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ABSTRACT

We propose new algorithms to efficiently average a collection of points on a Grass-
mannian manifold in both the centralized and decentralized settings. Grassman-
nian points are used ubiquitously in machine learning, computer vision, and signal
processing to represent data through (often low-dimensional) subspaces. While
averaging these points is crucial to many tasks (especially in the decentralized
setting), existing methods unfortunately remain computationally expensive due to
the non-Euclidean geometry of the manifold. Our proposed algorithms, Rapid
Grassmannian Averaging (RGrAv) and Decentralized Rapid Grassmannian Aver-
aging (DRGrAv), overcome this challenge by leveraging the spectral structure of
the problem to rapidly compute an average using only small matrix multiplica-
tions and QR factorizations. We provide a theoretical guarantee of optimality and
present numerical experiments which demonstrate that our algorithms outperform
state-of-the-art methods in providing high accuracy solutions in minimal time.
Additional experiments showcase the versatility of our algorithms to tasks such as
K-means clustering on video motion data, establishing RGrAv and DRGrAv as
powerful tools for generic Grassmannian averaging.

1 INTRODUCTION

Grassmannian manifolds, which represent sets of K-dimensional linear subspaces of N -dimensional
spaces (Edelman et al., 1998), have been used extensively in machine learning (Huang et al., 2018;
Zhang et al., 2018; Slama et al., 2015), computer vision (Harandi et al., 2013; Lui & Beveridge,
2008; Turaga et al., 2011), and signal processing (Gallivan et al., 2003; Mondal et al., 2007; Xu
& Hassibi, 2008). Applications include Principal Component Analysis (PCA) (Jolliffe & Cadima,
2016), low-rank matrix completion (Keshavan et al., 2010), multi-task feature learning (Mishra et al.,
2019), clustering (Gruber & Theis, 2006), array processing (Love et al., 2003; DeLude et al., 2022),
and distance metric learning (Meyer et al., 2009).

An essential primitive operation is finding an average of a collection of points on the manifold. There
are several distinct yet reasonable definitions for an average of points on a Grassmannian (Marrinan
et al., 2014). Arguably the most natural analog of the Euclidean mean for points on a Riemannian
manifold (such as a Grassmannian) is the Fréchet (or Karcher) mean, defined as the point which
minimizes the sum of squared distances to all sample points (Fréchet, 1948). Unfortunately, the
Fréchet mean rarely admits a closed form solution, instead necessitating approximation via iterative
algorithms (Jeuris et al., 2012). Such algorithms are often computationally expensive, scale poorly
with dimension, and are not easily decentralized.

The induced arithmetic mean (IAM) is an alternative manifold average computed by first determin-
ing the Euclidean mean of the manifold sample points once embedded “naturally” in some Euclidean
space and subsequently projecting this Euclidean mean “naturally” back onto the manifold. For
Grassmannian manifolds, the standard embedding is the set of projection matrices and the standard
projection operation is simply the closest matrix by Frobenius distance (Sarlette & Sepulchre, 2009).
This manifold average may be computed much more efficiently in practice and lends itself well to
decentralization as the Euclidean mean may be computed by average consensus (Nedic & Ozdaglar,
2009). In such a decentralized setting, computing this Euclidean mean would be the only operation
that requires communication in order to compute the IAM.
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As the dimensionality of data grows, it becomes increasingly important to consider decentralized
algorithms (Nedić et al., 2018) as data might be spread across many machines and only be accessible
for processing via distributed algorithms (Beltrán et al., 2023). Distributed computation might be
required as well for situations where the data associated to each agent must be treated with privacy
protections, where aggregation of all data onto a single node may be prohibited (Han et al., 2017).
While a central server is sometimes employed in this regime, it is similarly common for the use of
such a server to be infeasible or simply inefficient when compared to fully decentralized approaches
(Sun et al., 2021; Feller et al., 2012).

We propose a novel method to efficiently compute the IAM of a collection of points on a Grass-
mannian manifold. Our method is highly amenable to decentralization, meaning it can be readily
deployed to multi-agent systems or used in data centers operating on big data. Our algorithms op-
erate similarly to the famous power method, with the distinction that Chebyshev polynomials are
employed to leverage a “dual-banded” property of the problem in order to achieve never-before-
seen efficiency in computation and communication. We demonstrate merit through a theoretical
guarantee on the optimality of our approach among a class of polynomial-based algorithms, syn-
thetic numerical experiments comparing our algorithms against state-of-the-art, and experiments on
real-world problems showcasing the versatility of our algorithms.

2 RELATED WORK

The problem of computing an appropriate average on specific manifolds has been investigated for
many different manifolds, e.g., spheres SN , special orthogonal matrices SO(N), Stiefel matrices
St(N,K), even Grassmannian points Gr(N,K) (Downs, 1972; Buss & Fillmore, 2001; Galperin,
1993; Hueper & Manton, 2004; Absil et al., 2004; Moakher, 2002; Fiori et al., 2014; Yun, 2018;
Hauberg et al., 2014). Focus is often given to the Fréchet mean (Chakraborty et al., 2020; Cheng
et al., 2016; Le, 2001), however alternatives are becoming increasingly more popular (Fletcher et al.,
2008; 2009; Arnaudon et al., 2012; Marrinan et al., 2014; Chakraborty & Vemuri, 2015; Lee & Jung,
2024). Similarly, the problem of consensus on a manifold in a multi-agent setting has been explored
in works such as Sepulchre (2011); Tron et al. (2012).

There have been several algorithms proposed for decentralized optimization on manifolds such as
Grassmannians. Sarlette & Sepulchre (2009) proposes a decentralized gradient-based algorithm
to solve the problem of computing the IAM for connected compact homogeneous manifolds, e.g.
SO(N) and Gr(N,K). Deng & Hu (2023) proposes two decentralized gradient-based algorithms
for general optimization problems on Riemannian manifolds. Mishra et al. (2019) proposes a de-
centralized gradient-based gossip algorithm for general optimization problems on a Grassmannian
manifold. Similar works include Chen et al. (2021; 2023); Zhang & Sun (2017).

A problem which is closely related to Grassmannian averaging is that of PCA. Ye & Zhang (2021)
proposes the DeEPCA algorithm to solve the decentralized PCA problem. While computing a Grass-
mannian average is not the intended application of DeEPCA, it may be adapted to this task fairly
naturally. Gang et al. (2021); Gang & Bajwa (2022); Froelicher et al. (2023) similarly propose
distributed algorithms for PCA; for a more comprehensive review of this field, see Wu et al. (2018).

