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ABSTRACT

Explicit information seeking is essential to human problem-solving in practical
environments characterized by incomplete information and noisy dynamics. When
the true environmental state is not directly observable, humans seek information to
update their internal dynamics and inform future decision-making. Although exist-
ing Large Language Model (LLM) planning agents have addressed observational
uncertainty, they often overlook discrepancies between their internal dynamics
and the actual environment. We introduce Information Seeking Decision Planner
(InfoSeeker), an LLM decision-making framework that integrates task-oriented
planning with information seeking to align internal dynamics and make optimal de-
cisions under uncertainty in both agent observations and environmental dynamics.
InfoSeeker prompts an LLM to actively gather information by planning actions to
validate its understanding, detect environmental changes, or test hypotheses before
generating or revising task-oriented plans. To evaluate InfoSeeker, we introduce a
novel benchmark suite featuring partially observable environments with incomplete
observations and uncertain dynamics. Experiments demonstrate that InfoSeeker
achieves a 74% absolute performance gain over prior methods without sacrificing
sample efficiency. Moreover, InfoSeeker generalizes across LLMs and outperforms
baselines on established benchmarks such as robotic manipulation and web naviga-
tion. These findings underscore the importance of tightly integrating planning and
information seeking for robust behavior in partially observable environments.

1 INTRODUCTION

Real-world decision-making tasks are often partially observable, where observations and environ-
mental dynamics may be noisy or uncertain. For example, in software engineering, a function may
produce unexpected results due to incorrect usage or faulty implementation; In robotics, erroneous
action control can result from wear and tear or inaccurate tuning of controllers. To correct failures, it
is critical for agents to figure out the true underlying cause.

Humans exhibit strong problem-solving capabilities in dynamic and uncertain environments, enabled
by two core abilities. Task-oriented planning selects action sequences to achieve a goal, while
information seeking (Gopnik, 2012; Kidd & Hayden, 2015; Case & Given, 2016) proactively gathers
information to align internal beliefs, inferred from internal dynamics, with the external world.
Information seeking is especially crucial under partial observability, where the true environment
state is hidden and decisions rely on imperfect beliefs. For example, to reach the target in Fig. 1a
(blue block), we initially plan under the assumption that the robot arm follows the commanded (x,
y) positions accurately. If the outcome deviates from expectations, we collect new evidence (e.g.,
moving to various locations and measuring the resulting positions) to update our beliefs about the
environmental dynamics. Together, task-oriented planning and information seeking enable humans to
uncover hidden causes and make robust decisions under uncertainty.

Large Language Models (LLMs) have emerged as versatile zero-shot agents for autonomous decision-
making (Hu et al., 2023; Wang et al., 2023a; Hong et al., 2024). In interactive environments, they
generate action sequences and revise strategies in response to feedback (Yao et al., 2023; Wang et al.,
2023b). This closed-loop planning paradigm has shown promise across diverse domains such as
robotics (Sun et al., 2023; Wang et al., 2024) and scientific discovery (Jansen et al., 2024). Recent
studies have examined LLMs under partial observability, emphasizing either the recovery of hidden
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(a) decision making with vs. without information seeking
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(Information Seeking)
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ActionFeedback

Information
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(b) our InfoSeeker
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Environment

ActionFeedback

(c) existing planners

Figure 1: Overcoming uncertainty through information seeking. (a) When tasked to move
robot gripper to a target location using miscalibrated controllers that introduce a constant (1, 0)
offset to every command, existing planners (bottom) fail by over-relying on presumed dynamics
without verifying them. In contrast, InfoSeeker (top) actively seeks information, detects discrepancies
between commanded and executed motions, and updates its internal dynamics to generate a correct
plan. (b) InfoSeeker validates its internal dynamics before planning, while (c) existing approaches
depend solely on execution feedback and fixed assumptions. This difference enables InfoSeeker to
succeed in environments with uncertain observations and dynamics.

knowledge (Ke et al., 2024; Krishnamurthy et al., 2024; Pan et al., 2025; Piriyakulkij et al., 2024)
or identification of missing information in user instructions (Huang et al., 2024; Sun et al., 2024).
However, these approaches overlook a critical challenge: mismatches between the agent’s internal
dynamics and the actual environment. Without informative observations to realign them, the agent
develops inaccurate beliefs of latent states, leading to systematically flawed plans.

We propose Information Seeking Decision Planner (InfoSeeker), a framework that integrates informa-
tion seeking directly into the decision-making loop. Our key insight is that robust decision making
requires explicitly planned information seeking actions to reconcile the agent’s internal dynamics
with the external environment. As illustrated in Fig. 1a (blue block) and b, InfoSeeker prompts
the LLM to actively gather information before proposing or revising a plan. Specifically, the LLM
conducts targeted diagnostic trials that validate its understanding and detect shifts in environmental
dynamics. In contrast, prior interactive planning approaches (Fig. 1a and c, yellow block) rely solely
on reactive adaptation without explicit information gathering. By seeking evidence first, InfoSeeker
uncovers the root causes of failure and adjusts its plans accordingly.

To evaluate our method’s robustness, we introduce a suite of text-based simulation benchmarks
that test LLM agents under partial observability and noisy dynamics. To our knowledge, this is
the first benchmark that directly evaluates agents’ planning capabilities under noisy environmental
dynamics. Prior benchmarks (Fan et al., 2022; Shridhar et al., 2020; Wang et al., 2022) focus
solely on observation uncertainty, where action outcomes are largely predictable. In contrast, our
benchmarks incorporate uncertain dynamics, where actions may yield unexpected results due to
unmodeled factors. For example, as illustrated in Fig. 1a, robot’s final position can deviate from the
commanded target due to miscalibrated controllers. This setting better reflects real-world scenarios,
requiring agents to handle both incomplete observations and unpredictable dynamics that violate
their assumptions. Although our benchmark is currently hand-crafted, it highlights the need for more
rigorous evaluations of planning under uncertainty in both observations and dynamics.

InfoSeeker achieves an absolute performance gain of 74% over prior methods on our challenging
benchmark. Active information seeking improves information acquisition without sacrificing sample
efficiency, enabling the model to generate better task-oriented plans and achieve success faster.
Moreover, InfoSeeker generalizes across different LLMs and outperforms existing approaches on

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

established benchmarks, including LLM3 (Wang et al., 2024) and TravelPlanner (Xie et al., 2024),
demonstrating both versatility and robustness.

Our key contributions are: (1) An LLM-based planning framework that explicitly integrates informa-
tion seeking to handle uncertainty in both dynamics and observations; (2) A novel benchmark suite
for evaluating planning in partially observable environments with uncertainty in both observations
and dynamics; (3) A formal connection between LLM-based planning and Partially Observable
Markov Decision Processes (POMDPs).

