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ABSTRACT

Epistemic uncertainty quantification provides useful insight into both deep and
shallow neural networks’ understanding of the relationship between their training
distributions and unseen instances and can serve as an estimate of classification
confidence. Bayesian-based approaches have been shown to quantify this relation-
ship better than softmax probabilities. Unfortunately, however, those approaches
to uncertainty quantification require multiple Monte-Carlo samples of a neural
network, augmenting the neural network to learn distributions for its weights, or
utilizing an ensemble of neural networks. Such extra calculations are problematic
in time- and/or resource-limited scenarios such as trauma triage and edge comput-
ing. In this work, we propose a technique that allows epistemic uncertainty to be
estimated using learned regression algorithms. We find that this technique, once
trained, allows epistemic uncertainty to be effectively and efficiently predicted.

1 INTRODUCTION

Neural networks have produced state-of-the-art results in a variety of domains; however, their use in
safety-critical domains are limited due to their black-box nature and complex architectures (Begoli
et al., 2019). This has paved the way for research in uncertainty quantification and explainable
artificial intelligence. Both of which strive to improve trust between human practitioners and their
artificial intelligence counterparts.

Epistemic uncertainty provides a numerical measure of how similar an input instance is compared to
data on which the neural network has been trained and can be used to effectively indicate to human
practitioners which instances should be referred to domain experts (Brown & Talbert, 2019; Leibig
et al., 2017). This comes at the cost, however, of augmenting neural network architectures and
requiring multiple, expensive inferences of a large neural network. This underlies the motivation for
more efficient epistemic uncertainty estimates that can ascertained in production.

1.1 MOTIVATION

There are two primary scenarios that motivate this work: First, we need to consider time-critical
domains, such as trauma triage or intensive care. The second scenario is that of edge-computing
using field-programmable gate array (FPGA) devices.

Trauma triage and intensive care are subfields within medicine that can benefit from advances in
deep learning. Trauma and emergency department triage (Sasser et al., 2012; Cole et al., 2016)
categorizes patients based on the severity of their injuries or illness to allow medical professionals
to attend to more critical patients first. Machine learning has not been extensively applied or studied
in the trauma and emergency departments (Liu & Salinas, 2017). One reason for this is the black-
box nature of neural networks. Uncertainty quantification is one technology that can aid in trauma
and emergency department triage. Because of their time-critical nature, however, it is important
to eliminate avoidable delays in decision support algorithms. Currently, state-of-the-art approaches
to epistemic uncertainty quantification require, at the least, multiple inferences of a deep neural
network which can be both expensive to compute and difficult to parallelize.

The second motivating example is the use hardware encoding of deep neural networks on FPGA
devices. Encoding a deep neural network on an FPGA device allows for more rapid inference
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and easier application of deep neural networks in edge computing cases, such as autonomous ve-
hicles (Hadidi et al., 2019). A drawback to hardware encoding, however, is that dropout, a neces-
sary operation for calculating epistemic uncertainty, is difficult to implement due to its stochasticity
(Sawaguchi & Nishi, 2018; Myojin et al., 2020; Li et al., 2019). Using an auxiliary regressor to es-
timate epistemic uncertainty could allow epistemic uncertainty values to be computed on the FPGA
device itself without the need to implement dropout or other Bayesian neural network architectures.

1.2 CONTRIBUTIONS

We present the following contributions with this work: First, we propose a technique that allows
epistemic uncertainty to be estimated through machine learning regression. Then, we assess this
technique using multiple datasets and show that it yields high goodness-of-fit and produces un-
certainty estimations comparable to common techniques such as dropout. This technique allows
uncertainty estimates to be computed using few machine learning inferences.

The structure of this work is as follows: In the background, we describe the importance of epistemic
uncertainty along with drawbacks to current approaches. We then present our technique and exper-
imental methodology, followed by our results and the corresponding discussion before concluding
this work.

2 BACKGROUND

2.1 UNCERTAINTY QUANTIFICATION IN NEURAL NETWORKS

There are two broad classes of uncertainty in neural networks: epistemic uncertainty and aleatoric
uncertainty (Kendall & Gal, 2017). Aleatoric uncertainty in refers to the extent to which noise in the
data reduces the effectiveness of a learned classification or regression model (Kendall & Gal, 2017).
This type of uncertainty can only be mitigated by reducing the noise in the data and is generally
considered irreducible at the algorithmic level. This work, however, is concerned with epistemic
uncertainty in neural networks.

