

000 001 002 003 004 005 3D-AWARE DISENTANGLED REPRESENTATION FOR 006 COMPOSITIONAL REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

Paper under double-blind review
033
034

035 ABSTRACT 036

037 Vision-based reinforcement learning can benefit from object-centric scene representation, which factorizes the visual observation into individual objects and their attributes, such as color, shape, size, and position. While such object-centric representations can extract components that generalize well for various multi-object manipulation tasks, they are prone to issues with occlusions and 3D ambiguity of object properties due to their reliance on single-view 2D image features. Furthermore, the entanglement between object configurations and camera poses complicates the object-centric disentanglement in 3D, leading to poor 3D reasoning by the agent in vision-based reinforcement learning applications. To address the lack of 3D awareness and the object-camera entanglement problem, we propose an enhanced 3D object-centric representation that utilizes multi-view 3D features and enforces more explicit 3D-aware disentanglement. The enhancement is based on the integration of the recent success of multi-view Transformer and the prototypical representation learning among the object-centric representations. The representation, therefore, can stably identify proxies of 3D positions of individual objects along with their semantic and physical properties, exhibiting excellent interpretability and controllability. Then, our proposed block transformer policy effectively performs novel tasks by assembling desired properties adaptive to the new goal states, even when provided with unseen viewpoints at test time. We demonstrate that our 3D-aware block representation is scalable to compose diverse novel scenes and enjoys superior performance in out-of-distribution tasks with multi-object manipulations under both seen and unseen viewpoints compared to existing methods.
038
039
040
041
042
043
044
045

046 1 INTRODUCTION 047

048 Vision-based reinforcement learning utilizes images as an input modality, enabling a flexible, human-like perception for robotic tasks, compared to specific sensory or motor configurations. However, the unstructured nature of raw observations further challenges the inherent inefficiency in reinforcement learning (RL). As the visual observations from various viewpoints result from a complex interplay between color, lighting, geometry and their non-linear projection, the images do not easily map to a coherent composition of meaningful attributes, which challenges their generalizability and controllability. While a visual perception module can benefit from recent advancements in computer vision literature, the feature-level abstractions are often high-dimensional and are no longer interpretable by humans.
049
050
051
052
053

054 Systematic factorization of visual observation can lead to generalizable perceptual reasoning, one of the desired benefits of vision-based RL (Yoon et al., 2023). Object-centric representations promote component-wise analysis, where individual objects are detached from the background. Furthermore, learning factor-level representations like Neural Systematic Binder (Singh et al., 2022) deduces the spatial locations and visual attributes, such as colors and shapes, from which humans can interpret without additional training. Thus, there have been studies that exploit object-centric representation as a state representation for agent control (Driess et al., 2023; Haramati et al., 2024; Min & Kim, 2025), which have been shown to improve both the task solving performance of vision-based RL agent and the efficiency of the training sample.
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

054 However, there remain two key challenges that prevent the agent from fully utilizing object-centric
 055 representations: 1) insufficient 3D-awareness and 2) imprecise object description. First, the insufficient
 056 3D-awareness stems from missing multi-view attention and 2D UV-grid-based decoding, and
 057 in practice many slot-attention based methods operate on a single 2D view or feature grid, so they
 058 cannot reliably infer depth, occlusion, multi-view consistency, or full 3D spatial object poses Chen
 059 et al. (2021); Biza et al. (2023); Min & Kim (2025). This limitation reduces their applicability in
 060 interactive environments with occlusions and viewpoint changes. Second, due to the unsupervised
 061 learning process, the object variables remain ambiguous in terms of the agent’s manipulability, be-
 062 cause slot representations often corresponds to clusters in 2D feature maps (e.g., color, texture, or
 063 region) and do not guarantee that each slot encodes a distinct physically manipulable object, its
 064 pose, its affordances, or its dynamic interactions Locatello et al. (2020); Kim et al. (2023); Kori
 065 et al. (2024); Rezazadeh et al. (2024).

066 To address these challenges, we propose a novel end-to-end neural network architecture called
 067 3D block-slot representation, providing a 3D-aware and interpretable state estimation to facilitate
 068 vision-based RL tasks. Specifically, we adapt the *block-slot* concept from the attribute-level struc-
 069 tural factorization (Singh et al., 2022) to facilitate explicit yet unsupervised object-centric decom-
 070 position. Further, to achieve 3D-awareness, we lift the decomposed attributes into 3D space using a
 071 light-field decoder (Sajjadi et al., 2022a;b; Smith et al., 2022; Yu et al., 2021; Stelzner et al., 2021;
 072 Qi et al., 2023; Luo et al., 2024; Liu et al., 2024), enabling camera view-object 3D position dis-
 073 entanglement. Building on our proposed representation, we introduce a block transformer policy
 074 that significantly improves the agent’s generalization to novel object configurations. By recognizing
 075 matching properties between the current and goal states, the policy effectively reduces the search
 076 space for goal-conditioned planning.

077 To sum up, our main contributions are as follows:

- 078 • We propose a novel 3D block-slot attention mechanism that enables the construction of
 079 view-independent 3D structured representations by disentangling object attributes such as
 080 shape, color, size, and position.
- 081 • In the 3D block-slot attention, we design a novel slot attention scheme that applies block-
 082 slot attention to object slots, while using vanilla slot attention for background and agent
 083 slots, enabling consistent and disentangled representations across different scene compo-
 084 nents.
- 085 • We develop a block transformer policy that performs block-wise cross-attention between
 086 current and goal states, enabling precise goal conditioning on object attributes.
- 087 • Our experiments on attribute-level object manipulation confirm that the 3D block-slot rep-
 088 resentation is effective for structured and generalizable goal-conditioned RL, providing
 089 3D-aware features that makes the policy view-agnostic and robust to unseen viewpoints.

093 2 METHOD

096 We extract a 3D-aware representation that is decomposed into interpretable components with blocks,
 097 such that it can efficiently generalize to various goal-driven tasks with vision-based RL. We first
 098 describe the encoder architecture with disentangled components (Section 2.1) followed by the trans-
 099 former policy architecture (Section 2.2). The overall architecture is summarized in Figure 1.

101 2.1 3D BLOCK-SLOT REPRESENTATION

103 Our latent embedding encodes a consistent, disentangled representation that can match visual obser-
 104 vations in an arbitrary viewpoint, thus being robust to occlusion or perspective distortion. We build
 105 upon the 3D object scene representation transformer (OSRT) (Sajjadi et al., 2022a), which disentan-
 106 gles individual instances and further identifies the active and passive components in fulfilling robotic
 107 tasks. The additional block-slot attention module (Singh et al., 2022) builds a strong structure with
 108 decomposed factors that are associated with various attributes of the objects.

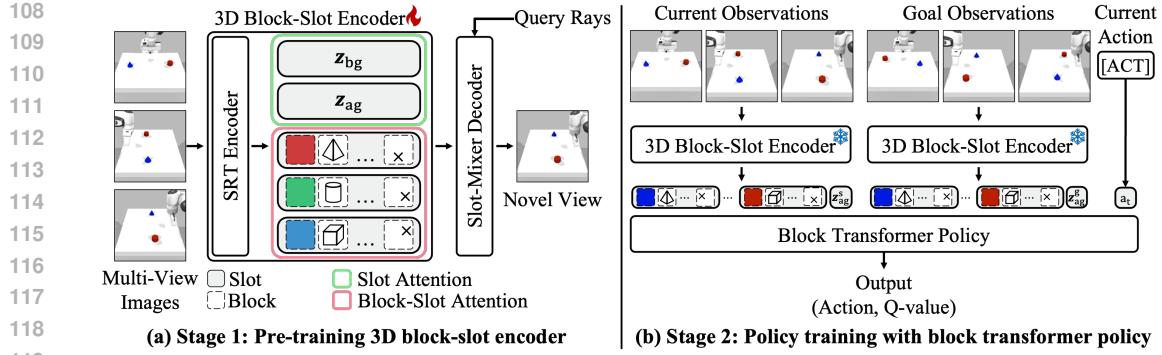


Figure 1: **Overall structure of our method:** Our proposed pipeline consists of two steps: representation learning and policy training. **(a) Pre-training 3D block-slot encoder:** The object slots are further decomposed into blocks of attributes. Then, the slot-mixer decoder mixes the object-centric representation to generate images at a query view. **(b) Policy training with block transformer policy:** We utilize the 3D block-slot encoder to extract a structured representation for the current observation and the goal image. The decomposed latent embedding serves as the input and the goal tokens, respectively, for our block transformer of the policy architecture.

2.1.1 PRELIMINARY: 3D OBJECT-CENTRIC LEARNING

We adopt a transformer-based SRT encoder (E_θ) (Sajjadi et al., 2022b) to aggregate multi-view observations $\{\mathbf{I}_i \in \mathbb{R}^{H \times W \times 3}\}$ and generate a scene-level latent representation $\mathbf{F} \in \mathbb{R}^{L \times D}$:

$$\mathbf{F} = E_\theta(\{\mathbf{I}_i\}). \quad (1)$$

The slot attention mechanism (Locatello et al., 2020) is applied to the scene feature \mathbf{F} , producing a set of slots $\{\mathbf{z}_n \in \mathbb{R}^D\}_{n=1}^N$, where each slot represents an individual object. Specifically, the mechanism observes the image latent embedding \mathbf{F} to produce an attention readout matrix $\mathbf{U} \in \mathbb{R}^{N \times D_{\text{slot}}}$, where each row $\mathbf{u}_n \in \mathbb{R}^{D_{\text{slot}}}$ of the matrix \mathbf{U} stores values to update \mathbf{z}_n of the slot matrix $\mathbf{Z} \in \mathbb{R}^{N \times D_{\text{slot}}}$. Our framework augments the slot attention mechanism to reflect our additional factorization, which is described in Section 2.1.3.

The decoder employs the Slot Mixer (Sajjadi et al., 2022a), which is a 3D-aware light-field decoder that can identify the spatial extents of objects and account for occlusion. Given a query ray $\mathbf{r} = (\mathbf{o}, \mathbf{d})$, the Slot Mixer generates a feature \mathbf{x} that aggregates features from the object slots. We compute normalized dot-product similarity between \mathbf{x} and \mathbf{Z} using the learned linear projections W_Q and W_K , and then use this similarity to compute a weighted mean of the slot matrix \mathbf{Z} :

$$\mathbf{w} = \text{softmax}((W_k \mathbf{Z}^\top)^\top (W_q \mathbf{x})), \quad \bar{\mathbf{z}} = \mathbf{w}^\top \mathbf{Z}. \quad (2)$$

From the aggregated slot features $\bar{\mathbf{z}}$, an MLP decoder predicts the RGB value $C(\mathbf{r})$ of the query ray \mathbf{r} . The entire network is trained with an L_2 reconstruction loss for novel view synthesis, which matches the synthesized images with the ground-truth images $\{\mathbf{I}_i^{\text{gt}}\}$

$$\mathcal{L}_{\text{recon}} = \arg \min_{\theta} \mathbb{E}_{\mathbf{r} \sim \mathbf{I}_i^{\text{gt}}} \|C(\mathbf{r}) - \mathbf{I}_i^{\text{gt}}(\mathbf{r})\|_2^2. \quad (3)$$

2.1.2 DECOMPOSITION OF BACKGROUND, FOREGROUND AND AGENTS

Out of the disentangled 3D entities, we clearly identify the active and passive elements to provide the necessary evidence to learn intuitive physics in robotic tasks. Instead of handling the latent vectors $\{\mathbf{z}_n\}$ as a permutation-invariant set, we explicitly assign specific indices to the background slots \mathbf{z}_{bg} and agent slots \mathbf{z}_{ag} . The remaining slots are considered as foreground slots $\{\mathbf{z}_{o_n}\}_{n=1}^{N-2}$ which correspond to active objects, and we maintain permutation invariance among object slots. Our training dataset contains the background mask $\mathbf{m}_{bg}^{\text{gt}}$ and agent mask $\mathbf{m}_{ag}^{\text{gt}}$ within image regions from the simulator, which can also be obtained by detecting agents or objects with foundation models. We design an auxiliary loss that matches the background and agent slots to their corresponding masks.