2 PRELIMINARY

2.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

A Partially Observable Markov Decision Process (POMDP) models decision-making under uncer-
tainty and is defined by the tuple (S,A,Z, T,O,R, γ), where S is a set of states, A is a set of actions,
and Z is a set of observations. At each interaction step t, the environment is in a hidden state st ∈ S.
The agent takes an action at ∈ A, transitions to a new state st+1 ∼ T (· | st, at), and receives an
observation ot+1 ∼ O(· | st+1, at) ∈ Z. Because the state is not directly observable, the agent infers
the latent state by maintaining a belief bt ∈ ∆(S)—a distribution over states—updated via Bayes’
rule from an initial belief state b0:

bt(st) =
O(ot | st, at−1)

P (ot | bt−1, at−1)

∑
st−1∈ S

T (st | st−1, at−1)bt−1(st−1) (1)

with observation likelihood conditioned on previous belief bt−1 and action at−1 as:

P (ot | bt−1, at−1) =
∑
st∈ S

O(ot | st, at−1)
∑

st−1∈ S
T (st | st−1, at−1)bt−1(st−1) (2)

The sparse reward function R : S × A → {0, 1} specifies the immediate reward, and the discount
factor γ ∈ [0, 1) determines the weighting of future rewards. The agent seeks to maximize expected
return using the Bellman equation:

V ∗(bt) = max
at∈ A

 ∑
st∈ S

bt(st)R(st, at) + γ
∑

ot+1∈ Z
P (ot+1 | bt, at)V ∗(bt+1)

 (3)

where P (ot+1 | bt, at) is defined as in Eq. 2.

In our setting, the components S, Z, T , O, and γ are unknown or only partially known. The agent
is only given the action space A and the reward function R, both specified in natural language.
We consider a zero-shot generalization scenario, where the agent perform on previously unseen
tasks—each corresponding to a different POMDP—without any task-specific training. To obtain
optimal belief state (Eq. 1) and make decisions that maximize return (Eq. 3), the agent must actively
collect informative observations {o1, o2, . . . , ot} and estimate transition probability T (st+1|st, at).

2.2 LLM PLANNERS IN POMDP

Large Language Models (LLMs), pretrained on broad text corpora, encode structured knowledge
that supports zero-shot reasoning and planning in novel environments. We interpret an LLM planner
as a POMDP agent: given a task description and a trajectory τt = (o0, a0, o1, . . . , at−1, ot), the
LLM can reason about the latent states by constructing a belief bt, and anticipate future changes in
the environment via internal dynamics T (st+1|st, at). Based on this, it generates a finite-horizon,
task-oriented plan at:t+h−1 for maximizing expected return over h steps.

While not explicitly trained for belief updating or value iteration, the LLM’s reasoning and planning
behavior can approximate Bayes’ rule (Eq.1) and satisfy the Bellman equation (Eq.3). This allows
zero-shot planning on novel tasks by leveraging prior knowledge and the input trajectory. However,
if the observed trajectory τt lacks informative observations, or if the LLM’s internal dynamics
T (st+1|st, at) deviates from the environment, the resulting belief state may be inaccurate and the
expected return misestimate—leading to suboptimal plans.
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LLM
Reasoning:
To ensure my understanding aligns with the 
environment, I will systematically verify each 
element and behavior of the environment. I will 
explore the properties and behaviors of various 
paint mixtures and container interactions. 

Information Seeking Plans:
{
   "Verify the contents of containers.”: [𝑎1, 𝑎2, …],
   "Explore mixing  red and blue for purple creation.” : [𝑎1, 𝑎2, …],
   “Examine other primary color interactions.” : [𝑎1, 𝑎2, …],
   “Verify the content and effect of adding red paint.” : [𝑎1, 𝑎2, …],
   …
}

LLMReasoning:
From the interaction history, purple paint is 
created by mixing yellow and red paint in equal 
parts, as noted in Plan 3. Thus, the necessary 
steps are: creating the correct mixture in 
container A by mixing equal amount of yellow and 

red.

Extracted Inforamtion:
[“Red plus blue result in red.”, “Add yellow and blue…”, 𝑖𝑛𝑓𝑜3, …]

LLMReasoning:
The interactions indicate a mislabeling of paint 
tubes as red and blue mixtures were yielding red 
paint instead of purple. Also, adding paint from 
yellow and blue tubes results in purple paint. 
Remember to clean the container before mixing 
to avoid contamination.

Task-Oriented Plan:
[“Clean container A.”, “Add yellow tube to container A”, 𝑎3, …]

Rollout Seeking Plans

Verify the contents of 

containers: [𝑎1, 𝑎2, …] Observation

Verify the content and 
effect of adding red paint : 

[𝑎1, 𝑎2, …]
Observation

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

Textualized State

Create purple !

Information Seeking

Task-Oriented Planning

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

Rollout Task-Oriented Plan

Information Extraction

Figure 2: System overview of InfoSeeker. Our framework integrates Information Seeking (top-right)
and Task-Oriented Planning (bottom-left) in a closed-loop process. The agent formulates and executes
strategies to acquire missing knowledge, addressing gaps in its internal dynamics before generating
more effective task plans. This iterative approach, supported by the reasoning capabilities of LLMs,
enables the agent to reduce uncertainty and enhance planning effectiveness.

3 METHOD

We introduce InfoSeeker, an LLM agent that optimally estimates belief states by actively performing
information seeking behaviors to collect informative observations and correct errors in the internal
dynamics presumed by the LLM. As shown in Fig. 2, InfoSeeker performs iterative decision making:
it first analyzes past trajectories to identify uncertainty and takes actions to gather information;
next, it examines the resulting information seeking trajectories and refines task-oriented plans. By
incorporating information seeking into the decision loop, InfoSeeker effectively refines its belief
states and enhances future performance under uncertainty in both dynamics and observations.

3.1 INFORMATION SEEKING

Previous work (Huang et al., 2024; Sun et al., 2024) has focused primarily on uncovering missing
information related to task instructions, often overlooking discrepancies between the agent’s internal
dynamics and the environment. In contrast, we propose a general prompting strategy that first
guides the LLM to reason over current observations, prior plans, and interaction history, and then to
identify targeted exploratory actions. When inconsistencies are detected, the agent can hypothesize
potential errors, design focused experiments to test its assumptions, or detect shifts in environmental
dynamics. This reasoning-driven process supports both the verification of the internal dynamics and
the acquisition of informative observations, allowing for more accurate belief state update and more
effective task-oriented planning.

After executing exploratory actions, the agent receives a new trajectory which it uses to update
internal dynamics and refine belief states for subsequent planning. In practice, we introduce an
information extraction module that prompts an LLM to analyze the information seeking trajectory,
extract key insights, and generate concise summaries. These summaries are then incorporated into
the context of subsequent task-oriented planning. We refer to Appendix G.1 for details of our prompt.
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3.2 TASK-ORIENTED PLANNING

Based on the extracted insights, the LLM is prompted to generate an initial plan or revise a previous
one to complete the task. Following Wang et al. (2024), our prompting strategy guides the LLM to
reason over the combined context before generating a new sequence of task-oriented actions. Once
these actions are executed, the updated trajectory is passed back to the LLM, initiating the next cycle
of information seeking and task-oriented planning.

This iterative process continues until the task is completed or a predefined number of interaction steps
is reached. By continually collecting informative observations and refining its internal dynamics,
InfoSeeker adapts effectively to partially observable environments with uncertain or shifting dynamics.
Full methodological details are provided in Algorithm 1 (Appendix B).

