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ABSTRACT

Aligning large language models to human preferences is inherently multidimensional, yet most
pipelines collapse heterogeneous signals into a single optimizeable objective. We seek to answer
what it would take to simultaneously align a model across various domains spanning those with:
verifiable rewards (mathematical accuracy), non-verifiable subjective preferences (human values),
and complex interactive scenarios (multi-turn AI tutoring dialogues). Such multi-objective rein-
forcement learning setups are often plagued by the individual objectives being at odds with each
other, resulting in inefficient training and little user control during inference. We propose a unified
framework that: (i) standardizes process reward model (PRM) training across both verifiable and
non-verifiable settings to better supervise models’ chain-of-thought reasoning; (ii) performs multi-
objective alignment by training the LLM with our Multi-Action-Head DPO (MAH-DPO) and a
vectorized reward where the dimensions of the vector correspond to the various objectives instead of
a single scalar; and (iii) demonstrates how such a system provides fine-grained inference-time user
control. Experiments across math reasoning, value alignment, and multi-turn dialogue show that
our framework improves performance across multiple objectives simultaneously, while minimizing
cross-objective trade-offs and enabling flexible inference time user control.

1 INTRODUCTION

The success and widespread deployment of large language models (LLMs) have created opportunities for AI assistance
across diverse applications, ranging from mathematical problem solving and question answering to educational tutor-
ing (Brown et al., 2020; Ouyang et al., 2022; Lin et al., 2023; Handa et al., 2025b; OpenAI, 2025; Handa et al., 2025a).
However, these real-world applications often demand that models simultaneously satisfy multiple objectives, which
exposes a fundamental challenge that aligning LLMs to human preferences is inherently multi-dimensional (Askell
et al., 2021; Bai et al., 2022a; Li et al., 2023). For instance, a question-answering system should provide helpful re-
sponses while being harmless (Ganguli et al., 2022; Perez et al., 2022), and an AI education tutor must be able to guide
students toward accurate understanding while remaining pedagogically engaging (Maurya et al., 2024; Pal Chowdhury
et al., 2024). These scenarios span three distinct categories of alignment targets: domains with verifiable rewards
where correctness can be automatically checked (e.g., mathematical accuracy), domains with non-verifiable subjective
preferences that require human judgment (e.g., helpfulness, honesty, truthfulness), and complex interactive scenarios
involving multi-turn dialogues (e.g., AI tutoring engagingness) where success depends on the downstream impact of
the assistant’s responses on subsequent user behavior.

Current alignment methods struggle to capture multi-dimensional human preferences. Common practices such as rein-
forcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022) distill human compar-
isons into scalar reward scores for maximizing expected reward. While direct preference optimization (DPO) (Rafailov
et al., 2023) eliminates the reward model, it still optimizes along a single preference axis. Both approaches collapse
rich, structured human feedback into one-dimensional training signals, discarding valuable trade-off information and
resulting in mismatches between nuanced human preferences and simplified optimization objectives.

Several recent works address multi-objective RLHF alignment through linear scalarization (Li et al., 2020; Hu et al.,
2023; Zhou et al., 2023; Wu et al., 2023; Guo et al., 2024) or post-hoc parameter merging of specialized models (Rame
et al., 2023; Jang et al., 2023). However, these approaches are computationally expensive and typically require retrain-
ing when incorporating additional objectives or altering the balance among existing ones. More computationally
lightweight methods like MODPO (Zhou et al., 2023) extend DPO to multiple objectives but they still apply fixed di-
mensional weights during training time, limiting alignment flexibility as the dimension weights cannot be changed at
inference time. Alternative test-time alignment methods use reward models to guide generation step-by-step but suffer
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from granularity mismatches between between reward definition and generation decisions (Khanov et al., 2024; Deng
& Raffel, 2023). For example, outcome reward models are trained to score complete responses while step-level guided
decoding operates on partial and incomplete responses, resulting in inconsistencies (Li et al., 2024; Xu et al., 2024).
Recent approaches attempt to address these granularity issues by using more granular reward signals from process
reward models (Lightman et al., 2023; Wang et al., 2023a; Luo et al., 2024; Hu et al., 2025; Xiong et al., 2025). How-
ever, these solutions mostly focus on verifiable domains where intermediate steps can be reliably evaluated (Zhang
et al., 2025; Zheng et al., 2024) and training PRMs in non-verifiable domains remain a challenge.

To address these limitations, we develop a framework that handles multi-objective alignment through three coordinated
components. First, we standardize PRM training across both verifiable and non-verifiable settings to enable reliable
step-level supervision across domains. For verifiable domains, we augment Monte Carlo rollouts with hindsight credit
assignment for reward collection. For non-verifiable domains, we devise three reward labeling strategies: i) major-
ity voting evaluation, ii) direct step judgment, and iii) step reward approximation, based on the process definition
and rollout difficulty in specific tasks. Second, we introduce Multi-Action-Head DPO (MAH-DPO) to preserve the
multi-dimensional nature of human preferences during training. Specifically, we first employ specialized action heads
on top of a shared LLM backbone, where each head corresponds to a preference dimension. Then simultaneously,
each head is optimized with its dimensional-specific DPO loss while the shared base LLM is updated with the cross-
dimension gradient. Thus, our MAH-DPO reduces cross-objectives gradient interference for more stable training
and the multi-head design also enables more flexible adaptation during inference. Finally, we complement training-
time optimization with our PRM-guided decoding with continuing hidden-state, which offers more fine-grained user
control over different objectives as well as improved alignment performances with preserved generation continuity.
Together these components turn multi-objective alignment into a coherent training and inference procedure that gener-
alizes across verifiable and non-verifiable domains with flexibilities for controllable inference-time search across each
preference dimension. To summarize, we make the following contributions:

• We develop a standardized PRM training pipeline that systematically addresses the challenge of deriving
fine-grained supervision across verifiable and non-verifiable domains.

• We propose vectorized multi-objective alignment via Multi-Action-Head DPO, which preserves the multi-
dimensional structure of human preferences during training and enables fine-grained preference dimension
control during inference.

• Extensive experiments across math reasoning, human value alignment, and multi-turn AI tutoring demon-
strates the effectiveness of our multi-objective alignment framework in both training-time and inference-time
optimization with possible synergy.