162 The loss measures the pixel-wise differences between the attention-weighted regions in the predicted
 163 image and the regions in the ground truth mask of the RGB input. Formally, the loss is defined as:
 164

$$\begin{aligned} \mathcal{L}_{\text{bg}} &= \sum_{(u,v) \in \Omega} \left\| \mathbf{w}_{bg}(u,v) \hat{\mathbf{I}}(u,v) - \mathbf{m}_{bg}^{\text{gt}}(u,v) \mathbf{I}(u,v) \right\|_2^2, \\ \mathcal{L}_{\text{ag}} &= \sum_{(u,v) \in \Omega} \left\| \mathbf{w}_{ag}(u,v) \hat{\mathbf{I}}(u,v) - \mathbf{m}_{ag}^{\text{gt}}(u,v) \mathbf{I}(u,v) \right\|_2^2. \end{aligned} \quad (4)$$

170 where $\mathbf{I}(u,v) \in \mathbb{R}^3$ is the ground-truth RGB at pixel (u,v) , $\hat{\mathbf{I}}(u,v)$ is the predicted RGB, and Ω is
 171 the set of sampled pixel coordinates from the image grid.
 172

173 Our total loss combines reconstruction and auxiliary mask loss terms
 174

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{recon}} + \lambda_{bg} \mathcal{L}_{\text{bg}} + \lambda_{ag} \mathcal{L}_{\text{ag}}. \quad (5)$$

175 We can therefore visually observe the physical consequences of various robot interactions and distinguish
 176 the actions of robots from other movements. Along with the 3D reasoning, the decomposition
 177 can stabilize the training of the robot action policy.
 178

180 2.1.3 3D BLOCK-SLOT ATTENTION 181

182 While the slot-based representation interprets the scene into disentangled entities in 3D, the representation
 183 is trained only to reconstruct the observed scenes and is limited in generalization. Objects
 184 exhibit different properties, such as shape, size, position, or color, which can be categorized and
 185 interpreted as a combination of partially shared characteristics. If we can define an extensive set of
 186 task goals by combining object attributes, the trained policy can generalize to novel manipulation
 187 targets, earning even more sample efficiency.
 188

189 We propose a novel mechanism called *3D block-slot attention*, which further disentangles the object
 190 slots $\mathbf{z}_n \in \mathbb{R}^{D_{\text{slot}}}$ into the concatenation of M blocks of different attributes $\{\mathbf{z}_{n,m} \in \mathbb{R}^{D_{\text{block}}}\}_{m=1}^M$
 191 from a latent vector \mathbf{F} extracted by SRT encoder, such that $D_{\text{slot}} = MD_{\text{block}}$. Since background
 192 and agent do not share concepts (e.g., shape, size, position, or color) in the same compositional
 193 manner as objects, we adapt the block-slot attention mechanism (Singh et al., 2022) only to the
 194 object slots and retain the vanilla slot-attention mechanism for the background and agent slots. By
 195 fixing the indices of the agent and background as described in Section 2.1.2, we can design the
 196 update mechanism that appropriately mixes block-slot attention and slot attention across all N slots
 $\mathbf{Z} = \{\mathbf{z}_{bg}, \mathbf{z}_{ag}, \mathbf{z}_{o_1}, \dots, \mathbf{z}_{o_{N-2}}\}$.
 197

198 The block-slot attention learns visual concepts by extracting features from images and embedding
 199 them into blocks. It extends the slot-attention mechanism with an additional factor binding step,
 200 which operates at the block level. To enable this update, each slot update \mathbf{u}_n is equally divided into
 201 M segments $\mathbf{u}_{n,m} \in \mathbb{R}^{D_{\text{block}}}$. Each block $\mathbf{z}_{n,m} \in \mathbb{R}^{D_{\text{block}}}$ is then updated independently using $\mathbf{u}_{n,m}$
 202 with a GRU (Cho et al., 2014), followed by an MLP
 203

$$\mathbf{z}_{n,m} = \text{GRU}_{\phi_m}(\mathbf{z}_{n,m}, \mathbf{u}_{n,m}) \quad \Rightarrow \quad \mathbf{z}_{n,m}+ = \text{MLP}_{\phi_m}(\text{LN}(\mathbf{z}_{n,m})). \quad (6)$$

204 To make each block retrieve its corresponding representation, we use a concept memory $\mathbf{C}_m \in$
 205 $\mathbb{R}^{K \times d}$ which serves as a learnable soft information bottleneck. The concept memory \mathbf{C}_m consists
 206 of K latent prototype vectors associated with the particular factor m , which allows each block to
 207 perform dot-product attention over the concept memory.
 208

209 After disentanglement, we can further identify the attributes assigned to specific blocks with ad-
 210 ditional analysis. For example, if we perform K-means clustering on blocks or swap blocks of
 211 different objects, and interpret the semantics of factorized attributes. We observe that the individual
 212 blocks represent semantic attributes, such as colors, shapes, sizes, and positions of objects, which
 213 are utilized to generalize the policy into novel combinations of scenes.
 214

215 For non-object slots, \mathbf{z}_{bg} and \mathbf{z}_{ag} , we apply vanilla slot-attention updates using their corresponding
 216 update vectors $\mathbf{u}_{bg}, \mathbf{u}_{ag} \in \mathbb{R}^{D_{\text{slot}}}$, each processed with GRU and MLP independently
 217

$$\mathbf{z}_{n'} = \text{GRU}_{\phi_{n'}}(\mathbf{z}_{n'}, \mathbf{u}_{n'}) \quad \Rightarrow \quad \mathbf{z}_{n'}+ = \text{MLP}_{\phi_{n'}}(\text{LN}(\mathbf{z}_{n'})), \quad \text{where } n' \in \{bg, ag\}. \quad (7)$$

216 2.2 BLOCK TRANSFORMER POLICY
217

218 We propose a block transformer policy that utilizes interpretable attributes in the 3D block-slot
219 representations to efficiently train an agent for a goal-conditioned RL (GCRL) task. We first ex-
220 tract the decomposed slot embeddings using the pre-trained 3D block-slot encoder to represent
221 the current state $s \in \mathcal{S}$ and the goal $g \in \mathcal{G}$ for an RL task. Given the multi-view images for
222 the current state $\{\mathbf{I}_i^s\}$, the pre-trained 3D block-slot encoder extracts the N slots of latent em-
223 bedding $\mathbf{Z}^s = \{\mathbf{z}_{bg}^s, \mathbf{z}_{ag}^s, \mathbf{z}_{o_1}^s, \dots, \mathbf{z}_{o_{N-2}}^s\}$, where the object slots $\{\mathbf{z}_{o_i}^s\}$ are further decomposed
224 into M blocks. Similarly, the goal images $\{\mathbf{I}_i^g\}$, provide the latent embedding for the goal state
225 $\mathbf{Z}^g = \{\mathbf{z}_{bg}^g, \mathbf{z}_{ag}^g, \mathbf{z}_{o_1}^g, \dots, \mathbf{z}_{o_{N-2}}^g\}$. The goal-conditioned policy $\pi^*(s, g)$ maps these structured rep-
226 resentations to actions in \mathcal{A} to maximize the reward:

$$227 \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r_t \right], \quad \text{where } r_t = r(s_t, a_t, g) \quad (8)$$

228 where $\gamma \in [0, 1)$ is the discount factor, $r : \mathcal{S} \times \mathcal{G} \rightarrow \mathbb{R}$ is the reward function designed to minimize
229 the discrepancy between the current and the goal state. By leveraging block-level attributes and agent
230 information in the structured latent embedding, the policy can accurately interpret alignment against
231 the desired goal. Consequently, the policy is efficient in training and achieves stable performance
232 compared to policies employing permutation-invariant OCR (Haramati et al., 2024; Zadaianchuk
233 et al., 2020).

234 Our block transformer policy employs block-wise cross-attention, instead of object-wise cross-
235 attention, such that the agent focuses on manipulating target objects with correct attributes, as de-
236 scribed in Figure 2. We can interpret and combine factorized attributes within the blocks to scrutinize
237 critical relations for the desired policy, which significantly enhances the performance. Suppose the
238 task is to relocate objects with the matched attributes into the goal position. In that case, we first
239 match objects within the current state and the goal by comparing their semantic attributes using
240 Hungarian matching, while ignoring their positions. Then, we compute block-wise cross-attention
241 between the matched objects. The matched object slot in the current state $\mathbf{z}_{o_n}^s \in \mathbb{R}^{M \times D_{\text{block}}}$ serves
242 as the query, and the corresponding object latent in the goal state $\mathbf{z}_{o_n}^g \in \mathbb{R}^{M \times D_{\text{block}}}$ acts as the keys
243 and values. Then we pool the resulting attention features $\{\mathbf{h}_{n,m}\}_{m=1}^M$ within the object’s blocks:

$$244 \mathbf{H}_n = \text{CrossAttn}(\mathbf{z}_{o_n}^s, \mathbf{z}_{o_n}^g), \quad \mathbf{h}_n = \text{PoolAttn}(\mathbf{H}_n). \quad (9)$$

245 As the latent structure correctly disentangles components with factorized attributes, the resulting at-
246 tention feature successfully encodes the pairwise relationship between matched objects in the current
247 and goal states.

248 In addition to the features extracted from matched objects \mathbf{h}_n , the policy incorporates the agent
249 slot features of both the current state \mathbf{z}_{ag}^s and goal state \mathbf{z}_{ag}^g , and the current action \mathbf{a}_t . Utilizing
250 the agent representation, which is the entity that produces the action, is expected to improve the
251 sample efficiency of vision-based RL (Pore et al., 2024). Additionally, the performance of the policy
252 improves when the attention-based policy network handles the action input separately (Haramati
253 et al., 2024). A self-attention module (Vaswani et al., 2017) aggregates the information to output
254 \mathbf{P} , followed by an MLP, which predicts the final output composed of action for the actor and the
255 Q-values for the critic (Figure 1(b)):

$$256 \mathbf{P} = \text{SelfAttn}([\mathbf{h}_1, \dots, \mathbf{h}_{N-2}, \mathbf{z}_{ag}^s, \mathbf{z}_{bg}^s, \mathbf{a}_t]), \quad \text{Output} = \text{MLP}(\text{AttnPool}(\mathbf{P})). \quad (10)$$

257 An extended architectural description of this policy network is provided in Appendix A.1

260 3 RELATED WORK
261

262 **3D object-centric learning.** Several recent works have expanded object-centric learning from 2D
263 to 3D representations. They train implicit representations with rendering losses in novel views,
264 inspired by advances in novel view synthesis. OSRT (Sajjadi et al., 2022a) and COLF (Smith et al.,
265 2022) employ an efficient light-field decoder and can quickly decompose complex static scenes. On
266 the other hand, a slot attention module can adapt formulations in neural radiance field, and be trained
267 to reduce rendering losses (Yu et al., 2021; Stelzner et al., 2021; Qi et al., 2023; Luo et al., 2024; Liu
268 et al., 2024). However, all these methods are trained on static scenes without interaction or mutual
269 occlusion, and cannot accurately reason about physical context in dynamic scenes. Our approach
270 additionally provides a highly structured latent representation, enabling systematic reasoning.

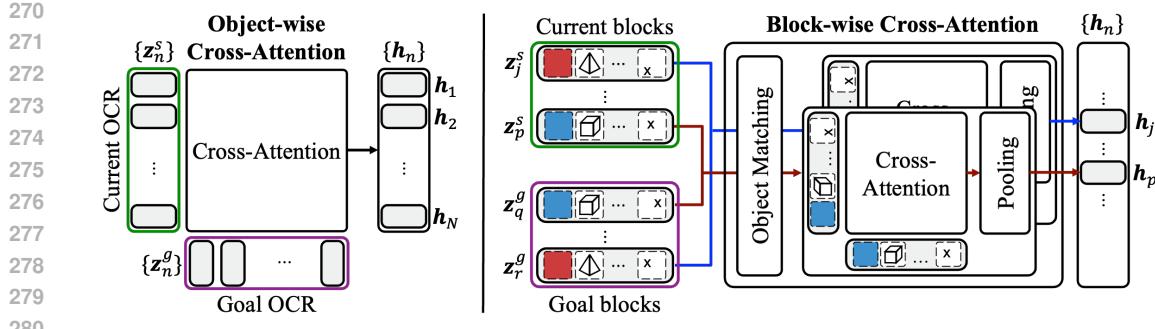


Figure 2: **Comparison between object-wise cross-attention and block-wise cross-attention:** When computing cross-attention between the current and the goal states of the scene, our block transformer policy utilizes a novel structure of decomposed *blocks*, rather than objects. (a) **Object-wise cross-attention** is applied between the set of permutation-invariant slots, without distinguishing objects, agents, and background. (b) **Block-wise cross-attention** operates between blocks, which are consistently decomposed attributes within object slots. By observing the attributes directly, we can stably match corresponding objects in the current and goal representations, and efficiently apply cross-attention to the blocks of desired objects.

Object-Centric Learning for Structured Representation. Structured representation methods factor object representations into interpretable attributes (e.g., color, shape, position), which can be composed to produce different combinations of the scenes. SysBinder (Singh et al., 2022) introduces a “block-slot” design to learn such factors in an unsupervised manner. Dreamweaver (Baek et al., 2025) discovers both static and dynamic primitives (e.g., motion direction, speed) for compositional world models in video data. Deep Latent Particles (DLP) (Daniel & Tamar, 2022) and DLPv2 (Daniel & Tamar, 2023) represent scenes as probabilistic particles that encode position and appearance. Including other approaches that factorize object-centric representations (Kosiorek et al., 2018; Stanić & Schmidhuber, 2019; Jiang et al., 2019; Crawford & Pineau, 2019), these approaches often lack explicit 3D reasoning, limiting their robustness to occlusion, viewpoint changes, and real-world interaction.

Object-Centric Reinforcement Learning. Object-centric representations in RL enable policies that generalize across diverse scenes with fewer samples. POCR (Shi et al., 2024) integrates “what” (semantic) and “where” (mask) embeddings, improving zero-shot and imitation learning performance in cluttered manipulation tasks. Entity-Centric RL (ECRL) (Haramati et al., 2024) employs DLPv2 perception (Daniel & Tamar, 2023) together with an Entity Interaction Transformer (EIT)—an attention mechanism-based policy architecture—but struggles to recombine attributes with novel objects. PaLM-E (Driess et al., 2023) grounds language models in slot-based scene representations for embodied reasoning, though it falters on unseen property combinations. Additional works (Qi et al., 2024; Watters et al., 2019; Wu et al., 2022; Yoon et al., 2023; Zadaianchuk et al., 2020; 2022; Zhou et al., 2022) enhance RL with structured perception, yet most methods still fail on compositional variations of shape, size, and color, highlighting the need for richer, disentangled, and 3D-aware representations.

