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Abstract

Goal recognition design (GRD) aims to make limited modifications to decision-making en-
vironments to make it easier to infer the goals of agents acting within those environments.
Although various research efforts have been made in goal recognition design, existing ap-
proaches are computationally demanding and often assume that agents are (near-)optimal in
their decision-making. To address these limitations, we leverage machine learning methods
for goal recognition design that can both improve run-time efficiency and account for agents
with general behavioral models. Following existing literature, we use worst-case distinctive-
ness (wcd) as a measure of the difficulty in inferring the goal of an agent in a decision-making
environment. Our approach begins by training a machine learning model to predict the wcd
for a given environment and the agent behavior model. We then propose a gradient-based
optimization framework that accommodates various constraints to optimize decision-making
environments for enhanced goal recognition. Through extensive simulations, we demonstrate
that our approach outperforms existing methods in reducing wcd and enhances runtime ef-
ficiency. Moreover, our approach also adapts to settings in which existing approaches do
not apply, such as those involving flexible budget constraints, more complex environments,
and suboptimal agent behavior. Finally, we conducted human-subject experiments which
demonstrate that our method creates environments that facilitate efficient goal recognition
from human decision-makers.

1 Introduction

With the rapid advancement of artificial intelligence (AI), there has been a surge in interest in human-AI
collaboration, aiming to synergize human and AI capabilities across various domains, such as gaming, e-
commerce, healthcare, and workflow productivity. Designing AI agents to work alongside humans requires
these agents to understand and infer human goals and intentions. While there has been abundant research
in goal recognition (Ramírez & Geffner, 2010; Sukthankar et al., 2014), aiming to infer human goals by
observing their actions, this work focuses on the goal recognition design problem (Keren et al., 2014), which
seeks to identify how to modify decision-making environments to make it easier to infer human goals.

Our work is built on the GRD problem formulated by Keren et al. (2014). They proposed the worst-
case distinctiveness (wcd) metric, defined as the maximum number of decisions an agent can make without
revealing its goal, to measure the difficulty of inferring the agent’s goal. They then aimed to modify the
decision-making environment, by removing allowable actions from states, to optimize this measure. Since
the introduction of this work, there have been several follow-up works to deal with different settings, such
as stochastic settings (Wayllace et al., 2016; 2017) and partial observability (Keren et al., 2016). More
discussion can be found in the survey by Keren et al. (2021).

While there has been significant progress in GRD, there are two main limitations in the literature. First, exist-
ing approaches often assume that decision-making agents are optimal or near-optimal decision makers (Keren
et al., 2015; Wayllace & Yeoh, 2022). This assumption is unrealistic with human decision makers, who are
known to often systematically deviate from optimal decision-making due to cognitive and informational con-
straints (Kahneman, 2003; O’Donoghue & Rabin, 1999). Second, existing approaches require evaluating the

1



Under review as submission to TMLR

difficulty of goal recognition, i.e., worst-case distinctiveness (wcd), for a large number of modifications to
the environment. This computational requirement limits the scalability of these approaches, especially for
virtual environments when there might be frequent updates of the environment, e.g., e-commerce platforms
might want to frequently adjust the website design to enhance user intent inference.

We propose a framework for GRD with general agent behavior to address these limitations. To relax the
optimality assumption, we explicitly incorporate models of agent behavior into the optimization framework.
To tackle the computational challenges, our approach leverages data-driven methods for goal recognition
design. The core idea is to build a machine learning oracle that predicts the difficulty of goal recognition
(e.g., wcd) given a decision-making environment and an agent’s behavioral model. This oracle is trained
on datasets generated from simulations, enabling efficient evaluation of wcd for any given environment and
agent model. Such an approach significantly accelerates the evaluation process during optimization. Once the
machine learning oracle is established, we apply a general gradient-based optimization method to minimize
wcd, using Lagrangian relaxation to handle constraints on environment modifications. Beyond addressing
the two main limitations, this optimization procedure also supports more general forms of objectives and
constraints that existing approaches in the literature cannot accommodate.

To evaluate our framework, we conducted a series of simulations and human-subject experiments. We start
with simulations in the standard setup in the literature, with the grid world environment and optimal agent
assumption. We show that our approach outperforms existing baselines in reducing worst-case distinctiveness
(wcd) and achieves considerably better run-time efficiency. We then conducted additional simulations to
demonstrate that our approach can generalize to settings that existing methods cannot address, including
scenarios involving flexible budget constraints, more complex environments, and suboptimal agent behavior.
Lastly, we have conducted human-subject studies demonstrating that our method can be leveraged to design
environments that facilitate efficient goal recognition from real-world human decision-makers. The results
highlight the potential of our approach to enable more efficient human-AI collaboration.

Contributions. The main contributions of this work can be summarized as follows.

• We propose a data-driven optimization framework that accommodates general agent behavior and improves
the efficiency of goal recognition design, addressing two main limitations in the existing literature while
enabling a more flexible optimization procedure. The framework consists of a predictive model that
estimates the wcd for a given environment and a model of agent behavior. We then apply a gradient-based
optimization method to perform goal recognition design. The framework is runtime efficient, capable of
incorporating general agent behavior, and adaptable to different design spaces and constraints.

• Through extensive simulations, we show that our framework not only outperforms existing approaches in
goal recognition design, both in reducing worst-case distinctiveness wcd and improving run-time efficiency
in standard settings, but also adapts to scenarios that existing methods cannot handle, including general
optimization criteria, complex environments, and suboptimal agent behavior.

• Through human-subject experiments, we demonstrate that our approach adapts to settings in which
decision-making agents are real-world humans. To the best of our knowledge, our work is the first to
evaluate the environment design for goal recognition with human-subject experiments.