2 RELATED WORK

Process Reward Model. Process supervision addresses a core limitation of outcome-only evaluation by giving re-
wards on intermediate reasoning steps, helping systems avoid trajectories that look correct but contain logical errors.
The foundational approach involves collecting step-level human annotations for mathematical reasoning tasks and
training process reward models on these dense supervision signals (Lightman et al., 2023; Xia et al., 2025). Follow-
up work scales supervision with automated or weakly supervised labels, for example per-step Monte Carlo rollouts
or self-generated labels (Wang et al., 2023a; Luo et al., 2024). Beyond standard PRMs, recent variants introduce
progress or verifier signals that score both partial correctness and future success, improving search and ranking during
decoding (Chen et al., 2025; Setlur et al., 2024). There are also training objectives that regularize PRMs to improve
stability (Zhang et al., 2024). Practical studies discuss data generation, evaluation pitfalls, and how PRMs differ from
value functions that predict eventual solvability from partial traces (Zhang et al., 2025). Process-level search with
step-wise scoring has further been shown to beat outcome-level test-time compute baselines in several setups, includ-
ing controlled decoding, tree-structured search, and value/verification-guided search (Mudgal et al., 2023; Liu et al.,
2023; Yao et al., 2023; Snell et al., 2025; Setlur et al., 2024; Wang et al., 2025).

Multi-Objective Alignment. Multi-objective alignment trains or steers language models for multiple, potentially
conflicting objectives such as helpfulness, harmlessness, and honesty (Xie et al., 2025). Standard RLHF pipelines
fit a scalar reward and fine-tune with PPO, or use scalarized preference optimization (Ouyang et al., 2022; Rafailov
et al., 2023; Yuan et al., 2023; Xia et al., 2024; Dong et al.), but they collapse trade-offs into one score. Two lines
of work relax this restriction. Training-time approaches adapt multi-objective ideas, such as multi-objective RLHF
and multi-objective direct preference optimization, or parameter mixing to balance different rewards (Zhou et al.,
2023; Rame et al., 2023; Wang et al., 2024a; Yang et al., 2024a; Shi et al., 2024; Li et al., 2025). Complementing
these training-based methods, test-time alignment enables dynamic objective balancing without model retraining.
These approaches modify token probability distributions using reward guidance and perform search under composite
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objectives, achieving improvements on preference benchmarks while supporting per-user customization (Khanov et al.,
2024; Chen et al., 2024b; Yang et al., 2024b; Lin et al., 2025). This paradigm offers particular promise for multi-
objective alignment where individual user preferences vary significantly.

3 BACKGROUND

To understand the challenges and opportunities in multi-objective alignment, we examine three representative domains.

Mathematics. Mathematics represents a typical verifiable domain where ground truth can be automatically determined
with datasets such as GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), GaoKao (Zhang et al., 2023),
and OlympiadBench (He et al., 2024). The verifiable nature of mathematical correctness enables automatic reward
assignment at both outcome and process levels. Recent work has demonstrated the effectiveness of process reward
models (Lightman et al., 2023; Wang et al., 2023a; Uesato et al., 2022) that provide step-by-step supervision to validate
intermediate reasoning steps. Mathematical problem-solving can also involve dimensions beyond accuracy, including
explanation clarity for diverse user expertise levels and pedagogical engagement in practical applications.

Human Values. Unlike mathematical correctness, human values include a broad range of subjective preferences that
cannot be automatically verified, including aspects such as helpfulness, harmlessness, and honesty (Askell et al., 2021;
Bai et al., 2022a; Ouyang et al., 2022; Bai et al., 2022b). These qualities require human judgment and are subjective,
context-dependent, and sometimes conflicting. Recent work such as HelpSteer (Wang et al., 2023b; 2024b) and Ultra-
Feedback (Cui et al., 2023) provides multi-dimensional annotations and reference comparisons across multiple criteria
including helpfulness, coherence, and truthfulness. The challenge lies in the subjectivity and multi-dimensionality of
human preferences, while the lack of automatic verification makes it difficult to provide more fine-grained supervision.

Interactive AI Tutoring. Interactive AI tutoring represents another challenging domain that combines objective and
subjective evaluation within multi-turn dialogues, where success depends not only on correctness but also on peda-
gogical effectiveness, engagement, and scaffolding strategies. Datasets in this domain include educational dialogue
corpora (Stasaski et al., 2020; Macina et al., 2023; Chen et al., 2024a) and socratic questioning collections (Shridhar
et al., 2022; Ang et al., 2023; Ding et al., 2024). Unlike static domains, the quality of a tutor’s response should be
evaluated based on its impact on subsequent student responses and learning trajectories. We provide an example AI
tutoring dialogue in Appendix G.

4 PROCESS REWARD MODEL TRAINING

With varying degrees of verifiability and supervision granularity as discussed in Section 3, we first develop a standard-
ized PRM training framework across domains to lay foundations for multi-objective alignment.

4.1 VERIFIABLE DOMAINS

For tasks with objective correctness criteria, e.g., math, we augment the step-level supervision with outcome signals
with a value target estimator to train PRMs that both validate current intermediate step and predict future correctness.

Step-level Reward. Given a trajectory y1:N = (y1, y2, . . . , yN ), the step-level reward is defined as a correctness
signal that captures both textual validity and local logical coherence at step yt (Lightman et al., 2023; Luo et al.,
2024). Common practice of obtaining process reward labels involves a multi stage sampling and annotation process
(Wang et al., 2023a; Lightman et al., 2023; Xiong et al., 2025). For example, in Math Shepherd (Wang et al., 2023a),
multiple completions are sampled from each intermediate step to the final answer. A step is labeled as correct if at
least one completion leads to a correct final solution, and incorrect if all completions result in wrong answers.

Value Reward with Hindsight Relabeling. Motivated by experience replay in reinforcement learning (Andrychowicz
et al., 2017; Harutyunyan et al., 2019), we perform hindsight relabeling in addition to the step-level reward. From each
step yt, we rollout to its completion yt+1: = (yt+1, . . . , yn) and evaluate the final solution to obtain a binary terminal
correctness reward z ∈ {0, 1}. Then, we collect a step-level reward rt from annotation or existing PRM’s judgment
for step yt and blend it with the discounted terminal reward to credit the current step’s contribution to the final outcome
as r̃t. For each step yt, we generate M independent rollouts and aggregate them to obtain the final value target V target

t ,
which is used to train the PRM by minimizing the mean squared error on its predictions pt:

r̃t = rt + γn−tz, V target
t =

1

M

M∑
m=1

r̃mt , LPRM = Et,y1:t

[(
pt − V target

t

)2]
. (1)
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where γ ∈ (0, 1) is a discount factor that assign credits based on temporal distance. The relabeled reward enables the
PRM to predict both local step reasoning quality and future solution correctness.