4 EXPERIMENTS

4.1 3D BLOCK-SLOT REPRESENTATION

We first analyze our scene representation, which captures a 3D-aware scene representation with factorized components. For the 3D-awareness, we evaluate the quality of generated novel-view images with PSNR. The object decomposition is evaluated with ForeGround Adjusted Rand Index (FG-ARI) (Hubert & Arabie, 1985; Rand, 1971; Sajjadi et al., 2022a). The additional factorization in block-wise attributes is evaluated in three perspectives: Disentanglement (D), Completeness (C), and Informativeness (I), as proposed in Singh et al. (2022). These values are extracted by training a gradient boost tree algorithm (Locatello et al., 2019) to map the ground-truth factor to the learned representation.

324	Dataset	Method	PNSR	FG-ARI	D	C	I
325	Clevr3D	OSRT	31.57	0.365	0.140	0.083	0.452
		Ours	31.11	0.942	0.867	0.789	0.844
328	IsaacGym3D	OSRT	27.35	0.321	0.403	0.222	0.769
		Ours	26.55	0.619	0.659	0.550	0.938

330
 331 **Table 1: 3D awareness with novel-view synthesis and decomposition performance:** Our method
 332 outperforms OSRT across FG-ARI, disentanglement (D), completeness (C), and informativeness (I),
 333 while achieving comparable PSNR. The results indicate that our approach improves object decom-
 334 position and effectively disentangles information into latent vectors, while maintaining 3D-aware
 335 representation.
 336

337 **Datasets.** We evaluate the performance of scene representation using two datasets: Clevr3D and
 338 IsaacGym3D. Clevr3D builds upon the CLEVR dataset (Johnson et al., 2017; Stelzner et al., 2021;
 339 Girdhar & Ramanan, 2019), a widely used dataset for object-centric representations. We employ
 340 the data generation pipeline (Li et al., 2020; 2021; Lin et al., 2020) to construct Clevr3D, which
 341 comprises multi-view observations of multiple objects exhibiting rich combinations of attributes.
 342 Each scene consists of a white background and a set of randomly positioned objects, with diverse
 343 attributes. Object attributes include three types of shapes (cube, cylinder, sphere), two types of sizes
 344 (small, large), and eighteen colors combined with materials (matte, glossy). The cameras are placed
 345 randomly on the surface of a hemisphere, capturing six different viewpoints of each scene.
 346

347 The IsaacGym3D dataset contains more realistic scenarios, in which a robot manipulates objects
 348 with randomized actions on a white table. Objects in the scene are randomly assigned one of three
 349 types of shapes (cube, cylinder, cone), two types of sizes (small, large), and nine types of colors.
 350 They are placed at arbitrary (x, y) positions within the boundaries of the table. The cameras are
 351 randomly placed on the surface of a hemisphere to capture diverse perspectives of the environment,
 352 resulting in a challenging setting for interpreting agent behavior.
 353

354 **Results.** We compare the performance of our 3D block-slot representation against OSRT (Sajjadi
 355 et al., 2022a), which produces a 3D object-centric representation. They incorporate a similar en-
 356 coder and decoder architecture, but treat individual components with permutation-invariant slots.
 357 In contrast, our approach distinguishes between foreground objects, agents, and backgrounds, and
 358 separately handles factorized blocks with block-slot attention. The quantitative results are shown in
 359 Table 1. Our results achieve comparable novel-view synthesis results (PSNR) but clearly outperform
 360 in distinguishing different components (FG-ARI). The additional factor-binding step enhances the
 361 ability to disentangle different attributes in the latent vectors, as indicated by D, C, and I scores,
 362 measured using the DCI framework proposed in (Singh et al., 2022) On the other hand, the 3D slot
 363 produced by OSRT misses such a structure and fails to assign consistent information to a dedicated
 364 location.
 365

366 In Appendix B.1, we further visualize the information embedded in each block by clustering it
 367 based on the values contained within the block. After the interpretable properties, such as color,
 368 size, shape, and position, are clearly separated into different blocks, we can utilize the structured
 369 representation to manipulate attributes and create a novel combination of the 3D scene. Figure 3
 370 demonstrates exemplary results of novel-view synthesis after swapping blocks between two objects.
 371 With the 3D information, we can even emulate realistic occlusion effects. As demonstrated in Sec-
 372 tion 4.2, such generative capability highly enhances the performance of solving RL tasks. We further
 373 provide additional qualitative visualizations, including novel view synthesis, object decomposition,
 374 and disentanglement analysis in Appendix B.1. In addition, Appendix B.4 presents ablation studies
 375 on the number of blocks, number of prototypes, the auxiliary mask loss, and mixture structure
 376 of the slot-attention module and block-slot attention module. Appendix B.2 further provides the
 377 single-view inference test results as well as an analysis of the training tendencies.
 378

379 4.2 GOAL-CONDITIONED REINFORCEMENT LEARNING

380 We exploit the structured representation with the block-transformer policy to perform goal-
 381 conditioned RL. The agent must push the objects to the desired positions based on the given goal
 382

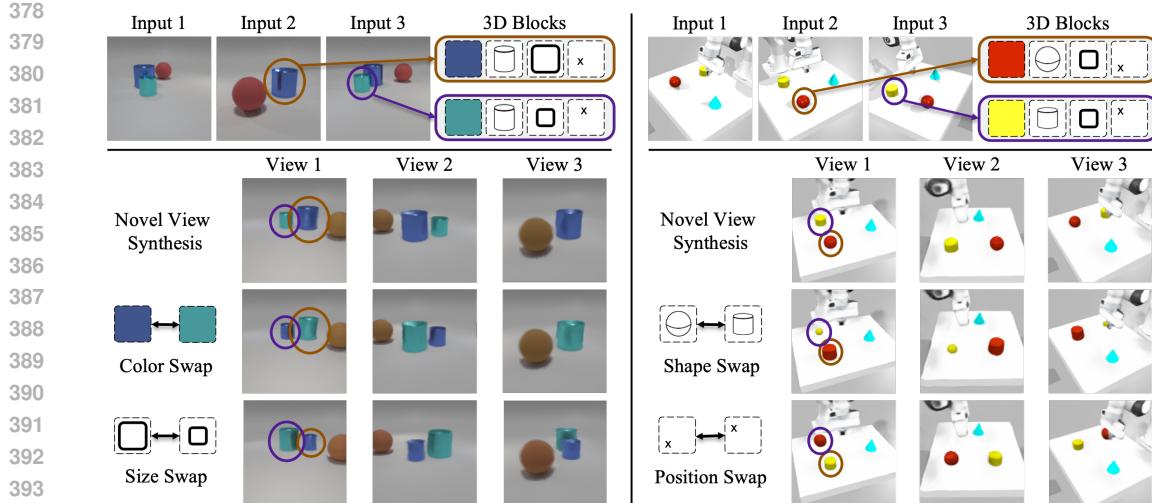


Figure 3: **Novel view synthesis after block manipulation:** After obtaining the structured latent representation of the scene (top), we can manipulate block-wise attributes to create a novel combination of properties in the 3D representations, which can be consistently synthesized in novel view images (bottom). The left images show the results after swapping the color and size blocks in a Clevr3D scene, while the right images are synthesized after swapping the shape and 3D position blocks in the IsaacGym3D dataset.

images. The ground-truth reward is the mean of the negative L_2 distance between each object’s achieved goal position and its desired goal position. We define *success* as a condition when all N objects are within a threshold R distance from their respective desired goal. The average return is the immediate ground-truth rewards over T timesteps.

We set the RL environment for tabletop object manipulation using the IsaacGym simulator (Makoviychuk et al., 2021). We use the same environmental configuration of IssacGym3D dataset in Section 4.1, where cameras are fixed to capture the front, left, and right views of a Franka Panda robot arm pushing objects on a white table (Haramati et al., 2024) (see Figure 1, right). In each episode, two objects are randomly respawned on the table with random shapes (cube, cone, cylinder) and colors. We adopt an off-policy RL algorithm, TD3 (Fujimoto et al., 2018) with hindsight experience replay (Andrychowicz et al., 2017). The policy architecture is usable with other on-policy or off-policy algorithms, providing flexibility for various state properties. Appendix A.3 provides additional information on the RL environment configuration.

Baselines. We evaluate the performance of three structured scene representations with two policy architectures, including ours. Before training the policy, we first pre-train the scene representation model using the IsaacGym3D dataset. In addition to 3D latent vectors of OSRT in Section 4.1, we also compare against DLPv2 (Daniel & Tamar, 2023), one of the best-performing 2D object-centric representations in goal-conditioned RL. It provides a set of disentangled latent vectors in the form of P foreground particles extracted from a single image $I \in \mathbb{R}^{H \times W \times 3}$. The 2D representations are trained with a separate dataset composed of single-view images. OSRT extracts a set of 3D object-centric latent vector set, $\{\mathbf{z}_n\}$, from multi-view images of a scene $\{\mathbf{I}_i \in \mathbb{R}^{H \times W \times 3}\}$. Implementation details of the pre-training procedures for the baselines are provided in Appendix A.2

The pre-trained visual encoder extracts structured latent embeddings of the current and goal states, which serve as the input to the policy architecture. In addition to the proposed Block Transformer (BT) policy, we adopt the Entity Interaction Transformer (EIT) (Haramati et al., 2024) as a baseline, which is a state-of-the-art object-centric policy for goal-conditioned RL.

Results. Our agent observes environments in three categories: in-distribution evaluation (ID), compositional generalization (CG), and out-of-distribution generalization (OOD). The ID refers to the scenes with objects that were observed during training. In contrast, CG and OOD are designed to

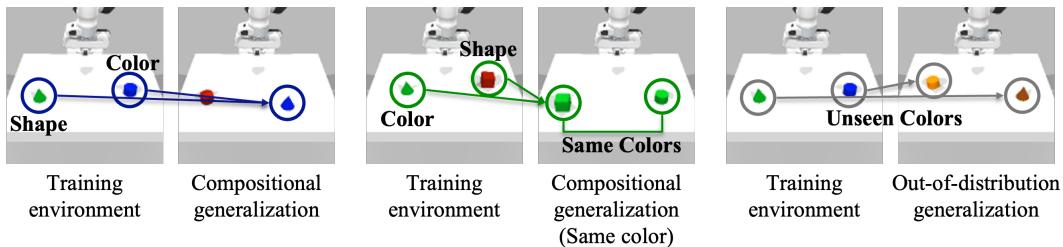


Figure 4: **Evaluation scenarios for compositional and out-of-distribution generalization:** Composition generalization environments consist of objects with properties during training, but novel in their combinations. Out of such unseen combinations, we separately evaluate cases with objects of the same color when the factorization of attributes is unsuccessful. Out-of-distribution environments use objects with colors that were not present in the training set.

	Representation w/ Policy	DLPv2 w/ EIT	OSRT w/ EIT	Ours w/ EIT	Ours w/ BT
Success Rate	ID	0.984 ± 0.005	0.980 ± 0.011	0.984 ± 0.005	0.967 ± 0.017
	CG	0.747 ± 0.030	0.758 ± 0.021	0.773 ± 0.048	0.895 ± 0.011
	CG (same color)	0.388 ± 0.064	0.414 ± 0.167	0.682 ± 0.118	0.837 ± 0.035
	OOD	0.422 ± 0.170	0.700 ± 0.160	0.582 ± 0.270	0.828 ± 0.099
Avg Return	ID	-0.189 ± 0.001	-0.175 ± 0.013	-0.184 ± 0.014	-0.218 ± 0.003
	CG	-0.365 ± 0.027	-0.372 ± 0.002	-0.382 ± 0.041	-0.310 ± 0.016
	CG (same color)	-0.594 ± 0.018	-0.635 ± 0.068	-0.494 ± 0.096	-0.388 ± 0.016
	OOD	-0.587 ± 0.090	-0.414 ± 0.139	-0.591 ± 0.306	-0.338 ± 0.064

Table 2: **Performance of goal-conditioned RL:** Our proposed 3D block-slot representation, combined with a block transformer (BT) policy, can effectively interpret goal conditions and exhibit superior performance in various scenarios. We compare the performance of goal-conditioned RL tasks employing different object-centric representations and policy architectures in four settings: ID (in-distribution evaluation), CG (compositional generalization), CG (same color) (compositional generalization with same colored objects), and OOD (out-of-distribution generalization). Results are calculated on 400 randomly sampled goals per seed, with all reported metrics averaged over three random seeds.

analyze the generalization performance of the representation in unseen environments, as depicted in Figure 4. CG uses novel combinations of shapes and colors - the individual factors are encountered during policy training, but not in the same combinations within the same object. OOD includes instances of attributes that were not encountered during policy training. From the OOD cases, we can check how effectively the agent can adapt to zero-shot environments.