2 Related Work

Our work contributes to the field of human-AI collaboration. Recent research has indicated that optimizing
AI alone is insufficient for maximizing the performance of human-AI teams (Bansal et al., 2021; Carroll et al.,
2019; Yu et al., 2024). To develop truly collaborative AI agents, it is crucial to equip them with the ability
to comprehend and predict the intentions and goals of their human counterparts. This challenge lies at the
heart of goal recognition research (Kautz et al., 1991; Ramírez & Geffner, 2010; Hong, 2001; Sukthankar
et al., 2014; Pereira et al., 2017; Masters et al., 2021). Our work focuses on GRD, an extension of goal
recognition that includes modifying environments to better facilitate the process of recognizing goals.

Goal recognition design (GRD) was formulated by Keren et al. (2014). Since this seminal work, numerous
research efforts have extended to accommodate stochastic environments (Wayllace et al., 2017; Wayllace &
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Yeoh, 2022), varying levels of observability (Keren et al., 2016; Wayllace et al., 2020), and diverse design
spaces (Mirsky et al., 2019). The studies most closely aligned with our approach focus on suboptimal
agents (Keren et al., 2015; Wayllace & Yeoh, 2022). However, these studies characterize suboptimality
by limiting deviations from the optimal policy, a method that may not adequately capture the behavior of
human agents, who frequently deviate systematically from optimal decision-making. Moreover, most existing
work requires evaluating goal recognition difficulty at run time across a large number of environmental
modifications, which significantly limits scalability. Our work distinguishes itself by broadening GRD to
incorporate general models of agent behavior and by implementing a data-driven optimization approach.

There has been effort to accelerate GRD by using heuristic approaches that avoid the prohibitively large
search space of possible modifications. In their seminal work, Keren et al. (2014) proposed the pruned-reduce
method, which restricts modifications to action removal and leverages a key insight: blocking actions do not
introduce new goal-directed paths. This alleviates the computational burden of exhaustive search. More
recent work by Pozanco et al. (2024) accelerates GRD by using a plan library from a top-quality planner (Katz
et al., 2020) to guide initial heuristic exploration. Similarly, Au (2024) expanded the design space with block-
level modifications—simultaneous, interconnected changes—to improve efficiency. While these approaches
make notable strides, they still rely heavily on exhaustive search and repeated computation of complex
metrics, which remains the primary computational bottleneck. In contrast, our method adopts a data-driven
optimization framework. Rather than evaluating the metric (wcd) at each step of the optimization process,
we train predictive models to approximate it directly, enabling rapid evaluation and comparison of design
candidates. Moreover, the differentiability of the predictive model allows for gradient-based optimization in
place of exhaustive search. Together, these advances significantly reduce computational overhead and open
new possibilities for scaling GRD to more complex settings.

Our methodology resonates with recent advances in data-driven optimization within mechanism design (Düt-
ting et al., 2019; Feng et al., 2018; Golowich et al., 2018; Curry et al., 2020; Kuo et al., 2020; Rahme et al.,
2020; Peri et al., 2021; Cornelisse et al., 2022; Yu et al., 2023), which demonstrate the power of leveraging
machine learning to accelerate otherwise intractable search and decision-making tasks. It also aligns with
recent research that incorporates models of human behavior into learning and optimization processes (Evans
et al., 2016; Shah et al., 2019; Tang & Ho, 2019; 2021; Carroll et al., 2019; Yu & Ho, 2022; Feng et al., 2024).
While we share the high-level motivation of these works, our problem formulation and methodological choices
offer novel contributions and advance the study of goal recognition design through a principled integration
of predictive modeling and optimization.

3 Problem Formulation and Methods

3.1 Problem Setting

Decision-making environment. We define the decision-making environment as a Markov decision process
(MDP), represented by W = ⟨S, A, P, R⟩. Here, S denotes the set of states, A represents the set of agent
actions, P (s′|s, a) is the transition probability from state s to state s′ upon taking action a ∈ A, and
R(s, a, s′) represents the bounded reward received after taking action a in state s and reaching state s′. To
emphasize the goal recognition aspects of the problem, we introduce a set of goal states G ⊆ S. These goal
states are terminal; that is, P (g|g, a) = 1 ∀g ∈ G, a ∈ A.

Models of behavioral agents. We represent the agent’s decision-making policy in a general form Π :
S × T → A. Specifically, for an agent with a decision-making policy π ∈ Π, the agent will execute the
action π(s, t) in state s at time t. The agent is conceptualized as a planner H : W → Π, where the input
is an environment w ∈ W , and the output is a policy π ∈ Π. To illustrate our formulation, consider
an agent parameterized by a time-variant discounting function d(t). The standard optimal agent model
corresponds to a fixed discounting factor γ ∈ (0, 1] with d(t) = γt. We can also represent an agent with
present bias (O’Donoghue & Rabin, 1999) by adopting a hyperbolic discounting factor d(t) = 1

1+kt , where
k > 0. Note that our approach not only accounts for standard analytical closed-form expression of agent
behavior. It can also account for scenarios where an agent policy π is a machine learning model, i.e., a neural
network trained on human behavioral data.
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Figure 1: We first train a predictive model to predict wcd from simulated data. We then perform gradient-based
optimization that leverages the predictive model to identify environment modifications that minimize wcd with a
given model of agent behavior.

Worst-case distinctiveness (wcd). To evaluate the difficulty of goal recognition, we follow the standard
literature and focus on worst-case distinctiveness (wcd) (Keren et al., 2014), defined as the maximum number
of steps an agent can take that are consistent with multiple goals before its true goal becomes distinguishable.
In other words, it measures the number of initial steps that overlap across trajectories toward different goals.
To compute the wcd for a given agent h ∈ H in an environment w ∈ W , we evaluate the path for the agent
to each goal and compute the number of actions from the initial state that are identical for each goal. While
we focus on wcd in this work, our method is agnostic to the specific metric used, as long as the metric is
computable, a predictive model can be trained to approximate it and enable efficient evaluation.