4 BENCHMARKING ROBUSTNESS IN POMDPS WITH NOISY DYNAMICS

We introduce a suite of text-based simulation benchmarks for evaluating the robustness of LLM agents
in partially observable environments with noisy environmental dynamics. Existing benchmarks (Fan
et al., 2022; Shridhar et al., 2020; Wang et al., 2022) consider only uncertainty in observations,
where actions always yield predictable outcomes (e.g., “turn on lamp” action exactly turns on the
lamp). In contrast, we consider incorporating uncertain dynamics: actions may fail due to unmodeled
factors, such as control errors or environmental noise. This setup highlights the critical challenges
of decision-making in real-world scenarios. To contrast agent performance under both certain and
uncertain dynamics, we implement each task in two configurations: a Basic version, which resembles
existing benchmarks, and a Perturbed version that additionally incorporates noisy dynamics.

4.1 TASK SUITE OVERVIEW

Our benchmark contains a suite of 5 tasks, spanning a wide range of decision making domains. We
detail the configuration of each task as following:

Robot arm control. A 2D motion planning task in which the agent controls a planar 2-joint robot arm
to move its end-effector to a target location while avoiding static obstacles. In the Basic condition,
actions are executed as intended. In the Perturbed condition, a constant offset (∆x,∆y) is added to
each commanded action, simulating real-world uncertainty in system dynamics due to actuation bias
or calibration errors. Agents must infer this transition discrepancy and adjust its planning accordingly.

Robot navigation. A long-horizon task requires a mobile robot to reach a ball, pick it up, and navigate
to a designated goal location. The agent controls the robot using four directional actions: forward,
backward, left, and right. In the Basic condition, each action produces the expected movement. In
the Perturbed condition, uncertain dynamics is introduced by inverting the action mappings—for
example, the ”left” action causes the robot to move right. To complete the task, the agent must detect
and adapt to these inconsistencies between its commands and the robot’s actual behavior.

Mix colors. In this task, the agent must mix paints from a set of labeled tubes in containers to produce
a target color, following a pigment-based mixing rule (Sochorová & Jamriška, 2021). In the Basic
condition, tube labels accurately reflect their contents, and the container is initially clean. In the
Perturbed setting, we introduce two sources of uncertainty: (1) the container may be pre-contaminated
with unknown colors, and (2) tube labels may be incorrect. The agent must infer the true state of the
environment from noisy observations and reason about uncommon action outcomes.

Block stacking. This task is inspired by classic BlocksWorld scenarios (Valmeekam et al., 2023),
where the agent must rearrange stacks of colored blocks to match a target configuration. The agent
can only pick up the top block from a stack or from a limited-capacity inventory (holding at most one
block), and may only place blocks on top of a stack or into the inventory. We define two difficulty
levels: a simple version with a single target stack, and a complex version requiring coordination
across multiple stacks and longer planning horizons. In the basic condition, the agent has complete
and accurate knowledge of the initial inventory. In the perturbed condition, the inventory state is
initially unknown, requiring the agent to inspect it before executing a plan. This setting tests the
agent’s ability to reason under uncertain observation while performing precise, goal-directed actions.

5
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robot arm mix robot stack multiple stack single
control color navigation blocks block

basic perturbed basic contaminated wronglabel basic perturbed basic perturbed basic perturbed

Gemini Flash 2.0
ReAct 48 2 48 32 2 100 18 30 6 68 22
AdaPlanner 12 0 40 16 2 76 0 14 2 14 0
LLM3 (backtrack) 100 6 64 60 6 96 4 50 26 76 6
LLM3 (from scratch) 98 2 54 44 4 100 4 42 36 86 0
InfoSeeker (ours) 100 80 76 80 14 100 46 42 34 82 62

GPT 4o
ReAct 22 2 42 3 4 6 90 4 18 10 54 20
AdaPlanner 80 2 38 24 2 82 0 16 12 22 10
LLM3 (backtrack) 100 12 74 76 10 80 6 38 30 80 4
LLM3 (from scratch) 100 6 76 72 6 96 8 48 50 56 4
InfoSeeker (ours) 100 22 84 78 36 92 44 38 26 84 34

Table 1: Quantitative results on the proposed benchmark. We report the success rate (%), defined
as the proportion of tasks successfully completed within 100 interaction steps per task instance.
We evaluate two LLMs across five planning methods. By incorporating active information seeking,
InfoSeeker consistently achieves higher success rates, particularly under perturbed conditions.

5 EMPIRICAL RESULTS

This section details the empirical evaluation of the proposed InfoSeeker in partially observable envi-
ronments. Our primary objectives are to: (1) assess its efficacy and generalization under uncertainty
in observations (Sec.5.2); (2) quantify its performance under uncertainty in both observations and
dynamics (Sec.5.3); (3) evaluate the efficiency of iterative planning (Sec.5.4); and (4) distinguish the
contributions of each method component through ablation studies (Sec.5.5). We benchmark InfoS-
eeker against prior LLM-based planning methods using both our proposed tasks and two established
benchmarks: LLM3(Wang et al., 2024) and TravelPlanner(Xie et al., 2024).

5.1 EXPERIMENTAL SETUP

Experiments were conducted across 11 interactive partial observable tasks proposed in our benchmark.
These tasks are designed to evaluate iterative planning capabilities under POMDP settings. We adopt
success rate–the percentage of tasks successfully completed within 100 interaction steps per task–as
the evaluation metric, where interaction steps refer to action taken to interact with the environment.

We compared InfoSeeker against several established LLM planning methods: ReAct (Yao et al.,
2023), a widely adopted baseline that interleaves reasoning traces and task-specific action generation.
AdaPlanner (Sun et al., 2023), a code-style planner that adaptively refines self-generated plans based
on environmental feedback. LLM3 (Wang et al., 2024), a text-based planner that refines strategies
based on previous planning traces. Our implementation uses the last 5 traces, consistent with the
original publication. We implemented two variants: backtrack, which reverts to the last successful
action before generating a new plan, and from scratch, which discards all previous plans and generates
a new one.

To evaluate robustness and generalization, all methods were tested across two LLMs: Gemini Flash
2.0 (AI, 2025) and GPT-4o (Hurst et al., 2024). We refer to Appendix G for further implementation
details and prompt examples.

5.2 PERFORMANCE UNDER UNCERTAINTY IN OBSERVATIONS

We evaluated InfoSeeker under uncertainty in observations. We test on the basic setting of our
proposed benchmark, as well as two established benchmarks: LLM3 and TravelPlanner.

As shown in in Table 1, our InfoSeeker demonstrates competitive performance against strong baselines
in basic setup of our benchmark. It is not surprising that all baselines perform well in the basic
setup, as they have already been evaluated on more complex and larger-scale benchmarks. In contrast,
our method is general. It achieves consistent yet marginal performance gain across most tasks over

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

these baselines. In the mix color task, InfoSeeker reached an 84% success rate, obtaining an absolute
performance gain of 8% over the best baseline.