As we will see later in this paper, the problem of Grassmannian averaging is related to the problem
of spectral estimation (see Section 3.1). There exist many tailored algorithms in this field, varying
based on factors such as eigenvalue vs. eigenvector estimation, matrix rank, symmetry, estimation
of leading vs trailing quantities, size of eigengap, etc (Liesen & Strakos, 2013; Lanczos, 1950;
Knyazev, 2001; Sleijpen & Van der Vorst, 2000; Zhou & Saad, 2007; Ghanem & Ghosh, 2007;
Martinsson & Tropp, 2020). Many such algorithms optimize for centralized computation, using
iterative and sometimes stochastic approaches. One of the most elegant solutions in this space is the
power method, from which we take inspiration (see Section 3.3).
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3 BACKGROUND

3.1 AVERAGING SUBSPACES

Given a collection of M subspaces, our goal is to determine the average subspace as effi-
ciently as possible. We choose to use the standard IAM definition of “average” (Sarlette &
Sepulchre, 2009) as it leads to what we believe is the most efficient algorithm. Formally, let
St(N,K) :=

{
U ∈ RN×K | UTU = IK

}
be the set of N × K Stiefel matrices where N ≥

K and let Gr(N,K) := {[U ] | U ∈ St(N,K)} (where the equivalence is defined as [U ] :=
{UQ |Q ∈ St(K,K)}) be the Grassmannian representing the set of all K-dimensional subspaces
of RN . The average of our collection {[Um]}Mm=1 is then denoted

[
Ū
]

and defined by the following
optimization problem

[
Ū
]
:= argmin

[U ]∈Gr(N,K)

∥∥∥∥∥
(

1

M

M∑
m=1

UmUT
m

)
−UUT

∥∥∥∥∥
2

F

(1)

Equation (1) may be manipulated algebraically to be interpreted equivalently in terms of the eigen-
vectors of P̄ := 1

M

∑M
m=1 UmUT

m. Let

P̄ = Ṽ Λ̃Ṽ
T
= [V V ⊥]

[
Λ 0
0 Λ⊥

] [
V T

V T
⊥

]
denote an eigendecomposition where V ∈ St(N,K) and the entries of Λ̃ are non-increasing. As-
suming λK > λK+1 (where λk denotes the kth largest eigenvalue of P̄ ), it can be shown that the
solution to eq. (1) is precisely

[
Ū
]
= [V ] (see Appendix B.2 for a proof). Consequently, deter-

mining the span of the leading K eigenvectors of P̄ is tantamount to solving eq. (1), which is the
perspective we will later use to motivate our algorithms.

As we continue to discuss this problem, it is informative to keep in mind the following properties.
The eigenvalues of P̄ are conveniently bounded by 0 ⪯ Λ̃ ⪯ IN and satisfy tr

(
Λ̃
)
= K, which

may be determined by inspection. As a result, λK , λK+1 are bounded as 1
N−K+1 ≤ λK ≤ 1

and 0 ≤ λK+1 ≤ K
K+1 . For convenience, we occasionally abuse notation to let [X] denote the

Grassmannian equivalence class for the span of the columns of arbitrary (not necessarily Stiefel)
matrix X ∈ RN×K .

3.2 AVERAGING SUBSPACES IN A DECENTRALIZED NETWORK

Decentralized or distributed optimization problems arise in numerous real-world scenarios where
centralized approaches are impractical or undesirable. These problems are characterized by using
information spread across multiple agents or nodes in a network. Motivating reasons include privacy,
communication constraints, data storage limitations, scalability, etc.

In the context of this paper, consider the setting where there are M agents, each holding a sub-
space [Um], connected by a some undirected communication graph G. We then want each agent to
learn the solution

[
Ū
]

to eq. (1) under the restriction that each agent only communicate with their
neighbors in G.

Average consensus (AC) is a useful primitive in decentralized optimization to quickly approximate
the average of real numbers in a decentralized manner (Nedic & Ozdaglar, 2009). If the mth agent
in a decentralized network holds a matrix Am, AC allows each agent to approximate 1

M

∑M
m=1 Am

with minimal rounds of neighbor-only communication. Unfortunately, the non-convex manifold
structure of Gr(N,K) precludes us from efficiently applying AC directly to solve eq. (1), as the Eu-
clidean mean of elements from a non-convex set in general does not lay in said set. While we could
have each agent compute the matrices UmUT

m and then use AC to approximate P̄ , this would incur
a communication cost ofO

(
N2
)

(the size of P̄ ) which may be much larger thanO(NK). We could
instead use AC to average the matrices Um with preferable communication cost O(NK), however

3
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the arbitrary choice of representative Stiefel matrix Um from the Grassmannian equivalence class
[Um] makes this approach ill-posed.

In order to achieve theO(NK) communication cost without being ill-posed, one can have all agents
compute UmUT

mX and then use AC to approximate P̄X , where X ∈ RN×K is some matrix
agreed upon by all agents a priori. Section 3.3 elaborates on how quantities of the form P̄X can
be used to estimate the desired leading eigenvectors. In practice, the requirement that all agents
agree upon X might be overly strict; in many scenarios, it often suffices to have each agent m have
instance Xm which are all approximately equal (i.e. there exists some X for which Xm ≈ X for
all m ∈ [M ]).

After one iteration of an algorithm, each agent will have some local approximation of the quantity
P̄X . If the matrix X is retained in memory for each agent, then AC may be applied to a linear
combination of the P̄X approximations and X to approximate some quantity P̄

(
aP̄X + bX

)
=(

aP̄
2
+ bP̄

)
X . Applying this logic recursively reveals that such an algorithm can approximate

ft
(
P̄
)
X after t iterations, where ft ∈ Pt is a tth order polynomial; in Section 4 we will consider

more thoroughly these polynomials and how they can translate to desirable algorithms.

Gradient tracking is a famous technique in decentralized optimization that improves upon the con-
vergence rate of AC-based methods (Shi et al., 2015; Xu et al., 2015; Qu & Li, 2017; Deng & Hu,
2023; Ye & Zhang, 2021). In essence, it sets up a recursion using standard AC whose fixed point
satisfies both a consensus condition (meaning all agents agree) and a stationarity condition (meaning
the solution is locally optimal). We will later employ a form of gradient tracking over quantities of
the form ft

(
P̄
)
X for our decentralized algorithms.

3.3 THE POWER METHOD

The power method is a classical algorithm to estimate the leading eigenspace of a positive semidef-
inite matrix A ∈ RN×N . A single power iteration applies the matrix A and orthonormalizes (for
numerical stability) the result, e.g.

U (t) = QR
(
AU (t−1)

)
,

where QR(·) computes the Q ∈ RN×K matrix from a QR factorization of the argument. The power
method loop may be unrolled (thanks to the property QR(XQR(Y )) = QR(XY )) to reveal the
following form

U (t) = QR

(
AA · · ·AA︸ ︷︷ ︸

t times

U (0)

)
= QR

(
AtU (0)

)
Let V ⋆ ∈ St(N,K) be a basis for the leading K eigenvectors of A. For random initialization
U (0) ∈ RN×K , the span of U (t) converges to the span of the V ⋆ provided rank

(
V T

⋆U
(0)
)
= K

(Golub & Van Loan, 2013, Chapter 8.2).