3.2 Goal Recognition Design (GRD) Formulation

We formalize the GRD problem with general behavioral agents. Given an environment w and an agent with
a behavior model h, we denote the worst-case distinctiveness of environment w for agent h as wcd(w, h).
Each type of modification 1 ≤ i ≤ N will incur a cost ci(w, w′) that must fall in budget constraint Bi. The
objective of the GRD problem is to alter the environment from w to w′ in a way that minimizes wcd(w′, h),
while satisfying the constraint that the cost of the modifications does not exceed the budget.

minimize
w′

wcd(w′, h)

subject to ci(w, w′) ≤ Bi, ∀1 ≤ i ≤ N
(1)

3.3 Our Proposed Method

Existing approaches to GRD require evaluating wcd for a large number of potential environment modifications
in order to identify the optimal ones. Since computing wcd involves evaluating the agent’s policy across
multiple goals, it introduces significant computational overhead and relies on strong assumptions about
agent behavior. To address this challenge, we propose leveraging machine learning to expedite runtime
computation and explicitly account for general agent models. The main idea, illustrated in Figure 1, is to
first train a machine learning model that predicts wcd for any given pair of decision-making environment
w and agent behavioral model h. Once this predictive model is trained, we exploit its differentiability to
develop an optimization framework that applies gradient-based methods to the Lagrangian relaxation of
the constrained optimization problem defined in equation 1. This approach not only addresses the two key
limitations—computational challenges and restrictive assumptions about agent behavior—but also provides
flexibility for accommodating various forms of optimization objectives and constraints.

Predictive model for wcd. To build the predictive model for wcd, we curate a training dataset through
simulations. For an environment w and agent behavioral model h, we can obtain wcd(w, h) by solving for
the agent’s actions towards different goals. After collecting a training dataset, we train the predictive model
using a convolutional neural network. The implementation details are in Section 5.1.1 and the appendix.
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Optimization procedure. After obtaining the predictive model, we develop a gradient-based optimization
framework. This framework generalizes the existing literature in GRD where the space of modifications
is limited (e.g., usually limits to blocking an action in MDP) (Keren et al., 2021). The first step of the
optimization procedure involves transforming the constrained optimization problem in equation 1 into an
unconstrained optimization problem using Lagrangian relaxation:

L = wcd(w′, h) +
∑

i

λi(ci(w, w′) − Bi).

We then perform gradient descent on the relaxed Lagrangian. As environment modifications are often
discrete (e.g., to block a cell in the grid world), we apply a discrete gradient descent procedure. Specifically,
at each descent step, we obtain a gradient, which is a vector indicating the suggested change magnitude
for each element (such as a cell in the grid world). We then select the element with the gradient value of
the largest magnitude and make the corresponding change. Note that some suggested modifications may be
invalid; for instance, we cannot block an already blocked cell in the grid world. In such cases, we proceed
to the element with the next highest gradient value, continuing this process until a valid modification
is made. This modification procedure is repeated until the gradient descent converges. Note that with
this Lagrangian relaxation, while we cannot directly set the budget, based on duality, a larger Lagrangian
multiplier λ corresponds to a smaller budget B in the original constrained optimization formulation. In
practice, designer can choose to vary the size of the Lagrangian multiplier to modulate the budget. In our
experiments, we choose varying Lagrangian multipliers and record the realized costs of the modifications.

4 Experiment Setup

4.1 Benchmark Domains

We utilize two benchmark domains. The first is the standard basic grid world environment, commonly used
in the GRD literature. The second is the Overcooked-AI environment (Carroll et al., 2019), a complex
environment with a richer set of environment modifications. This environment is particularly relevant to the
downstream implications of our work, namely in supporting human-AI collaboration.

4.1.1 Benchmark Domain: Grid World

    G  
 X X    
 X  X X X
S      
X X   G  
X X     

(a) Grid world. (b) Overcooked-AI.

Figure 2: The benchmark environments. The left one is a grid world.
The agent starts at a position marked ’S’ and aims to reach one of the
goal positions labeled ’G’. The agent must navigate through the grid,
avoiding blocked cells marked with ’x’. The right one is an Overcooked-
AI setting, where the agent’s objective is to pick up ingredients and
complete their target recipe, which constitutes their goal.

In the grid world domain, agents navigate
a grid with several potential goals. Take,
for example, a grid world environment
in Figure 2a. In this environment, an
agent starts at point ’S’ and aims for one
of the goals marked ’G’. Spaces marked
’X’ are blocked and impassable. In this
particular setup, the worst-case distinc-
tiveness (wcd) for an optimal agent is 0,
as the shortest paths to the two goals
do not overlap, meaning the agent’s in-
tended goal is revealed on the very first
move. Our experiments primarily fo-
cus on grid world environments with two
goals for simplicity. However, our ap-
proach extends naturally to settings with
more than two goals by computing the
relevant GRD metric and training a cor-
responding predictive oracle.

Design space of environment modifications. In the context of GRD in grid world, the space of
environment modification is often limited to adding blocks to spaces in the literature (Keren et al., 2014),
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also called action removal. In our work, we broaden the design space to also consider the unblocking of
existing blocked spaces as potential modifications.

4.1.2 Benchmark Domain: Overcooked-AI

We also conduct our evaluations in a more complex domain: Overcooked-AI.1 This environment is based
on the popular game Overcooked, where players (agents) collaborate to prepare and deliver specific recipes.
Since the goal of our approach is to enable efficient inference of agent goals, we focus on the simplified setting
with a single agent. The environment is represented as a grid (see Figure 2b), with each cell indicating the
object located there. Objects may include a counter, tomato, onion, pot, dish, serving point, or empty
space. The agent can only occupy empty spaces and cannot step on any other object. It can carry movable
items, i.e., onions, tomatoes, and dishes, and place them on other non-space objects such as counters, serving
points, or pots. To navigate the environment, the agent can move left, right, up, or down and maintains an
orientation aligned with its most recent movement direction.

Goal recognition in Overcooked-AI. The agent’s goal in Overcooked-AI is defined by the recipe it needs
to complete. For example, to prepare a soup with one onion and two tomatoes, the agent must collect the
ingredients, place them in a pot, and cook them. In the context of goal recognition, the objective is to infer
which recipe the agent is pursuing based on its behavior. For simplicity, our experiments focus on scenarios
with only two possible goals or recipes.