2.1.1 WHY EPISTEMIC UNCERTAINTY IS FUNDAMENTAL

Epistemic uncertainty gives an estimate of where, within the data distribution, a data point of interest
lies (Gal & Ghahramani, 2016). Higher epistemic uncertainty implies greater distance between the
data point of interest and the training data distribution.

Neural networks, as all machine learning algorithms, require a training distribution from which to
infer a generalizable classification or regression function (Mitchell, 1997). As data to predict strays
from this training distribution, predictions become more unreliable since the machine learning model
is being asked to extrapolate into a previously unseen region of the data.

For many classification tasks, neural networks employ the softmax function to convert neuron out-
puts into prediction probabilities. Gal & Ghahramani (2016) notes, however, a fundamental flaw in
that function. For data that lie outside the training data distribution, softmax tends to yield an overly
confident probability regardless of the reliability of the classification. This is apparent in many foun-
dational papers discussing adversarial examples and adversarial attacks (Goodfellow et al., 2014).

2.1.2 MEASURING EPISTEMIC UNCERTAINTY IN NEURAL NETWORKS

True epistemic uncertainty can be calculated through a Gaussian process. By definition, a Gaussian
process is a collection of random variables that have normal distribution (Rasmussen, 2003). In
machine learning, a Gaussian process learns the appropriate mean and covariance functions to output
a normal distribution of possible output values for given inputs. Epistemic uncertainty in a Gaussian
process, then, is the variance of the output distribution (Rasmussen, 2003).

Work by Williams (1997) and Lee et al. (2017) have mathematically related a Gaussian process to
a neural network. A neural network with a single layer (i.e., a shallow neural network) has been
proven to be equivalent to a Gaussian process given the single hidden layer has an infinite number of
neurons (Williams, 1997). Lee et al. extends this result to deep neural networks by showing multiple
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hidden layers with infinite neurons converge to a Gaussian process (Lee et al., 2017). Since this is
computationally infeasible, approximations are required.

The most accessible technique to calculate epistemic uncertainty in a deep neural network is to use
dropout to induce an ensemble (Gal & Ghahramani, 2016). Dropout is a regularization technique
that randomly removes neurons from layers within the neural network (Srivastava et al., 2014).
When activated during training, dropout helps to prevent overfitting. Gal & Ghahramani (2016)
showed however, when active during testing or production, dropout can be used to calculate epis-
temic uncertainty by performing repeated Monte-Carlo samples and calculating the variance of the
predicted probabilities.

Bayes by Back-propagation (Blundell et al., 2015) takes an alternative approach to uncertainty quan-
tification. This approach views network weights not as singular learned points, but as learned dis-
tributions. The weights of the algorithm are drawn from a Gaussian distribution and augmented
using parameters µ and ρ. Bayes by Back-propagation learns the µ and ρ parameters rather than the
individual weights of the network using an altered version of traditional back-propagation.

Lakshminarayanan et al. (2017) proposed another method of measuring uncertainty using deep en-
sembles. The deep neural network architectures within the ensemble are randomly generated to
help reduce the correlation between models, and the final prediction and uncertainty value are as-
certained through calculating the average (prediction) and the variance (uncertainty) of the outputs
of the model. The ensemble is trained using data augmented by adversarial examples based on the
training data. Lakshminarayanan et al. (2017) argue that the use of adversarial examples make both
the predictor and uncertainty values more robust.

2.2 REGRESSION ALGORITHMS

Regression is a supervised learning task that predicts a numerical value, such as housing prices,
rather than a classification probability (Mitchell, 1997). Many machine learning techniques such as
decision trees, tree ensembles, and neural networks can be used for regression tasks.

2.2.1 TREE-BASED REGRESSION

Decision trees are popular machine learning algorithms for both classification and regression tasks
due to their inherent explainability (Breiman et al., 2017). Decision trees are designed to reduce
entropy among the samples to create split points. In regression, the split points of each node are de-
termined based on the minimization of standard deviation or measure of regression error. Predictions
are computed by averaging the samples remaining at each leaf.