4.2 NON-VERIFIABLE DOMAINS

For domains lacking objective correctness measures, we adapt our PRM training framework based on the availability
of clear process structure and rollout difficulty.

Case A: Clear Process Structure with Efficient Rollout. When the task has clearly-defined intermediate steps that
can be meaningfully evaluated, e.g. engagement in math reasoning process, we employ a rollout-based labeling strat-
egy similarly to our verifiable domain approach. We first calibrate an LLM-as-Judge J using a few human annotated
ratings R̂ to approximate the expected human judgment, J(y1:t) ≈ E[R̂]. Then we sample M completions from each
step yt and evaluate the resulting full trajectories using our calibrated LLM-as-Judge J . We label the step yt as positive
when the majority of completions are judged as positive by J :

rt = 1

[( 1

M

M∑
m=1

1positive
[
(J

(
y1:t, y

m
t+1:n

)])
> 1

2

]
. (2)

This majority voting criterion reflects the inherent subjectivity in non-verifiable domains, where a reasoning step’s
quality is measured by its tendency to lead to generally acceptable outcomes rather than definite correctness.

Case B: Clear Process Structure with Costly Rollout. When generating rollouts is costly or difficult, for example
multi-turn dialogue which requires real user interactions, we directly query the LLM-as-Judge J on observed trajectory
prefixes to otain the training label: rt = J(y1:t). This approach trades the robustness of rollout-based evaluation for
computational efficiency. One can mitigate the increased label noise inherent in this approach through careful judge
calibration, ensemble methods, and multi annotator agreement when feasible.

Case C: Unclear Process Structure. For domains where step wise decomposition lacks clear structures, for exam-
ple general question answering tasks, we approximate the process modeling through directly evaluating the partial
response with a reward model trained with complete responses. For example, one may collect or reuse available pair-
wise preference data {(yw, yl)} to train a Bradley-Terry model to score the process generation Rϕ(y1:t) → R. The
trained reward model provides holistic quality assessment that serves as guidance during decoding, approximating the
intermediate process supervision even when the process structure is not well defined.

5 ALIGNMENT: TRAINING AND DECODING

To align LLMs for multiple objectives across domains, we propose our Multi-Action-Head DPO (MAH-DPO) for
training time optimization (Section 5.1) and utilize our trained PRM directly for test-time alignment with reward-
guided decoding with continuing hidden-state (Secrtion 5.2).

5.1 TRAINING-TIME OPTIMIZATION: MULTI-ACTION-HEAD DPO

Direct Preference Optimization. DPO (Rafailov et al., 2023) optimizes a policy πθ against a fixed reference policy
πref using preference pairs D = {(x, yw, yl)}, where yw is the preferred response to prompt x and yl is the dispreferred
one. The DPO loss is:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(y
w | x)

πref(yw | x)
− log

πθ(y
l | x)

πref(yl | x)

))]
, (3)

where σ(·) is the sigmoid and β > 0 is a temperature parameter controlling the strength of the preference signal.

Multi-Action-Head LLM. To jointly optimize for H distinct objectives while maintaining computational efficiency,
we propose the multi-action-head LLM that extends the base LLM with specialized output layers. We maintain a single
shared LLM backbone θb, while introducing H distinct linear projection heads, one for each alignment objective. This
is more efficient than training H separate models, which would require H times the computational resources and fail
to leverage cross objective synergies.

Specifically, let hθb(x, y1:t) ∈ Rd denote the d-dimensional hidden state produced by the shared LLM backbone θb
for input prefix (x, y1:t). Each objective i ∈ {1, . . . ,H} has a dedicated projection head parameterized by matrix
Wi ∈ Rd×|V | to produce objective-specific logits zi and token probability distribution:

zi(x, y1:t) = W⊤
i hθb(x, y1:t), πθb,Wi

(yt | x, y1:t) = softmax(zi(x, y1:t)) (4)
where |V | is the vocabulary size. The shared LLM backbone captures general language understanding and generation
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            Shared LLM Backbone

 Input

Head 1 Head 2 Head H…

…

Output

Figure 1: Overview of Multi-
Action Head LLM.

capabilities, while specialized heads can encode objective-specific preferences. Dur-
ing inference, our multi-action-head architecture supports flexible objective control
by either selecting a specific head i for targeted behavior or ensembling logits from
multiple heads for balanced performance:

πMAH(yt | x, y<t) =

H∑
i=1

wiπθb,Wi(yt | x, y<t), (5)

where wi ≥ 0 are ensemble weights with
∑

i wi = 1. This flexibility enables the
model to be adapted for different downstream applications and user preferences with-
out requiring separate training runs for each objective combination.

Multi-Action-Head DPO Objective. We first curate H preference datasets {Di}Hi=1,
where each Di contains preference pairs specifically designed for objective i labeled
using our trained PRM or from annotated labels. All heads Wi are initialized from the
same language modeling head from the supervised fine-tuned (SFT) LLM πθb with
small random perturbations to encourage specialization. The reference model πref

retains the unperturbed SFT head. During training, examples (x, yw, yl) ∈ Di are
routed to head i, and we compute the objective-specific DPO loss:

Li(θb,Wi) = −E(x,yw,yl)∼Di

[
log σ

(
β

(
log

πθb,Wi
(yw | x)

πref(yw | x)
− log

πθb,Wi
(yl | x)

πref(yl | x)

))]
. (6)

Let a mini-batch during training be partitioned as B =
⊔H

i=1 Bi where Bi gathers the examples assigned to head i. The
combined loss we are minimizing is

LMAH-DPO(θb, {Wi}) =
H∑
i=1

αi ·
1

|Bi|
∑

(x,yw,yl)∈Bi

Li

(
θb,Wi;x, y

w, yl
)
, (7)

where αi ≥ 0 are objective weights with
∑

i αi = 1.

