
m

A
lg

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0
H

-M
oE

H
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
H

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

lg
-M

oE
m

A
lg

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
A

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-S

g
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-S

g

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-S
g

m
A

-S
g

E
v
al

.
A

cc
.

0.0

0.5

1.0

H
-M

oE
m

A
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

M
b
-M

b
m

A
-M

oE

E
v
al

.
A

cc
.

0.0

0.5

1.0

m
H

-M
oE

m
A

-M
oE

E
v
al

.
A

cc
.

256 2048 4096 8192

Vocab size

0.0

0.5

1.0

H
e-

M
oE

m
A

-M
o
E

E
v
al

.
A

cc
.

Figure B.7: Memorization model performances. H: Hyena, Mb: Mamba, Alg: Gated Lin. Attention, A: Attention, He:
Hyena Experts, Sg: SwiGLU, MoE: Mixture of Experts MLP, m{H,A,Alg}: multi-headed model variants.

26

Mechanistic Design and Scaling of Hybrid Architectures

0.65 0.70 0.75 0.80

Mean Eval. Acc. on MAD Synthetics

7

8

9

10

11

12

13

P
P

L
 |

O
p
t.
 S

iz
e

8e+18
2e+19
4e+19
8e+19
Hyena + SwiGLU
MH Hyena + SwiGLU
Striped Hyena + SwiGLU
Striped Hyena + MoE
Striped Hyena Experts + MoE 0.8 0.9 1.0

P
P

L
 |

O
p
t.
 S

iz
e

Context Recall

0.0 0.1 0.2 0.3

Fuzzy Recall

0.8 0.9 1.0

Noisy Recall

0.90 0.95 1.00

Eval. Acc.

P
P

L
 |

O
p
t.
 S

iz
e

Selective Copying

0.4 0.5

Eval. Acc.

Compression

0.89 0.90

Eval. Acc.

Memorization

Figure B.8: Improved performance on MAD synthetics correlates with better compute-optimal perplexity on The Pile across
IsoFLOP groups. We highlight progressively improved versions of Hyena that were designed with the MAD pipeline.

0.69 0.70 0.71 0.72 0.73 0.74 0.75

Mean Eval. Acc. on MAD Synthetics

9.0

9.5

10.0

10.5

P
P

L
 |

O
p
t.
 S

iz
e

8e+18
2e+19
Mamba
Striped Mamba + SwiGLU

0.90 0.95 1.00

P
P

L
 |

O
p
t.
 S

iz
e

Context Recall

0.08 0.10

Fuzzy Recall

0.90 0.95 1.00

Noisy Recall

0.90 0.95

Eval. Acc.

P
P

L
 |

O
p
t.
 S

iz
e

Selective Copying

0.5275 0.5280

Eval. Acc.

Compression

0.890 0.892 0.894

Eval. Acc.

Memorization

Figure B.9: Replication of Fig. B.8 for the Mamba and Striped Mamba architectures and IsoFLOP groups 8e18 and 2e19.

B.6. Extensions and Limitations of MAD

The MAD evaluation framework relies on extrapolating performance from smaller (e.g., 2-block) models to deeper models
trained at scale. As such, the framework has not yet been applied to sophisticated topologies requiring small-scale testing with
a larger number of blocks e.g., hybrid models with more than two sequence mixer primitives, or alternative interconnection
topologies that span multiple layers.

In principle, MAD can be used to design architectures to optimize other quantities of interest, beyond perplexity or downstream
benchmarks e.g., throughput. In this work, we focus on investigating correlation with compute-optimal scaling metrics, and
leave other analyses to future work.

27

Mechanistic Design and Scaling of Hybrid Architectures

C. Scaling Laws
We design our model topologies starting from previous compute-optimal scaling results for Transformers [30], and selecting
the number of layers (depth) and width to cover a range of parameters from 8e6 to 7e9 parameters (see Table D.2). The
depth and width are generally fixed across models, which result in minor parameter count differences (except for the mixture
of experts models where a distinction between total and active parameters must be made, see Tables D.4 and D.3). To
compare how each model scales, we control for several compute budgets (IsoFLOP groups): 4e18, 8e18, 2e19, 4e19, 8e19,
2e20, 5e20, 2e21. We linearly interpolate learning rates from common settings at 150e6, 350e6, 1.3e9, 3e9 and 7e9 model
sizes, obtaining a linearly inverse relationship with model size. Batch size is scaled (increased) in discrete steps, with larger
training FLOPs using larger batch sizes.

For state-optimal scaling results, we obtain the optimal model size from the compute-optimal frontier, then compute the
dynamic and fixed state dimensions of the closest model size available in the set of results.