The primary advantage of a decision tree over other techniques such as neural networks, support
vector machines, or boosting trees is their natural interpretability (Cooper et al., 1997). Decision
trees produce a logical, tree-based structure that can be followed by human practitioners and domain
experts.

We also consider gradient boosting trees as a regression technique for estimating epistemic uncer-
tainty. Gradient boosting trees sequentially build decision trees, with subsequent trees focused on
correcting the mistakes of prior trees (Friedman, 2002; Chen & Guestrin, 2016). Gradient boosting
trees are considered one of the most successful and widely used current machine learning algorithms
(Bennett et al., 2007; Xu et al., 2021).

2.2.2 NEURAL NETWORK-BASED REGRESSION

Neural networks can also be applied to regression tasks. A neural network is a structure inspired
by neurobiology and consist of interconnected “neurons” that propagate signals (Specht, 1991).
The values of a neuron are the result of a linear combination the values of neurons in the previous
layers and the weights that connect the previous layer’s neurons to the current neuron. The value
of this operation is then provided to an activation function that determines if the neuron “fires” or
not (Rumelhart et al., 1985). Common activation functions include the sigmoid function (Rumelhart
et al., 1985; Specht, 1991), the rectified linear unit (Nair & Hinton, 2010; Maas et al., 2013), and the
hyperbolic tangent function (Glorot & Bengio, 2010). For regression, the final layer that produces
the regression values does not include an activation function.
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3 PREDICTING EPISTEMIC UNCERTAINTY

In this section, we discuss our proposed methodology to produce rapid, inferred uncertainty esti-
mates based on regression algorithms. We also present benefits to using regression to model neural
network epistemic uncertainty.

3.1 REGRESSION TRAINING METHODOLOGY

Let f be a machine learning regression algorithm, either multi-class regressor or multiple single-
class regressors. To infer epistemic uncertainty using f , we use the original input features into the
classification neural network and the output probability vector of predictions from the classification
neural network. Thus, for an m-class classification problem, if ~x ∈ Rn is the input vector of n
features, ~p ∈ [0, 1]m the vector of output probabilities from classification network, then the vector
of uncertainty estimates ~u ∈ Rm is calculated as ~u = f(~x, ~p). We include ~p since uncertainty
estimates should be conditioned on both the input data and the classification probabilities produced
by the classification neural network.

Successfully training the uncertainty regression model requires augmenting the classification neural
network’s training data. When training the classification neural network, we use a classification
training set to determine model weights through backpropagation, a classification validation set for
model selection, and a test set. The regression-based uncertainty estimator is trained on the re-
gression training set and evaluated using the test set. The regression training set combines both the
classification training set and the classification validation set along with their classification probabil-
ity vectors. These are then labeled with their dropout uncertainty. This enables the regression model
to learn from examples outside of the classification training set’s data distribution. The regression
test set uses the same data as the classification test set.

3.2 NEED FOR APPROXIMATION

In addition to considerations discussed in the Introduction and Background, another consideration
as to why inferred epistemic uncertainty values would be beneficial compared to current epistemic
uncertainty quantification techniques is that of explainability and interpretability. Little to no work
exists that algorithmically explains what causes uncertainty in deep learning. Although epistemic
uncertainty can be reduced by training the neural network on additional data, the type of data needed
to do so (e.g., under-represented features or combinations of features) is unknown. Decision tree
regressors provide inherent interpretability within its structure, and new explainable artificial intel-
ligence (XAI) algorithms are a very pertinent and growing subfield of Artificial Intelligence.

4 EXPERIMENTAL METHODOLOGY

In this section, we discuss experimental methodology starting with datasets and their respective
classification models. We then discuss the implementation details, performance metrics, and exper-
iments to evaluate our proposed approximation technique.

4.1 DATASETS AND CLASSIFICATION MODELS

We use three datasets in our experiments. Two datasets (Adult Income and MNIST) are classic
benchmarking datasets for machine learning algorithms, and the third dataset is real-world critical-
care dataset. We detail each dataset below as well as the classification models trained for their
respective classification tasks.