Gradient Analysis. The gradients for parameters of each head j are isolated by routing, while the backbone LLM
gradients accumulate across heads:

∇Wj
L =

H∑
i=1

αi ·
1

|Bi|
∑

(x,yw,yl)∈Bi

∇Wj
Li(θb,Wi;x, y

w, yl)︸ ︷︷ ︸
=0 if j ̸=i

= αj · EBj

[
∇Wj

Lj

]
, (8)

∇θb L =

H∑
i=1

αi ·
1

|Bi|
∑

(x,yw,yl)∈Bi

∇θb Li(θb,Wi;x, y
w, yl). (9)

Therefore, a single backward pass through Equation 7 updates the backbone and every active action heads simultane-
ously. To achieve more stable training and balanced gradient propagation, we can construct mini-batches with similar
number of examples |Bi| from each objective i or by tuning the weights αi when the dataset sizes differ. Since every
head consumes the same hidden states for its logits, the computation requires only one backbone forward per input and
parallel per-head projections, leveraging cross objective synergies without introducing excessive extra training cost.

5.2 TEST-TIME OPTIMIZATION: PRM-GUIDED DECODING WITH CONTINUING HIDDEN STATE

We also explore the use of our trained PRM during test-time directly via step-level reward guided decoding. Existing
reward-guided decoding or test-time search methods (Khanov et al., 2024; Liao et al., 2025; Park et al., 2024) typically
rebuild the prompt each step by concatenating the newly selected next generation with previous steps. However,
rebuilding and re-encoding the textual prompt each step can change how the prior context is represented within the
hidden state, e.g., small differences in tokenization around whitespace and newline merges, shifts in relative positions,
and the placement of special tokens from chat templates. As a result, the next-token distribution after re-encoding
can differ from the one obtained by directly continuing from the previous step and such discontinuity can lead to
performance degradation as observed in our experiments presented in Appendix D.

Therefore, to preserve the generation continuity at hidden state level, we utilize a running past key–value cache during
our PRM-guided decoding. The same hidden state is carried forward, so the continuation distribution follows the
true incremental decoding rather than a fresh prompt re-encoding approximation. We provide an overview of our
PRM-guided decoding in Algorithm 1 and describe details as follows.

Cache Initialization and Candidate Proposal. Given a chat-formatted prompt x, we run a single forward pass with
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Algorithm 1: PRM-Guided Decoding with Continu-
ing Hidden State
Input: policy πθ; PRM P ; boundary detection criteria

Q; number of candidates K; token budget
Tmax; prompt x.

Output: response y.
kv0 ← Fwdπθ (x); y1:0 ← ∅; t← 0.
while |y1:t| < Tmax and EOS /∈ y1:t do

for k = 1 to K do
k̃v← kvt; ỹ ← ∅.
whileQ(ỹ) = 0 do

Sample next token z ∼ πθ( · | k̃v );
k̃v← Fwdπθ (k̃v, z); ỹ ← ỹ ∥ z.

Record end-state cache kvk
t+1 ← k̃v;

Record candidate next step yk
t+1 ← ỹ;

Score with PRM rk ← P
(
x, y1:t, y

k
)
.

k⋆ ∈ argmaxk rk;
Update running cache kvt+1 ← kvk⋆

t+1;
Update response y1:t+1 ← y1:t ∥ yk⋆

t+1;
t← t+ 1.

the policy model πθ to obtain the initial past key–value cache
kv0 and the first next-token distribution. We set response
y1:0 = ∅ and generation step index t = 0. This avoids re-
encoding x in later steps and provides the reference state from
which all continuations proceed. Then, for each step t, we pro-
posal K candidates from the current running cache kvt. For
each candidate k, we clone kvt to a local copy and sample
the next token from policy model πθ while carrying that local
cache forward. Sampling stops when the boundary detection
criteria Q triggers. This yields a step generation ykt+1 with its
end-state cache kvkt+1.

Candidate Selection with PRM and Cache Update. Each
sampled candidate is then evaluated by a PRM P . Given
the current prefix y1:t, the score for candidate k is rk =
P (x, y1:t, y

k
t+1). We select k⋆ = argmaxk rk, append the

chosen step generation to the response y1:t+1 = y1:t ∥ yk
⋆

t+1,
and update the current running cache as kvt+1 = kvk⋆

t+1. This
commit keeps decoding stateful across segments rather than
re-encoding the prompt with textual concatenations. We re-
peat the above candidate proposal with πθ starting from kvt,
PRM scoring, and cache update until an end-of-sequence to-
ken appears or a token budget is reached. With every iteration
advancing from the running cache, the generation remains continuous with respect to model’s internal hidden state.

Computational Analysis. Besides keeping the generation continuity at hidden-state level, our cache-carrying PRM-
guided decoding also reduce the computational cost compared to re-encode-per-step baselines. Let |x| be the prompt
length, T the committed output tokens, N the number of steps, i.e., detected boundaries, K the candidates per step,
and L̄ the average candidate length such that T ≈ NL̄. A re-encode-per-step policy costs O(K(|x|N +NT )) while
our cache-carrying policy costs O(|x| + KNL̄) = O(|x| + KT ). Thus the factor N that multiplies T is removed,
enabling better test-time scaling by shifting compute from repeated re-encodings to candidate rollout or longer outputs.

6 EXPERIMENTS

In this section, we evaluate our multi-objective alignment framework across three domains. We show the effectiveness
of our MAH-DPO training in aligning LLMs along multiple dimensions simultaneously and our PRM-guided decoding
at test time. We further explore the potential synergy between training and test-time methods.

Datasets, Evaluation, and PRM Training. We evaluate our approach in three domains. Math: MATH (Hendrycks
et al., 2021) contains 12,500 challenging high school competition problems requiring multi-step reasoning and enables
verifiable step-level evaluation. Human Values: UltraFeedback (Cui et al., 2023) provides preference judgments over
helpfulness, honesty, and truthfulness, with a total size of 64k samples. AI Tutoring Dialogues: Socratic Mind (Hung
et al., 2024) contains multi-turn conversations in which an AI tutor guides Python programming students via Socratic
questioning, averaging 8 turns per session, with a total of 1362 dialogues. For evaluation, in mathematics we measure
Accuracy with correct final answers and Engagement with calibrated LLM-as-Judge with human annotations. In hu-
man values we score Helpfulness, Honesty, and Truthfulness using our trained reward models. In tutoring dialogues
we measure accuracy and engagement by simulating the student’s next turn after the aligned assistant response and
scoring it with trained PRM. We train our PRMs for each domain following our proposed standardized pipeline in
Section 4. We provide full details of PRM training for on each dataset in Appendix B.