Setting 1 Setting 2

Easy Medium Hard Small Medium Large

LLM3 (backtrack) 100 80 50 50 80 50
LLM3 (from scratch) 100 100 80 80 90 60
InfoSeeker (ours) 100 100 70 70 100 80

Table 2: LLM3 benchmark (Wang et al., 2024). The
benchmark requires agents to control a robotic arm to
pack objects into a basket in a simulated environment.
In Setting 1, all areas of the basket are fully reachable.
In Setting 2, objects are fixed at the hardest level, and a
larger basket size increases unreachable regions

Final Pass Rate (↑)

ReAct (using original prompt) 5.56
LLM3 (backtrack) 5.00
LLM3 (from scratch) 5.56
InfoSeeker (ours) 6.11

Table 3: TravelPlanner benchmark (Xie
et al., 2024). The benchmark evaluates
web agents on their ability to gather user-
specific information. All methods are eval-
uated with a fixed 100 interaction steps.

We additionally evaluate InfoSeeker on two established benchmarks. First, we test on a robotic
manipulation benchmark introduced by LLM3, where agents control a robotic arm in a physical
simulation. This task emphasizes challenges in spatial reasoning. To ensure a fair comparison, we
follow the original evaluation protocol, allowing up to 20 planning attempts per task. As shown in
Table 2, InfoSeeker consistently outperforms LLM3 baselines across all setups. Notably, in the most
difficult scenario (Large basket size in Setting 2) InfoSeeker achieves a 20% absolute performance
gain. Next, we test on TravelPlanner benchmark, where web agents gather information based on
user preferences to propose travel plans. As shown in Table 3, InfoSeeker surpasses all baselines in
final pass rate. In particular, our method can identify the ambiguity of user instruction. For example,
it tried to clarify whether Washington refers to Washington state or Washington, D.C. while other
methods fail to identify this ambiguity. These results demonstrated InfoSeeker’s strong generalization
capabilities in more realistic and challenging use cases.

basic perturbed

With Uncertain Prompt
ReAct 62 28
AdaPlanner 8 4
LLM3 (backtrack) 80 12
LLM3 (from scratch) 90 12

InfoSeeker (ours) 82 62

Table 4: Explicit uncertainty in prompts yields
minimal gains. On the stack single block
task, adding uncertainty descriptions to baseline
prompts results in only marginal improvement.
This highlights the limitations of prompting
alone and the necessity of information-seeking.

basic perturbed

ReAct 68 30
AdaPlanner 10 0
LLM3 (backtrack) 98 46
LLM3 (from scratch) 98 62
InfoSeeker (ours) 100 98

Table 5: Time efficiency of InfoSeeker. We eval-
uate all methods on the stack single block task,
with a fixed wall-clock time of 1 minute per trial.
InfoSeeker demonstrates the highest efficiency,
achieving a 36% performance improvement over
the previous state-of-the-art, LLM3.

5.3 PERFORMANCE UNDER UNCERTAINTY IN OBSERVATIONS AND DYNAMICS

InfoSeeker demonstrates strong performance in environments with uncertain environmental dynamics
that may be inconsistent with the agents’ assumptions. This setting requires adaptation of the agent’s
internal dynamics to the current environment. We test on the perturbed settings of our benchmark, and
as shown in Table 1, InfoSeeker consistently outperforms all baselines. Take robot arm control task as
an example, where the robotic arm controller is miscalibrated, InfoSeeker achieved an 80% success
rate. In contrast, the performance of the best-performing baseline in basic setting dropped from 100%
to 6%. The substantial performance gain attributes to our explicit integration of information-seeking
behaviors, rather than prompt engineering. As shown in Table 4, we provide baselines with the
same description of environmental uncertainty as InfoSeeker. These baselines do not benefit from
such prompts, obtaining only marginal performance gain in stack single block task. These results
underscore the importance of explicit information seeking behavior, allowing InfoSeeker to validate
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Figure 3: Ablation study. Success rate (%) versus interaction steps (left) and planning attempts (right)
on the perturbed stack single block task. Combining information-seeking and information-extraction
behaviors makes our InfoSeeker more efficient and effective.

internal dynamics, refine belief states, and avoid repeating flawed reasoning patterns. We present
visual examples of planned trajectories in Appendix C.

5.4 MODEL EFFICIENCY

As InfoSeeker actively gather information to correct belief states, it is more time- and resource-
efficient than prior arts in POMDP settings. Although information seeking behaviors require addi-
tional interaction with the environment, it allows InfoSeeker to better diagnose the causes of failure
and generate optimal plans. As shown in Table 5, InfoSeeker surpass all baselines under a fixed
one-minute wall-clock execution time in stack single block task. It outperforms LLM3 baselines by
36% in the perturbed setting. Our additional experiments, that calculate task success rates across
varying numbers of interaction steps and planning attempts, further demonstrate the efficiency of our
InfoSeeker. We refer to Appendix D for more details.

5.5 ABLATION STUDIES

We conduct ablation studies to assess the contributions of each component of InfoSeeker using the
perturbed stack single block task. We evaluate the model’s performance according to the number
of interaction steps. As shown in the left panel of Figure 3, the vanilla LLM planner achieves
a 42% success rate after 310 interaction steps. Incorporating information extraction to analyze
trajectories from previous task-oriented planning (Extract) yields only marginal improvement. In
contrast, prompting the LLM to engage in explicit information seeking behavior (Seek) leads to a
substantial performance boost, increasing the success rate to 82%. InfoSeeker, which combines both
information seeking and information extraction from the exploratory trajectory, achieves the highest
success rate. It reaches 72% using just 135 interaction steps—nearly halving the steps needed by
Seek to reach similar performance.

Meanwhile, we also evaluate the iterative planning method according to the number of planning
attempts. As shown in the right figure of Figure 3, the combination of information seeking and
information extraction behaviors is key to our InfoSeeker.

Lastly, we verify if information seeking behaviors emerge from in-context learning. As shown in
Appendix E, we provide the vanilla LLM planner with successful demonstrations of our InfoSeeker
on mix color task. However, these context prompts only bring marginal performance gain. Our results
necessitate explicit integration information-seeking behaviors in the decision-making loop.
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6 RELATED WORK

6.1 LLM PLANNING AGENTS

Foundational works like Inner Monologue (Huang et al., 2022) and ReAct (Yao et al., 2023) demon-
strated that LLMs could process execution feedback and scene descriptions to revise plans. Subse-
quent methods, including ProgPrompt (Singh et al., 2023) and AdaPlanner (Sun et al., 2023), sought
to reduce plan ambiguity by generating plans in programming languages. These approaches have been
applied to interactive, partially observable domains, including open-world embodied agents (Wang
et al., 2023a;b; Zhu et al., 2023) and real-world robotic systems (Wang et al., 2024; Ding et al.,
2023; Chen et al., 2024; Joublin et al., 2024). Beyond planning, several studies investigate how
LLMs gather and reason about information, using benchmarks inspired by human cognitive tasks (Ke
et al., 2024; Krishnamurthy et al., 2024; Pan et al., 2025; Piriyakulkij et al., 2024). Other research
focuses on task-specific exploration, such as identifying missing information in instructions (Huang
et al., 2024; Sun et al., 2024), or seeking human assistance (Li et al., 2023; Chen et al., 2023).
Memory-augmented agents (Shinn et al., 2023; Zhao et al., 2024; Sarch et al., 2023; Song et al., 2024;
Sarch et al., 2024) enhance performance by replaying and learning from past trajectories. These
methods typically address uncertainty in observability while assuming known or static environmental
dynamics. This reduces their effectiveness in settings with uncertainty in both observation and
environmental dynamics, where they lack mechanisms to validate prior knowledge and adapt internal
dynamics. In contrast, InfoSeeker actively seeks out informative interactions to reduce uncertainty,
enabling more efficient adaptation to incomplete observations and shifting dynamics.