Table 2 contains an evaluation of performing goal-conditioned RL tasks with various scene representations and policy architectures. In our model, the agent generalizes well to novel factor compositions, achieving performance comparable to that in the in-distribution evaluation. In contrast, baseline models experience a significant performance drop compared to ID.

Among many failure cases in CG scenarios, we have noticed that sharing the same factor between two objects can severely confuse the instances in the scene. CG (same color) tackles these particularly challenging cases, where the agent must manipulate two objects of the same color. Notably, 3D block-slot representations are highly effective compared to unstructured or 2D representations, as they capture rich visual features within blocks and distinguish same-colored objects, even though such configurations were not seen during training. BT further enhances performance by carefully matching the desired instances with the correct attributes, a task that cannot be achieved with entity-wise attention in EIT. The combination of 3D block-slot representations with the block transformer achieves results comparable to those of ID.

For this evaluation of OOD scenarios, we randomly spawned objects with six unseen colors, all of which were absent in the training distribution. The results show that our model generalizes better

	Generalization Settings	ID	CG	CG (same color)	OOD
DLPv2 w/ EIT	ID Multi-View	0.984 ± 0.005	0.747 ± 0.030	0.388 ± 0.064	0.422 ± 0.170
	OOD Multi-View	0.059 ± 0.014	0.056 ± 0.026	0.046 ± 0.023	0.078 ± 0.037
Ours w/ BT	ID Multi-View	0.967 ± 0.017	0.895 ± 0.011	0.837 ± 0.035	0.828 ± 0.099
	OOD Multi-View	0.948 ± 0.005	0.877 ± 0.024	0.818 ± 0.025	0.865 ± 0.047
	ID Single-View	0.891 ± 0.004	0.705 ± 0.023	0.700 ± 0.038	0.727 ± 0.105
	OOD Single-View	0.802 ± 0.028	0.726 ± 0.039	0.676 ± 0.010	0.758 ± 0.021

Table 3: **Success rate of view-generalization:** Our model, which leverages a pre-trained 3D block-slot representation and a block transformer (BT), effectively captures 3D object information in a viewpoint-agnostic manner and achieves state-of-the-art performance across diverse generalization settings. We evaluate generalization in goal-conditioned RL tasks under four viewpoints settings: ID Multi-View (in-distribution multi-view), ID Single-View (in-distribution single-view), OOD Multi-View (out-of-distribution multi-view), and OOD Single-View (out-of-distribution single-view). Results are computed over 400 randomly sampled goals per seed, with all reported metrics averaged over three random seeds.

than the other baseline methods in the OOD setting. We report additional RL evaluation results and analysis in Appendix B.3.

Table 3 confirms that our policy can generalize to unseen viewpoints, which implies that it obtains a 3D-aware representation. After training the policy with the front, left, and right camera viewpoints, the view-invariance of the performance is tested on novel viewpoints across multiple generalization scenarios (ID, CG, CG (same color), and OOD). Our method shows only minimal degradation in performance across challenging scenarios, demonstrating strong generalization. In contrast, the 2D baseline with EIT relies on per-view positional encoding, which overfits to view-specific 2D features, and its policy fails under unseen viewpoints.

A notable property of our approach is that it remains effective even when the number and configuration of views at test time differ from training. A policy trained with multi-view observations continues to succeed when provided with only a single training view, and even with a completely novel single-view that appears during training, while still preserving its generalization behavior. This demonstrates that a single-view can provide sufficient information for the policy to infer the necessary 3D-aware object properties. The modest performance drop in the single-view setting is primarily due to robot-induced occlusions, which cannot be fully resolved without multi-view information. Additional results using a suboptimal mask are provided in Appendix B.4

5 CONCLUSION

We propose a 3D block-slot representation, a 3D-aware structured representation that integrates 3D object-centric learning with attribute factorization. We successfully decompose background, foreground, and agent, and can disentangle object factors not only in synthetic static scenes but also in simulated robot environments. The block transformer policy effectively applies structured latent sets to the RL framework, leveraging both the advantages of factor-level input and object-level computation. Compared to prior methods using pre-trained object-centric representations, our policy network improves the performance of compositional generalization and out-of-distribution generalization. The results indicate that the factorized latent structure can be directly used in the policy network, demonstrating superior generalization. While our framework adopts one-to-one static attribute-based matching between current and goal representations, this assumption may be insufficient in scenarios requiring more flexible correspondence strategies, such as matching multiple objects to a single goal. Extending our approach to support more dynamic or many-to-one matching schemes is an important direction for future work, particularly in more complex environments. Furthermore, the 3D block-slot representations, which encode semantics akin to language tokens, have the potential to bridge the gap between 3D perception and Vision-Language-Action (VLA) frameworks.

540 REFERENCES
541

542 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
543 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
544 play. *Advances in neural information processing systems*, 30, 2017.

545 Junyeob Baek, Yi-Fu Wu, Gautam Singh, and Sungjin Ahn. Dreamweaver: Learning compositional
546 world representations from pixels. *arXiv e-prints*, pp. arXiv–2501, 2025.

547 Ondrej Biza, Sjoerd Van Steenkiste, Mehdi SM Sajjadi, Gamaleldin F Elsayed, Aravindh Mahen-
548 dran, and Thomas Kipf. Invariant slot attention: Object discovery with slot-centric reference
549 frames. *arXiv preprint arXiv:2302.04973*, 2023.

550 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
551 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
552 the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

553 Chang Chen, Fei Deng, and Sungjin Ahn. Roots: Object-centric representation and rendering of 3d
554 scenes. *Journal of Machine Learning Research*, 22(259):1–36, 2021.

555 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
556 ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
557 for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

558 Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolu-
559 tional neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
560 ume 33, pp. 3412–3420, 2019.

561 Tal Daniel and Aviv Tamar. Unsupervised image representation learning with deep latent particles.
562 *arXiv preprint arXiv:2205.15821*, 2022.

563 Tal Daniel and Aviv Tamar. Ddlp: Unsupervised object-centric video prediction with deep dynamic
564 latent particles. *arXiv preprint arXiv:2306.05957*, 2023.

565 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
566 Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied mul-
567 timodal language model. 2023.

568 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
569 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.

570 Rohit Girdhar and Deva Ramanan. Cater: A diagnostic dataset for compositional actions and tem-
571 poral reasoning. *arXiv preprint arXiv:1910.04744*, 2019.

572 Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manip-
573 ulation from pixels. *arXiv preprint arXiv:2404.01220*, 2024.

574 Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2(1):193–218,
575 1985.

576 Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative world
577 models with scalable object representations. *arXiv preprint arXiv:1910.02384*, 2019.

578 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
579 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
580 reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
581 pp. 2901–2910, 2017.

582 Jinwoo Kim, Janghyuk Choi, Jaehyun Kang, Changyeon Lee, Ho-Jin Choi, and Seon Joo Kim.
583 Leveraging image augmentation for object manipulation: Towards interpretable controllability in
584 object-centric learning. *arXiv preprint arXiv:2310.08929*, 2023.

585 Avinash Kori, Francesco Locatello, Ainkaran Santhirasekaram, Francesca Toni, Ben Glocker, and
586 Fabio De Sousa Ribeiro. Identifiable object-centric representation learning via probabilistic slot
587 attention. *Advances in Neural Information Processing Systems*, 37:93300–93335, 2024.

594 Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer, repeat:
 595 Generative modelling of moving objects. *Advances in Neural Information Processing Systems*,
 596 31, 2018.

597 Nanbo Li, Cian Eastwood, and Robert Fisher. Learning object-centric representations of multi-
 598 object scenes from multiple views. *Advances in neural information processing systems*, 33:5656–
 599 5666, 2020.

600 Nanbo Li, Muhammad Ahmed Raza, Wenbin Hu, Zhaole Sun, and Robert Fisher. Object-centric
 601 representation learning with generative spatial-temporal factorization. *Advances in neural infor-
 602 mation processing systems*, 34:10772–10783, 2021.

603 Zhixuan Lin, Yi-Fu Wu, Skand Peri, Bofeng Fu, Jindong Jiang, and Sungjin Ahn. Improving genera-
 604 tive imagination in object-centric world models. In *International conference on machine learning*,
 605 pp. 6140–6149. PMLR, 2020.

606 Yu Liu, Baoxiong Jia, Yixin Chen, and Siyuan Huang. Slotlifter: Slot-guided feature lifting for
 607 learning object-centric radiance fields. In *European Conference on Computer Vision*, pp. 270–
 608 288. Springer, 2024.

609 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
 610 Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
 611 of disentangled representations. In *international conference on machine learning*, pp. 4114–4124.
 612 PMLR, 2019.

613 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 614 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
 615 tion. *Advances in neural information processing systems*, 33:11525–11538, 2020.

616 Rundong Luo, Hong-Xing Yu, and Jiajun Wu. Unsupervised discovery of object-centric neural
 617 fields. *arXiv preprint arXiv:2402.07376*, 2024.

618 Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
 619 David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
 620 gpu-based physics simulation for robot learning. *arXiv preprint arXiv:2108.10470*, 2021.

621 Cheol-Hui Min and Young Min Kim. Asimo: Agent-centric scene representation in multi-object
 622 manipulation. *The International Journal of Robotics Research*, 44(1):22–64, 2025.

623 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 624 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 625 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

626 Ameya Pore, Riccardo Muradore, and Diego Dall’Alba. Dear: Disentangled environment and agent
 627 representations for reinforcement learning without reconstruction. In *2024 IEEE/RSJ Interna-
 628 tional Conference on Intelligent Robots and Systems (IROS)*, pp. 650–655. IEEE, 2024.

629 Carl Qi, Dan Haramati, Tal Daniel, Aviv Tamar, and Amy Zhang. Ec-diffuser: Multi-object manip-
 630 ulation via entity-centric behavior generation. *arXiv preprint arXiv:2412.18907*, 2024.

631 Di Qi, Tong Yang, and Xiangyu Zhang. Slot-guided volumetric object radiance fields. *Advances in
 632 Neural Information Processing Systems*, 36:65766–65783, 2023.

633 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
 634 mann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of machine
 635 learning research*, 22(268):1–8, 2021.

636 William M Rand. Objective criteria for the evaluation of clustering methods. *Journal of the Ameri-
 637 can Statistical association*, 66(336):846–850, 1971.

638 Alireza Rezazadeh, Athreyi Badithela, Karthik Desingh, and Changhyun Choi. Slotgnn: Unsuper-
 639 vised discovery of multi-object representations and visual dynamics. In *2024 IEEE Interna-
 640 tional Conference on Robotics and Automation (ICRA)*, pp. 17508–17514. IEEE, 2024.

648 Mehdi SM Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd Van Steenkiste, Filip Pavetic,
 649 Mario Lucic, Leonidas J Guibas, Klaus Greff, and Thomas Kipf. Object scene representation
 650 transformer. *Advances in neural information processing systems*, 35:9512–9524, 2022a.

651
 652 Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan, Suhani
 653 Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation trans-
 654 former: Geometry-free novel view synthesis through set-latent scene representations. In *Proceed-
 655 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6229–6238,
 656 2022b.

657 Junyao Shi, Jianing Qian, Yecheng Jason Ma, and Dinesh Jayaraman. Composing pre-trained object-
 658 centric representations for robotics from “what” and “where” foundation models. In *2024 IEEE
 659 International Conference on Robotics and Automation (ICRA)*, pp. 15424–15432. IEEE, 2024.

660 Dongseok Shim, Seungjae Lee, and H Jin Kim. Snerl: Semantic-aware neural radiance fields for
 661 reinforcement learning. In *International Conference on Machine Learning*, pp. 31489–31503.
 662 PMLR, 2023.

663
 664 Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural systematic binder. *arXiv preprint
 665 arXiv:2211.01177*, 2022.

666 Cameron Smith, Hong-Xing Yu, Sergey Zakharov, Fredo Durand, Joshua B Tenenbaum, Jiajun Wu,
 667 and Vincent Sitzmann. Unsupervised discovery and composition of object light fields. *arXiv
 668 preprint arXiv:2205.03923*, 2022.

669
 670 Aleksandar Stanić and Jürgen Schmidhuber. R-sqair: Relational sequential attend, infer, repeat.
 671 *arXiv preprint arXiv:1910.05231*, 2019.

672 Karl Stelzner, Kristian Kersting, and Adam R Kosiorek. Decomposing 3d scenes into objects via
 673 unsupervised volume segmentation. *arXiv preprint arXiv:2104.01148*, 2021.

674
 675 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 676 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 677 tion processing systems*, 30, 2017.

678 Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P Burgess, and Alexander Lerchner.
 679 Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven
 680 exploration. *arXiv preprint arXiv:1905.09275*, 2019.

681 Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsupervised
 682 visual dynamics simulation with object-centric models. *arXiv preprint arXiv:2210.05861*, 2022.

683
 684 Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training object-
 685 centric representations for reinforcement learning. *arXiv preprint arXiv:2302.04419*, 2023.

686 Hong-Xing Yu, Leonidas J Guibas, and Jiajun Wu. Unsupervised discovery of object radiance fields.
 687 *arXiv preprint arXiv:2107.07905*, 2021.

688
 689 Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforcement
 690 learning with object-centric representations. *arXiv preprint arXiv:2011.14381*, 2020.