C.1. Training Details

We control for key hyperparameters across all models, including batch size (Table D.1), learning rate (Table D.2) and
scheduler. Most models were trained on a single node. For larger IsoFLOP groups, we trained in a multinode distributed
training with tensor parallelism. We used a cosine decay learning rate scheduler, with warm up using 1% the number of
training steps, and the minimum decay to reach 10% of the max learning rate.

Table C.1: Batch sizes by IsoFLOP group. For very small models (<54M) parameters, batch size 262k is used.

ISOFLOP BATCH SIZE

4.0E+18 524K
8.0E+18 524K
2.0E+19 524K
4.0E+19 524K
8.0E+19 524K
2.0E+20 1M
5.0E+20 1M
2.0E+21 2M

Batch sizes and hyperparameters Batch size and learning rate are two high-impact hyperparameters for scaling laws, as
they visibly shift the compute-efficient frontier. We find that scaling the batch size with FLOP budgets, thus keeping it fixed
within each IsoFLOP group, to be a simple and robust approach. Fig. D.1 provides an example of potential issues arising
from incorrect batch scaling. These results are in line with recent findings [4].

10

20

30

P
P

L
(2

e1
9
)

Transformer++

fixed batch size

scaled batch size

108 109

Model Size

8

9

P
P

L
(8

e1
9)

Figure C.1: Increasing batch size with compute FLOPS can shift the compute-efficient frontier. When increasing batch size
after 109 parameters (red), the IsoFLOP curve underestimates the performance of larger models, when compared to a fixed
batch size (blue), shifting the optimum estimation towards smaller models.

28

Mechanistic Design and Scaling of Hybrid Architectures

C.2. Model architectures

We describe shared architecture details first, followed by model specific designs below. All models use a modern SwiGLU
unit as the channel mixer, except for Mamba and StripedMamba (which merges the GLU block with the sequence mixer
layer, resulting in twice the number of sequence mixers). We use RMSNorm [42] for normalization. All models tie the
embedding layers. All sparsely activated layers use learned argmax routing.

Transformer++ Transformer++ is state-of-the-art Transformer model, with rotary positional embeddings [36], SwiGLU
and RMSNorm.

Hyena We use the original architecture [28] with some improvements. The channel mixer is replaced with SwiGLU, we
use RMSNorm, set weight decay to 0 to all Hyena layer parameters.

Multi-Head Hyena We use a Hyena layer with heads as described by [23]. We sweep across different head dimensions at
the IsoFLOP group 2e19 to find an optimal head dimension (8), and use the same number for all other experiments.

StripedHyena We use 3 striping schedule ratios: 1A:1H, 1A:3H, 1A:11H, where A=Attention and H=Hyena along model
depth. In instances where the number of layers is not a multiple of the schedule, the ratio is repeated until the target depth is
reached.

Mamba Mamba doubles the number of sequence mixers, replacing the dedicated channel mixer, and uses a custom
input-varying recurrence. Hyperparameters (state dimension 16, expansion factor 2, conv projection length 4 and width of
implicit network are sourced from the original implementation [11])

StripedMamba Similar to StripedHyena, we use the 3 striping ratio schedules to interleave attention at specified intervals
along model depth.

StripedHyena-MoE The StripedHyena-MoE replaces SwiGLU with a total of 8 experts and 2 active experts. We keep the
same depth and model width in the mixer layer as baseline models, and adjust the MoE widths to match active parameters.

StripedHyena Experts-MoE This model introduces expert in the Hyena sequence mixer at the output level, as described
in the main text. We use a StripedHyena with striping ratio 1:11, and the following expert counts: total experts = 8, active
experts = 2, total mixer experts = 8, active mixer experts = 2.

C.3. Model sizes and training hyperparameters

We show common model settings across all architectures by size in Table D.2. We use Adam optimizer betas [0.9, 0.95],
weight decay 0.1, and no dropout. All models are trained in mixed precision: bfloat16 with full precision for Hyena and
Mamba convolution and recurrences.

C.4. FLOP calculation

We provide FLOP calculators for each model architecture explored in this study. Notation is provided in D.5.

C.4.1. TRANSFORMER++

• Embedding layers: 4LDV

• MHA

– projections: 6LD2

– attention: 4L2D + 2HL2

– out layer: 2LD2

• GLU

– 6LDDglu

29

Mechanistic Design and Scaling of Hybrid Architectures

C.4.2. HYENA

GLU and embedding calculation is the same as Transformer++.