6.2 EVALUATION IN INTERACTIVE ENVIRONMENTS.

A variety of benchmarks have been developed to evaluate the planning and reasoning capabilities
of LLMs. Valmeekam et al. (2023) focus on structured reasoning tasks, while text-based environ-
ments (Shridhar et al., 2020; Côté et al., 2019; Chevalier-Boisvert et al., 2023) assess decision-making
under incomplete observation. Long-horizon and open-ended reasoning are evaluated in complex
simulations such as game environments (Fan et al., 2022; Küttler et al., 2020), scientific discover-
ies (Wang et al., 2022; Jansen et al., 2024), and web navigation (Yao et al., 2022; Deng et al., 2023;
Xie et al., 2024). Although many of these benchmarks involve partial observability, they typically
focus solely on uncertainty in observations. In contrast, our benchmark captures more realistic
conditions: observations are incomplete, and environmental dynamics are noisy. This setting requires
agents to adapt their decision-making under limited information and uncertain dynamics.

7 LIMITATION AND CONCLUSION

Limitations. We acknowledge that the proposed benchmark is relatively small-scale and hand-crafted.
However, to the best of our knowledge, there is no existing benchmark that evaluates the robustness
of models under uncertain environmental dynamics. We believe that creating a rigorous, large-
scale benchmark is an important direction for future work. Additionally, the information extraction
component in InfoSeeker can occasionally extract misleading or irrelevant insights, which may
negatively impact the planner (see Appendix F for details). Enhancing the accuracy and reliability of
information extraction is a key direction for improvement.

Conclusion. We propose a novel decision-making framework for LLM agents in partially observable
environments with noisy dynamics. Our method integrates explicit information seeking and task-
oriented planning within each decision cycle, allowing agents to adapt their internal dynamics and
update belief states more accurately. To evaluate robustness, we introduce a text-based simulation
benchmark that tests LLM agents under limited observability and uncertain environmental dynamics.
Experiments show that InfoSeeker outperforms baselines in adapting internal dynamics and generating
robust plans. Additional evaluations on established benchmarks demonstrate strong generalization.
By embedding explicit information seeking into the decision loop, InfoSeeker improves planning
under uncertainty. See Appendix A for our disclosure of LLM usage.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The complete implementation of our proposed InfoSeeker along with the benchmarks is included in
the supplementary material. While the implementations of baseline methods and ablation experiments
are not included, we provide the corresponding prompts used with LLMs in Appendix G.
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APPENDIX

A DECLARATION OF LLM USAGE

We used large language models (LLMs) to assist with writing refinement (e.g., grammar, spelling,
word choice) and to support the design and execution of experiments. Our paper proposes a novel
LLM-based framework for autonomous decision planning, making LLM a central component of our
methodology; this framework is detailed in Section 3 and Algorithm 1. The specific LLMs used are
listed in Section 5.1.

B INFOSEEKER ALGORITHM

Algorithm 1: Information Seeking Decision Planner (InfoSeeker)
Input: a LLM f , task instruction l, prompt for information seeking ps, information extraction pe,

and task-oriented planning pt, maximum number of planning attempts Nmax, maximum
number of interaction steps Kmax, environment e

Output: a sequence of task-oriented actions At

Initiate interaction history H ← {} and the total number of interaction steps K ← 0
for planning attempt n ∈ (1, ..., Nmax) do

Generate actions for information seeking As = f(ps, l,H)
Execute actions and append new observations to history H ← H ∪ {(a, e(a))|a ∈ As}
Update the total number of interaction steps K ← K + |As|
Extract information I = f(pe, l,H)
Generate task-oriented plans At = f(pt, l,H, I)
Reset interaction history H ← {}
Execute actions and append feedback to history H ← H ∪ {(a, e(a))|a ∈ At}
Update the total number of interaction steps K ← K + |At|
if success or K ≥ Kmax then

break;
end

end
return At

C PLANNING VISUALIZATION

The adaptive planning process is illustrated in Figure 4, comparing the behaviors of InfoSeeker
and LLM3 when planning from scratch. While LLM3 repeatedly applies an invalid reasoning
pattern—such as attempting to move ”forward then right,” even though this consistently results in the
robot moving ”backward then left” (Figure 4c, bottom row)—InfoSeeker systematically explores
alternative actions and adjusts its strategy accordingly. For example, it first probes all four directions
to map actions to their actual outcomes, then uses this knowledge to adapt effectively on subsequent
attempts (see Figure 4c, top row). This process demonstrates InfoSeeker’s ability to actively acquire
informative observations and adapt its internal dynamics to align with the environment.
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(a) Robot Arm Control (constant offset)
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(b) Mix Color (incorrect label)

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5Action Mapping

InfoSeeker
(ours)

LLM3
(from scratch)

Success

Failed

Backward:

Forward:

Right:

Left:
Action: R, R

Action: F, F Action: F, F, R, R Action: Fx3, Rx4 Action: Fx3, Rx5

Action: R, R Action: R, F, L, B Action: L, pick, R Action: L, pick, L

Action: Fx3, Rx5

(c) Robot Navigation (invert mapping)
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Figure 4: Visualization of InfoSeeker and LLM3 (from scratch) in perturbed environments. (a)
Robotic arm guidance to target (1.0, 2.0) with a fixed action offset (−0.1,−0.1). (b) Paint mixing
for seagreen (yellow + black) using mislabeled tubes: the ”red” tube contains white, ”blue” contains
red, ”white” contains black, and ”black” contains blue. (c) Navigate to ball at (1, 0) and deliver it to
goal location (2, 0) under inverted action mappings (”left” moves right, ”forward” moves backward).
(d) Rearranging blocks to match a target configuration, starting with a hidden inventory (contains a
red block). Across these perturbations, InfoSeeker adapts through information seeking and feedback,
while LLM3 repeatedly failed due to persistent misinterpretation.

D PERFORMANCE WITH VARYING INTERACTION STEPS AND PLANNING
ATTEMPTS
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Figure 5: Performance with varying interaction steps (left) and planning attempts (right). The
plots show the success rate (%) of InfoSeeker and four LLM baselines Yao et al. (2023); Sun et al.
(2023); Wang et al. (2024) on the stack single block task, as interaction steps (left) and planning
attempts (right) are varied. ReAct is included only in the interaction step analysis due to its lack of
distinct planning attempts. The plots demonstrate that InfoSeeker effectively leverages increased
resources, particularly in perturbed environments.