691
 692 Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
 693 independently controllable subgoals. In *Conference on Robot Learning*, pp. 384–394. PMLR,
 694 2022.

695 Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for com-
 696 positional generalization in control. *arXiv preprint arXiv:2203.05960*, 2022.

697
 698
 699
 700
 701

APPENDIX

A IMPLEMENTATION DETAILS

A.1 BLOCK TRANSFORMER POLICY.

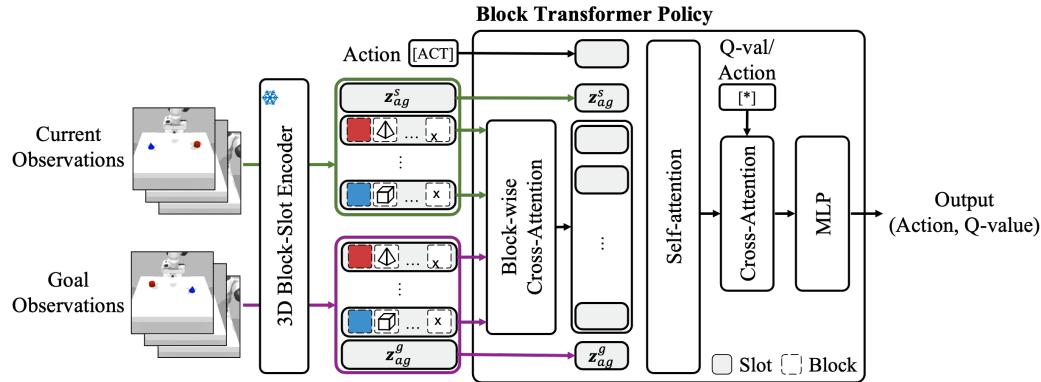


Figure 5: **Structure of block transformer policy:** The block transformer policy processes 3D block-slot representations using block-wise cross-attention, self-attention, and cross-attention with a pooling token, followed by an MLP to generate the final output.

In this section, we describe the architecture and implementation details of our block transformer policy, including its attention modules and how it integrates information from 3D block-slot representations.

The block transformer policy consists of block-wise cross-attention, self-attention and cross-attention modules, followed by an MLP as described in 2.2. We use only foreground blocks $\{z_{n,m}\}$ and agent slots $\{z_{ag}^s, z_{ag}^g\}$, as background information tends to be noisy in robotic object manipulation tasks. The self-attention module takes as input the output of block-wise cross attention $\{h_n\}$, linearly projected action information, and the slots extracted from current and goal observations, in order to model the interaction between agent information and object attributes. The output of self-attention module is then processed through a cross-attention mechanism with a pooling query token, followed by an MLP, to produce the final policy output.

A.2 PRE-TRAINING REPRESENTATIONS

In this section, we describe the pre-trained representations used in our experiments-DLPPv2, OSRT, and our proposed 3D block-slot representations-and introduce the Clevr3D and IsaacGym3D datasets used for training and evaluation. We first describe the datasets collected for pre-training, and then provide details of the 2D and 3D object-centric model.

Dataset. To investigate the capability of our 3D block-slot attention, we use datasets that represent multi-object scenes and robotic environments. First, we consider the CLEVR dataset, which has been widely used to evaluate decomposition & factorization quality. Clevr3D extends CLEVR (Johnson et al., 2017) by randomizing camera positions instead of using fixed viewpoints. Each scene contains three randomly placed objects with attributes independently sampled for shape, size, color and position. Object attributes include three types of shapes (cube, cylinder, sphere), two sizes (small, large), and eighteen colors resulting from combinations of nine base colors with two materials (glossy, matte). The dataset includes 20,000 training scenes (each with six views) and 1,000 test scenes.

In contrast, IsaacGym3D restricts the camera to the front side of the hemisphere, with viewpoints ranging from -90° to 90° , because the rear views are not necessary for training in the robot manipulation environments. Each scene includes three objects with randomized attributes: shape (cube,

756 cone, cylinder), size (small, large), and color (identical to Clevr3D). The dataset contains 30,000
 757 training scenes and 200 test scenes. For 2D object-centric learning, we additionally collect two
 758 fixed views-front and right views-for each scene.

759
 760
 761
 762
 763 **Baseline: OSRT.** We train OSRT (Sajjadi et al., 2022a) as the 3D object-centric learning baseline
 764 in our experiments. Given multi-view observations $\{\mathbf{I}_i \in \mathbb{R}^{H \times W \times 3}\}$, the SRT encoder aggregates
 765 features into a scene-level latent representation $\mathbf{F} \in \mathbb{R}^{L \times D}$. Using the \mathbf{F} , the vanilla slot attention
 766 module is employed to produce a set of slots $\{\mathbf{z}_n \in \mathbb{R}^D\}_{n=1}^N$. The Slot Mixer decoder then predicts
 767 RGB values for a given query ray, as described in Section 2.1. The model is trained with 4 slots of
 768 64 dimensions for Clevr3D, and 6 slots of 64 dimensions for IsaacGym3D. We set hyperparameters
 769 listed in Table 6. The model size is intentionally kept small (64-dimensional slots), as larger models-
 770 such as those with 1536-dimensional slots-incur significant computational cost and slow inference
 771 speed, which is not suitable for vision-based RL.

Module	Hyperparameter	Clevr3D		IsaacGym3D	
		OSRT	Ours	OSRT	Ours
General	Batch size	40	40	40	40
	Training steps	1.5M	1.5M	1.5M	1.5M
	Learning rate	0.0001	0.0001	0.0001	0.0001
Slot attention	Number of slots	4	4	4	4
	Slot size	64	64	64	64
	Number of blocks	N/A	8	N/A	8
Block-slot attention	Block size	N/A	8	N/A	8
	Number of prototypes	N/A	20	N/A	16
	MLP hidden dimension	512	512	512	512

787 Table 4: **Hyperparameters of OSRT and 3D block-slot attention used in our experiments.**

788
 789
 790
 791
 792 **Baseline: DLPv2.** We train DLPv2 (Daniel & Tamar, 2023) as the 2D object-centric learning
 793 baseline in our experiments. We follow the modification of DLPv2 by ECRL (Haramati et al.,
 794 2024), which sets the background particle features to have a dimensionality of 1, and discards them
 795 during RL training. DLPv2 extracts P particles \mathbf{z} from a single image $I \in \mathbb{R}^{H \times W \times 3}$, where $\mathbf{z} =$
 796 $(z_p, z_s, z_d, z_t, z_f) \in \mathbb{R}^{6+m}$. Each latent component- $z_p \in \mathbb{R}^2$, $z_s \in \mathbb{R}^2$, $z_d \in \mathbb{R}$, $z_t \in \mathbb{R}$ and
 797 $z_f \in \mathbb{R}^m$ -represents the particle's position, scale, depth, transparency and latent feature of visual
 798 appearance, respectively. We use the hyperparameters listed in Table 5.

799
 800
 801
 802
 803 **Baseline: SNeRL.** SNeRL (Shim et al., 2023) is designed to handle dynamic scenes by aggregat-
 804 ing multi-view information, including RGB, semantic labels, and distilled features, into a unified
 805 representation. However, while this approach is effective for simpler dynamics, our IsaacGym3D
 806 setting introduces non-stationary distributions with random object re-sampling, severe clutter, and
 807 continuous robot articulation that saturate SNeRL's encoding capacity. Consequently, SNeRL fails
 808 to establish stable radiance fields under such high stochasticity as shown in Figure, underscoring the
 809 necessity of our transformer-based architecture to robustly model complex manipulation environ-
 810 ments.

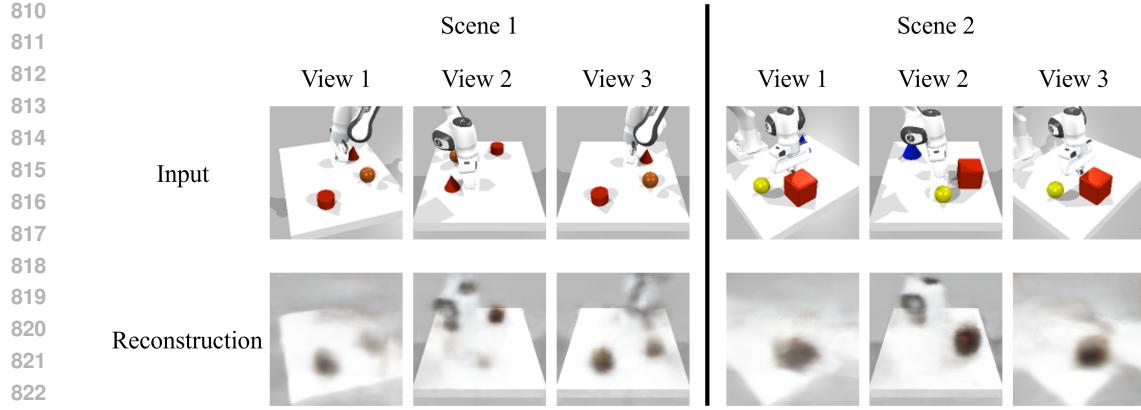


Figure 6: **Qualitative results of SNeRL encoder training on IsaacGym3D:** The failure to reconstruct the input images, particularly the inability to render the robot arm and manipulated objects despite background convergence, demonstrates that SNeRL’s encoder cannot effectively capture the complex dynamics and non-stationary distribution of our scene.

A.3 REINFORCEMENT LEARNING

In this section, we describe the reinforcement learning setup in our experiments, including the reward function, evaluation metrics, and implementation details of reinforcement learning.

Hyperparameter	DLP
Epochs	60
Batch Size	64
learning rate	0.0002
Reconstruction Loss	MSE
Prior Patch Size	16
Posterior KP P	24
Prior KP Proposals L	32
Prior Patch Size	16
Glimpse Size S	32
Feature Dim m	4
Background Feature Dim m_{bg}	1
β_{KL}	0.1

Table 5: **Hyperparameters of DLPv2 used in our experiments.**

Reward. The reward is computed from the ground-truth state of the environment and is referred to as the ground-truth reward. It is defined as the mean negative L_2 distance between each object and its corresponding goal position on the table:

$$r_{gt,t} = -\frac{1}{N_o} \sum_{i=1}^{N_o} \|g_i^d - g_i^a\|_2 \quad (11)$$

where each of $r_{gt,t}$, N_o , g_i^d , and g_i^a denotes the immediate ground-truth reward at time t , the number of objects, i th object’s desired goal, and i th object’s achieved goal, respectively.

Evaluation metrics. We adopt five evaluation metrics to evaluate the performance of reinforcement learning, following Haramati et al. (2024). Success indicates whether all objects have reached within a given distance threshold from their respective goals. Success fraction measures the proportion of individual objects that satisfy the same distance condition. Average return is the mean cumulative reward over the episode. Maximum object distance refers to the furthest distance between any object and its target at the end of episode, and average object distance is the mean of all

864 such distances across objects. The formal definitions are as follows:
 865

$$866 \quad \text{Success} : \mathbb{I} \left(\sum_{i=1}^{N_o} \mathbb{I}(\|g_i^d - g_i^a\|_2 < R) = N_o \right), \quad (12)$$

$$869 \quad \text{Success fraction} : \frac{1}{N_o} \sum_{i=1}^{N_o} \mathbb{I}(\|g_i^d - g_i^a\|_2 < R), \quad (13)$$

$$872 \quad \text{Average return} : \frac{1}{T} \sum_{t=1}^T r_t, \quad (14)$$

$$875 \quad \text{Maximum object distance} : \max_i \{\|g_i^d - g_i^a\|_2\}, \quad (15)$$

$$877 \quad \text{Average object distance} : \frac{1}{N_o} \sum_{i=1}^{N_o} \|g_i^d - g_i^a\|_2. \quad (16)$$

880 Here, T denotes the number of timesteps in an episode, r_t is the reward at timestep t , and R is the
 881 distance threshold used to determine success.