• Sequence Mixer

– projections: 6LD2

– convs on projections: 18LD
– featurization: ShyenaLD

8

– convolution and gates: 10L log2(L)D + 4LD

– out layer: 2LD2

C.4.3. MULTI-HEAD HYENA

• Sequence Mixer

– projections: 6LD2

– convs on projections: 18LD
– featurization: ShyenaLH

– convolution and gates: 10L log2(L)D
2/H + 4LD2/H

– out layer: 2LD2

C.4.4. STRIPEDHYENA

FLOPS of StripedHyena are determined by summing the FLOPS of Hyena-GLU and MHA-GLU, with the mixing ratios
specified by the particular instance of the model.

C.4.5. MAMBA

• Sequence Mixer

– projections: 4LD2E

– short conv: 6LDE

– featurization: 2LDE(Ddt + 2Smamba) + 2LDEDdt

– associative scan: 2LDESmamba
9

– out layer: 2LD2E

• No separate GLU block (2x the sequence mixers).

C.4.6. STRIPEDMAMBA

FLOPS of StripedMamba are determined by summing the FLOPS of Mamba-Mamba and MHA-GLU, with the mixing
ratios specified by the particular instance of the model.

C.4.7. STRIPEDHYENA-MOE

• Sequence mixer

– Same as StripedHyena

• SwiGLU MoE (replaces MLP block)

– router: LDAmoe

– up projections 4DDmoeAmoe

– down projection (sparse) 2DDmoeGmoe

8Other filter parametrizations e.g., canonical via rational functions, scale with the order O(ShyenaDL log2(L)).
9Estimate assumes "most efficient" scan algorithm in terms of FLOPS (but not latency). In practice, the constant may be larger.

30

Mechanistic Design and Scaling of Hybrid Architectures

10

20

30

P
P

L
(2

e1
9)

Transformer++

fixed batch size

scaled batch size

108 109

Model Size

8

9

P
P

L
(8

e1
9)

Figure D.1: Increasing batch size with compute FLOPS can shift the compute-efficient frontier. When increasing batch size
after 109 parameters (red), the IsoFLOP curve underestimates the performance of larger models, when compared to a fixed
batch size (blue), shifting the optimum estimation towards smaller models.

C.4.8. STRIPEDHYENA EXPERTS + MOE

Model has experts in both sequence mixers (Hyena) and GLU layers. In attention layers, Transformer++ sequence mixer
(MHA) FLOPS are used. The idea of Hyena experts is to select via a router (softmax - argmax selection) Gmoh smaller
Hyena experts, and run computation only on those dimensions. Equivalently, this can be seen as adaptively choosing a
subset of states, using the input sequence.

• Hyena experts

– router: LDAmoh

– projections: 6LD2

– convs on projections: 18LD

– featurization: ShyenaLDmohGmoh

– convolution and gates: 10L log2(L)DmohGmoh + 4LDmohGmoh

– out layer: 2LDmohD

D. Scaling Laws
We design our model topologies starting from previous compute-optimal scaling results for Transformers [30], and selecting
the number of layers (depth) and width to cover a range of parameters from 8e6 to 7e9 parameters (see Table D.2). The
depth and width are generally fixed across models, which result in minor parameter count differences (except for the mixture
of experts models where a distinction between total and active parameters must be made, see Tables D.4 and D.3). To
compare how each model scales, we control for several compute budgets (IsoFLOP groups): 4e18, 8e18, 2e19, 4e19, 8e19,
2e20, 5e20, 2e21. We linearly interpolate learning rates from common settings at 150e6, 350e6, 1.3e9, 3e9 and 7e9 model
sizes, obtaining a linearly inverse relationship with model size. Batch size is scaled (increased) in discrete steps, with larger
training FLOPs using larger batch sizes.

For state-optimal scaling results, we obtain the optimal model size from the compute-optimal frontier, then compute the
dynamic and fixed state dimensions of the closest model size available in the set of results.

D.1. Training Details

We control for key hyperparameters across all models, including batch size (Table D.1), learning rate (Table D.2) and
scheduler. Most models were trained on a single node. For larger IsoFLOP groups, we trained in a multinode distributed
training with tensor parallelism. We used a cosine decay learning rate scheduler, with warm up using 1% the number of
training steps, and the minimum decay to reach 10% of the max learning rate.

31

Mechanistic Design and Scaling of Hybrid Architectures

D.2. Model architectures

We describe shared architecture details first, followed by model specific designs below. All models use a modern SwiGLU
unit as the channel mixer, except for Mamba and StripedMamba (which merges the GLU block with the sequence mixer
layer, resulting in twice the number of sequence mixers). We use RMSNorm [42] for normalization. All models tie the
embedding layers. All sparsely activated layers use learned argmax routing.