We evaluated InfoSeeker’s performance in the stack single block task by measuring its success
rate under varying interaction steps and planning attempts (Figure 5). The results demonstrate
that InfoSeeker effectively leverages increased resources, particularly in perturbed environments.
Figure 5(left) shows the impact of interaction steps; increasing interaction steps in the perturbed
setting leads to a substantial performance gain—from 0% at 10 steps to 88% at 235 steps. Notably,
this success rate matches the best-performing baseline (LLM3 from scratch) in the much easier
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basic setting. A similar trend appears when varying planning attempts (Figure 5, right). InfoSeeker
achieves a 66% success rate with just 5 attempts in the perturbed task, significantly outperforms
leading baselines LLM3 from scratch and backtrack, which reach just 4%. As planning attempts
increase, InfoSeeker continues to improve, reaching 100% success after 40 attempts. These findings
highlight InfoSeeker’s strong adaptability through active information seeking and the adaptation
of its internal dynamics, enabling robust performance under uncertainty in both observations and
environmental dynamics.

E VANILLA LLM PLANNER WITH IN-CONTEXT LEARNING

We carried out experiments on mix color task, where a vanilla LLM planner was guided using
in-context demonstrations of successful InfoSeeker execution traces in perturbed environments.
As shown in the Table 6, the in-context examples only brings marginal performance gain to the
planner. They do not induce effective information seeking behaviors. In particular, we observed that
the planner fails to follow the provided examples and cannot align its internal dynamics with the
environment, as evidenced by its inability to detect incorrect paint labels. Our results demonstrate
that abstracting information seeking behaviors from in-context examples is challenging.

Basic Contaminated Wrong Label

Vanilla Planner 52 46 6
In-Context Learning 58 56 2
InfoSeeker (ours) 76 80 14

Table 6: In-context learning fails to induce information-seeking behavior. We evaluate the
mix color task, where a planner is guided by successful InfoSeeker demonstrations in perturbed
environments. In-context examples yield only marginal gains, indicating that information-seeking
cannot be effectively learned through in-context learning.

F FAILURE ANALYSIS

To understand the limitations of InfoSeeker, we present an analysis of failure cases in block stacking
tasks. We categorize failure cases into four types: (1) Information Seeking, where the agent fails
to acquire informative observations needed to detect the mismatches between its internal dynamics
and the environment; (2) Information Extraction, where agent extracts misleading or irrelevant
information that misguide the planner; (3) Instruction Understanding, where the agent misinterprets
user instructions (e.g., confusing ”red on top of blue” with ”blue on top of red”); and (4) Long-
horizon Planning, where the agent detects a mismatch between internal and environmental dynamics
during the information seeking phase, but fails to produce effective actions to complete the task.
As shown in the Figure 6, extracting incorrect information is the major failure type of InfoSeeker,
especially in stack multiple blocks task. How to enhance the quality of information extraction will be
an interesting future work.
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Figure 6: Failure Analysis. Extracting incorrect information is the main failure of InfoSeeker,
particularly in the stack multiple blocks task. Improving information extraction quality is a promising
direction for future work.

G PROMPTS AND IMPLEMENTATION DETAILS

ReAct and AdaPlanner were evaluated using few-shot prompting, in line with their original publica-
tions. While both LLM3 variants and InfoSeeker used zero-shot prompting. We used API-default
hyperparameters (e.g., temperature, top p) for all experiments to ensure comparability among meth-
ods, though performance may improve with dedicated hyperparameter tuning. The prompts are
present in InfoSeeker G.1, ReAct G.2, AdaPlanner G.3, LLM3 G.4, and In-Context Learning G.5.
To add description of environmental uncertainty to baseline prompts we use the same words as
InfoSeeker in Listing 1.

You are an AI robot that generate a plan of actions to reach the goal.
You will be given a domain description and the trace of generated plans

that lead to motion failure.
Previous actions have not completed the goal, possibly due to

misunderstandings of the environment, insufficient exploration, or
flaws in your earlier plan.

Listing 1: Prompt for Uncertainty
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G.1 INFOSEEKER PROMPTS

You are an AI tasked with verifying your understanding of a given
environment and exploring it for additional information.

Based on the provided domain description, generate a plan to ensure your
understanding is aligned with the real environment and how you will
explore it for further details.

Try to verifying your understanding thoroughly, and explore beyond the
goal for unexpected solution.

You are expected to learn from the environment only, do not try to
achieve the goal.

Important: You have VERY FEW turns left. Choose your next action
carefully to maximize information.

# Domain Description
{domain_desc}

Please provide the following output:
1. **Reasoning**: Explain the strategy you will use to verify your

understanding of the environment and explore it for new information.
2. **Steps**: Provide a detailed series of steps you will take to verify

and explore the environment. Make sure to reset and clean the
environment at the end of each step to avoid any potential
interference. Each step should include:
- **Goal**: The specific objective or target for that step (what you

aim to achieve).
- **Action Plan**: A list of actions that you will perform to

accomplish the goal of that step.

Format the output as a JSON object:
{

"Reasoning": "Explain your reasoning here.",
"Steps": [

{
"Goal": "The goal of your verification or exploration",
"Action Plan": ["action1", "action2", "action3", ...]

},
...

]
}

Listing 2: Information-seeking prompt for InfoSeeker in our benchmark when no prior plan exists

You are an AI tasked with generating a plan to achieve a given goal.
You will be given a domain description and a history of past actions that

have not yet achieved the goal.
You must analyze the interaction history, understand the environment

mechanics, and determine why the goal has not been reached.
Using this insight, create a new plan to successfully achieve the goal.

# Domain Description
{domain_desc}

# Interaction History
{interaction_history}

# Information
{information}

Please provide the following output:
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1. **Reasoning**: Describe the strategy you will use to achieve the goal,
taking into account the past actions and information in the

interaction history. Consider how the environment’s response to these
actions affects your new plan.

2. **Solution Plan**: List the series of actions you will take to achieve
the goal, ensuring that your actions align with the reasoning you

provided. Remember to check for the final result.

Format the output as a JSON object:
{

"Reasoning": "Explain your reasoning here.",
"Solution Plan": ["action1", "action2", "action3", ...]

}

Listing 3: Task-Oriented Planning prompt for InfoSeeker in our benchmark

You are an AI tasked with revising your plan to achieve a goal.
Previous actions have not completed the goal, possibly due to

misunderstandings of the environment, insufficient exploration, or
flaws in your earlier plan.

You can conduct simple tests to identify issues with the past approach,
verify your understanding, and explore the environment for more
information if needed.

Using the provided domain description and interaction history, generate
an action plan to verify and explore the environment, identifying
flaws in previous actions.

Try to verify the failures by simple unit tests, or explore beyond past
plans for unexpected solution.

Important: You have VERY FEW turns left. Choose your next action
carefully to maximize information.

# Domain Description
{domain_desc}

# Interaction History
{interaction_history}

Please provide the following output:
1. **Reasoning**: Explain your strategy for verifying your understanding

of the environment, exploring it for new insights, and addressing
issues in the previous plan.