Design space of environment modifications. A primary challenge in the Overcooked-AI environment
is its considerably larger design space for environment modifications. The design space includes changing
the position of any object in the environment, subject to the constraint that the modification remains valid.
This means that a change cannot result in a new environment design where any of the objects is unreachable
by the agent. The objective of conducting experiments in this domain is to assess whether our approach can
address more complex domains.

4.2 Baselines

We compare our approach against four baselines that collectively represent the major algorithmic directions in
GRD: (Optimal) exhaustive search, heuristic-enhanced search, and greedy-based approaches. For heuristic-
enhanced search, we implement the Pruned-Reduce method proposed by Keren et al. (2014) as a represen-
tative example. Although recent works have proposed alternative heuristics for accelerating GRD (Pozanco
et al., 2024; Au, 2024), these methods still rely on exact computation of wcd and perform exhaustive search
over the design space, exhibiting the core computational bottleneck that our method is specifically designed
to overcome. For greedy-based approaches, we implement methods that use either the true or predicted wcd
values to prioritize locally beneficial modifications.

• Exhaustive search: This is the brute-force approach that evaluates wcd for all the environments on the
search path until the minimum possible wcd is found. It is guaranteed to achieve minimum wcd. However,
given the computational overhead, this approach is not applicable in most situations.

• Pruned-Reduce (Keren et al., 2014): This baseline is specifically designed for settings where modifica-
tions are limited to action removal such as blocking a cell in grid world. It speeds up the exhaustive search
and retains the optimal property. However, its scalability is still limited.

• Greedy search using true wcd: This greedy search baseline finds the single environment modification
that leads to the maximum reduction of wcd at each iteration. This approach requires to evaluate the wcd
for all possible single environment modifications at each iteration.

• Greedy search using predicted wcd: In addition to greedy search using true wcd, we leverage our
predictive model for wcd and design another greedy baseline. This baseline finds the single environment
modification that leads to the maximum reduction of predicted wcd at each iteration.

1https://github.com/HumanCompatibleAI/overcooked_ai
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4.3 Models of Agent Behavior

In our experiments, to demonstrate that our approach works for different models of agent behavior, we have
examined three types of agent behavior.

• Optimal agent behavior. The first one is the standard optimal agent behavior. Conducting experi-
ments with optimal agent behavior enables us to compare our approach with standard approaches in the
literature, which are often developed under the optimal agent assumption.

• Parameterized suboptimal agent behavior. We consider a generalized behavior model parameterized
by d(t). The agent’s objective is to optimize a time discounted reward with the discounting factor for t
steps in the future being d(t). The standard optimal agent model corresponds to a fixed discounting factor
γ ∈ (0, 1] with d(t) = γt. We can also represent an agent with present bias (O’Donoghue & Rabin, 1999)
by adopting a hyperbolic discounting factor d(t) = 1

1+kt , where k > 0.
• Data-driven agent behavior. We also address settings where the model of agent behavior is a machine

learning model trained on human behavioral data.

5 Experiments

5.1 Simulations

In our simulations, we first evaluate how our approach compares with existing methods in standard setups
commonly found in the literature. We aim to show that our method matches or exceeds existing approaches
in reducing wcd while achieving significantly better time efficiency. We then demonstrate the generalizability
of our approach by applying it to scenarios that state-of-the-art methods cannot address, including those
with dynamic budget constraints, more complex environments, and suboptimal agent behavior.

Standard setting. We start with settings within the grid world domain, where modifications are limited to
blocking cells and agent behavior is assumed to be optimal. This is the standard setting for the majority of
goal recognition design studies, as highlighted in Table 1 of the survey by Keren et al. (2021). The objective
of this set of simulations is to enable comparisons with state-of-the-art methods.
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(b) 13 × 13 grids

Figure 3: wcd reduction in a grid world when only blocking modifi-
cations are allowed. Exhaustive search and Pruned-Reduce are not
included in (b) because they take more than an hour to compute for a
single environment.

In our experiments, the initial environ-
ment is generated randomly: we first ran-
domly select the number of blocked cells
from the range [0, 12], followed by ran-
domly allocating the blocked cells. We
also randomly determine the starting grid
and two goal grids. Environments where
the goals are not reachable from the
starting grid are filtered out. We ran-
domly generate at least 500 environments
and compare the average performance of
our approach with that of baseline meth-
ods. More details of data generation and
wcd predictive model training are pro-
vided in Appendix A.1 and C.

We begin our experiments with a 6 × 6
grid world. In this simplest setting, our
approach and all baselines achieve similar performance in reducing wcd, as shown in Figure 3a. However, our
method demonstrates a significant run-time advantage over exhaustive search. In particular, our approach
requires only 0.2 seconds, compared to approximately 2 seconds for exhaustive search.

We then scale up the environment to a 13 × 13 grid, where both exhaustive search and the Pruned-Reduce
method failed to complete within an hour for a single instance and were therefore excluded from the baselines.
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As shown in Figure 3b, our approach outperforms the greedy baselines in wcd reduction, as our optimization
procedure accounts for the available budget and avoids getting trapped in locally optimal solutions. Addi-
tionally, our method is approximately three times faster than the greedy baselines for large budgets (with
further runtime comparisons discussed later).
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(a) Shared budget
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(b) Individual budget

Figure 4: wcd reduction in settings with two types of modifications.
We only included greedy as the state-of-the-art baselines - Exhaustive
search and Pruned-Reduce are not applicable in these settings.

Flexible budget constraints. In the
literature, most works focus on a single
type of environment modification (e.g.,
blocking a cell). Given the flexibility
of our optimization framework, we ex-
tend our approach to include ’unblocking’
blocked cells as a possible environment
update. In our simulations, we exam-
ine two common cases. In “shared bud-
get”, the total number of blocking and
unblocking actions is bounded by a given
shared budget. In “individual budget”,
we limit the number of blocking and un-
blocking actions separately. Specifically,
we allow the number of blocking actions
to be 5 times the number of unblocking actions (rounded to the nearest integer). Given that there are no
established baselines (Pruned-Reduce is limited to blocking only modifications, and Exhaustive Search does
not scale) for this setting in the literature, we compare our results against greedy baselines.