Transformer++ Transformer++ is state-of-the-art Transformer model, with rotary positional embeddings [36], SwiGLU
and RMSNorm.

Hyena We use the original architecture [28] with some improvements. The channel mixer is replaced with SwiGLU, we
use RMSNorm, set weight decay to 0 to all Hyena layer parameters.

Multi-Head Hyena We use a Hyena layer with heads as described by [23]. We sweep across different head dimensions at
the IsoFLOP group 2e19 to find an optimal head dimension (8), and use the same number for all other experiments.

StripedHyena We use 3 striping schedule ratios: 1A:1H, 1A:3H, 1A:11H, where A=Attention and H=Hyena along model
depth. In instances where the number of layers is not a multiple of the schedule, the ratio is repeated until the target depth is
reached.

Mamba Mamba doubles the number of sequence mixers, replacing the dedicated channel mixer, and uses a custom
input-varying recurrence. Hyperparameters (state dimension 16, expansion factor 2, conv projection length 4 and width of
implicit network are sourced from the original implementation [11])

StripedMamba Similar to StripedHyena, we use the 3 striping ratio schedules to interleave attention at specified intervals
along model depth.

StripedHyena-MoE The StripedHyena-MoE replaces SwiGLU with a total of 8 experts and 2 active experts. We keep the
same depth and model width in the mixer layer as baseline models, and adjust the MoE widths to match active parameters.

StripedHyena Experts-MoE This model introduces expert in the Hyena sequence mixer at the output level, as described
in the main text. We use a StripedHyena with striping ratio 1:11, and the following expert counts: total experts = 8, active
experts = 2, total mixer experts = 8, active mixer experts = 2.

D.3. Model sizes and training hyperparameters

We show common model settings across all architectures by size in Table D.2. We use Adam optimizer betas [0.9, 0.95],
weight decay 0.1, and no dropout. All models are trained in mixed precision: bfloat16 with full precision for Hyena and
Mamba convolution and recurrences.

D.4. FLOP calculation

We provide FLOP calculators for each model architecture explored in this study. Notation is provided in D.5.

D.4.1. TRANSFORMER++

• Embedding layers: 4LDV

• MHA

– projections: 6LD2

– attention: 4L2D + 2HL2

– out layer: 2LD2

• GLU

– 6LDDglu

32

Mechanistic Design and Scaling of Hybrid Architectures

D.4.2. HYENA

GLU and embedding calculation is the same as Transformer++.

• Sequence Mixer

– projections: 6LD2

– convs on projections: 18LD
– featurization: ShyenaLD

10

– convolution and gates: 10L log2(L)D + 4LD

– out layer: 2LD2

D.4.3. MULTI-HEAD HYENA

• Sequence Mixer

– projections: 6LD2

– convs on projections: 18LD
– featurization: ShyenaLH

– convolution and gates: 10L log2(L)D
2/H + 4LD2/H

– out layer: 2LD2

D.4.4. STRIPEDHYENA

FLOPS of StripedHyena are determined by summing the FLOPS of Hyena-GLU and MHA-GLU, with the mixing ratios
specified by the particular instance of the model.

D.4.5. MAMBA

• Sequence Mixer

– projections: 4LD2E

– short conv: 6LDE

– featurization: 2LDE(Ddt + 2Smamba) + 2LDEDdt

– associative scan: 2LDESmamba
11

– out layer: 2LD2E

• No separate GLU block (2x the sequence mixers).

D.4.6. STRIPEDMAMBA

FLOPS of StripedMamba are determined by summing the FLOPS of Mamba-Mamba and MHA-GLU, with the mixing
ratios specified by the particular instance of the model.

D.4.7. STRIPEDHYENA-MOE

• Sequence mixer

– Same as StripedHyena

• SwiGLU MoE (replaces MLP block)

– router: LDAmoe

– up projections 4DDmoeAmoe

– down projection (sparse) 2DDmoeGmoe

10Other filter parametrizations e.g., canonical via rational functions, scale with the order O(ShyenaDL log2(L)).
11Estimate assumes "most efficient" scan algorithm in terms of FLOPS (but not latency). In practice, the constant may be larger.

33

Mechanistic Design and Scaling of Hybrid Architectures

D.4.8. STRIPEDHYENA EXPERTS + MOE

Model has experts in both sequence mixers (Hyena) and GLU layers. In attention layers, Transformer++ sequence mixer
(MHA) FLOPS are used. The idea of Hyena experts is to select via a router (softmax - argmax selection) Gmoh smaller
Hyena experts, and run computation only on those dimensions. Equivalently, this can be seen as adaptively choosing a
subset of states, using the input sequence.