4.1.1 ADULT INCOME

The first dataset is a modified version of the Adult Income dataset from the University of California
at Irvine (UCI) Machine Learning Repository (Dua & Graff, 2017). This dataset contains a binary
classification task to predict whether a person has an income greater than or less than $50,000.
Features in this dataset include population demographics including age, gender, race, and marital
status as well as occupation information including level of education, occupation type, work class
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Table 1: Training information for the classification neural networks by dataset

Dataset Hidden Layer Architecture No. Training Epochs

Adult Income 20, 8 100
MNIST 128 50
Trauma Triage Registry 75, 75 100

(e.g., government, private, self-employed), and hours per week. Categorical features are represented
using one-hot encoding. Continuous features are normalized using z-values.

4.1.2 MNIST

The second dataset is the MNIST dataset (Deng, 2012), which contains images of size 28 × 28
that depict handwritten numerical digits between 0 and 9. The multi-class classification task is to
determine which digit is depicted per image. The features used by the classification neural network
are the pixels of the 28 × 28 image that are converted into a one-dimensional vector of length 784.
The pixel values are normalized by dividing each by 255 (the maximum pixel value).

4.1.3 TRAUMA TRIAGE REGISTRY

The final dataset is a subset of a trauma registry from a Level 1 Trauma Center that uses 32 features
to determine if a patient has an Injury Severity Score (ISS) of at least 15. An ISS ≥ 15 indicates
the patient is severely injured and should be triaged as such (Sasser et al., 2012). Features include
physical parameters (e.g., systolic/diastolic blood pressures, heart rate, Glasgow Coma Scale score),
anatomical criteria, mechanism of injury, age, and multiple computed injury scores (e.g., Revised
Trauma Score and the Air Medical Prehospital Transport Score). Categorical features are repre-
sented using one-hot encoding. Continuous features are normalized using z-values.

4.1.4 CLASSIFICATION MODELS

For each classification task, we train a fully-connected neural network to learn a predictive model.
Each dataset is split into 10 cross-validation folds with 10% of the training data in each fold used as
a validation set during training of the neural network. The number and depth of the hidden layers
as well as the number of training epochs are in Table 1. Hidden layers use the Rectified Linear
Unit (ReLU) as their activation functions, and each output layer uses the softmax function as its
activation function. Dropout is applied before each hidden layer to calculate epistemic uncertainty
(Gal & Ghahramani, 2016). The ADAM optimization algorithm (Kingma & Ba, 2014) is used for
the MNIST dataset while the RMSprop optimization function (Hinton et al., 2012) is used for the
Adult Income and Trauma Triage Registry datasets. We use the Keras API (Chollet et al., 2015)
with Tensorflow (Abadi et al., 2015) to implement all neural networks in this work.

4.2 REGRESSION ALGORITHMS AND TRAINING DETAILS

We used three machine learning algorithms to model epistemic uncertainty. First, we use the CART
decision tree algorithm as implemented in Scikit-Learn (Pedregosa et al., 2011) with squared-error
as the split criterion.

For boosting trees, we use the XGBoost Python (Chen & Guestrin, 2016), with standard parameters
for an XGBoost regression task (maximum tree depth: 16; learning rate: 0.3; objective function:
linear regression; loss function: mean absolute percent error; L1 regularization term α: 10).

We use Keras and Tensorflow (Chollet et al., 2015; Abadi et al., 2015) to implement the regression
neural networks. For each dataset, we consider a network with hidden layers of width 512, 255, 128,
64 neurons. We used mean squared error as the regression loss function and the ADAM algorithm
as the optimization function (Kingma & Ba, 2014). Each network is trained for 50 epochs.
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For decision tree- and neural network-based regressors, we consider both learning one uncertainty
prediction model per possible class (referred to as multi-single model) and a single model that pro-
duces uncertainty information for all classes simultaneously (referred to as multi-output model).

4.3 PERFORMANCE METRICS AND EXPERIMENT DESIGN

We split each dataset into 10-folds for cross-validation. The training set for each fold is further
divided into training and validation.