The results are shown in Figure 4. Overall, they demonstrate that our approach is effective at reducing wcd
even when existing state-of-the-art methods are not applicable. In addition, our gradient-based optimization
outperforms the greedy approach except for small-budget cases2. This is because our method considers
how to distribute the budget over time, rather than selecting the highest-impact modification at each step
without considering future opportunities.
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Figure 5: Performance in other settings: (a) Overcooked-AI environ-
ment with optimal agent behavior, and (b) Grid world (6 × 6) with
suboptimal agent behavior, demonstrating the method’s adaptability
to non-optimal decision-making.

Complex domain and suboptimal
agent behavior. We consider two ad-
ditional extensions, where existing ap-
proaches in the literature do not apply, to
demonstrate the flexibility of our frame-
work. In the first, we evaluate the perfor-
mance of our approach in a more complex
problem domain: Overcooked-AI. In the
second, we return to the grid world but
include scenarios with suboptimal agent
behavior. Both extensions utilize a grid
size of 6 × 6. For the Overcooked-AI en-
vironment, we assume optimal agent be-
havior and aim to explore how our ap-
proach adapts to a much richer space of
environment modifications. For the sub-
optimal human behavior, we employ the
model described in earlier, utilizing a hyperbolic discounting factor d(t) = 1

1+kt and set k = 8. For both
extensions, standard approaches such as exhaustive search and Prune-Reduce are either too slow or not
applicable. Therefore, we compare our results with the greedy baselines.

2Note that by definition of greedy approaches, the greedy approach using the true wcd is optimal when the budget is 1, since
only one modification can be made. As a result, greedy methods generally perform well when the budget is very small, but our
approach starts to outperform greedy with larger budgets.
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The results for both extensions, as illustrated in Figures 5a and 5b, demonstrate that our approach adapts
well to both settings. Our approach demonstrates a more significant advantage over baselines in Overcooked-
AI than in grid world settings. The increased complexity and larger modification space in Overcooked-AI
cause greedy methods to converge to short-sighted solutions, underscoring the superior scalability of our
method. Regarding runtime, our approach is again several orders of magnitude faster than the greedy
method with true wcd and at least 3 times faster than the greedy method using predicted wcd.

Running time comparisons. We have demonstrated that our approach achieves greater wcd reductions
compared to all baselines. Another key benefit of our method is its significantly improved runtime efficiency
relative to standard approaches. This efficiency comes from (1) using a machine learning oracle to predict
wcd instead of evaluating the true wcd at each time step, and (2) applying gradient-based optimization
rather than the (heuristic-enhanced) exhaustive search methods used in the literature. As shown in our
earlier simulations, exhaustive search methods scale poorly. In the 13x13 environment, a single instance of
GRD takes more than one hour, while our approach completes in about one second. Therefore, we focus on
the improvements due to the ML oracle in the following comparisons.

Table 1 shows the time required to make modifications under a fixed budget across different settings. The re-
sults indicate that methods leveraging our ML oracle with predicted wcd are generally faster and scale better
in complex environments. For instance, in the complex domain, computing the true wcd takes 531 seconds
for GRD, whereas our approach takes less than 1 second. Additional discussion on the time improvements
is provided in Appendix A.2.

Table 1: Time (seconds) comparisons when using true wcd and predicted wcd. ± denotes standard error.

Setting True wcd Predicted wcd
greedy greedy our approach

Standard (small) 0.11±0.01 0.47±0.0 0.5±0.0
Standard (large) 4.95±0.99 2.46±0.49 1.11±0.11
Suboptimal behavior 183±4 0.59±0.02 0.71±0.02
Complex domain 531±15 0.41±0.01 0.8±0.2

5.1.1 Ablation Study

We conducted an ablation study to better understand the specific contributions of our proposed approach to
goal recognition design (GRD), particularly its ability to reduce worst-case distinctiveness (wcd). The study
isolates two key components of our method: the accuracy of the predictive model used to estimate wcd and
the effectiveness of the optimization procedure in modifying the environment to improve goal recognition.

We evaluated several predictive models trained to estimate wcd and tested them in combination with different
optimization strategies. These are compared against a baseline that applies a greedy search using the
true wcd without relying on a predictive model. All experiments were conducted under three environment
modification settings: the standard setting and two variants with flexible budget constraints (individual and
shared budgets). Results for environments with grid size 13 are shown in Table 2, with additional results for
grid size 6 provided in the appendix.

Impact of Predictive Model Choice. We trained several predictive models, including Convolutional
Neural Networks (CNNs), linear models, and Transformers, using the Adam optimizer and selected the
best-performing configurations through validation. Among these, CNNs consistently achieved the lowest
prediction error, and crucially, enabled more effective environment modifications when combined with either
greedy or gradient-based optimization. By contrast, linear models and Transformers performed worse in
predicting wcd and led to less effective downstream performance. This highlights the importance of predictive
accuracy, where the quality of the predicted wcd directly influences the success of environment design.