• Hyena experts

– router: LDAmoh

– projections: 6LD2

– convs on projections: 18LD
– featurization: ShyenaLDmohGmoh

– convolution and gates: 10L log2(L)DmohGmoh + 4LDmohGmoh

– out layer: 2LDmohD

D.5. State-optimal scaling

Figure D.2: Compute-optimal and state-optimal scaling on The Pile. We report total state dimension, fixed (recurrences) and
dynamic (attention). All models are trained at sequence length 8k. We identify distinct regions in the state-optimal frontier,
indicating that one may pay an additional FLOP cost to obtain the same perplexity with a state of smaller dimension, by
using other classes of architectures.

E. Extended Scaling Results
E.1. Optimal hybridization topologies

We observe the topology of hybrid architectures to have significant effect on their downstream performance. In MAD tests,
interleaving schedules for StripedHyena, with gated convolution followed by attention, outperform schedules attention
followed by gated convolution.

Table E.1 provides ablations on the perplexity at larger scales. A variety of topologies achieve best perplexity, including
chunked interleaving (6H:6A) and an encoder-decoder topology (6H:12A:6H), where Hyena layers surround a block of
attention layers.

For all other experiments in the paper, including scaling laws, we adopt a simple 1H:1A topology for simplicity, as that is
already seen to outperform other architectures in compute-optimal and state-optimal scaling.

E.2. Byte-level scaling laws

Scaling laws analysis primarily focus on sub-word level tokenization. With a new range of architectural options, we also
explore compute-optimal scaling of a subset of architectures (Transformer++, Mamba, Hyena and StripedHyena) at byte

34

Mechanistic Design and Scaling of Hybrid Architectures

108 109

Model Size

10

15
P

P
L

Transformer++

108 109

Model Size

10

20

Hyena

108 109

Model Size

10

15

Multi-Head Hyena

108 109

Model Size

8

10

Striped Hyena

108 109

Model Size

9

10

Striped Mamba

FLOPS:
4e18
8e18
2e19
4e19
8e19
optima

1019 1020

FLOPS

108

109

O
p
t.
 M

od
el

 S
iz

e

1019 1020

FLOPS

1010

4× 109

6× 109

2× 1010

O
p
t.
 N

u
m

.
T

o
k
en

s

Transformer++

Hyena

Multi-Head Hyena

Striped Hyena

Striped Mamba

Figure E.1: Compute optimal scaling. [Top:] For each architecture, we train models of different sizes for a constant number
of FLOPs (so-called IsoFLOP groups). For each of these IsoFLOP groups, we determine an optimum model size based on a
polynomial fit to the observed training perplexities. [Bottom:] Using these estimates, we predict optimal model sizes and
number of training tokens for each architecture.

108 109

Model Size

5

10

15

20

P
P

L

50% Attention

108 109

Model Size

5

10

15

20
25% Attention

108 109

Model Size

5

10

15

20
8.3% Attention

FLOPS:
4e18
8e18
2e19

4e19
8e19
optima

100 50 25 8 0
% Attention Stripes

10

15

B
es

t
P

P
L

Optimal Striping

Figure E.2: Optimal striping ratio. We find that StripedHyena architectures outperform non-striped Hyena (0% Attention)
and Transformer++ (100% Attention) architectures across all evaluated FLOPS groups. In particular, we find a ratio of 25%
to be optimal.

Figure E.3: Compute-optimal scaling at byte resolution.

resolution. We scale the models across FLOP budgets from 8e18 to 8e19 with model sizes from 6M to 1B parameters. The
compute-optimal frontier is obtained using a similar protocol as outlined in Sec. D.

We find attention-based models to yield significantly higher perplexity at all IsoFLOP groups, with alternative architectures
outperforming Transformer++, including non-striped variants (Figure E.3). These results show that model ranking varies
significantly across domains and tokenization strategies.

35

Mechanistic Design and Scaling of Hybrid Architectures

Additional results We report additional results for scaling laws on DNA sequences. We trained all models on 8k sequence
length, using model hyperparameters detailed in D.2. The model rankings are different from subword tokenized language
data. We also compare architecture performance outside the compute-optimal frontier, namely with allocations of the
computational budget are suboptimal but common in practice, such as overtraining smaller models E.5.

107 108 109

Model Size

3.2

3.4

3.6

3.8

PP
L

Transformer++

107 108 109

Model Size

3.2

3.4

3.6

3.8 Mamba

107 108 109

Model Size

3.2

3.4

3.6

3.8 Hyena

107 108 109

Model Size

3.2

3.4

3.6

3.8 StripedHyena

Figure E.4: Pretraining compute-optimal scaling on DNA sequences, with byte-level tokenization (nucleotide resolution).