At iteration t, the power method effectively applies the function ft(λ) = λt to each eigenvalue of A.
Consider for example the case where λK(A) = 1 and λK(A)− λK+1(A) > 0. As t increases, the
ratio between trailing and leading eigenvalues of At shrinks exponentially; formally, for 1 ≤ k ≤ K
and K + 1 ≤ ℓ ≤ N we have the following

λℓ

(
At
)

λk

(
At
) ≤ λK+1

(
At
)

λK

(
At
) =

(
λK+1(A)

λK(A)

)t

< 1

While the power method works well, large values of λK+1 can slow convergence. We will later show
how polynomials other than λt can overcome this shortcoming and use them in our algorithms.

4 METHODS

4.1 MOTIVATION

The goal of the RGrAv algorithms is to solve eq. (1) as efficiently as possible. Recall from Section 3
that determining the span of the K leading eigenvectors of P̄ is tantamount to solving eq. (1). Mo-

4
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tivated by the decentralized setting and the power method, we restrict our consideration to iterative
algorithms which after t iterations compute ft

(
P̄
)
Ū

(0) for some tth-order polynomial ft and initial

estimate Ū
(0) (see Section 3.2). If we can choose ft such that ft

(
P̄
)

has its trailing N −K eigen-
values significantly reduced compared to its leading K eigenvalues (relative to initial P̄ ), then the
span of the matrix product ft

(
P̄
)
Ū

(0) will be approximately our desired solution [V ] for arbitrary

initial Ū (0). We then focus on choosing such a so-called “noise-canceling” polynomial ft, in the
sense that the trailing eigenvalues get “canceled”.

We consider the case where the spectrum of P̄ is dual-banded, i.e. there exists some 0 < α < β < 1
such that Λ⊥ ⪯ αIN−K , βIK ⪯ Λ, and β − α ≫ 0 (e.g. β − α = 1

3 ). These values α, β are
unknown, but may be estimated heuristically from domain knowledge. This situation can arise, for
instance, when points are normally distributed on the manifold (see Section 5.1), where the heuristic
estimation of α, β comes from estimation of the variance of the dataset. For simplicity, we refer
to the intervals [0, α] and [β, 1] as the “stop-band” and “pass-band”, respectively. Similar to the
power method, we would like our polynomial ft to decrease the ratio between eigenvalues in the
stop-band relative to eigenvalues in the pass-band. However, unlike the power method, knowledge
of this dual-banded structure (even heuristically) allows us to choose polynomials which optimize
the worst case value of this ratio criteria. Leveraging this spectral structure is how we will choose
our optimal polynomials f⋆

t (see Theorem 1).

There is, however, an important consideration for high-dimensional data. In the case where N ≫
MK we are guaranteed that the nullspace of P̄ is (at least N −MK) high-dimensional by rank
subadditivity, meaning there will be a cluster of eigenvalues at 0. For this reason, we will constrain
our polynomials ft to always satisfy ft(0) = 0. Since the ratio criteria of Theorem 1 is invariant
to scaling of ft, we provide one final constraint of ft(1) = 1 simply for uniqueness of solution and
numerical stability.
Theorem 1. For t ≥ 1, the minimization problem

minimize
ft∈P′

t

maxλ∈[0,α]|ft(λ)|
minλ∈[β,1]|ft(λ)|

, (2)

where P ′
t is the set of tth order polynomials such that ft(0) = 0 and ft(1) = 1, is solved by

f⋆
t (λ) =

t−1∏
s=0

λ− rs,t
1− rs,t

, rs,t := α
cos
(

π(s+1/2)
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

)
which is a modification of a Chebyshev polynomial of the first kind.1

Figure 1: A visual comparison between the power method and our method. Each method’s corresponding tth-
order polynomial is applied to the eigenvalues λ in the domain [0, 1]. The Chebyshev recursion with threshold
parameter α = 0.5 results in the polynomial oscillations being reduced and flattened in the range [0, α].

1A proof may be found in Appendix B.1
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4.2 RGRAV ALGORITHMS

The polynomial f⋆
t may be exactly implemented by iteratively multiplying each factor in the product

given in Theorem 1; the “finite” variants of the RGrAv algorithms (Algorithms 5 and 6) do precisely
this. While this approach may be acceptable when the number of iterations t is known in advance,
intermediate solutions can be quite sub-optimal.

Ideally, one would be able to describe f⋆
t in terms of only a constant number of previous f⋆

s , e.g.
f⋆
t−1, f

⋆
t−2. This would yield an efficient algorithm with optimal intermediate solutions whose mem-

ory/compute costs do not grow as t → ∞. Unfortunately, this is not the case; fortunately, empiri-
cally, f⋆

t is well-approximated in terms of f⋆
t−1, f

⋆
t−2 (see Figure 1). For t ≥ 2, coefficients at, bt, ct

are chosen such that
f̃⋆
t (λ) = at((λ+ bt)ft−1(λ) + ctft−2(λ))

matches f⋆
t (λ) in its leading three terms, i.e. f⋆

t (λ)− f̃⋆
t (λ) ∈ Pt−3 (see Algorithm 7); the “asymp-

totic” variants of the RGrAv algorithms (Algorithms 1 and 4) use this f̃⋆
t .

As discussed in Section 3.3, orthonormalization must occur periodically for numerical stability.
To minimize the frequency of the orthonormalization schedule, our algorithms effectively cache the
operation of the most recent exact orthonormalization to a matrix S and then efficiently approximate
the orthonormalization procedure for iterations between the schedule by left-application of S. We
choose the QR factorization for our orthonormalization method, however alternative methods would
be acceptable.

In the centralized setting, the RGrAv algorithms need not worry about inaccuracy from average con-
sensus and so the order of operations focuses on minimizing the number of computations performed.
In the decentralized setting, the order of operations focuses on minimizing the error in the gradient
tracking procedure. Additionally, in the decentralized setting one must take care to use a “stable”
orthonormalization method which will not change drastically with small perturbations in the input.
We omit the nuances of numerical linear algebra that lead to this problem (see Golub & Van Loan
(2013, Chapter 5) for more information) and simply present Algorithm 2, which is a stable wrapper
for any implementation of a possibly unstable QR factorization.

Algorithm 1 Asymptotic DRGrAv (Decentralized Rapid Grassmannian Averaging)

Input: α ∈ [0, 1),
{
Ū

(0)
m

}M

m=1
, {Um}Mm=1

Output: Ū (T )

Sm ← IK
for t = 1, 2, 3, . . . do

A(t)
m ← UmUT

mŪ
(t−1)

▷ Local Power Iteration
if t = 1 then

Y (1)
m ← A(1)

m ▷
[
Y (1)

]
≈
[
P̄ Ū

(0)
]

Z(1)
m ← Y (1)

m ▷ Gradient Tracking
else

at, bt, ct ← ChebyshevCoefficients(t, α) ▷ See Algorithm 7
Y (t)

m ← at

(
A(t)

m + btŪ
(t−1)
m + ctŪ

(t−2)
m

)
▷
[
Y (t)

]
≈
[
f̃⋆
t

(
P̄
)
Ū

(0)
]