Impact of Optimization Approach. We also analyzed the role of the optimization procedure given a
fixed predictive model, using (i) greedy optimization using predicted wcd, and (ii) our proposed gradient-
based optimization approach. Greedy optimization using predicted wcd can offer runtime benefits over using
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Table 2: Ablation results showing the impact of different predictive models and optimization methods on wcd reduc-
tion across three environment modification settings i.e Standard Setting, Individual Budget, and Shared Budget as
described in subsection 5.1. Each row represents a predictive model (e.g., CNN) trained with a specified dataset size,
learning rate, and associated training/validation loss. Due to poor performance, only the best Linear and Transformer
configurations are shown. For each model, we compare two optimization methods: Greedy using predicted wcd and
our proposed Approach, along with a baseline using greedy optimization with true wcd. Bolded results indicate the
best performance per setting. Results are for grid size 13; grid size 6 results are in the appendix subsection B.2

Predictive Model Loss (mse) Optimization Approach wcd Reduction
Train Validation Standard Individual Shared

Baseline (NA) NA NA Greedy (true wcd) 7.6±0.4 9.2±0.4 9.8±0.4

Linear (100K, 0.1) 14 15 Greedy (predicted wcd) 1.9±0.3 1.2±0.2 1.2±0.2
Our Approach 2.1±0.2 4.8±0.3 5.4±0.3

Transformer (100K, 0.1) 20 20 Greedy (predicted wcd) 0.0±0.0 0.1±0.1 -0.6±0.1
Our Approach 1.5±0.2 4.2±0.2 4.5±0.3

CNN (1K, 0.001) 0.6 13 Greedy (predicted wcd) 1.9±0.2 0.8±0.2 1.0±0.2
Our Approach 1.9±0.2 3.9±0.3 4.0±0.3

CNN (10K, 0.001) 0.2 4 Greedy (predicted wcd) 4.3±0.3 3.8±0.3 4.1±0.3
Our Approach 5.1±0.3 8.5±0.3 9.3±0.3

CNN (100K, 0.001) 0.1 0.2 Greedy (predicted wcd) 7.1±0.4 8.9±0.3 9.8±0.3
Our Approach 8.6±0.4 10.4±0.3 10.8±0.3

true wcd, but its effectiveness varies with prediction quality. In cases where the predictor was less accurate,
the greedy method often failed to produce significant improvements in wcd. Our proposed gradient-based
approach consistently improved upon the greedy method. In particular, when combined with the most
accurate CNN predictor (100K samples at a learning rate of 0.001), our method achieved the lowest wcd
across all three modification settings, significantly beating the greedy baseline using true wcd as well.

The best-performing configuration, CNN (100K, 0.001) combined with our gradient-based optimization,
achieved the greatest reduction in wcd and outperformed all baseline approaches. This supports our core
claim: accurate prediction of wcd paired with an effective optimization strategy, as adopted in our approach,
is critical to designing environments that enhance goal recognition.

5.2 Real-World Human-Subject Experiments

In our simulations, we demonstrate that our approach consistently outperforms baseline methods in terms
of wcd reduction and offers greater efficiency in runtime. To assess the applicability of our approach when
humans are the decision-makers, we conducted two sets of human-subject experiments. In the first, we aim to
collect human behavioral data in our decision-making environments. Utilizing this data, we employ imitation
learning to develop a model that accurately represents human behavior. This model is then integrated as
the agent behavior model within our approach. In our second experiment, we aim to evaluate whether our
approach indeed leads to environments that facilitate more effective goal recognition by human decision-
makers. These experiments are approved by the Institutional Review Board (IRB) of our institution.

5.2.1 Experiment 1: Collection of Human Behavioral Data
We recruited 200 Amazon Mechanical Turk workers, paying each $1.00 for an average task time of 3.64
minutes, equivalent to an hourly rate of about $16. Each participant is asked to play 15 navigation games
in a 6 × 6 grid world, navigating from a start position to a designated goal in each game. At each time step,
they could choose to move in one of four directions: Up, Down, Right, or Left. A game concluded when the
participant reached the goal. The environments for these games were generated similarly to our simulations,
with start positions, goal positions, and block positions all being randomly determined. Our objective with
this setup was to leverage the collected data to develop a data-driven model of human behavior.
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Learning models of human behavior. The collected human data were split into training (160 workers,
70,000 user decisions), validation, and testing sets (20 workers, 8,800 decisions each). A 4-layer Multilayer
Perceptron (MLP) was trained, with the environment layout as input to predict the next human action. We
fine-tuned hyperparameters and chose the model architecture using validation. We compared the performance
of our learned model against one that assumes optimal agent behavior i.e., taking the shortest path to the
goal. Table 3 presents both models’ accuracies, showing that human behavior significantly deviates from
optimality. This deviation underscores the importance of incorporating a realistic model of human behavior
in GRD, particularly when humans are the decision-makers.

Table 3: Prediction accuracy of human behavior assuming optimal behavior versus using data-driven model.

Model Train Validation Test
Assuming optimal behavior 0.7266 0.6964 0.7131
Data-driven model 0.9189 0.8136 0.8422

5.2.2 Experiment 2: Evaluating Goal Recognition Design
We next evaluate the performance of our approach that incorporates the data-driven model of human behav-
ior from Experiment 1. We randomly generate 30 initial environments using the same setup as in simulations.
These environments are then updated according to four different methods, all operating within a modification
budget of 20.

• Original: No updates to the environment.
• Greedy: Greedy baseline using predicted wcd from the data-driven human behavior model.
• Proposed (opt-bhvr): Our proposed approach when assuming the agent is following optimal behavior (i.e.,

picking one of the shortest paths towards the goal).
• Proposed (data-driven): Our proposed approach using predicted wcd from the data-driven model.

We recruited 200 workers from Amazon Mechanical Turk. Each worker was randomly assigned to one of the
four treatments above, with the distinction between treatments being the environments presented to them.
Workers were randomly assigned a goal for each environment and tasked with navigating to reach it. We
utilize the collected data to evaluate GRD design approaches.
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Figure 6: Comparing different GRD approaches in our human subject
experiments. Our approach coupled with data-driven models is shown
to generate environments that enable the most effective goal recognition
with real human decision-makers.