882 **Implementation of RL.** Our reinforcement learning implementation is based on the ECRL (Harami
 883 et al., 2024), built upon Stable-Baseline3 (Raffin et al., 2021), using TD3 (Fujimoto et al.,
 884 2018) and HER (Andrychowicz et al., 2017). For exploration, we employ both ε -greedy strategies
 885 and Gaussian action noise, following the approach of Zhou et al. (2022). All models are optimized
 886 using the Adam optimizer.
 887

889	Hyperparameter	EIT & BT
890	Batch size	512
891	Learning rate	5e-4
892	γ	0.98
893	τ	0.05
894	Exploration action noise	0.2
895	Exploration ε	0.3
896	HER ratio	0.3
	Number of episodes collected per training loop	16

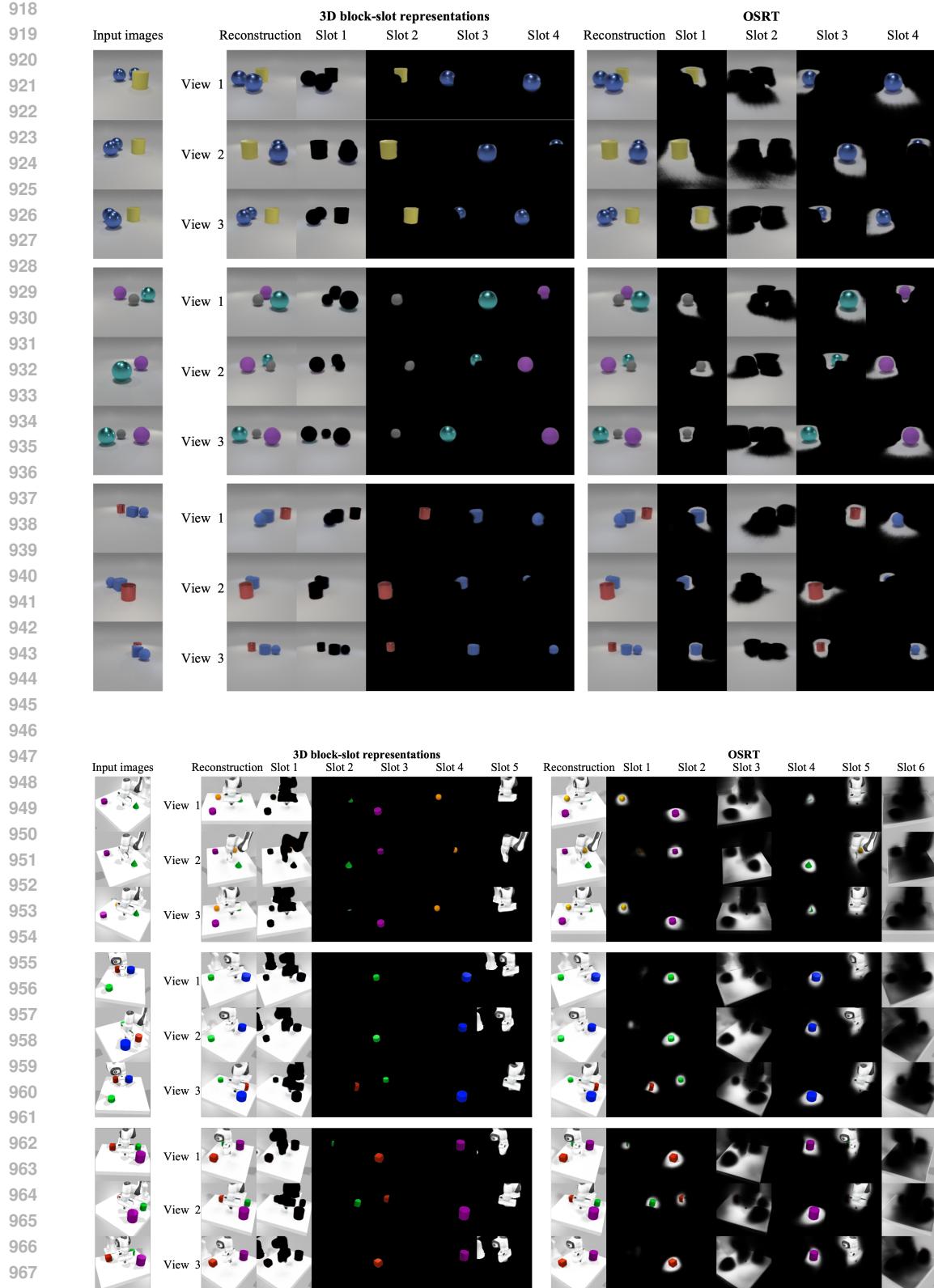
897 Table 6: **Hyperparameters of RL used in our experiments.**
 898

900 B ADDITIONAL RESULTS

901 B.1 QUALITATIVE ANALYSIS OF 3D BLOCK-SLOT REPRESENTATIONS

902 In this section, we present additional qualitative results to evaluate the effectiveness of our 3D block-
 903 slot representation. We include visual comparisons of novel view synthesis and object decomposi-
 904 tion between our method and OSRT on the Clevr3D and IsaacGym3D datasets. We also show
 905 additional examples of block manipulation through block swapping to demonstrate controllability
 906 of the blocks. Furthermore, we analyze factor disentanglement using feature importance matrices
 907 and clustering visualizations, which highlight how different blocks encode semantically meaningful
 908 components of the scene.
 909

910 **Novel view synthesis and object decomposition.** We present qualitative comparisons of novel
 911 view synthesis results produced by OSRT and our method on the Clevr3D and IsaacGym3D datasets.
 912 By leveraging multi-view observations, our method remains robust under occlusions and accurately
 913 reconstructs the scene. In particular, our per-slot reconstructions demonstrate more consistent de-
 914 composition of background and individual objects across views. Additionally, the robot agent is
 915 reliably assigned to a fixed slot index, effectively capturing the agent’s presence and action-related
 916 information.
 917



969 **Figure 7: Novel view synthesis and decomposition:** Our method achieves comparable novel view
970 synthesis quality to OSRT while providing significantly better separation of foreground objects,
971 background and agent components on the Clevr3D and IsaacGym3D datasets.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Block manipulation and novel view synthesis. We provide additional visualizations of novel view synthesis through block manipulation, as shown in Figure 3. In each scene, two objects are selected, and the specific blocks corresponding to their attributes are swapped. The model then synthesizes novel views based on the modified slot representations. In both Clevr3D and Isaac-Gym3D, our method successfully generates novel views with swapped blocks, while preserving the consistency of the remaining blocks.

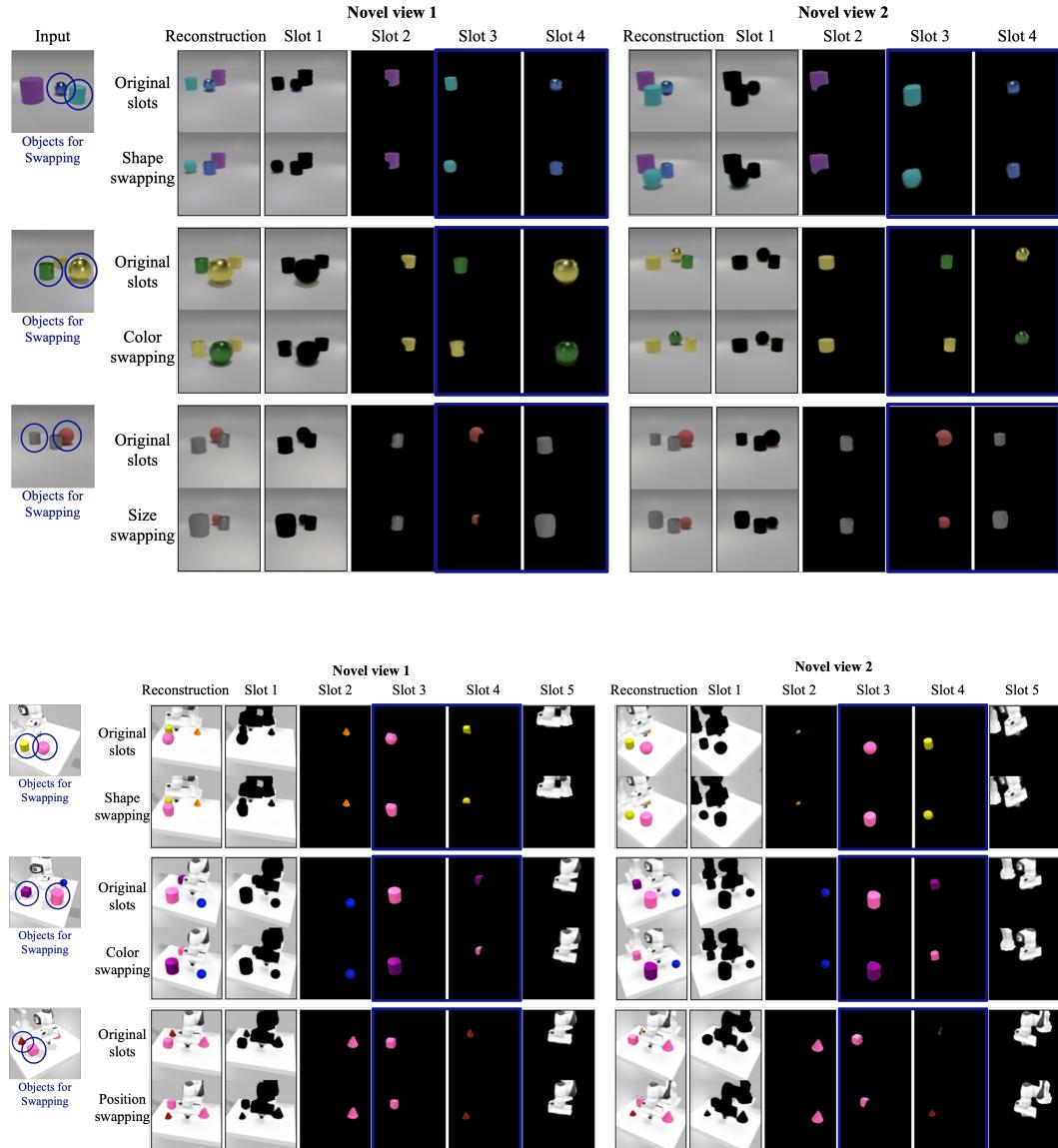


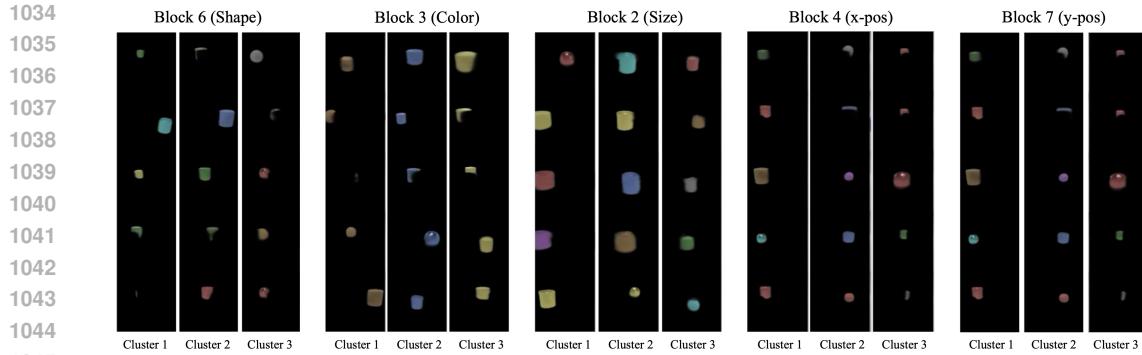
Figure 8: **Additional samples of block manipulation and novel view synthesis:** We show additional examples of block swapping, where blue-circled objects indicate the slots selected for attribute exchange.

1022
1023
1024
1025
K-means clustering of blocks. By extending k-means clustering from 2D to 3D block-slot representations, we identify meaningful clusters of blocks. Given multi-view observations $\{\mathbf{I}_i\}$, the 3D block-slot attention mechanism produces 3D block representations $\{\mathbf{z}_{n,m}\}$. Unlike the 2D slot attention mechanism, our model aggregates multi-view information into latent vectors and thus cannot directly produce attention maps from the encoder outputs. Therefore, we obtain the corresponding

1026 object images $\{y_n\}$ using the slot weights w from Slot Mixer decoder applied to a novel view. Using 1,050 objects in 350 scenes, each containing three independently randomized objects, we collect 1027 a set of pairs $\{(\mathbf{z}_{n,m}, y_n)\}$. K-means clustering of the blocks (with $K = 10$) reveals the underlying 1028 structure of the representation helps indentify which blocks encode specific object attributes. In 1029 block 6 of the Clevr3D dataset, cluster 1 corresponds to cylindrical objects, while cluster 3 corre- 1030 sponds to spherical objects. These results suggest that block 6 encodes shape-related attributes. 1031

1032

1033



1047 **Figure 9: K-means clustering of 3D block representations:** Clustering results indicate that differ- 1048 ent blocks capture distinct object attributes. For example, block 6 clustered by shape, block 3 by 1049 color, block 2 by size, block 4 by x-position, and block 5 by y-position.

1050

1051

1052

1053 **Feature importance matrix.** We visualize the feature importance matrices for our method and 1054 OSRT. As described in Section 4.1, we train a gradient boost tree to predict each ground-truth object 1055 attribute from the learned blocks, in order to evaluate how well the blocks capture and disentangle 1056 object attributes. Using the trained model, we extract the feature importance matrix, where each row 1057 corresponds to a ground-truth object factor, and each column represents a latent unit-either a slot in 1058 OSRT or a block in our method. The results show that our model learns more disentangled represen- 1059 tations, with different blocks specializing in distinct object attributes across both the Clevr3D and 1060 IsaacGym3D datasets. In contrast, the slot-based representations from OSRT show more entangled 1061 feature importance patterns, indicating less structured encoding of object attributes.