Z(t)
m ← Ẑ

(t−1)

m + Y (t)
m − Y (t−1)

m ▷ Gradient Tracking
end if
Ẑ

(t)

m = AverageConsensus
(
Z(t)

m

)
if t is on the orthonormalization schedule then

Ū
(t)
m ,Sm ← StableQR

(
Ẑ

(t)

m

)
▷ (Numerical Stability)

else
Ū

(t)
m ← Ẑ

(t)

m Sm ▷ (Numerical Stability)
end if
Ū

(t−1)
m ← Ū

(t−1)
m Sm ▷ (Numerical Stability)

end for

6
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Algorithm 2 StableQR

Input: Ẑ ∈ RN×K

Output: U ∈ St(N,K),S ∈ RK×K

Q,R← QR
(
Ẑ
)

▷ Arbitrary QR implementation
D ← sgn(Diag(R))
U ← QD
S ← R−1D ▷ Upper triangular inverse

5 EXPERIMENTS

5.1 DECENTRALIZED GRASSMANNIAN AVERAGING

In these experiments, we consider the problem where a network of M connected agents each has a
local instance of a Grassmannian basis Um ∈ St(N,K) and we would like for all agents to learn
an average Grassmannian basis of all Um in a strictly decentralized manner (i.e. there is no central
server, all communication is neighbor-to-neighbor). Our experiments had parameters M = 64,
N = 150, K = 30. To demonstrate the practicality of DRGrAv in both well-connected and sparse
communication graphs, we performed experiments for two communication graphs: the hypercube
graph and the cycle graph.

We compared DRGrAv to several alternative methods for Grassmannian averaging. Given below are
the algorithms, their sources, and considerations for their tuning such that the comparison would be
fair.

DRGrAv (this paper): Contrary to the following algorithms for which hyperparameters were cho-
sen over large ranges to be empirically optimal, the hyperparameter α is chosen here heuristically
as 0.15. We also choose to use the approximate asymptotic variant of DRGrAv, and set the or-
thonormalization schedule to orthonormalize at every iteration (to match DeEPCA). We believe it is
unrealistic in practice to exactly know the optimal choice of α, so by comparing our heuristically-
tuned algorithm against optimally-tuned competitors (detailed below) we hope to demonstrate that
our algorithm is competitive against alternatives, regardless of however optimal their hyperparame-
ter tuning.

DeEPCA (Ye & Zhang, 2021): While this algorithm is not intended for decentralized Grassmannian
averaging, we found that it could be easily adapted to this setting and gave competitive results: one
simply substitutes UmUT

m for the paper’s Aj . Also, for numerical stability, the paper’s QR +
SignAdjust procedure is replaced with the StableQR procedure. At a high level, these are all that’s
needed to adapt the method; see the deepca.py for a comprehensive algorithm description.

DPRGD/DPRGT (Deng & Hu, 2023): These algorithms are adapted to the decentralized Grass-

mannian averaging problem by using − 1
2

∥∥∥UT
mŪ

(t)
m

∥∥∥2
F

for the paper’s fi. These algorithms each
have a single hyperparameter for step size (referred to as α in Deng & Hu (2023)), which was
chosen for each algorithm (up to precision of 2 significant figures) by searching for the value in[
10−4, 103

]
which approximately minimized the MSE; the solutions were on the order of 100.

COM (Consensus Optimization on Manifolds) (Sarlette & Sepulchre, 2009): This algorithm is
the discrete-time variant of the continuous-time dynamics presented in Equation 20 of Sarlette &
Sepulchre (2009). There is a single hyperparameter for step size (referred to as α in Sarlette &
Sepulchre (2009)), which was chosen (up to precision of 2 significant figures) by searching for the
value in

[
10−4, 103

]
which approximately minimized the MSE; the solutions were on the order of

10−1.

Gossip (Mishra et al., 2019): This is Algorithm 1 of Mishra et al. (2019) where
1
4

∑M
m=1

∑
n∈N (m) d

2
([

Ū
(t)
m

]
,
[
Ū

(t)
n

])
is used as the paper’s g (where N (m) is the set of neigh-

bors of m). This algorithm is a gossip algorithm, not an average-consensus-based algorithm. As
a result, to keep the comparison fair we let each agent perform a gradient step in parallel for each
round of consensus the other algorithms perform. In precise terms, during each round of con-

7
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sensus this algorithm will select edges from the graph uniformly at random until there no longer
remain any 2 neighboring agents who both have not yet been selected; each of these agents then
performs a gradient step and the process repeats. There are 2 hyperparameters2 for step size a
and b, which were chosen (up to precision of 2 significant figures) by searching for values in
a ∈

[
10−4, 103

]
, b ∈

[
10−8, 100

]
which approximately minimized the MSD; the solutions were

a on the order of 100 and b on the order of 10−4.
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Figure 2: Plots of Mean Squared Error/Disagreement for the example decentralized Grassmannian averaging
problem. DRGrAv is our proposed algorithm, DeEPCA is from Ye & Zhang (2021), DPRGD and DPRGT are
from Deng & Hu (2023), COM is from Sarlette & Sepulchre (2009), and Gossip is from Mishra et al. (2019).
The units of the x axes are communication rounds, not algorithm iterations.

Table 1: Comparison of runtimes for various algorithms (using the hypercube graph). The first five data
columns display time (in milliseconds) until the MSE across agents goes below the given tolerance. COM
and Gossip do not in general converge to any specific point, so their metric for tolerance is instead MSD. The
minimal quantity in each column is bolded. The final column represents time per algorithm iteration. These
decentralized algorithms are not truly run on separate devices, only simulated as such, so these runtimes should
be interpreted broadly as general evidence that DRGrAv would perform well in a true decentralized setting.

Time (ms) until tolerance... 1e-3 1e-6 1e-9 1e-12 1e-15 Per Iter.
DRGrAv (This Paper) 35.4 47.4 47.4 56.7 66.1 11.8

DeEPCA Ye & Zhang (2021) 35.8 45.7 53.0 61.1 80.6 9.13
DPRGD Deng & Hu (2023) 1860 61200 >100000 >100000 >100000 9.24
DPRGT Deng & Hu (2023) 2270 2910 3470 4200 4780 14.5

COM* Sarlette & Sepulchre (2009) 5050 7290 9260 11000 13200 16.3
Gossip* Mishra et al. (2019) 1280 1730 2150 2590 3390 427

In order to have a fair comparison, all average-consensus-based algorithms mentioned above used
the same consensus protocol. Both graphs used the optimal Laplacian-based communication matrix
(i.e. W = I − 1

7L for the hypercube graph, W ≈ I − 1
2L for the cycle graph, where L is the

2Technically, Mishra et al. (2019) has a third hyperparameter, denoted ρ. However, their algorithm only
ever uses the quantity ρa, so w.l.o.g. we let ρ = 1 and control only a.
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corresponding graph Laplacian matrix) for 10 rounds of communication in the hypercube graph
case and 50 rounds of communication in the cycle graph case.