Comparing empirical overlapping
actions. To evaluate the effectiveness
of each GRD approach, we first mea-
sure the empirical overlapping actions
toward each of the two goals. Specifi-
cally, each recruited worker is exposed
to all 30 environments in their assigned
treatment and is instructed to reach one
of two randomly selected goals. For
each treatment, we compute the num-
ber of overlapping actions for every pair
of workers assigned to different goals
within the same environment. This
yields a distribution of overlapping ac-
tions for each treatment. This met-
ric reflects the difficulty of inferring an
agent’s goal and serves as an empirical
proxy for wcd. Figure 6a presents the
percentiles of the number of overlapping actions across treatments. Notably, in the lowest 25%, environ-
ments generated by our approach show no overlapping actions, indicating that goal inference is relatively easy
in these settings. Overall, when combined with data-driven models, our approach produces environments
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with statistically significantly fewer overlapping actions (paired t-test, p-value < 0.005), thereby facilitating
more accurate identification of human goals.

Comparing the accuracy of goal inference. Instead of evaluating the effectiveness of our approaches
based on wcd or its proxy, we next directly assess whether human goals can be accurately inferred from
partial observations of their actions. To do this, we use an off-the-shelf Bayesian inference algorithm with
a uniform prior over possible goals. As the agent acts, we update the posterior belief using the likelihood
derived from our data-driven behavior model. Specifically, for each worker, we reveal the first k portion of
their actions to the inference algorithm, which then attempts to infer the worker’s goal. This allows us to
compute the average inference accuracy. The results, shown in Figure 6b, demonstrate that our approach
produces environments that make goal recognition easier.

6 Conclusion

Effective human-AI collaboration relies on the AI system’s ability to accurately infer human goals. In this
work, we address the goal recognition design problem by introducing a data-driven optimization framework
that improves the design of environments for goal recognition. Our approach tackles two key limitations of
prior work: computational inefficiency and the restrictive assumption of optimal agent behavior.

At the core of our method is a machine learning oracle that predicts the difficulty of goal recognition, mea-
sured by metrics such as worst-case distinctiveness (wcd). This oracle is then integrated into a gradient-based
optimization. This approach not only addresses the two key limitations in the literature but also provides
a flexible optimization procedure. Specifically, our approach offers three main advantages: (1) it improves
scalability by avoiding the need to compute exact wcd values at each optimization step, (2) it supports gen-
eral models of agent behavior by explicitly incorporating the agent model into the optimization framework,
and (3) the optimization process provides flexibility to incorporate more general forms of constraints.

These benefits are validated through extensive simulations. We show that our approach outperforms prior
methods across a range of settings. In standard grid world environments, it achieves similar or better wcd
reduction with significantly lower computational cost. Our method also extends to settings where standard
approaches are not directly applicable. In particular, in complex Overcooked-AI environments, it maintains
a clear advantage in both wcd reduction and run-time. In addition, we demonstrate that our approach
remains effective for non-optimal agent behavior models. Ablation studies further emphasize the importance
of accurate predictive modeling and principled optimization in realizing these gains.

Finally, our human-subject experiments validate the method’s effectiveness involving real-world, non-optimal
human behavior, confirming that our design pipeline generalizes beyond simulations. To the best of our
knowledge, we are the first work that has conducted human-subject evaluations for goal recognition design.
While our experiments focus on the wcd metric, the framework is agnostic to the specific measure of goal
recognition difficulty and can be extended to any metric for which a predictive model can be trained.

Limitations and Future Work. Our work advances goal-recognition design by handling suboptimal
agents, flexible budgets, and complex environments, but several limitations remain. First, we assume static,
fully observable settings, which may not always hold. Second, our approach depends on abundant data
to train a reliable wcd predictor. While we might adopt simulations to generate data, this approach may
not scale in richer domains. Third, we model agent behavior as stationary and assume it is learnable from
historical data, yet real human preferences often shift. Finally, though demonstrated in discrete grid worlds,
our method’s applicability to continuous, multi-agent, or semantically structured domains is untested.

These limitations suggest several directions for future work. Extending the framework to dynamic and
partially observable environments would enhance its practical relevance. Developing strategies for data-
efficient training of the predictive oracle could reduce the reliance on large-scale simulations and improve
scalability in complex domains. Incorporating adaptive or online behavior models would allow the system
to respond to evolving user preferences. Finally, validating the approach in continuous spaces, multi-agent
systems, or semantically structured environments would demonstrate its generalizability and pave the way
for deployment in a wider range of real-world scenarios.
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A Experiment Details and Additional Results

In this section, we provide details of the experiments not included in the main paper due to space constraints.
We also include and discuss additional experimental results.

A.1 Implementation Details

This subsection describes the implementation of the predictive model. We trained on a dataset of up to
150K designs, generated by solving wcd for randomly sampled environments with a specific agent model.
Several architectures were tested, including CNNs, Graph Neural Networks, Linear Models, Kernel Ridge
Regression, and Transformers, with CNNs performing the best in predicting wcd. The models processes
inputs of the shape k × N × N inputs, where k is the number of potential objects in an N × N grid.

The CNN architecture used across the paper employs a ResNet18 backbone with an adapted k-channel input
layer, followed by three fully connected layers. Outputs are reduced to 32 and 16 dimensions with Leaky
ReLU activations and dropout, culminating in a single non-negative scalar via ReLU activation.

For the experiments in Section 5, we trained a CNN-based model on 100K data points, split into 80% training
and 20% validation. The model achieved an MSE below 0.18 for both sets, with the validation set used for
hyperparameter tuning. Figure 7 shows the training loss for the 13 × 13 model. We employed the Adam
optimizer and MSE loss, testing learning rates of 0.1, 0.01, 0.001, and 0.0001. A learning rate of 0.001
consistently produced the lowest validation error, enabling reliable wcd reduction different across setups.
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Figure 7: Training loss and validation errors for the CNN predictive model for wcd with 13 × 13 grid world and
optimal human behavior.

A.2 More Results for Run Time Comparisons

Due to space constraints and also that the results align with one would expect, we do not include the run
time details for different approaches in the main text. We include the results here for completeness. Overall,
as shown in Figure 8, approaches that leverage the predictive model for wcd are orders of magnitude faster
than methods that require to evaluate wcd during run-time. Note that the y-axis of the figure is in log scale
so the difference is in at least two orders of magnitude.