1062

1063

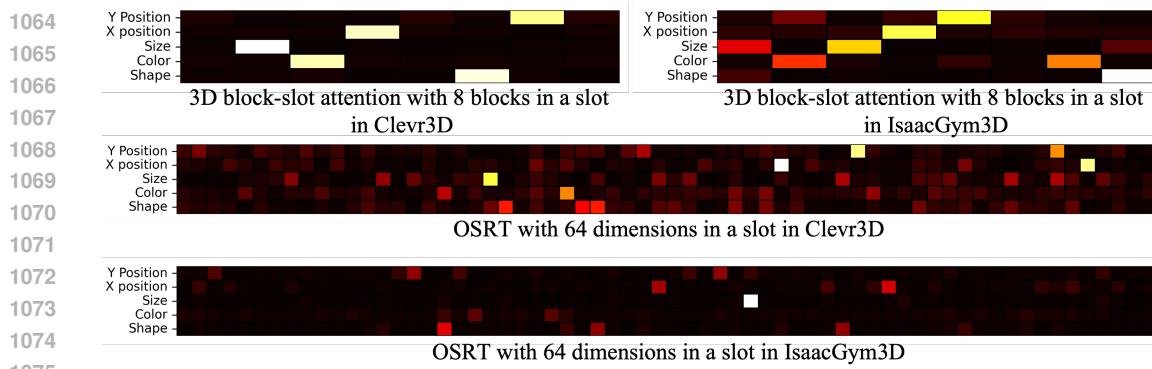


Figure 10: **Feature importance matrix:** Feature importances for predicting ground-truth object attributes from latent representations. Our method shows clear attribute-specific encoding in each block, while OSRT’s 3D slot representations are less disentangled.

1080
1081

B.2 QUANTITATIVE ANALYSIS OF 3D BLOCK-SLOT REPRESENTATIONS

1082
1083
1084
1085

In this section, we provide additional quantitative results to further demonstrate the 3D-awareness of our 3D block-slot representation. Specifically, we evaluate how a model trained under the multi-view setting on the IsaacGym3D dataset performs when only a single view is provided at inference time.

1086

1087
1088
1089
1090
1091

Single-view inference performance. Table 7 reports the performance of our 3D block-slot representation, which is trained with three input views in the multi-view setting but evaluated with only a single input view. The results show that the performance with a single view is nearly identical to that obtained with three views. The slight decrease in PSNR and DCI is expected, as occlusions are more challenging to resolve in the single-view setting compared to the multi-view setup.

1092
1093
1094
1095
1096

View settings	PNSR	FG-ARI	D	C	I
Multi-View	26.55	0.619	0.659	0.550	0.938
Single-View	25.90	0.623	0.626	0.558	0.915

1097
1098
1099

Table 7: **Novel-view synthesis and decomposition performance under multi-view and single-view settings:** Our model is trained in the multi-view setting, and the table compares its inference performance when using multiple views versus a single view.

1100
11011102
1103
1104
1105
1106
1107
1108

Training loss behavior. As shown in Figure 11, our model’s training objective consists of a reconstruction loss and an auxiliary mask loss. The reconstruction loss exhibits two notable drops during training. These correspond to the model first learning to synthesize the agent correctly from novel views using the agent slot, and later learning to reconstruct the objects through the object slots. After these two transitions, both the reconstruction loss and the mask losses decrease smoothly and stabilize over time. Importantly, block-wise separation also emerges shortly after successful object reconstruction, and the blocks become increasingly disentangled as training progresses.

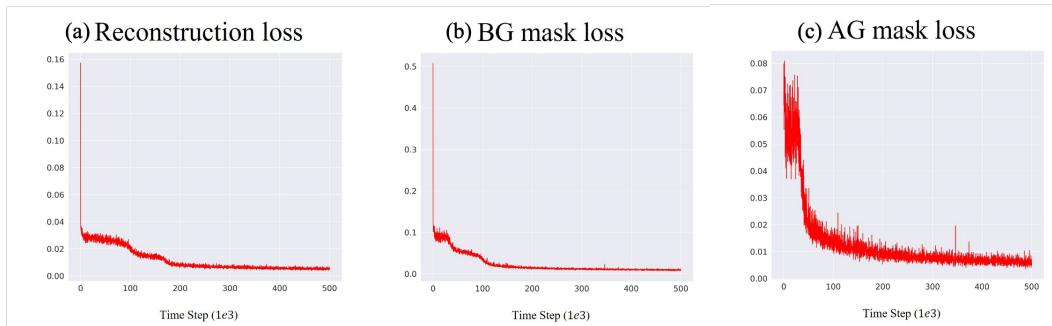
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
11191120
1121
1122
1123

Figure 11: **Train loss of 3D block-slot representation:** We show examples of suboptimal masks: background masks derived from DINO attention maps in simulation, and agent masks obtained from hand-eye calibration and robot kinematics in real-world settings.

1124
1125

B.3 ADDITIONAL RL RESULTS

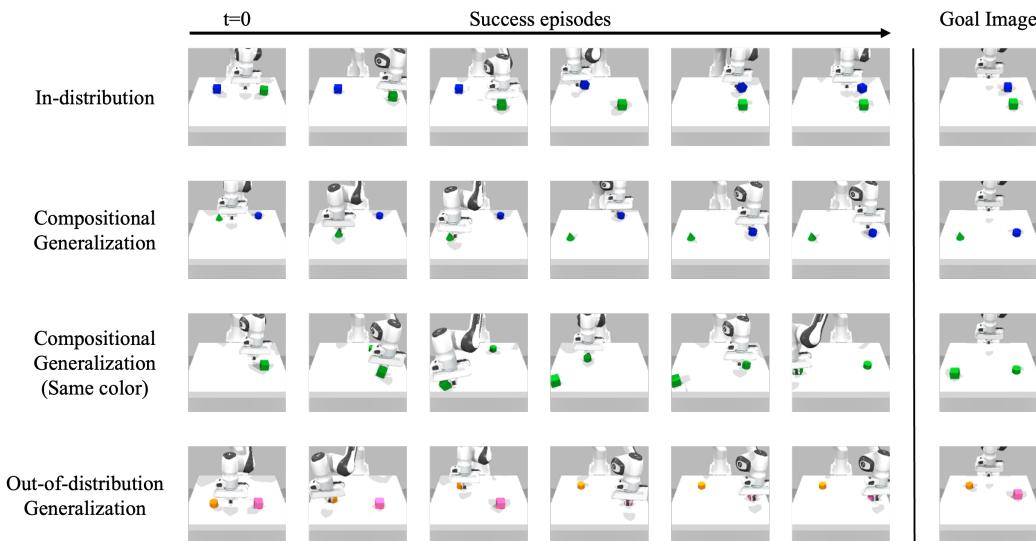
1126
1127
1128
1129
1130

In this section, we present additional reinforcement learning results to complement the main experiments. We include agent rollout visualization, additional evaluation metrics, and learning curves. These results provide a more comprehensive understanding of our policy’s performance and generalization capabilities.

1131
1132
1133

Rollouts of an agent across evaluation scenarios. We assess the generalization capability of our model across four different environment setups: in-distribution evaluation, compositional generalization, compositional generalization of same-color objects, and out-of-distribution generalization. As reported in Table 2, our method demonstrates strong performance across all scenarios. The visu-

1134 alized rollouts show that the agent successfully completes the task in all evaluation scenarios, further
 1135 demonstrating the robustness and generalization ability of our policy.
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145



1164 **Figure 12: Agent behavior in evaluation tasks:** Visualized rollouts demonstrate that the agent
 1165 completes the task successfully across all evaluation scenarios, including in-distribution, composi-
 1166 tional, and out-of-distribution settings.
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177

1178 **Additional evaluation metrics.** We evaluate the performance of four methods that combine pre-
 1179 trained representations with reinforcement learning policies. Following (Haramati et al., 2024), we
 1180 adopt five evaluation metrics: success rate, success fraction, average return, maximum object
 1181 distance, and average object distance. The results of success rate and average return are reported in
 1182 Table 2, while the remaining metrics are shown in Table 8. Success fraction measures the proportion
 1183 of individual objects that reach their respective goal positions. Maximum and average object
 1184 distances are computed based on the Euclidean distances between each object and its assigned goal. As
 1185 shown in Table 8, our method consistently outperforms all baselines across the additional metrics
 1186 as well. Specifically, it achieves higher success fraction and lower object distance errors, indicating
 1187 more precise and consistent goal-reaching behavior. These results further support the effectiveness
 1188 of our policy and its strong generalization capability across different evaluation settings. Formal
 1189 definitions of these metrics are provided in Appendix A.3

	Representation w/ Policy	DLPv2 w/ EIT	OSRT w/ EIT	Ours w/ EIT	Ours w/ BT
Success Fraction	ID	0.991 \pm 0.003	0.988 \pm 0.008	0.990 \pm 0.003	0.979 \pm 0.013
	CG	0.843 \pm 0.016	0.843 \pm 0.003	0.833 \pm 0.037	0.913 \pm 0.010
	CG (same color)	0.628 \pm 0.038	0.598 \pm 0.073	0.750 \pm 0.091	0.866 \pm 0.027
	OOD	0.654 \pm 0.113	0.812 \pm 0.107	0.720 \pm 0.192	0.888 \pm 0.061
Max Obj Dist	ID	0.026 \pm 0.001	0.021 \pm 0.003	0.022 \pm 0.001	0.030 \pm 0.003
	CG	0.084 \pm 0.010	0.083 \pm 0.005	0.083 \pm 0.016	0.049 \pm 0.005
	CG (same color)	0.167 \pm 0.012	0.172 \pm 0.037	0.108 \pm 0.034	0.066 \pm 0.004
	OOD	0.164 \pm 0.034	0.102 \pm 0.053	0.164 \pm 0.113	0.059 \pm 0.019
Avg Obj Dist	ID	0.018 \pm 0.001	0.016 \pm 0.002	0.017 \pm 0.002	0.023 \pm 0.002
	CG	0.054 \pm 0.005	0.054 \pm 0.002	0.056 \pm 0.009	0.039 \pm 0.003
	CG (same color)	0.103 \pm 0.006	0.114 \pm 0.017	0.081 \pm 0.021	0.052 \pm 0.003
	OOD	0.100 \pm 0.021	0.064 \pm 0.031	0.105 \pm 0.072	0.042 \pm 0.013

Table 8: **Additional evaluation metrics for the IsaacGym push task:** We report results across four settings: ID (in-distribution evaluation), CG (composition generalization), CG-same (compositional generalization with same colored objects), and OOD (out-of-distribution generalization). Each metric is averaged over 400 randomly sampled goals per seed.

Visualization of GCRL training. We employed four methods that combine pre-trained vision models with control policies in our setup. We visualize both the success rate and the average reward over training timesteps. Among these methods, the combination of 3D block-slot representations with an object-centric policy achieves the highest sample efficiency. This suggests that the structured 3D block representations are more effective for learning robotic manipulation tasks than unstructured 3D object-centric representations or 2D object-centric representations. In addition, our block-level transformer, while slightly less sample-efficient, demonstrates superior generalization performance in environments where the object-centric policy fails.

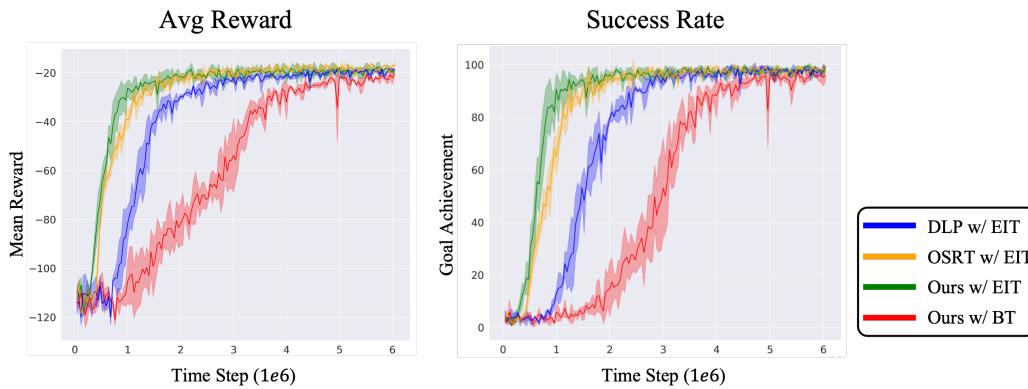


Figure 13: **Success rate and average reward during GCRL training:** Comparison of four methods using different pre-trained representations and policies. The 3D block-slot representation with object-centric policy achieves the fastest learning, and the block-level transformer shows stronger generalization in long-horizon tasks.

B.4 ADDITIONAL ABLATION STUDIES

In this section, we present additional ablation experiments. We investigate the effect of the number of blocks and prototypes in the 3D block-slot attention module, as well as the impact of the auxiliary

mask loss and its scaling. We also report GCRL results using suboptimal masks, showing that our model maintains strong performance even without ground-truth masks. Finally, we ablate the 3D block-slot attention architecture by comparing vanilla slot attention and block-slot attention, demonstrating the necessity of combining the two mechanisms.

Mixture structure of slot attention. We evaluate the contribution of the slot-attention module and the block-slot attention module used in our model for decomposing the background, agent, and objects. In our architecture, the background and agent slots are updated using the vanilla slot-attention module, whereas the object slots are updated using the block-slot attention module, which enables learning object attributes in a block-wise manner. In contrast, Figure 14 and Table 9 presents the results obtained when all slots are updated either with the vanilla slot-attention module or with the block-slot attention module.

When all slots are updated solely with vanilla slot-attention, which corresponds to applying our auxiliary mask loss to an OSRT, the background and agent can be assigned to consistent slots, but overall performance remains clearly inferior. This variant shows lower PSNR, FG-ARI, and DCI scores compared to our mixed architecture and, importantly, fails to disentangle object attributes into block-wise latent components. As a result, it cannot provide the structured 3D block-slot representations required by the block transformer policy that enables strong generalization. These findings indicate that vanilla slot-attention, even with auxiliary mask loss, is insufficient, and that our mixed design is necessary for accurate decomposition and attribute-aware reasoning.