We report several evaluations metrics. First, we report baseline accuracy for each classification
neural network. Then, for regression, we report the R2 correlation coefficient between dropout un-
certainty and the predicted uncertainty from our technique on the testing data of each fold. This will
inform us of the goodness-of-fit in our regression models. We also report mean absolute percentage
error of the regression model on the unseen data.

To evaluate the uncertainty predictions, we perform two experiments. First, we compare the cali-
bration (Leibig et al., 2017) of dropout uncertainty to predicted uncertainty removing, in 10% in-
crements between 0% and 50%, the most uncertain predictions and re-evaluating accuracy. Well-
calibrated uncertainty should result in an increase in accuracy as uncertain predictions are removed.

Second, we compare the rankings of data points based on the dropout uncertainty and predicted
uncertainty. Let xpredicted be the index of data point x when data points are sorted by predicted
uncertainty, xdropout be the index of x when data points are sorted by dropout uncertainty. Then, we
calculate average normalized distance as the average of |xpredictedxdropout|

n for each x in the test set, where
n is the number of data points. We also report the standard deviations the aforementioned values.

5 RESULTS

5.1 REGRESSION METRICS

Tables 2 - 4 present traditional regression metrics for estimating uncertainty on unseen evaluation
data. Average R2 is the average value of the R2 correlation coefficient between true uncertainty and
predicted uncertainty generated from our technique. We also report mean absolute error between
true uncertainty and predicted uncertainty generated from our technique.

Table 2: Uncertainty regression results for Adult Income data

Regression Algorithm Uncertainty Output Type Average R2 Mean Absolute Error

Decision Tree Multi-Single 0.873 0.021
Decision Tree Multi-Output 0.875 0.021
Neural Network Multi-Single 0.964 0.012
Neural Network Multi-Output 0.966 0.011
XGBoost Multi-Single 0.949 0.014

Table 3: Uncertainty regression results for Trauma Triage data

Regression Algorithm Uncertainty Output Type Average R2 Mean Absolute Error

Decision Tree Multi-Single 0.875 0.017
Decision Tree Multi-Output 0.880 0.017
Neural Network Multi-Single 0.961 0.011
Neural Network Multi-Output 0.963 0.010
XGBoost Multi-Single 0.955 0.011
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Table 4: Uncertainty regression results for MNIST data (* represents negative correlation)

Regression Algorithm Uncertainty Output Type Average R2 Mean Absolute Error

Decision Tree Multi-Single 0.283* 0.044
Decision Tree Multi-Output 0.281* 0.044
Neural Network Multi-Single 0.730 0.022
Neural Network Multi-Output 0.665 0.022
XGBoost Multi-Single 0.888 0.014

5.2 UNCERTAINTY CALIBRATION

Figure 1 presents the uncertainty calibration results for each dataset, estimated uncertainty, and
dropout uncertainty. These plots show the change in accuracy as the most uncertain predictions are
removed from accuracy calculations.

Figure 1: Uncertainty calibration of proposed technique compared to dropout uncertainty

5.3 UNCERTAINTY ORDERING CORRELATION

Tables 5 - 7 present the results comparing the locations of each element when the data points are
sorted by predicted uncertainty measure compared to dropout uncertainty.

6 DISCUSSION

6.1 REGRESSION METRICS

Tables 2 - 4 present theR2 correlation coefficient for our inferred uncertainty compared to the “true”
dropout uncertainty. We find for Adult Income and Trauma Triage, regression yields an R2 value
of at least 0.87 with values peaking at 0.95. This implies for Adult Income and Trauma Triage,
regression techniques have a close goodness-of-fit to dropout uncertainty. Moreover, mean absolute
errors for these techniques are less that 0.2 for all regression techniques for both datasets.
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Table 5: Uncertainty ordering correlation results for Adult Income data

Regression
Algorithm

Uncertainty
Output

Type

Average
Normalized

Distance

Normalized
Standard
Deviation

Decision Tree Mulit-Single 0.077 0.071
Decision Tree Multi-Output 0.076 0.069
Neural Network Multi-Single 0.043 0.038
Neural Network Multi-Output 0.042 0.036
XGBoost Multi-Single 0.048 0.040