All our experiments are conducted on a cluster of 40 CPU cores (Intel Xeon Gold 6148 CPU @2.40GHz), 1
GPU (NVIDIA Tesla V100 SXM2 32GB), and a maximal memory of 80GB.

B Additional Experiment Results

In this section, we report the additional experiment results that are not included in the main text due to
space constraints. In Section 5.1 of the main paper, we provided details of our performance with a large
grid size. In a smaller grid world, our approach achieves comparable performance to the baselines but it
significantly outperforms them in larger grid sizes as shown in Figure 9.
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Figure 8: Run time taken by each method in the different experimental conditions. In the standard setup with a
small grid size, all methods except exhaustive complete within less than half of a second but our approach scales
better with more complex configurations.
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Figure 9: wcd reduction in smaller (6 × 6) gridworld with optimal agent behavior.

B.1 Definition of Budget

In our evaluation, we compare the wcd reduction relative to the budget allocated for modifications. In the
grid-world domain, the budget represents the number of changes made, which are limited to two types:
blocking or unblocking cells. In contrast, the Overcooked-AI domain allows for a richer set of modifications
due to its complexity. Here, modifications involve changing the positions of objects. A valid environment
must include all specified objects, as detailed in Section 4.1.2. The budget in this domain is quantified as
the total Manhattan distance moved by the objects between the original and modified environments.

B.2 Ablation Analysis

In the main paper, we provided the ablation analysis for the optimal behavior model with grid size 13.
Table 4 provides the same analysis for grid size 6.

C Details of Simulations

To generate our training and evaluation datasets, we randomly generated environments and kept valid envi-
ronments, e.g., those in which the goals are reachable and the objects don’t overlap. Below, we provide more
details about environment generation for specified grid sizes for both overcooked and grid-world domains.

C.1 Grid world

In a grid world, a valid environment includes a starting position, blocked cells, and two goal positions. The
starting position is randomly placed in the first column, and the goal positions are randomly placed in the
last two columns. The number of blocked positions in each grid is randomly selected from a range of 0 to
2× the grid width. We discard any assignments that make the goals unreachable. For experiments with
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Table 4: Ablation results for grid world (size=6×6) showing the impact of different predictive models and optimization
methods on wcd reduction across three environment modification settings, i.e, Standard Setting, Individual Budget,
and Shared Budget as described in subsection 5.1. Each row represents a predictive model (e.g., CNN) trained with a
specified dataset size, learning rate, and associated training/validation loss. Due to poor performance, only the best
Linear and Transformer configurations are shown. For each model, we compare two optimization methods: Greedy
using predicted wcd and our proposed Approach, along with a baseline using greedy optimization with true wcd.

Predictive Model Loss (mse) Optimization Approach wcd Reduction
Train Validation Standard Individual Shared

Baseline 1 (NA) NA NA Exhaustive Search (True wcd) 2.4±0.1 4.5±0.2 4.3±0.1
Baseline 2 (NA) NA NA Greedy (True wcd) 2.3±0.1 4.2±0.2 4.3±0.1

Linear (100K, 0.1) 1.9 2.1 Greedy (Predicted wcd) 1.1±0.1 1.6±0.1 0.0±0.0
Our Approach 0.4±0.0 1.4±0.1 1.4±0.2

Transformer (100K, 0.1) 3.0 3.0 Greedy (Predicted wcd) 0.0±0.0 0.4±0.1 0.0±0.1
Our Approach 0.0±0.0 0.1±0.1 0.4±0.1

CNN (1K, 0.001) 0.1 1.7 Greedy (Predicted wcd) 1.0±0.1 1.4±0.2 1.5±0.1
Our Approach 1.0±0.1 2.9±0.2 2.8±0.2

CNN (10K, 0.001) 0.0 0.4 Greedy (Predicted wcd) 2.0±0.1 3.7±0.2 3.6±0.1
Our Approach 1.9±0.1 4.1±0.2 4.0±0.1

CNN (100K, 0.001) 0.0 0.0 Greedy (Predicted wcd) 2.1±0.4 3.8±0.2 3.5±0.2
Our Approach 2.2±0.1 4.3±0.2 4.3±0.1

suboptimal behavior, we also randomly assigned small subgoal rewards to unblocked cells that the agent
would collect on its way to the goal state. The two goal states assigned a large reward that is 10 times the
largest subgoal reward.

C.2 Overcooked-AI

In Overcooked-AI, a valid environment includes one pot, one tomato source, one onion source, one dish
source, one serving point, no open spaces at the border, and any number of open spaces and blocked cells.
All objects must be reachable from the agent’s randomly assigned starting position, with the number and
positions of blocked cells assigned randomly. The agent is randomly assigned any two possible goals: three
tomato soups, three onion soups, or a mixed soup. Each goal has the same randomly assigned reward value.
Suboptimal behavior is modeled by assigning small random subgoal rewards when adding ingredients to the
pot.

D Details of Human-Subject Experiment

Lastly, we include more information about our human-subject experiments. In the human-subject experi-
ment, each worker is asked to play a navigation game in 6 × 6 grid world environments. The task interface
is shown in Figure 10.

Note that while each environment has two goals, we only show one goal (the goal of the worker) to the worker
in our interface to simplify the presentations. The second goal is shown as a blocked cell in the interface, i.e
the worker only navigates to the shown goal.

We have recruited 200 workers from Amazon Mechanical Turk in total, and Table 5 contains the demographic
information of the workers.
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Figure 10: The interface of our human subject experiment.

Table 5: Demographic information of the participants in our experiment.

Group Category Number

Age

20 to 29 84
30 to 39 76
40 to 49 26
50 or older 14

Gender
Female 89
Male 110
Other 1

Race / Ethnicity

Caucasian 175
Black or African-American 8
American Indian/Alaskan Native 3
Asian or Asian-American 8
Spanish/Hispanic 1
Other 5

Education

High school degree 5
Some college credit, no degree 5
Associate’s degree 4
Bachelor’s degree 135
Graduate’s degree 49
Other 2
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