A single synthetic dataset {Um}Mm=1 of “normally distributed points with standard deviation π
4 ” was

used for all experiments. In precise terms, said dataset was generated by sampling a center point UC

uniformly at random on Gr(N,K) and then computing Um := expUC
(Tm) for all m ∈ [M ], where

Tm := ŨmΣ̃mṼ
T

m is a random tangent vector at UC such that Ũm, Ṽ m are sampled uniformly at
random from sets

{
Ũ | Ũ ∈ St(N,K),UT

CŨ = 0
}
,St(K,K) respectively and Σ̃ := Diag

(
π
4 z
)

where z ∼ N (0K , IK) is a vector draw of K i.i.d. standard normal random variables.

The Mean Squared Error quantity at time t was computed as 1
M

∑M
m=1 d

2
([

Ū
(t)
m

]
,
[
Ū
])

where
d is the extrinsic (or chordal) distance on the Grassmannian defined as d([U1], [U2]) :=

2−1/2
∥∥∥U1U

T
1 −U2U

T
2

∥∥∥
F

and Ū is the true IAM average (see Section 3), computed using the

torch.linalg.eigh function on P̄ directly (runtime of 161 milliseconds). Similarly, the Mean
Squared Disagreement quantity represents the amount to which the agents’ estimates vary at time t

and was computed as 2
M(M−1)

∑M
m=1

∑M
n=m+1 d

2
([

Ū
(t)
m

]
,
[
Ū

(t)
n

])
.

The results of these experiments are shown in Figure 2 and Table 1. Six iterations were chosen
for the hypercube graph case because at this point DRGrAv reaches floating point tolerance (FP-
tol), demonstrating that such precision is achievable by an algorithm in such time; Nine iterations
were chosen for the cycle graph in order to demonstrate the effective consensus-permitted tolerance
(ECPtol) of around 10−10. DRGrAv performs the best out of all algorithms, converging in the hy-
percube graph case to FPtol in only 6 iterations and converging in the cycle graph case to ECPtol
in only 5 iterations. The adapted DeEPCA method performs most closely to DRGrAv, however still
lags behind several orders of magnitude in MSE. In the cycle graph, DeEPCA manages to barely
beat DRGrAv in at the end, however given both are more or less at ECPtol we do not think this
provides strong evidence to prefer DeEPCA to DRGrAv. Since both COM and Gossip begin with
Ū

(0)
m ← Um instead of some pre-agreed upon starting U (0), they are able to have superior perfor-

mance to DRGrAv in the short term; however after only 2 iterations this short term behavior ends.
DPRGD and DPRGT, being generic algorithms for use on any compact submanifold, do not lever-
age any of the structure specific to the Grassmannian problem and consequently are not empirically
competitive to algorithms which do, e.g. DRGrAv. All algorithms presented have their specific ideal
use cases, and we claim that the problem of decentralized Grassmannian averaging is the ideal use
case of DRGrAv.

5.2 K-MEANS FOR VIDEO MOTION CLUSTERING

We consider the application of the RGrAv algorithm to the problem of video motion analysis, extend-
ing the work of Marrinan et al. (2014). Their study applied centralized subspace averaging methods
to multiple tasks on the DARPA Mind’s Eye video dataset. In our work, we focus specifically on the
(centralized) task of K-means clustering and compare against the best algorithm presented in their
work.

The Mind’s Eye dataset consists of a set of “tracklets” — short grayscale videos sequences of moving
objects, primarily people. Each tracklet consists of 48 frames of size 32 × 32 pixels. To prepare
these tracklets for subspace analysis, they are flattened into matrices Xt ∈ R1024×48, where each
column represents a vectorized frame. The subspaces U t = span(Xt) spanned by these columns
are treated as points on the Grassmannian, effectively encoding the essential motion patterns in the
video.

Each tracklet is annotated with a label describing the type of motion it contains, such as “walk” or
“ride-bike.” These labels provide ground truth for evaluating the effectiveness of clustering algo-
rithms; clusters are considered high-quality if most tracklets in the cluster share the same label. In
Marrinan et al. (2014), the authors find that the choice of averaging algorithm does not significantly
affect cluster quality as the number of clusters increases, whereas runtime can differ significantly.
As a result, we compare to the fastest averaging algorithm from their work – the flag mean – and
show that applying RGrAv can reduce runtime for the clustering task.
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Figure 3: A comparison of runtime for K-means with various averaging algorithms and numbers of clusters K.
The four colors represent the averaging algorithm as RGrAv (green), flag mean (orange), Fréchet mean (blue),
and power method (pink). The four algorithms produce clusters with similar quality (excluded for brevity), but
the RGrAv algorithm is significantly faster, showing 2×-10× speedup over the other averaging algorithms.

The standard K-means algorithm can be extended to cluster points on the Grassmannian by defining
two primitives: a distance metric and an averaging operation. The standard K-means algorithm with
these operations is shown in Algorithm 3. The centers Ū c are initialized randomly. At each iteration,
the points U t in the dataset are each assigned to their closest mean using the metric to form clusters.
The means are then updated to the average of their respective clusters, and the steps are repeated
until the means converge.

Algorithm 3 Grassmannian K-Means
Input: Subspaces {U t}Tt=1; Averaging algorithm: Ave(U1, · · · ,Un); Metric: d(U1,U2)
Output: Means {Ū c}Cc=1

{Ū (0)
c }Cc=1 ← {rand(St(N,K)}Cc=1 ▷ Initialize

while not converged do
{it}Tt=1 = {i : d(U t, Ū

(k)
i ) ≤ d(U t, Ū

(k)
j ) ∀j}Tt=1 ▷ Assign clusters

Ū
(k+1)
c = Ave({U t : it = c}) ▷ Compute new means

converged = maxc d(Ū
(k)
c , Ū

(k+1)
c ) < tol ▷ Check termination

k = k + 1
end while

For our clustering experiments, we test on the first 200 tracklets in the Mind’s eye dataset, which
have a total of 24 unique labels. Given the success of DeEPCA (Ye & Zhang, 2021) in our bench-
marks as a runner-up, we use the centralized version (the block power method) in these experiments
as well. We test the performance of K-means with four different averaging algorithms, namely
RGrAv, the power method, the Fréchet mean, and the flag mean. The distance operation for cluster
assignment is chosen to be the chordal distance for computational efficiency. The Fréchet mean
is computed via iterated gradient descent on the sum of squared distances cost function. Similar
to Marrinan et al. (2014), we find that the four averaging algorithms produce clusters with similar
quality across various values for K (these results are not shown for brevity). However as can be
seen in Figure 3, the runtime varies significantly between algorithms. The Fréchet mean has the
slowest runtime regardless of number of clusters, while RGrAv offers a 2×-10× speedup over the
other averaging algorithms for all K values.
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6 REPRODUCIBILITY STATEMENT

Section 5.1 is intended to be a comprehensive description sufficient for reproducibility; how-
ever, in addition all experiments from this section may be reproduced by running the
scripts/decentralized grassmannian averaging.py script in the supplemental
code; precise instructions and data formatting are described in the header of this file.
The K-means experiment can be reproduced in three steps. First is by downloading the
SUMMET dataset and putting it in the right subdirectory. Simply follow instructions in
data sources/video separation.py. Next to run the experiment, return to the base di-
rectory and run the command python -m scripts.tracklet clustering to run it as a
module. Finally once this completes, there should be a .pkl file with the results. To create the
visualization seen in this paper, run python -m vis.visualize tracklet and look in the
new plots/ subdirectory for the results.
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A ADDITIONAL ALGORITHMS