Table 6: Uncertainty ordering correlation results for Trauma Triage data

Regression
Algorithm

Uncertainty
Output

Type

Average
Normalized

Distance

Normalized
Standard
Deviation

Decision Tree Multi-Single 0.076 0.074
Decision Tree Multi-Output 0.075 0.072
Neural Network Multi-Single 0.043 0.037
Neural Network Multi-Output 0.042 0.036
XGBoost Multi-Single 0.052 0.048

For MNIST (see Table 4), we find that both decision tree models do not estimate uncertainty well,
having an average R2 less than zero, implying that whatever relationship exists between the esti-
mated uncertainty and dropout uncertainty is minimal and an inverse relationship. Thus, we can
conclude decision trees do not effectively estimate uncertainty for MNIST.

Fortunately, however, this is not true for the neural network models or the gradient-boosting trees
(XGBoost). The neural networks achieve average R2 values of at least 0.665, and XGBoost have
an average R2 of 0.888. These more complex models are successful at using both the increased
dimensionality and classification prediction information to infer epistemic uncertainty.

We suspect that this difference in performance between the tabular datasets (Adult Income and
Trauma Triage) and MNIST is a result of the datasets’ dimensionality. MNIST is an image dataset
with 784 input pixels. Since 10 classes can be predicted from MNIST data, this results in 794 input
features into the epistemic uncertainty inference models. Future work extending this technique to
other types of data (e.g., natural language, images, etc.) may benefit from a multimodal approach in
the inference network (Brown et al., 2020).

6.2 UNCERTAINTY CALIBRATION

Our next experiment evaluates how well an uncertainty measure can identify potentially incorrect
predictions. Several works in the existing literature (Gal & Ghahramani, 2016; Leibig et al., 2017;
Brown & Talbert, 2019) demonstrate the effectiveness of dropout uncertainty quantification at iden-
tifying likely incorrect instances and the benefit of using such a technique in medicine.

Figure 1 demonstrates how accuracy changes as the most uncertain data points are removed for each
dataset. For Adult Income and Trauma Triage, each regression technique results in similar changes
in accuracy as more uncertain data points are removed. For MNIST, neither of the decision tree
regressors are able to achieve the same change in accuracy as dropout or other uncertainty estima-
tion techniques. This is to be expected, as decision tree regressors did not exhibit high R2 values.
Neural networks and XGBoost, however, more closely mimic dropout calibration with XGBoost
outperforming both neural network regressors. This is also supported by R2 coefficient values in
Table 4 which indicated that XGBoost had a better goodness-of-fit compared to neural networks.
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Table 7: Uncertainty ordering correlation results for MNIST data

Regression
Algorithm

Uncertainty
Output

Type

Average
Normalized

Distance

Normalized
Standard
Deviation

Decision Tree Multi-Single 0.223 0.203
Decision Tree Multi-Output 0.233 0.212
Neural Network Multi-Single 0.134 0.121
Neural Network Multi-Output 0.147 0.130
XGBoost Multi-Single 0.106 0.108

6.3 UNCERTAINTY ORDERING CORRELATION

Finally, we compare the ordering of data points when the datasets are sorted by the dropout un-
certainty and their estimated uncertainty. Tables 5 - 7 present the average distance and normalized
standard deviations of the indices of each data point normalized by the total number of elements.
We find that for Adult Income (Figure 5) and Trauma Triage (Figure 6), on average, data points are
within 10% of each other for each regression technique. For MNIST (Figure 7), we find that indices
are within 15% for more accurate regression techniques (neural networks and XGBoost) and within
25% for decision trees.

6.4 EFFICIENCY OF PROPOSED TECHNIQUE

As mentioned previously, this technique is motivated by a need to produce epistemic uncertainty
values without extensive modifications to neural network architectures or performing multiple infer-
ences on pre-existing, expensive neural network architectures. This technique reduces the number
of inferences necessary to be between 1 and the total number of classes.

We evaluated using a single neural network or decision tree that produces multiple regression outputs
with one inference through the model. In general, we find for tabular data, there is little difference in
uncertainty estimations. Estimations produced by a single model with multiple outputs tended to be
marginally less effective than single regression models per class. However, for high-dimensionality
data, such as MNIST, we find more substantial shifts in efficacy between using multiple single-
output models compared to a single model with multiple output.