Conversely, when all slots are updated using the block-slot attention module, the background and agent—which do not share the same attribute structure as objects—are forced to learn object-like attributes. This causes the model to fail at both correct object decomposition and block-wise attribute learning. These observations indicate that background and agent slots, which do not share object attributes such as color, shape, size, and position, must follow update pathways. Our combination of the vanilla slot-attention module for background and agent slots, the block-slot attention module for object slots, and the auxiliary mask loss enables successful decomposition of the background, agent, and objects in robotic scenes, while also supporting block-wise attribute learning for each object.

Model	PNSR	FG-ARI	D	C	I
Ours	26.55	0.619	0.659	0.550	0.938
Ours with only Slot-Attention	25.28	0.520	0.501	0.302	0.786

Table 9: **Comparison of slot-attention and our mixture slot-attention architecture:** We evaluate all slots are updated solely with the vanilla slot-attention module. The results are compared against the proposed mixture slot-attention, which applies vanilla slot-attention to the background and agent slots while updating foreground slots using the block-slot attention module..

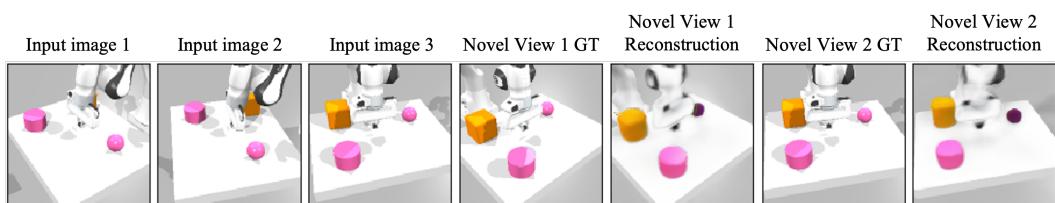


Figure 14: **Failure cases when updating all slots with the block-slot attention module:** When the block-slot attention module is applied to all slots—including background and agent slots—the model fails to learn stable attributes, leading to training collapse and incorrect scene decomposition.

Number of blocks. We evaluate the performance of the 3D block-slot representation under different numbers of blocks using three metrics: PSNR, FG-ARI, and DCI performance. Each model is trained with 4, 8, 16 blocks for approximately 600k iterations, while keeping the slot size fixed to 64; consequently, the block sizes are 16, 8, and 4, respectively. The results show a clear trend: increasing the number of blocks leads to noticeably improved disentanglement. In other words, as the number of blocks increases and the block size decreases, the model tends to assign more independent

1296 properties to individual blocks. This behavior arises because smaller block sizes impose stronger
 1297 constraints on the representational capacity of each block, while having more blocks provides the
 1298 model with greater flexibility to distribute and separate different object attributes.
 1299

Number of blocks	PSNR	FG-ARI	D	C	I
4	24.45	0.498	0.322	0.400	0.844
8	23.71	0.465	0.429	0.394	0.836
16	24.19	0.437	0.447	0.368	0.848

1306 Table 10: **Effect of the number of blocks on 3D awareness performance:** We provide PSNR,
 1307 FG-ARI, and DCI performance as a function of the number of blocks.
 1308
 1309

1310 **Number of prototypes.** We evaluate and analyze the performance of the 3D block-slot representa-
 1311 tion with varying numbers of prototypes using three metrics: PSNR, FG-ARI, and DCI performance.
 1312 Each model is trained for approximately 1M iterations, differing only in the number of prototypes,
 1313 which is set to 8, 16, or 32. When using 8 prototypes, the 3D block-slot representation successfully
 1314 performs novel-view synthesis and decomposes scenes into per-object slots, but it fails to disentan-
 1315 gle object attributes across blocks. The number of prototypes directly influences the representational
 1316 capacity of each block; when the number of prototypes is too small, the model cannot reliably sep-
 1317 arate the underlying 3D attributes. This trend is consistently observed in the models trained with 16
 1318 and 32 prototypes. Models with more prototypes not only achieve higher PSNR but also exhibit sub-
 1319 stantially improved disentanglement performance. These results indicate that increasing the number
 1320 of prototypes enhances the expressive power of each block, allowing individual blocks to more fully
 1321 encode distinct attributes.
 1322

Number of prototypes	PSNR	FG-ARI	D	C	I
8	22.43	0.654	0.023	0.030	0.476
16	24.86	0.491	0.454	0.439	0.916
32	25.33	0.495	0.480	0.432	0.876

1328 Table 11: **Effect of the number of prototypes on 3D awareness performance:** We provide PSNR,
 1329 FG-ARI, and DCI performance as a function of the number of prototypes.
 1330
 1331

1332 **Impact of block disentanglement.** We evaluate the GCRL performance of a 3D block-slot repre-
 1333 sentation with relatively low DCI scores. For this comparison, we use a checkpoint with incom-
 1334 plete disentanglement, where the model can already decompose scenes into background, objects, and
 1335 agent, but the block-level disentanglement is still incomplete, and compare its success rates across
 1336 four generalization settings: ID, CG, CG (same color), and OOD. As shown in Table 12, the model
 1337 with insufficient block separation exhibits consistently lower success rates across all four settings.
 1338 This degradation arises because the dynamic and static properties are not clearly disentangled, mak-
 1339 ing the Hungarian matching—performed by the block transformer policy based on static attributes—
 1340 less reliable. Furthermore, the block-wise cross-attention receives weaker and less distinct signals,
 1341 which makes it harder for the policy to learn task-relevant object relations to generalize effectively.
 1342

Model	ID	CG	CG (same color)	OOD
High-DCI Model	0.967 ± 0.017	0.895 ± 0.011	0.837 ± 0.035	0.828 ± 0.099
Low-DCI Model	0.823 ± 0.015	0.677 ± 0.030	0.599 ± 0.037	0.750 ± 0.000

1347 Table 12: **Impact of disentanglement quality on GCRL performance:** We compare success rates
 1348 across four generalization settings (ID, CG, CG (same color), and OOD) between a high-DCI model
 1349 and a low-DCI model.

1350 **Auxiliary mask loss scale.** We evaluate and analyze the performance of the 3D block-slot repre-
 1351 sentation under different scales of the auxiliary mask loss introduced in Eq 4, using three metrics:
 1352 PSNR, FG-ARI, and DCI performance. Each model is trained for approximately 700k iterations
 1353 with the auxiliary mask loss weights λ_{bg} and λ_{ag} set to 0.1, 0.5, or 1.0. Compared to the models
 1354 trained with λ_{bg} and $\lambda_{ag} = 0.1$ or 0.5, the model using a scale of 1.0 achieves higher FG-ARI
 1355 but shows lower PSNR, disentanglement, completeness, and informativeness scores. This indicates
 1356 that when the auxiliary mask loss becomes too dominant relative to the primary reconstruction loss
 1357 $\mathcal{L}_{\text{recon}}$ —the key objective responsible for novel-view synthesis and unsupervised disentanglement
 1358 of object attributes into separate blocks—the model focuses more on accurate decomposition at
 1359 the expense of view synthesis quality and attribute embedding fidelity. In other words, excessively
 1360 large λ_{bg} and λ_{ag} can hinder 3D block disentanglement. Nevertheless, the degradation is modest,
 1361 and more importantly, the inclusion of the auxiliary mask loss—regardless of the specific scaling—
 1362 enables the model to reliably distinguish background, foreground, and agent regions, which is es-
 1363 sential for downstream block-slot decomposition.

$\lambda_{bg}, \lambda_{ag}$	PSNR	FG-ARI	D	C	I
$\lambda_{bg}, \lambda_{ag} = 0.1$	24.66	0.426	0.472	0.446	0.856
$\lambda_{bg}, \lambda_{ag} = 0.5$	24.39	0.425	0.450	0.434	0.858
$\lambda_{bg}, \lambda_{ag} = 1.0$	23.62	0.457	0.407	0.382	0.828

1364
 1365
 1366
 1367
 1368 **Table 13: Effect of the scale of auxiliary mask loss on 3D awareness performance:** We provide
 1369 PSNR, FG-ARI, and DCI performance as a function of the scale of auxiliary mask loss.
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380

1381 **Suboptimal mask.** We evaluate the performance of our method trained with suboptimal masks—
 1382 rather than ground-truth masks—across four generalization settings (ID, CG, CG (same color), and
 1383 OOD), as well as under training views, randomized novel views, and single-view inputs. Because
 1384 our approach requires separating the agent, background, and remaining objects, a natural concern
 1385 is whether high-quality masks are necessary. However, we emphasize that our method can operate
 1386 effectively without direct access to GT agent or background masks. For the agent mask, given the
 1387 robot’s URDF and joint readings, we reconstruct its current visual appearance, and render the cor-
 1388 responding agent mask for any desired viewpoint with a rasterizer using the camera pose obtained
 1389 via standard hand-eye calibration. For the background mask, we acknowledge the inherent ambi-
 1390 guity in defining what constitutes background. To address this, we obtain coarse foreground masks
 1391 using DINO (Oquab et al., 2023; Caron et al., 2021) by normalizing the principal component of its
 1392 feature map; their complements provide coarse background masks. Leveraging DINO’s large-scale
 1393 self-supervised pre-training allows us to reliably distinguish foreground from background despite
 1394 the lack of explicit labels. By combining these components, we obtain suboptimal background and
 1395 agent masks for training. Representative examples of the real-world agent masks and simulator-
 1396 derived background masks are shown in Figure 15.

1397 As shown in Table 14, the GCRL performance of our model trained with suboptimal masks is closely
 1398 approach that of the model trained with ground-truth masks. This holds consistently across all
 1399 four generalization settings—ID, CG, CG (same color), and OOD—and remains true even when
 1400 evaluated under OOD randomized views or when provided with only a single input view. In other
 1401 words, our model is capable of decomposing background, foreground, and agent regions using only
 1402 suboptimal masks, without requiring any access to ground-truth segmentations, while still achieving
 1403 GCRL performance comparable to the ground-truth-trained counterpart. This demonstrates that our
 1404 approach offers strong 3D-aware, view-agnostic, attribute-centric generalization, enabled solely by
 1405 suboptimal masks that are readily obtainable in both simulation and real-world scenarios.

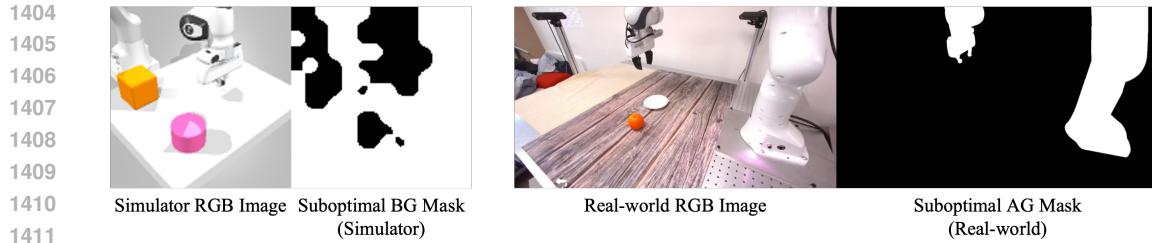


Figure 15: **Examples of suboptimal mask:** We show examples of suboptimal masks: background masks derived from DINO attention maps in simulation, and agent masks obtained from hand–eye calibration and robot kinematics in real-world settings.

Generalization Settings		ID	CG	CG (same color)	OOD
Ours w/ GT masks	ID Multi-View	0.967 ± 0.017	0.895 ± 0.011	0.837 ± 0.035	0.828 ± 0.099
	OOD Multi-View	0.948 ± 0.005	0.877 ± 0.024	0.818 ± 0.025	0.865 ± 0.047
	ID Single-View	0.891 ± 0.004	0.705 ± 0.023	0.700 ± 0.038	0.727 ± 0.105
	OOD Single-View	0.802 ± 0.028	0.726 ± 0.039	0.676 ± 0.010	0.758 ± 0.021
Ours w/ suboptimal masks	ID Multi-View	0.974 ± 0.023	0.771 ± 0.000	0.880 ± 0.037	0.891 ± 0.066
	OOD Multi-View	0.943 ± 0.037	0.870 ± 0.022	0.813 ± 0.029	0.870 ± 0.052
	ID Single-View	0.917 ± 0.000	0.771 ± 0.088	0.703 ± 0.007	0.766 ± 0.022
	OOD Single-View	0.854 ± 0.044	0.730 ± 0.015	0.682 ± 0.066	0.730 ± 0.015

Table 14: **Success rate of goal-conditioned RL for our models with GT masks versus suboptimal masks:** Our 3D block-slot representation supports stable slot assignments even when trained with suboptimal masks instead of GT masks. To evaluate this, we compare the goal-conditioned RL success rates of our model trained with GT masks and with suboptimal masks across four environment generalization settings (ID, CG, CG (same color), OOD) and four view settings (ID Multi-View, ID Single-View, OOD Multi-View, OOD Single-View)

C LLM USAGE

We use a large language model (LLM) to detect and correct grammatical errors and awkward phrasing.