6.1 TRAINING-TIME ALIGNMENT

We first evaluate our MAH-DPO approach across the above described three domains to validate its advantages in
multi-objective alignment in terms of performance improvements and flexible user control.

Baselines and Variants. We report results of the following baselines as well as our MAH-DPO variants. Base
is the original based LLM without any post-training or alignment. SFT applies supervised fine-tuning using only
the preferred responses from preference pairs. Single-Head DPO directly applies DPO to one primary objective
by pooling all dimension-specific preference data. MODPO (Zhou et al., 2023) is a multi-objective extension of
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Table 1: Alignment performances of training-time methods across three datasets.

Method Acc Eng

Base 0.7107 0.5007
SFT 0.7300 0.5920
Single-Head DPO 0.7253 0.7160
MODPO 0.7280 0.7367
MAH-DPO Acc Head 0.7353 0.8667
MAH-DPO Eng Head 0.7267 0.8840
MAH-DPO Ensemble 0.7247 0.8733

(a) Math

Method Help Honest Truth

Base 0.5800 0.3042 0.1888
SFT 0.5546 0.2998 0.1992
Single-Head DPO 0.6043 0.3055 0.2014
MODPO 0.6175 0.3477 0.2325
MAH-DPO Help Head 0.6309 0.3465 0.2239
MAH-DPO Honest Head 0.6257 0.3516 0.2303
MAH-DPO Truth Head 0.6257 0.3461 0.2286
MAH-DPO Ensemble 0.6389 0.3687 0.2478

(b) Human Values

Method Acc Eng

Base 0.6560 0.3220
SFT 0.6793 0.3473
Single-Head DPO 0.7040 0.4460
MODPO 0.7047 0.3600
MAH-DPO Acc Head 0.7007 0.4447
MAH-DPO Eng Head 0.6953 0.4480
MAH-DPO Ensemble 0.6893 0.4513

(c) Socratic Mind

DPO that optimizes multiple alignment objectives in an RL-free manner by combining objectives with weights during
training. MAH-DPO Individual Head reports the performance of each specialized head when used independently,
reflecting objective-specific capabilities. MAH-DPO Ensemble uses an equal-weight combination of all head logits,
representing our balanced multi-objective approach. We also analyze MAH-DPO inference with varying weights in
Figure 2 and 3.

Implementation Details. We build paired preference datasets with our trained PRM or annotations in three domains
as follows: Math (contrasting correct vs. incorrect rollouts and engaging vs. non-engaging solutions), Human Values
(UltraFeedback subsets for helpfulness, honesty, and truthfulness), and Socratic Mind (simulated tutoring dialogues
scored by trained PRMs). We train MAH-DPO on Qwen2.5-7B-Instruct for Math and Socratic Mind (SFT
then MAH-DPO), and on meta-llama/Llama-3.1-8B-Instruct for Human Values. Models use domain-
appropriate learning rates, batch sizes, and context windows. Full data construction and hyperparameters are in pro-
vided in Appendix C. All experimental results are averaged over 3 independent runs and we report standard deviations
in Appendix F.

Finding 1 - MAH-DPO yields the best multi-objective alignment performance. We present in Table 1 the
main alignment results across Math, Human Values, and Socratic Mind for all compared training-time methods.
Table 1 shows that specialized heads reliably lead on their targeted metrics, while the equal-weight ensemble
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Figure 2: Results with varying action
head weights in Math.

head aggregates these gains into the strongest overall performance across
domains. In Math, specialization raises the target metric without collaps-
ing the other while the ensemble head of MAH-DPO preserves most of
these gains and removes the need for objective-specific selection at infer-
ence time. The results show the effectiveness of our MAH-DPO method
in specializing each action head. In Human Values, the ensemble attains
the best combined profile across helpfulness, honesty, and truth, outper-
forming single-objective baselines and method variants that optimize one
dimension at a time. This demonstrates the advantage of our MAH-DPO
method to capture complementary preference signals across dimensions
with the shared LLM backbone. In Socratic Mind, our MAH-DPO method
shifts the operating point toward higher engagement while keeping accu-
racy in a usable range, which is desirable for tutoring where student partic-
ipation matters. The overall pattern supports shared representations with
head-level specialization and an inference-time ensemble to achieve strong
joint alignment without separate retraining for each objective mix.

Help

Honest

Truth
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Figure 3: Results with varying action
head weights in Human Values.

Finding 2 - Head weighting provides smooth control with limited in-
terference. We also show in Figure 2 and 3 further results on vary-
ing head weighting of MAH-DPO models during inference. Both re-
sults indicate that adjusting inference-time head weights traces a stable
accuracy–engagement frontier in Math and improves combined outcomes
in Human Values. As engagement weight increases, engagement rises
smoothly with only modest accuracy loss; conversely, accuracy-heavy set-
tings retain most of the best accuracy while keeping engagement high. In
Human Values, two- and three-head mixtures attain competitive or best
scores across dimensions without sharp regressions on non-emphasized
metrics, suggesting that head-level signals of our MAH-DPO trained mod-
els interact constructively rather than interfere. In practice, this means we
can pick weights to meet application targets without re-training or manual
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Table 2: Alignment performances of test-time methods across three datasets.

Method Acc Eng

Base 0.6853 0.5133
Accuracy PRM-guided 0.7633 0.4720
Accuracy Value-guided 0.7993 0.4553
Engaging PRM-guided 0.7013 0.7187

(a) Math

Method Help Honest Truth

Base 0.5750 0.3036 0.1904
Helpful PRM-guided 0.6706 0.4050 0.2791
Honesty PRM-guided 0.6448 0.4693 0.3383
Truthful PRM-guided 0.6350 0.4394 0.3296

(b) Human Values

Method Acc Eng

Base 0.6400 0.3380

Accuracy PRM-guided 0.7127 0.2660

Engaging PRM-guided 0.6507 0.4663

(c) Socratic Mind

Acc (Math) Eng (Math) Help (Human Values) Honest (Human Values) Truth (Human Values) Acc (Socratic Mind) Eng (Socratic Mind)
0.0

0.2

0.4

0.6

0.8

Re
wa

rd
 S

co
re

0.685

0.513
0.575

0.304

0.190

0.640

0.338

0.699

0.558
0.640

0.383

0.259

0.675

0.395

0.763
0.719

0.671

0.469

0.330

0.730

0.476

Base
Unified PRM
Specialized PRM

Figure 4: Alignment performances of a unified PRM trained across 7 dimensions in three domains compared with
base model and the specialized PRM trained on each dimension per domain.

response selection. For example, we can emphasize truth dimension while maintaining helpfulness and honesty, or
favor engagement while holding accuracy within a narrow band.