4 1019 1020

FLOPS

3.0

3.5

4.0

4.5

5.0

E
v
a
l.
 P

P
L

Offset: 5%

Transformer++

Mamba

Hyena

StripedHyena

4 1019 1020

FLOPS

3.0

3.5

4.0

4.5

5.0

E
v
a
l.
 P

P
L

Offset: 8%

4 1019 1020

FLOPS

3.0

3.5

4.0

4.5

5.0

E
v
a
l.
 P

P
L

Offset: 11%

4 1019 1020

FLOPS

3.0

3.5

4.0

4.5

5.0

E
v
a
l.
 P

P
L

Offset: 14%

4 1019 1020

FLOPS

3.0

3.5

4.0

4.5

5.0

E
v
a
l.
 P

P
L

Offset: 17%

Scaling Rates for Compute-Suboptimal Model Sizes

Figure E.5: Scaling off the compute-optimal frontier on DNA data. We verify the perplexity scaling at model sizes with a
percentage offset from the optimal model size at each FLOP budget. In particular, we train a % offset smaller model, for
longer. Transformers do not scale well to the overtraining regime.

36

Mechanistic Design and Scaling of Hybrid Architectures

1019 1020

FLOPS

107

108

109

C
o
m

p
u
te

-o
p
ti
m

a
l
m

o
d
el

 s
iz

e

Transformer++

Mamba

Hyena

StripedHyena

Figure E.6: Optimal model size vs FLOPS.

1019 1020

FLOPS

1010

1011

C
om

p
u
te

-o
p
ti
m

al
 #

to
k
en

s

Transformer++

Mamba

Hyena

StripedHyena

Figure E.7: Optimal number of tokens vs FLOPS.

Figure E.8: Comparison of optimal model size and number of tokens for each FLOP budget.

37

Mechanistic Design and Scaling of Hybrid Architectures

Table C.2: Common settings across all architectures. For Mamba, we use the layer structure of Mb-Mb following [11].
Actual parameter counts vary slightly for each architecture..

PARAMS (M) D_MODEL FFW_SIZE KV_SIZE N_HEADS N_LAYERS LEARNING RATE

8 128 336 64 2 4 9.77E-04
22 320 848 64 5 5 9.57E-04
38 448 1200 64 7 7 9.36E-04
54 512 1360 64 8 9 9.15E-04
70 576 1536 64 8 10 8.95E-04

102 640 1712 64 10 14 8.56E-04
118 704 1872 64 11 14 8.37E-04
134 768 2048 64 12 14 8.18E-04
150 768 2048 64 12 16 8.00E-04
163 768 2048 64 12 17 7.75E-04
175 768 2048 64 12 19 7.50E-04
196 832 2224 64 13 19 7.25E-04
217 832 2224 64 13 21 7.00E-04
251 896 2384 64 14 21 6.75E-04
278 896 2384 64 14 24 6.50E-04
306 960 2560 64 15 24 6.25E-04
350 1024 2736 64 16 24 6.00E-04
440 1152 3072 64 18 24 5.66E-04
536 1280 3408 64 20 24 5.33E-04
641 1408 3760 128 11 24 5.00E-04
756 1536 4096 128 12 24 4.75E-04
881 1664 4432 128 13 24 4.55E-04

1010 1792 4784 128 14 24 4.33E-04
1160 1920 5120 128 15 24 4.15E-04
1200 1920 5120 128 15 25 4.11E-04
1300 2048 5456 128 16 24 4.00E-04
1600 2176 5808 128 17 26 3.84E-04
1900 2304 6144 128 18 28 3.67E-04
2250 2432 6480 128 19 30 3.47E-04
2400 2560 6832 128 20 29 3.39E-04
2640 2560 6832 128 20 32 3.25E-04
3100 2688 7168 128 21 34 3.00E-04
4200 3072 8192 128 24 36 2.72E-04
5200 3328 8880 128 26 38 2.46E-04
7000 3712 9904 128 29 41 2.00E-04

38

Mechanistic Design and Scaling of Hybrid Architectures

Table C.3: MoE model sizes for StripedHyena. All MoE models use 8 total experts and 2 active experts. Other model
settings for corresponding active parameter counts follow Table D.2, including d_model, n_heads, n_layers, ffw_size,
kv_size, and learning rate.