2. **Steps**: Provide a detailed series of steps you will take to verify
and explore the environment. Make sure to reset and clean the
environment at the end of each step to avoid any potential
interference. Each step should include:
- **Goal**: The specific objective or target for that step (what you

aim to achieve).
- **Action Plan**: A list of actions that you will perform to

accomplish the goal of that step.

Format the output as a JSON object:
{

"Reasoning": "Explain your reasoning here.",
"Steps": [

{
"Goal": "The goal of your verification or exploration",
"Action Plan": ["action1", "action2", "action3", ...]

},
...

]
}

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Listing 4: Information Seeking prompt for InfoSeeker in our benchmark when prior plan exists

G.2 REACT PROMPT

Interact with materials to solve a task. Here are two examples.
# Example 1
Your task is to: move the gripper to [1.0, 0.0], while avoid collision

with the obstacles at, [2.0, -2.0] radius 0.5
Initial State:
Joint positions: ’Joint 0’: [0.00, 0.00] ’Joint 1’: [2.00, 0.00] ’Gripper

’: [3.00, 0.00]
> think: To solve the task, I need to first check the action options.
OK.
> help
1) Move x y: Move the gripper to (x, y). The rotation of the joints will

be calculated by inverse kinematics
2) Check: Check Robot arm joint positions
3) Help: View the available action options.
4) think: <your_thought>: Output your thinking and reasoning.
5) End: End the task when you finished, or the task is not solvable.
> think: To solve the task, I need to move gripper to [1.0, 0.0].
OK.
> Move 1.0 0.0
Success!
> Check
Joint positions: ’Joint 0’: [0.00, 0.00] ’Joint 1’: [2.00, 0.00] ’Gripper

’: [1.00, 0.00]
> think: Now the gripper is at [1.0, 0.0], the task is complete.
OK.
> End
# Now it’s your turn
Your task is to: move the gripper to [1.0, 0.0], while avoid collision

with the obstacles at, [0.0, 3.0] radius 0.5, [2.0, 2.0] radius 0.5,
[-2.0, 2.0] radius 0.5, [2.5, 1.0] radius 0.5, [-2.5, 1.0] radius
0.5, [0.0, -3.0] radius 0.5, [2.0, -2.0] radius 0.5, [-2.0, -2.0]
radius 0.5, [2.5, -1.0] radius 0.5, [-2.5, -1.0] radius 0.5

Initial State:
Joint positions: ’Joint 0’: [0.00, 0.00] ’Joint 1’: [2.00, 0.00] ’Gripper

’: [3.00, 0.00]
> think: To solve the task, I need to first check the action options.
OK.
> help
1) Move x y: Move the gripper to (x, y). The rotation of the joints will

be calculated by inverse kinematics
2) Check: Check Robot arm joint positions
3) Help: View the available action options.
4) think: <your_thought>: Output your thinking and reasoning.
5) End: End the task when you finished, or the task is not solvable.
> think: To solve the task, I need to move the gripper to [1.0, 0.0]

while ensuring it does not collide with any obstacles. The initial
position of the gripper is [3.0, 0.0]. I will perform the move
operation to see if it can directly reach the target without
colliding.

OK.
> Move 1.0 0.0
Failed! Collision detected along the path. Move aborted.
> think: Since a direct move to [1.0, 0.0] results in a collision, I need

to plan an alternative path to avoid obstacles. Considering the
obstacles’ positions and their radii, a potential solution is to move
the gripper around the obstacles with minimal path adjustments.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

OK.
> Move 2.0 0.0
Success!
> Check
Joint positions: ’Joint 0’: [0.00, 0.00] ’Joint 1’: [1.75, -0.97] ’

Gripper’: [2.00, 0.00]
> think: With the gripper now at [2.0, 0.0], the next step is to move

closer to the target at [1.0, 0.0] while avoiding obstacles. Moving
directly from [2.0, 0.0] to [1.0, 0.0] seems feasible without hitting
any obstacles given their positions and radii. I will attempt this

move.
OK.
> Move 1.0 0.0
Success!

Listing 5: Prompt for ReAct in the Robot Arm Control Tasks

G.3 ADAPLANNER PROMPT

basic_info = ’’’
# You are a household agent. Here is some Python code defining a

household environment:

# Agent class represents the state of the agent,
# including what materials are available as well as the actions it can

take.
class Agent:

def __init__(self, joint0_pos, joint1_pos, gripper_pos):
self.joint0_pos = joint0_pos
self.joint1_pos = joint1_pos
self.gripper_pos = gripper_pos

# Here are the admissible actions the agent can take:

# Check Robot arm joint positions.
# For example, "Joint positions: ’Joint 0’: [0.00, 0.00] ’Joint 1’:

[2.00, 0.00] ’Gripper’: [1.00, 0.00]" = check()
def check(self):

...

# Move the gripper to (x, y). The rotation of the joints will be
calculated by inverse kinematics.

# For example, ’Success!’ = move(3.0, 0.0)
# For example, ’Failed! Collision detected along the path. Move

aborted.’ = move(3.0, 0.0)
# For example, ’Failed! Target is out of reach. Move aborted.’ = move

(3.0, 0.0)
def move(self, x, y):

...
’’’.strip()

get_solution_prompt = f’’’
{basic_info}

# Now complete the function solution() below to solve the task by
composing the agent’s methods to interact with the environment.

# For each step you plan to take, 1) mark with ’[Step xx]’, 2) give a
reason why you think it is a good step to take 3) write an assertion
to check if the step is successful.

# Here is an example of a solution to the task:
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<example>

# Here is the actual task.
# define environment and agent
joint0_pos = <joint0_pos_list>
joint1_pos = <joint1_pos_list>
gripper_pos = <gripper_pos_list>
agent = Agent(joint0_pos, joint1_pos, gripper_pos)

# The robot arm has two joints and a gripper, the goal is to <task> .
# You should complete your solution function below:
def solution(agent, start_from=1):
’’’.strip()

simple_example = ’’’
# define environment and agent
joint0_pos = [0.00, 0.00]
joint1_pos = [2.00, 0.00]
gripper_pos = [3.00, 0.00]
agent = Agent(joint0_pos, joint1_pos, gripper_pos)

# Your task is to: move the gripper to [1.0, 0.0], while avoid collision
with the obstacles at, [2.0, -2.0] radius 0.5.

# here is a solution:
def solution(agent, start_from=1):

# General Plan: To solve the task, I need to move gripper to [1.0,
0.0].

if start_from <= 1:
# [Step 1] Move gripper from [3.0, 0.0] to [1.0, 0.0].
# Move gripper to [1.0, 0.0].
observation = agent.move(1.0, 0.0)
# expectation: I should be able to move gripper to [1.0, 0.0].
assert "Success" in observation, f’ERROR in [Step 1]. {

observation}’

if start_from <= 2:
# [Step 2] Check if the gripper has been moved correctly.
# Check the gripper position.
observation = agent.check()
# expectation: I should be able to see gripper position at [1.0,