6.2 TEST-TIME ALIGNMENT

We also evaluate our PRM-guided decoding with continuing hidden state approach across all three domains to demon-
strate the effectiveness of our trained PRM in guiding objective-specific alignment during inference.

Baselines and Variants. We report results of the following baselines as well as our PRM-guided decoding variants.
Base utilizes the base model directly for step-wise generation without candidate sampling or selection. Individual
PRM-guided Decoding applies an individual PRM trained for each objective dimension to guide the base model
generation step by step following the candidate sampling-then-selection pipeline.

Implementation Details. We apply the same decoding strategy across all domains using the same base models as in
training. In Math, we treat natural reasoning boundaries marked by \n\n as step boundary, and we use our trained
accuracy and engagement PRMs to guide step-level generation. In Human Values, where responses are nonverifiable
and lack fixed process structure, we impose boundaries at sentence terminators and paragraph breaks, and use our
trained reward models to score helpfulness, honesty, and truthfulness under step-level computational budgets of 256
tokens per chunk and 1,024 total tokens. In Socratic Mind, each turn is treated as a step and scored with our trained
engagement and accuracy PRMs. Across all domains we sample K = 5 candidates at each step. All decoding runs
use temperature=1.0, top-p=1.0, and top-k=50 to ensure diversity while maintaining consistent selection under reward
guidance. We provide further results validating the effectiveness of our use of continuing hidden state for PRM-
guided decoding in Appendix D. All experimental results are averaged over 3 independent runs and we report standard
deviations in Appendix F.

Finding 3 - PRM-guided decoding effectively improves the targeted objective. We report in Table 2 inference-
time PRM-guided decoding results across three datasets. From Table 2, we can observe that PRM-guided decoding
reliably pushes the chosen metric upward relative to the base model across domains. In Math, accuracy-oriented
guidance lifts accuracy and engagement-oriented guidance lifts engagement, with the non-target metric remaining
close to base levels rather than collapsing, which indicates that the scoring signals steer step decisions without harmful
side effects. In Human Values, per-dimension guidance yields the best or second-best score on its own axis. In Socratic
Mind, the available entries show the same pattern: objective-specific guidance raises its target while the other attribute
stays within a usable range. Overall, our trained PRMs are effective in guiding test-time decoding process. They
improve alignment performances by selecting among candidate continuations at natural boundaries, and offer smooth,
predictable movement along multi-objective fronts without retraining.

Finding 4 - Unified PRM trained on mixture of data shows cross-domain effectiveness. To explore the potenial
of training a unified PRM across different domains, we further train a PRM using mixture of data with a total of 7
dimensions from Math, Human Values, and Socratic Mind. Details are also provided in Appendix B. As shown in
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Table 3: Alignment performances of synergizing training and test-time methods.

Method Acc Eng

Single-Head DPO 0.7253 0.7160

MODPO 0.7280 0.7367

MAH-DPO 0.7247 0.8733

MAH-DPO + Accuracy Value 0.8000 0.8553

MAH-DPO + Engaging PRM 0.7207 0.9060

(a) Math

Method Help Honest Truth

Single-Head DPO 0.6043 0.3055 0.2014
MODPO 0.6175 0.3477 0.2325
MAH-DPO 0.6389 0.3687 0.2478
MAH-DPO + Help PRM 0.7165 0.4554 0.3890
MAH-DPO + Honest PRM 0.6968 0.5196 0.4107
MAH-DPO + Truth PRM 0.6834 0.4872 0.3630

(b) Human Values

Method Acc Eng

Single-Head DPO 0.7040 0.4460

MODPO 0.7047 0.3600

MAH-DPO 0.6893 0.4513

MAH-DPO + Accuracy PRM 0.7160 0.3800

MAH-DPO + Engaging PRM 0.7120 0.5420

(c) Socratic Mind

Figure 4, the unified PRM improves every objective dimension over the base model in Math, Human Values, and
Socratic Mind. In Math, it raises both accuracy and engagement over base while remaining below the best specialized
PRM for each axis. In Human Values, it lifts Help, Honesty, and Truth relative to base and tracks the single-dimension
specialists within a small margin. In Socratic Mind, it again lies between base and the best specialized PRM on
both accuracy and engagement. Our results show the potential of a generalized PRM trained on a wider range of
domains and datasets that transfers across domains and provides a balanced improvement profile without domain-
specific retraining or serving multiple models.

6.3 SYNERGIZING TRAINING AND TEST-TIME ALIGNMENT

Finding 5 - Training and test-time methods complement each other in alignment. In Table 3 we report results
when we pair MAH-DPO with Ensemble head outputs with PRM-based guidance at test time across Math, Human Val-
ues, and Socratic Mind. The combined setup consistently pushes the joint accuracy–engagement or multi-dimension
profile outward relative to training-only baselines. In Math, accuracy-oriented selection boosts accuracy but slightly
reduces engagement, while engagement-oriented selection shows the opposite trade-off. In Socratic Mind, we observe
similar targeted trade-offs with PRMs optimizing their respective dimensions. In Human Values, per-dimension PRMs
on top of MAH-DPO reach the best scores on their targeted axes, and the ensemble PRM gives a balanced profile close
to the specialists while keeping non-target dimensions high; the honesty-guided run also boosts truth, which suggests
positive transfer enabled by the head factorization learned during training. Overall, the mechanism is simple: training
produces disentangled heads and a strong shared backbone, while test-time PRMs rank candidates at natural bound-
aries to steer generation toward the desired goal. This pairing expands the attainable Pareto set and gives practical
control at inference through specialist versus ensemble guidance and lightweight weight tuning, without additional
retraining.