TOTAL PARAMS (M) ACTIVE PARAMS MOE WIDTH

194 102 1728
228 118 1856
270 134 2048
303 150 2048
319 163 2048
352 175 2048
404 196 2176
452 217 2240
512 251 2368
580 278 2368
667 306 2560
761 350 2752
950 440 2752

1160 536 3392
1390 641 3712
1660 756 4096
1940 881 4416
2230 1010 4736
2550 1160 5056
2910 1300 5440

Table C.4: StripedHyena Expert model sizes, which all use 8 total experts and 2 active experts for both sequence mixing
and GLU experts. Other model settings for corresponding active parameter counts follow Table D.2, including d_model,
n_heads, n_layers, ffw_size, kv_size, and learning rate.

TOTAL PARAMS (M) ACTIVE PARAMS EXPERT WIDTH EXPERT TOTAL WIDTH MOE WIDTH

241 101 80 640 2368
290 119 88 704 2624
337 137 96 768 2816
386 153 96 768 2880
408 160 96 768 2880
452 174 96 768 2880
520 199 104 832 3072
570 215 104 832 3072
661 248 112 896 3328
749 277 112 896 3328
860 315 120 960 3584
965 352 128 1024 3776

1220 441 144 1152 4288
1500 535 160 1280 4736
1810 641 176 1408 5216
2140 757 192 1536 5696
2510 882 208 1664 6176
2880 1010 224 1792 6592
3320 1160 240 1920 7104
3790 1310 256 2048 7616

39

Mechanistic Design and Scaling of Hybrid Architectures

Table C.5: Notation for FLOP calculation.

Notation Description

C Model FLOP cost per token
N Number of layers
L Sequence length
D Model width
V Vocabulary size
H Number of heads

Dglu Width of GLU (reverse bottleneck)
Dmoe Width of MoE expert
Ddt Width of bottleneck in Mamba featurization
Dmoh Width of Hyena expert
Dglu Width of GLU (reverse bottleneck)
Amoe Number of MoE experts
Amoh Number of Hyena experts
Gmoe Number of active MoE experts
Gmoh Number of active Hyena experts
Shyena filter order
Smamba state dimension
E projection expansion factor

Table D.1: Batch sizes by IsoFLOP group. For very small models (<54M) parameters, batch size 262k is used.

ISOFLOP BATCH SIZE

4.0E+18 524K
8.0E+18 524K
2.0E+19 524K
4.0E+19 524K
8.0E+19 524K
2.0E+20 1M
5.0E+20 1M
2.0E+21 2M

40

Mechanistic Design and Scaling of Hybrid Architectures

Table D.2: Common settings across all architectures. For Mamba, we use the layer structure of Mb-Mb following [11].
Actual parameter counts vary slightly for each architecture..

PARAMS (M) D_MODEL FFW_SIZE KV_SIZE N_HEADS N_LAYERS LEARNING RATE

8 128 336 64 2 4 9.77E-04
22 320 848 64 5 5 9.57E-04
38 448 1200 64 7 7 9.36E-04
54 512 1360 64 8 9 9.15E-04
70 576 1536 64 8 10 8.95E-04

102 640 1712 64 10 14 8.56E-04
118 704 1872 64 11 14 8.37E-04
134 768 2048 64 12 14 8.18E-04
150 768 2048 64 12 16 8.00E-04
163 768 2048 64 12 17 7.75E-04
175 768 2048 64 12 19 7.50E-04
196 832 2224 64 13 19 7.25E-04
217 832 2224 64 13 21 7.00E-04
251 896 2384 64 14 21 6.75E-04
278 896 2384 64 14 24 6.50E-04
306 960 2560 64 15 24 6.25E-04
350 1024 2736 64 16 24 6.00E-04
440 1152 3072 64 18 24 5.66E-04
536 1280 3408 64 20 24 5.33E-04
641 1408 3760 128 11 24 5.00E-04
756 1536 4096 128 12 24 4.75E-04
881 1664 4432 128 13 24 4.55E-04

1010 1792 4784 128 14 24 4.33E-04
1160 1920 5120 128 15 24 4.15E-04
1200 1920 5120 128 15 25 4.11E-04
1300 2048 5456 128 16 24 4.00E-04
1600 2176 5808 128 17 26 3.84E-04
1900 2304 6144 128 18 28 3.67E-04
2250 2432 6480 128 19 30 3.47E-04
2400 2560 6832 128 20 29 3.39E-04
2640 2560 6832 128 20 32 3.25E-04
3100 2688 7168 128 21 34 3.00E-04
4200 3072 8192 128 24 36 2.72E-04
5200 3328 8880 128 26 38 2.46E-04
7000 3712 9904 128 29 41 2.00E-04

41

Mechanistic Design and Scaling of Hybrid Architectures

Table D.3: MoE model sizes for StripedHyena. All MoE models use 8 total experts and 2 active experts. Other model
settings for corresponding active parameter counts follow Table D.2, including d_model, n_heads, n_layers, ffw_size,
kv_size, and learning rate.