Algorithm 4 Asymptotic RGrAv (Rapid Grassmannian Averaging)

Input: α ∈ [0, 1), Ū (0), {Um}Mm=1

Output: Ū (T )

S = IK
for t = 1, 2, 3, . . . do

A(t)
m ← UmUT

mŪ
(t−1)

Â
(t)
← 1

M

∑M
m=1 A

(t)
m ▷ Power Iteration

if t = 1 then
Ẑ

(1)
← Â

(1)
▷
[
Ẑ

(1)
]
=
[
P̄ Ū

(0)
]

else
at, bt, ct ← ChebyshevCoefficients(t, α) ▷ See Algorithm 7

Ẑ
(t)
← at

(
Â

(t)
+ btŪ

(t−1) + ctŪ
(t−2)

)
▷
[
Ẑ

(t)
]
=
[
f̃⋆
t

(
P̄
)
Ū

(0)
]

end if
if t is on the orthonormalization schedule then

Ū
(t)
,S ← StableQR

(
Ẑ

(t)
)

▷ (Numerical Stability)
else

Ū
(t) ← Ẑ

(t)
S ▷ (Numerical Stability)

end if
Ū

(t−1) ← Ū
(t−1)

S ▷ (Numerical Stability)
end for

Algorithm 5 Finite RGrAv (Rapid Grassmannian Averaging)

Inputs: α ∈ [0, 1), T ∈ N, Ū (0), {Um}Mm=1

Output: Ū (T )

S ← IK
for t = 1, 2, 3, . . . , T do

A(t)
m ← UmUT

mŪ
(t−1)

Â
(t)
← 1

M

∑M
m=1 A

(t)
m ▷ Power Iteration

rt ← ChebyshevRoot(t, T, α) ▷ See Algorithm 8

Ẑ
(t)
← 1

1−rt

(
Â

(t)
− rtŪ

(t−1)
)

if t is on the orthonormalization schedule then
Ū

(t)
,S ← StableQR

(
Ẑ

(t)
)

▷ (Numerical Stability)
else

Ū
(t) ← Ẑ

(t)
S ▷ (Numerical Stability)

end if
end for

B AUXILIARY THEOREMS

Lemma 2. Suppose f⋆ ∈ P ′
t is a solution to eq. (2). Then the f⋆ has no roots in [α, 1].

Proof. If f⋆ had a root in [β, 1], then minλ∈[β,1]|f⋆(λ)| = 0 and the objective function is
unbounded, so f⋆ cannot have any roots in [β, 1]. This also allows us to conclude f⋆ is not the 0
polynomial, which is used in what follows.

Now, we show that if f⋆ has a root in (α, β), moving this root to α strictly decreases the

15
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Algorithm 6 Finite DRGrAv (Decentralized Rapid Grassmannian Averaging)

Input: α ∈ [0, 1), T ∈ N,
{
Ū

(0)
m

}M

m=1
, {Um}Mm=1

Output: Ū (T )

Sm ← IK
for t = 1, 2, 3, . . . , T do

A(t)
m ← UmUT

mŪ
(t−1)

▷ Local Power Iteration
rt ← ChebyshevRoot(t, T, α) ▷ See Algorithm 8
Y (t)

m ← 1
1−rt

(
A(t)

m − rtŪ
(t−1)
m

)
if t = 1 then

Z(1)
m ← Y (1)

m ▷ Gradient Tracking
else

Z(t)
m ← Ẑ

(t−1)

m + Y (t)
m − Y (t−1)

m ▷ Gradient Tracking
end if
Ẑ

(t)

m = AverageConsensus
(
Z(t)

m

)
if t is on the orthonormalization schedule then

Ū
(t)
m ,Sm ← StableQR

(
Ẑ

(t)

m

)
▷ (Numerical Stability)

else
Ū

(t)
m ← Ẑ

(t)

m Sm ▷ (Numerical Stability)
end if

end for

Algorithm 7 ChebyshevCoefficients
Input: t ≥ 2, α ∈ [0, 1)
Output: at, bt, ct

for s = t− 2, t− 1, t do
if s = 0 then

g0 ← 1
else

rs ← cos
(

π
2s

)
zs ← 1+rs

α
τs ← Ts(zs − rs) ▷ Ts is the sth-order Chebyshev polynomial of the first kind
gs ← τs

zs
s

end if
end for
for s = t− 1, t do

as ← 2 gs−1

gs
qs ← − rs

zs
end for
bt ← tqt − (t− 1)qt−1

if t = 2 then
ct ← 0

else
ct ← 1

4at−1

(
2t(t− 1)(qt − qt−1)

2 − t
z2
t
+ t−1

z2
t−1

)
end if

Algorithm 8 ChebyshevRoot
Input: t ∈ N, T ∈ N, α ∈ [0, 1)
Output: rt,T

rt,T ← α
cos(π(t+1/2)

T )+cos( π
2T )

1+cos( π
2T )

16
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objective function’s value showing that f⋆ could not have been a solution to the minization
problem.
If f⋆ had a root in (α, β), then we can write f⋆(λ) = (λ − λ1)g(λ) for some λ1 ∈ (α, β) and
g ∈ P ′

t−1 where g is not the 0 polynomial. It follows that

maxλ∈[0,α]|f⋆(λ)|
minλ∈[β,1]|f⋆(λ)|

=
maxλ∈[0,α]|(λ− λ1)g(λ)|
minλ∈[β,1]|(λ− λ1)g(λ)|

=
supλ∈[0,α)|(λ− α)g(λ)|

∣∣∣λ−λ1

λ−α

∣∣∣
minλ∈[β,1]|(λ− α)g(λ)|

∣∣∣λ−λ1

λ−α

∣∣∣
>

maxλ∈[0,α]|(λ− α)g(λ)|
minλ∈[β,1]|(λ− α)g(λ)|

where the final line results from the fact that
∣∣∣λ−λ1

λ−α

∣∣∣ < 1 for λ ∈ [β, 1] and
∣∣∣λ−λ1

λ−α

∣∣∣ > 1 for
λ ∈ [0, α). Now we observe that the function h(λ) := (λ − α)g(λ) ∈ P ′

t achieves a strictly lower
value for the objective function via moving the root λ1 ∈ (α, β) to λ = α. Thus, f⋆ would not be a
solution to eq. (2) and therefore f⋆ cannot have roots in (α, β).