In production, the number of inferences necessary for uncertainty estimations could be reduced
to one by producing the classification through the classification neural network and only utilizing
the uncertainty estimator associated with the most probable class. Thus, although this technique
will require training and tuning more regression models (up to the number of classes to predict), it
reduces computation power and resources necessary in production.

7 CONCLUSION

In this work, we present a technique that allows epistemic uncertainty to be estimated through
regression-based machine learning algorithms. This technique requires fewer machine learning in-
ferences to yield uncertainty estimates comparable to classic, but resource-expensive, techniques
such as dropout.

This work has several avenues through which it can be extended. First, we find that simpler, less-
expensive machine learning techniques perform poorly on high-dimensional data such as images.
Future work could explore using multi-modal machine learning and other techniques to effectively
infer epistemic uncertainty values. Moreover, this technique can also be extended to other measures
of uncertainty such as aleatoric uncertainty, to provide a more complete picture of the uncertainty as-
sociated with a prediction. Finally, we would like to explore how XAI could be applied to epistemic
uncertainty estimators to determine if it can provide insight into causes of epistemic uncertainty.
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ETHICS STATEMENT

The Trauma Triage Dataset was retrieved from a Level 1 Trauma Center. Use of the trauma triage
data received internal review board approval.

REPRODUCIBILITY STATEMENT

Section 4 (Experimental Methodology) includes the following information to aid in reproducibility
of results:

• Names of code libraries for machine learning and deep learning algorithms

• Non-default parameters for each machine learning and deep learning algorithm used for
both classification and regression

• Neural network architectures, loss functions, optimization algorithms (with default param-
eters), number of epochs, and regularization techniques used for both classification and
regression

• Data preprocessing steps for categorical and continuous data

Source code for this paper can be downloaded from https://github.com/
somebody-anonymous/iclr_2022_code/archive/refs/heads/main.zip
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A APPENDIX

Tables 8, 9, 10 present the accuracy of each technique as most uncertain predictions are removed
from accuracy calculations.

Table 8: Uncertainty calibration results for Adult Income data

Regression
Algorithm

Uncertainty
Output Type

Percent Removed

0% 10% 20% 30% 40% 50%

Dropout N/A 0.827 0.851 0.875 0.899 0.927 0.955
Decision Tree Multi-Single 0.828 0.851 0.874 0.899 0.926 0.956
Decision Tree Multi-Output 0.828 0.852 0.875 0.899 0.927 0.956
Neural Network Multi-Single 0.826 0.850 0.875 0.901 0.929 0.959
Neural Network Multi-Output 0.826 0.850 0.875 0.899 0.927 0.956
XGBoost Multi-Single 0.826 0.851 0.876 0.90 0.931 0.961
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Table 9: Uncertainty calibration results for Trauma Triage data

Regression
Algorithm

Uncertainty
Output Type

Percent Removed

0% 10% 20% 30% 40% 50%

Dropout N/A 0.845 0.870 0.898 0.921 0.938 0.954
Decision Tree Multi-Single 0.845 0.870 0.896 0.920 0.937 0.953
Decision Tree Multi-Output 0.846 0.870 0.897 0.920 0.937 0.952
Neural Network Multi-Single 0.845 0.871 0.899 0.921 0.937 0.956
Neural Network Multi-Output 0.845 0.872 0.899 0.921 0.938 0.956
XGBoost Multi-Single 0.845 0.871 0.900 0.922 0.939 0.957

Table 10: Uncertainty calibration results for MNIST data

Regression
Algorithm

Uncertainty
Output Type

Percent Removed

0% 10% 20% 30% 40% 50%

Dropout N/A 0.974 0.995 0.998 0.999 1.000 1.000
Decision Tree Multi-Single 0.974 0.977 0.979 0.980 0.981 0.981
Decision Tree Multi-Output 0.973 0.977 0.979 0.980 0.981 0.980
Neural Network Multi-Single 0.973 0.991 0.996 0.998 0.999 0.999
Neural Network Multi-Output 0.974 0.991 0.996 0.998 0.999 0.999
XGBoost Multi-Single 0.973 0.995 0.999 0.999 0.999 1.000
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