0.0].
assert "’Gripper’: [1.00, 0.00]" in observation, f’ERROR in [Step

2]. {observation}’
’’’.strip()

feedback_fix_prompt = ’’’
{basic_info}

# Here is a example of successful solution for solving a similar task:
[Successful example]
joint0_pos = [0.00, 0.00]
joint1_pos = [2.00, 0.00]
gripper_pos = [3.00, 0.00]
agent = Agent(joint0_pos, joint1_pos, gripper_pos)
<example>

# Here is the actual task.
# define environment and agent
joint0_pos = <joint0_pos_list>
joint1_pos = <joint1_pos_list>
gripper_pos = <gripper_pos_list>
agent = Agent(joint0_pos, joint1_pos, gripper_pos)

# The robot arm has two joints and a gripper, the goal is to <task> .
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You have generated code of solution() to solve the task. However, you
executed the solution() function and get an error message:

<error_msg>

Let’s think step by step. Referring to the successful case and the error
message, you should complete the solution function with the correct
code.

def solution(agent, start_from=1):
’’’.strip()

Listing 6: Prompt for AdaPlanner in the Robot Arm Control Tasks

G.4 LLM3 PROMPT

You are an AI robot that generate a plan of actions to reach the goal.
You will be given a domain description and the trace of generated
plans that lead to motion failure.

You are expected to correct the plan incrementally (on top of the last
plan) to avoid the motion failure. This may involve sample new
parameters for the failed action, or reverse one or more succeeded
actions for backtracking. Make your decision based on the trace
provided.

The tabletop environment has a robot arm, several obstacles and a goal
location.

The robot arm has two joints and a gripper, the goal is to move the
gripper to [1.0, 2.0], while avoid collision with the obstacles at,
[0.0, 3.0] radius 0.5, [2.0, 2.0] radius 0.5, [-2.0, 2.0] radius 0.5,
[2.5, 1.0] radius 0.5, [-2.5, 1.0] radius 0.5, [0.0, -3.0] radius

0.5, [2.0, -2.0] radius 0.5, [-2.0, -2.0] radius 0.5, [2.5, -1.0]
radius 0.5, [-2.5, -1.0] radius 0.5 .

The robot arm has the following primitive actions:
1) Move x y: Move the gripper to (x, y). The rotation of the joints will

be calculated by inverse kinematics.
2) Check: Check Robot arm joint positions

The current environment state is:
Joint positions: ’Joint 0’: [0.00, 0.00] ’Joint 1’: [2.00, 0.00] ’Gripper

’: [3.00, 0.00]

The trace is:
No previous plan

Please generate output step-by-step, which includes:
1. Reasoning: Your reasoning for the failure of last plan if the last

plan exists, and the strategy to accomplish the task goal. Make sure
you account for the position of robot arm and obstacles. Try to
answer the questions: (i) what is the cause of the failure of last
plan? (ii) can altering action parameters for the failed action solve
the problem? if yes, what feasible action parameters should we use?

(iii) do we need to reverse one or more succeeded actions executed
before the failed action? if yes, which actions should be reversed? (
iv) if the task goal is not achieved, how can we revise the plan to
achieve the goal?

2. Full Plan: The new full plan that you generate based on the last plan.
Make sure you properly reflect the above reasoning in the new plan.

The plan should be a full plan that includes all the actions from the
beginning to the end.

Please organize the output following the json format below:
{

"Reasoning": "My reasoning for the failure of last plan is ...",
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"Full Plan": ["pick A", "place B", "check", ...]
}

Listing 7: Prompt for LLM3 (backtrack) in the Robot Arm Contorl Tasks

You are an AI robot that generate a plan of actions to reach the goal.
You will be given a domain description and the trace of generated
plans that lead to motion failure. You are expected to generate a
plan from scratch.

The tabletop environment has a robot arm, several obstacles and a goal
location.

The robot arm has two joints and a gripper, the goal is to move the
gripper to [1.0, 2.0], while avoid collision with the obstacles at,
[0.0, 3.0] radius 0.5, [2.0, 2.0] radius 0.5, [-2.0, 2.0] radius 0.5,
[2.5, 1.0] radius 0.5, [-2.5, 1.0] radius 0.5, [0.0, -3.0] radius

0.5, [2.0, -2.0] radius 0.5, [-2.0, -2.0] radius 0.5, [2.5, -1.0]
radius 0.5, [-2.5, -1.0] radius 0.5 .

The robot arm has the following primitive actions:
1) Move x y: Move the gripper to (x, y). The rotation of the joints will

be calculated by inverse kinematics.
2) Check: Check Robot arm joint positions

The current environment state is:
Joint positions: ’Joint 0’: [0.00, 0.00] ’Joint 1’: [2.00, 0.00] ’Gripper

’: [3.00, 0.00]

The trace is:
No previous plan

Please generate output step-by-step, which includes:
1. Reasoning: Your reasoning for the failure of last plan if the last

plan exists, and the strategy to generate a new plan from scratch to
accomplish the task goal. Please be specific on the strategy, such as
what actions to take and what parameters to use. Make sure you

account for the position of robot arm and obstacles.
2. Full Plan: The new full plan that you generate based on the last plan.

Make sure you properly reflect the above reasoning in the new plan.
The plan should be a full plan that includes all the actions from the
beginning to the end.

Please organize the output following the json format below:
{

"Reasoning": "My reasoning for the failure of last plan is ...",
"Full Plan": ["pick A", "place B", "check", ...]

}

Listing 8: Prompt for LLM3 (from scratch) in the Robot Arm Contorl Tasks

G.5 IN-CONTEXT LEARNING PROMPT

# Example Interaction History 1
Task: "Create 2 ml of red paint in container B".

## Step 1: Check red tube color.
- Act: Clean A
- Act: Add red to A
- Obs: You add 1 ml of paste from red tube into container A.
- Act: Check A
- Obs: Container A has 1 ml of blue paint.
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## Step 2: Find red color.
- Act: Clean A
- Act: Add blue to A
- Obs: You add 1 ml of paste from blue tube into container A.
- Act: Check A
- Obs: Container A has 1 ml of red paint.

## Step 3: Complete the task using blue label tube for red paint.
- Act: Clean B
- Act: Add blue to B
- Obs: You add 1 ml of paste from blue tube into container B.
- Act: Add blue to B
- Obs: You add 1 ml of paste from blue tube into container B.

# Example Interaction History 2
Task: "Create 2 ml of blue paint in container B".

## Step 1: Check container B.
- Act: Check B
- Obs: Container B has 1 ml of blue paint.

## Step 2: Clean container B.
- Act: Clean B

## Step 3: Complete the task by adding 2 ml of red paint in container B.
- Act: Clean B
- Act: Add blue to B
- Obs: You add 1 ml of paste from blue tube into container B.
- Act: Add blue to B
- Obs: You add 1 ml of paste from blue tube into container B.

Please generate output step-by-step, which includes:
1. Reasoning: Your reasoning for the actions to take. You are expect to

follow the strategy in the example interaction history.
2. Full Plan: The plan should be a full plan that includes all the

actions you want to take.

Listing 9: Prompt for In-Context LLM planner in the Mix Color Tasks
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