Finding 6 - Reward verifiability guides whether test-time or training-time method selection. From Tables 1, 2,
and 3, we observe a consistent pattern across domains. When the reward is highly verifiable and can be checked deter-
ministically, e.g., Math accuracy, training-time alignment methods yield only incremental gains over strong baselines,
while PRM-guided decoding at test time produces substantially larger jumps. This suggests that precise step-level
scoring can steer generation more effectively than additional finetuning when the signal is crisp and unambiguous.
In contrast, when the reward is less verifiable or more subjective such as helpfulness, honesty, truth, or engagement,
multi-head training already delivers marked improvements by shaping shared representations and separating objec-
tives into disentangled heads. Test-time guidance then further refines or rebalances these objectives, giving targeted
emphasis, e.g., lifting honesty or helpfulness or producing a balanced ensemble profile, without eroding the non-target
dimensions. The mixed case of Math engagement also reflects this pattern: training yields large gains, while inference-
time guidance still helps but with a smaller relative lift. Overall, verifiable rewards benefit most from test-time search
against a precise signal, whereas noisier rewards benefit first from representation shaping with multi-objective training,
after which inference-time weighting provides fine-grained control with minimal trade-offs.

7 CONCLUSION

In this paper, we present a unified framework for multi-objective alignment during training and inference time. We
standardize process reward model training in both verifiable and non verifiable settings, proposes Multi-Action-Head
DPO training with vectorized rewards and pairs the trained model with PRM-guided decoding with continuing hidden
state. Experiments on math reasoning, value alignment, and multi-turn tutoring domains demonstrate the effective-
ness of our framework for multi-objective alignment as well as fine-grained and flexible user control for alignment
dimensions. Our framework offers a practical pathway toward AI assistants that are simultaneously accurate, safe, and
engaging across diverse domains and applications.
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ETHICS STATEMENT

This work uses three data sources. For Socratic Mind tutoring dialogues, human subjects procedures were reviewed
and approved by the authors’ Institutional Review Board, and only students who gave explicit written consent were
included. Participation was voluntary with no academic consequences, and students could withdraw at any time.
Dialogues were deidentified, stored with encryption, and accessed only by approved researchers. Public datasets
MATH and UltraFeedback were used under their licenses, and we cite the sources. We applied content filters and
safety checks to reduce risks, avoided sensitive advice, and report remaining limitations. We will share code and
configurations that do not compromise privacy or licensing.

REPRODUCIBILITY STATEMENT

We describe the details of datasets, experimental setups, and evaluation procedures in Section 6. Full PRM training
details and configurations for each experimented domain and dataset are provided in Appendix B. Full training-time
alignment details and configurations for each experimented domain and dataset are provided in Appendix C. In ad-
dition, Appendix E contains all the system prompts used in our experiments. Together, these materials provide all
necessary information to replicate our results.
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guided search for efficient chain-of-thought reasoning. arXiv preprint arXiv:2505.17373, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. Math-shepherd:
Verify and reinforce llms step-by-step without human annotations. arXiv preprint arXiv:2312.08935, 2023a.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert, Olivier Delalleau,
Jane Polak Scowcroft, Neel Kant, Aidan Swope, et al. Helpsteer: Multi-attribute helpfulness dataset for steerlm.
arXiv preprint arXiv:2311.09528, 2023b.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy Zhang, Makesh Narsimhan
Sreedhar, and Oleksii Kuchaiev. Helpsteer 2: Open-source dataset for training top-performing reward models.
Advances in Neural Information Processing Systems, 37:1474–1501, 2024b.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari Ostendorf,
and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for language model training. Advances
in Neural Information Processing Systems, 36:59008–59033, 2023.

Yu Xia, Tong Yu, Zhankui He, Handong Zhao, Julian McAuley, and Shuai Li. Aligning as debiasing: Causality-aware
alignment via reinforcement learning with interventional feedback. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pp. 4684–4695, 2024.

Yu Xia, Rui Wang, Xu Liu, Mingyan Li, Tong Yu, Xiang Chen, Julian McAuley, and Shuai Li. Beyond chain-
of-thought: A survey of chain-of-x paradigms for llms. In Proceedings of the 31st International Conference on
Computational Linguistics, pp. 10795–10809, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhouhang Xie, Junda Wu, Yiran Shen, Yu Xia, Xintong Li, Aaron Chang, Ryan Rossi, Sachin Kumar, Bod-
hisattwa Prasad Majumder, Jingbo Shang, et al. A survey on personalized and pluralistic preference alignment
in large language models. arXiv preprint arXiv:2504.07070, 2025.

Wei Xiong, Wenting Zhao, Weizhe Yuan, Olga Golovneva, Tong Zhang, Jason Weston, and Sainbayar Sukhbaatar.
Stepwiser: Stepwise generative judges for wiser reasoning. arXiv preprint arXiv:2508.19229, 2025.

Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang, and Sumitra Ganesh.
Genarm: Reward guided generation with autoregressive reward model for test-time alignment. arXiv preprint
arXiv:2410.08193, 2024.

Kailai Yang, Zhiwei Liu, Qianqian Xie, Jimin Huang, Tianlin Zhang, and Sophia Ananiadou. Metaaligner: Towards
generalizable multi-objective alignment of language models. Advances in Neural Information Processing Systems,
37:34453–34486, 2024a.

Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-in-context: Multi-
objective alignment of foundation models with dynamic preference adjustment. arXiv preprint arXiv:2402.10207,
2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural information processing
systems, 36:11809–11822, 2023.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank responses to align
language models with human feedback without tears. arXiv preprint arXiv:2304.05302, 2023.

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong Lin, Rui Pan, Hanze Dong, Dylan Zhang, Pavlo Molchanov,
and Tong Zhang. Entropy-regularized process reward model. arXiv preprint arXiv:2412.11006, 2024.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the performance of
large language models on gaokao benchmark. arXiv preprint arXiv:2305.12474, 2023.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou,
and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. arXiv preprint
arXiv:2501.07301, 2025.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren Zhou,
and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning. arXiv preprint
arXiv:2412.06559, 2024.

Zhanhui Zhou, Jie Liu, Chao Yang, Jing Shao, Yu Liu, Xiangyu Yue, Wanli Ouyang, and Yu Qiao. Beyond one-
preference-for-all: Multi-objective direct preference optimization. 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LLMS

We LLMs solely as a general-purpose writing aid to check grammar, improve clarity, and polish the wording of the
manuscript. No parts of the research ideas, experimental design, data analysis, or substantive writing were produced
by an LLM. All technical content and interpretations were created and verified by the authors.