TOTAL PARAMS (M) ACTIVE PARAMS MOE WIDTH

194 102 1728
228 118 1856
270 134 2048
303 150 2048
319 163 2048
352 175 2048
404 196 2176
452 217 2240
512 251 2368
580 278 2368
667 306 2560
761 350 2752
950 440 2752

1160 536 3392
1390 641 3712
1660 756 4096
1940 881 4416
2230 1010 4736
2550 1160 5056
2910 1300 5440

Table D.4: StripedHyena Expert model sizes, which all use 8 total experts and 2 active experts for both sequence mixing
and GLU experts. Other model settings for corresponding active parameter counts follow Table D.2, including d_model,
n_heads, n_layers, ffw_size, kv_size, and learning rate.

TOTAL PARAMS (M) ACTIVE PARAMS EXPERT WIDTH EXPERT TOTAL WIDTH MOE WIDTH

241 101 80 640 2368
290 119 88 704 2624
337 137 96 768 2816
386 153 96 768 2880
408 160 96 768 2880
452 174 96 768 2880
520 199 104 832 3072
570 215 104 832 3072
661 248 112 896 3328
749 277 112 896 3328
860 315 120 960 3584
965 352 128 1024 3776

1220 441 144 1152 4288
1500 535 160 1280 4736
1810 641 176 1408 5216
2140 757 192 1536 5696
2510 882 208 1664 6176
2880 1010 224 1792 6592
3320 1160 240 1920 7104
3790 1310 256 2048 7616

42

Mechanistic Design and Scaling of Hybrid Architectures

Table D.5: Notation for FLOP calculation.

Notation Description

C Model FLOP cost per token
N Number of layers
L Sequence length
D Model width
V Vocabulary size
H Number of heads

Dglu Width of GLU (reverse bottleneck)
Dmoe Width of MoE expert
Ddt Width of bottleneck in Mamba featurization
Dmoh Width of Hyena expert
Dglu Width of GLU (reverse bottleneck)
Amoe Number of MoE experts
Amoh Number of Hyena experts
Gmoe Number of active MoE experts
Gmoh Number of active Hyena experts
Shyena filter order
Smamba state dimension
E projection expansion factor

Table E.1: Topology ablation for StripedHyena (750M at 2e19 FLOPS on The Pile). H and A indicate Hyena and MHA
layers, respectively.

TOPOLOGY PERPLEXITY

(1H:1A) ×12 9.52
(2H:2A) ×6 9.32
(3H:3A) ×4 9.33
(4H:4A) ×3 9.37
(6H:6A) ×2 9.28
12H:12A 9.41

(2H:4A:4H:2A) ×2 9.25
(H:5A:5H:A) ×2 9.31
4H:10A:8H:2A 9.33
4H:12A:8H 9.31
6H:12A:6H 9.30
8H:12A:4A 9.35

43

	Introduction
	Background: Architecture Design
	Computational primitives
	State, cache, and memory
	Topology

	Mechanistic Architecture Design
	Synthetic tasks to probe model skills
	In-context recall
	Fuzzy in-context recall
	Noisy in-context recall
	Selective Copying
	Compression
	Memorization

	MAD Protocol
	Candidate architecture designs
	Results

	Scaling Analysis
	Compute-optimal frontier for new architectures
	State-optimal scaling

	Connecting MAD to scaling metrics
	Conclusion
	Additional Related Work
	Mechanistic Architecture Design
	Tasks
	In-Context Recall
	Fuzzy In-Context Recall
	Noisy In-Context Recall
	Selective Copying
	Compression
	Memorization

	Manipulating Task Difficulty
	Architectures
	Channel-mixing Layers
	Sequence-mixing Layers

	Training
	Results
	Task Performances
	Performance on Individual Tasks

	Extensions and Limitations of MAD

	Scaling Laws
	Training Details
	Model architectures
	Model sizes and training hyperparameters
	FLOP calculation
	Transformer++
	Hyena
	Multi-Head Hyena
	StripedHyena
	Mamba
	StripedMamba
	StripedHyena-MoE
	StripedHyena Experts + MoE

	Scaling Laws
	Training Details
	Model architectures
	Model sizes and training hyperparameters
	FLOP calculation
	Transformer++
	Hyena
	Multi-Head Hyena
	StripedHyena
	Mamba
	StripedMamba
	StripedHyena-MoE
	StripedHyena Experts + MoE

	State-optimal scaling

	Extended Scaling Results
	Optimal hybridization topologies
	Byte-level scaling laws