Now we show that if f⋆ had a root at λ = α, we could slightly move the root to some point
to the left of α and decrease the objective function’s value.
Suppose f⋆ has a root at λ = α. We can write f⋆(λ) = (λ − α)g(λ) for some g ∈ P ′

t−1, where g
is not the 0 polynomial. Let δ > 0 be such that

max
λ∈[α− δ

2 ,α]
|f⋆(λ)| < min

ϵ∈[0,α]
max

λ∈[0,α]
|(λ− ϵ)g(λ)|

which exists since minϵ∈[0,α] maxλ∈[0,α]|(λ − ϵ)g(λ)| > 0 (as g ̸≡ 0 from the beginning of the
proof) and f⋆ is continuous. It follows that

maxλ∈[0,α]|f⋆(λ)|
minλ∈[β,1]|f⋆(λ)|

=
maxλ∈[0,α]|(λ− α)g(λ)|
minλ∈[β,1]|(λ− α)g(λ)|

=
supλ∈[0,α]\{α−δ}|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣
minλ∈[β,1]|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣
=

max{supλ∈[0,α− δ
2 )\{α−δ}|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣,Φ}
minλ∈[β,1]|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣
>

maxλ∈[0,α]|(λ− (α− δ))g(λ)|
minλ∈[β,1]|(λ− (α− δ))g(λ)|

with Φ = maxλ∈[α− δ
2 ,α]
|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣. The final line results from the fact that∣∣∣ λ−α
λ−(α−δ)

∣∣∣ < 1 for λ ∈ [β, 1],
∣∣∣ λ−α
λ−(α−δ)

∣∣∣ ≥ 1 for λ ∈ [0, α − δ
2 ), and since

∣∣∣ λ−α
λ−(α−δ)

∣∣∣ ≤ 1 for

λ ∈ [α− δ
2 , α],

max
λ∈[α− δ

2 ,α]
|(λ− (α− δ))g(λ)|

∣∣∣∣ λ− α

λ− (α− δ)

∣∣∣∣ < min
ϵ∈[0,α]

max
λ∈[0,α]

|(λ− ϵ)g(λ)| ∗ 1

≤ max
λ∈[0,α]

|(λ− (α− δ))g(λ)|

Now we observe that the function h(λ) := (λ − (α − δ))g(λ) ∈ P ′
t achieves a strictly lower value

for the objective function via moving the root from α to λ = α−δ. Thus, f⋆ would not be a solution
to eq. (2) and therefore f⋆ cannot have a root at λ = α.
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Definition 1. A polynomial f is t-equioscillatory on an interval [a, b] if there exists some a ≤
γ0 < γ1 < · · · < γt−1 ≤ b such that |f(γs)| = maxλ∈[a,b]|f(λ)| for all 0 ≤ s ≤ t − 1 and
f(γ0) = −f(γ1) = f(γ2) = −f(γ3) = . . . .
Lemma 3. A solution to the minimization problem

minimize
ft∈P′

t

maxλ∈[0,α]|ft(λ)|
minλ∈[β,1]|ft(λ)|

must be t-equioscillatory.

Proof. Suppose f⋆ is a minimizer in to eq. (2) that is not t-equioscillatory. First, we assume that
without loss of generality, f⋆(α) > 0 since if f⋆(α) < 0, we could replace f⋆ with −f⋆ and it
would still be a minimizer to the eq. (2), and we cannot have f⋆(α) = 0 by Lemma 2.
Let {λ1 = 0, λ2, · · · , λm} ∈ [0, α] for some m ≤ t denote the distinct roots of f⋆ in increasing
order that lie in [0, α]. We have m-intervals, I = {Ii}mi=1 where Ii = [λi, λi+1] and λm+1 = α. We
have that for any i ∈ [m], sgn(f⋆(λ)) = c for every λ ∈ int(Ii) where c ∈ {−1, 1}. In other words,
in the interior of any intervals from I, f⋆ takes strictly all positive values or strictly all negative
values. Define, for any interval I ⊆ R and function g

sgn(g|I) = c

where c ∈ {−1, 1} is the value such that sgn(f⋆(λ)) = c for every λ ∈ int(I). If such a value does
not exist, sgn(g|I) is left undefined.
We also define for any compact A ⊆ R and g ∈ C(R),

∥g∥A := max
x∈A
|g(x)|

Let

L = {I ∈ I : max
λ∈I
|f⋆(λ)| < ∥f⋆∥[0,α]}

M = {I ∈ I : max
λ∈I
|f⋆(λ)| = ∥f⋆∥[0,α]} = I \ L

J =
⋃
I∈L

I

Define g(λ) = |f⋆(λ)| − ∥f⋆∥[0,α] and denote ϵ = minλ∈J |g(λ)|, i.e the minimum distance by
which any point in J misses one of ±∥f⋆∥[0,α].
Let k = |{λ ∈ [0, α] : f⋆(λ) = ∥f∥[0,α]}|. Note that k < t by assumption. Let
M = {M1, · · · ,Mk} be intervals listed from left to right where ij ∈ [m] are indices such that
Mj = Iij = [λij , λij+1] for j ∈ [k] and λij < λim for 1 ≤ j < m ≤ k.
Now define

R = {λij : sgn
(
f⋆|Mj

)
̸= sgn

(
f⋆|Mj−1

)
for some 2 ≤ j ≤ k}

We have that since k ≤ t− 1 by assumption, then |R| ≤ k − 1 ≤ t− 2.

With R = {r1, · · · , rq} for some q ≤ t − 2, we define a polynomial r : R → R based on the sign
of f⋆ on Mk.
Case A: If sgn(f⋆|Mk

) = 1, we define

r(λ) := crλ(λ− β)Πq
i=1(λ− ri)

Case B: Otherwise (when sgn(f⋆|Mk
) = −1), define

r(λ) := crλ(λ− 1)Πq
i=1(λ− ri)

In either case, r be a polynomial of degree at most t. We now select cr ∈ R so that ∥r(λ)∥[0,α] < ϵ

and set the sgn(cr) so that sgn(r|M1
) = − sgn(f⋆|M1

). We now show sgn
(
r|Mj

)
= − sgn

(
f⋆|Mj

)
for every j ∈ [k] via induction. Our base case holds via how we set cr above.
Suppose inductively that sgn

(
r|Mj−1

)
= − sgn

(
f⋆|Mj−1

)
for some j ≤ k. Then, if sgn

(
f⋆|Mj

)
=

sgn
(
f⋆|Mj−1

)
, we have that as no root was added to r between these intervals and so

sgn
(
r|Mj

)
= sgn

(
r|Mj−1

)
= − sgn

(
f⋆|Mj−1

)
18
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with the last equality by the induction hypothesis. Otherwise, if sgn
(
f⋆|Mj

)
̸= sgn

(
f⋆|Mj−1

)
, then

since a root is added between them

sgn
(
r|Mj

)
= − sgn

(
r|Mj−1

)
= sgn

(
f⋆|Mj−1

)
= − sgn

(
f⋆|Mj

)
So in both cases, we have sgn

(
r|Mj

)
= − sgn

(
f⋆|Mj

)
which closes the induction.

Now we obtain that for any j ∈ [k],

∥f⋆ + r∥Mj < ∥f⋆∥[0,α]
as, for Mj ̸= [λm, α], the maximum ∥f⋆∥[0,α] is achieved by |f⋆| in the interior of Mj where |r| > 0

as r has no roots in this interior and sgn
(
r|Mj

)
= − sgn

(
f⋆|Mj

)
. Additionally, one recognizes that

if Mj = [λm, α], then r(λ) < 0 for x ∈ (λm, α] and so the above bound still holds even when the
maximum is attained on the boundary of the interval, i.e whenf⋆(α) = ∥f⋆∥[0,α]. Furthermore, we
have that

∥f⋆ + r∥J ≤ max
λ∈J
|f⋆(λ)|+ ∥r∥[0,α]

< max
λ∈J
|f⋆(λ)|+ ϵ = ∥f⋆∥[0,α]

by ϵ’s definition. Now we have obtained

∥f⋆ + r∥[0,α] < ∥f⋆∥[0,α] (3)

Now we turn to bounding the denominator of the objective function using f⋆ from above.
Note that sgn

(
f⋆|[α,1]

)
= 1 as f⋆(α) > 0 and f⋆ has no roots in [α, 1] by Lemma 2. We will now

show that in either case,

min
λ∈[β,1]

|(f⋆ + r)(λ)| ≥ min
λ∈[β,1]

|f⋆(λ)| (4)

Case A: Since sgn(f⋆|Mk
) = 1, sgn(r|Mk

) = −1 which gives sgn
(
r|[λik

,β]

)
= −1 as r has no

roots in (λik , β). Since r has a simple root at λ = β with no other roots greater than λ = β, we have
that sgn

(
r|[β,1]

)
= 1. It immediately follows that

min
λ∈[β,1]

|(f⋆ + r)(λ)| ≥ min
λ∈[β,1]

|f⋆(λ)|

Case B: Since sgn(f⋆|Mk
) = −1, sgn(r|Mk

) = 1 which gives sgn
(
r|[λik

,1]

)
= 1 as r has no roots

in (λik , 1). So sgn
(
r|[β,1]

)
= 1 and it follows that

min
λ∈[β,1]

|(f⋆ + r)(λ)| ≥ min
λ∈[β,1]

|f⋆(λ)|

Combining eq. (3) and eq. (4) gives
∥f⋆∥[0,α]

minλ∈[β,1]|f⋆(λ)|
≥

∥f⋆ + r∥[0,α]
minλ∈[β,1]|(f⋆ + r)(λ)|

We note that (f⋆ + r)(0) = 0 and f⋆ + r is an at most t-degree polynomial and therefore f⋆ + r
is a feasible function for the minimization problem eq. (2). Thus, f⋆ is not a solution to eq. (2) as
f⋆ + r is feasible and achieves a strictly smaller value for the objective function, which proves the
lemma.

Lemma 4. DefineP ′′
t := {ft ∈ Pt | ft(0) = 0, ft is t-equioscillatory on [0, α], ft(β) = 1} for β >

α. The problem
minimize

ft∈P′′
t

max
λ∈[0,α]

|ft(λ)|

is solved by

f⋆
t (λ) =

t−1∏
s=0

λ− rs,t
β − rs,t

rs,t := α
cos
(

π(s+1/2)
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

)
19
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Proof. First note that f⋆
t is indeed feasible; from inspection one realizes f⋆

t (β) = 1 and rt−1,t = 0
(consequently f⋆

t (0) = 0) and as a variant of a Chebyshev polynomial (of the first kind), f⋆
t is

t-equioscillatory on [0, α] with extremal points

γs = α
cos
(
πs
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

) , 0 ≤ s ≤ t− 1

Assume for the sake of contradiction that there exists some g ∈ P ′′
t such that maxλ∈[0,α]|g(λ)| <

maxλ∈[0,α]|f⋆
t (λ)|. This would then imply that the difference polynomial h(λ) := f⋆

t (λ) − g(λ)
satisfies the following

∀s = 0, 2, . . . : h(γs) = f⋆
t (γs)− g(γs)

> f⋆
t (γs)− max

λ∈[0,α]
|f⋆

t (λ)|

= 0

∀s = 1, 3, . . . : h(γs) = f⋆
t (γs)− g(γs)

< f⋆
t (γs) + max

λ∈[0,α]
|f⋆

t (λ)|

= 0

h(0) = f⋆
t (0)− g(0)

= 0

h(β) = f⋆
t (β)− g(β)

= 0

Since h changes sign on every γs, it must have at least one root in each of the t−1 intervals between
consecutive γs. By construction, h also has a 2 more roots at 0 and β, meaning h has at minimum
t+ 1 distinct roots. However, h is a tth order polynomial, leading to a contradiction.

B.1 PROOF OF THEOREM 1

Proof. First, by Lemma 3, since any minimizer f⋆ of eq. (2) is t-equiosciallatory, all t of f⋆’s roots
lie in [0, α]. This implies that f⋆ is increasing in [β, 1] and therefore we have

min
λ∈[β,1]

|f⋆(λ)| = f⋆(β)

which is assumed to be positive without loss of generality also as in Lemma 3. Now we can scale
f⋆ so that f(β) = 1 without changing the value of the objective function, i.e

maxλ∈[0,α]|f⋆(λ)|
f⋆(β)

=
maxλ∈[0,α]|Cf⋆(λ)|

Cf⋆(β)
= max

λ∈[0,α]
|Cf⋆(λ)|

where C = 1
f⋆(β) . We have now transformed the problem into

minimize
ft∈P′′

t

max
λ∈[0,α]

|ft(λ)|

as in Lemma 4 which is solved by

f⋆
t (λ) =

t−1∏
s=0

λ− rs,t
β − rs,t

rs,t := α
cos
(

π(s+1/2)
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

)
as desired.

B.2 SIMPLIFICATION OF EQUATION (1)

We begin by simplifying the original optimization problem[
Ū
]
= argmin

[U ]∈Gr(N,K)

∥∥∥P̄ −UUT
∥∥∥2
F

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

= argmin
[U ]∈Gr(N,K)

−2
〈
P̄ ,UUT

〉
+
∥∥P̄∥∥2

F
+
∥∥∥UUT

∥∥∥2
F

= argmin
[U ]∈Gr(N,K)

−
〈
P̄ ,UUT

〉
= argmin

[U ]∈Gr(N,K)

−
〈
Ṽ Λ̃Ṽ

T
,UUT

〉
= argmin

[U ]∈Gr(N,K)

−
〈
Λ̃, Ṽ

T
UUTṼ

〉
=

[
Ṽ argmin

W∈St(N,K)

−
〈
Λ̃,WW T

〉]

=

[
[V V ⊥] argmin

W∈St(N,K)

−
〈[

Λ 0
0 Λ⊥

]
,WW T

〉]

Since W ∈ St(N,K), it follows that tr
(
WW T

)
= K and all diagonal elements of WW T lay in

the range [−1, 1]. Consequently, minW∈St(N,K)−
〈
Λ̃,WW T

〉
≥ − tr(Λ). Since W =

[
Q
0

]
for

arbitrary Q ∈ St(K,K) satisfies this inequality with equality, it may be substituted as the solution
and a final simplification completes the proof.

[
Ū
]
=

[
[V V ⊥] argmin

W∈St(N,K)

−
〈[

Λ 0
0 Λ⊥

]
,WW T

〉]

=

[
[V V ⊥]

[
Q
0

]]
= [V Q]

= [V ]
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