B PRM TRAINING DETAILS

B.1 MATH PRM TRAINING

Accuracy PRM Training. We implement our rollout approach with hindsight relabeling to train a process reward
model for mathematical accuracy following Section 4.1. Our method leverages an existing well-trained PRM, specif-
ically Qwen/Qwen2.5-Math-PRM-7B, to provide intermediate step-level rewards that we combine with terminal
outcome signals through our principled framework. For each candidate reasoning step, we generate 5 independent roll-
outs using sampling to completion. Step values are computed by combining intermediate PRM rewards with binary
final outcome rewards, where correct solutions receive a reward of 1 and incorrect solutions receive 0. These rewards
are weighted by a temporal discount factor and averaged across all rollouts to obtain reliable step-level supervision
signals for step selection and trajectory extension. The iterative generation process continues until either a final boxed
answer is produced or the maximum step limit of 20 is reached, yielding step values within the range [0, 2]. Given that
the average mathematical problem requires 9-12 reasoning steps, we set the discount rate γ = 0.9 to appropriately
balance immediate step quality assessment with long-term credit assignment.

We also swept the discount factor when turning per-step PRM rewards into value targets and repeated both value-head
training and guided decoding. Concretely, for a step prefix s≤t we formed discounted returns Gt =

∑
k≥0 γ

krt+k

with γ ∈ {0.9, 0.95}, trained the same frozen-backbone + MLP value head to regress Gt via MSE, then used the
learned value to steer generation: at each step we propose candidate continuations and pick the one maximizing a
blended objective αV (s≤t+cand) + (1 − α) logP (cand | s≤t). Lower γ favors short-term gains, while higher γ
encourages longer-horizon reasoning during decoding.

Table 4: Comparison of Math Step-level Guided Decoding methods and their accuracy, averaged over 3 trials.

Guided Decoding Method Accuracy Engagingness

Baseline step-by-step 0.6853 ± 0.0163 0.5133 ± 0.0543
PRM-guided 0.7633 ± 0.0050 0.7187 ± 0.0266
Value head guided with γ = 0.90 0.7993 ± 0.0172 0.4553 ± 0.0221
Value head guided with γ = 0.95 0.7993 ± 0.0081 0.5053 ± 0.0050
MAH-DPO Ensemble Head + Accuracy PRM-guided with γ = 0.90 0.8000 ± 0.0231 0.8553 ± 0.0136
MAH-DPO Ensemble Head + Accuracy PRM-guided with γ = 0.95 0.7800 ± 0.0197 0.8470 ± 0.0098

Our PRM architecture follows the design from Qwen/Qwen2.5-Math-PRM-7B (Zhang et al., 2025), where we re-
place the standard language modeling head with a two-layer scalar value head that produces step-level quality scores.
Reasoning steps are serialized using the special separator token <extra_0> in chat-format input, with the trans-
former’s hidden state at each separator token position marking step boundaries. These boundary representations feed
into a compact MLP for per-step value prediction. During training, we freeze the PRM backbone parameters from
Qwen/Qwen2.5-Math-PRM-7B and optimize only the value head using mean squared error loss against the soft
step-value targets. Training proceeds for 2 epochs with a batch size of 32 and learning rate of 5e-5.

Engagement PRM Training. To evaluate our approach on subjective quality dimensions, we construct an
engagement-focused dataset. We sample 50 problems from the MATH training split and generate 4 solution roll-
outs per problem using the base model. These rollouts use an even mix of engaging and non-engaging reasoning style
system prompts to ensure balanced representation (see Appendix E). Human annotators label all 200 responses for
engagement quality, providing ground truth supervision for this subjective dimension. We calibrate an LLM-as-Judge
using Qwen/Qwen2.5-72B-Instruct to evaluate engagement levels, achieving 75.8% classification accuracy
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against human-labeled solutions. This calibrated judge enables scalable engagement evaluation during PRM training
(see Appendix E for calibrated system prompt).

For each problem, we generate one initial reasoning step, then create eight diverse completions continuing from the
current state using generation temperature 1.0. The calibrated LLM-as-Judge scores engagement for every completion
batch per step. Following our Case A methodology for non-verifiable domains in Section 4.2, we label a step as
engaging if more than four out of eight rollouts continuing from that step are deemed engaging, otherwise it receives
a non-engaging label. This process yields 11.8k step-level engagement annotations. We then convert the training data
into incremental reasoning sequences, where each step accumulates the solution path from problem statement through
progressive reasoning chains. The base model for the PRM training is meta-llama/Llama-3.1-8B configured
for binary classification. We train for 2 epochs using batch size 128, learning rate 1e-5 which achieves an evaluation
accuracy of 92.5%.

B.2 HUMAN VALUES PRM TRAINING

Human values represent a non-verifiable domain with no clear process structure. Rather than forcing artificial
step-level decomposition, we follow our Case C methodology in Section 4.2 and train reward model for holis-
tic quality assessment. We train Bradley-Terry reward models on top of the SFT model with base model as
meta-llama/Llama-3.1-8B following the RLHFlow recipe (Dong et al., 2024) with learning rate 1e-5 and
batch size 32 for 3 epochs. The reward model learns to capture human preferences across the helpfulness, honesty, and
truthfulness dimensions through pairwise preference optimization, providing dense guidance signals for fine-grained
decoding without requiring artificial process supervision.

B.3 SOCRATIC MIND PRM TRAINING

Students complete post-interaction surveys rating their experience on a 0-6 scale regarding how the Socratic Mind
approach enhanced their understanding, serving as our engagement dimension ground truth. We classify ratings ≥ 4
as engaging interactions. Student dialogues are collected with engagement ratings, and conversations are randomly
truncated after assistant turns to create training samples with varying trajectory lengths. We establish calibration
datasets with 80 training and 80 test samples to calibrate an LLM-as-judge using GPT-4o (Hurst et al., 2024), achieving
0.8 training accuracy and 0.66 test accuracy for engagement prediction. We additionally curate a specialized judge
for accuracy evaluation where system prompt for both objectives can be found in Appendix E. The calibrated LLM-
as-judge labels approximately 5k engagement samples and 8k accuracy samples for PRM training, achieving 0.81 test
accuracy for engagement and 0.7 for accuracy using classification on Llama-3.1-8B.

B.4 UNIFIED PRM TRAINING

We constructed a unified binary-classification corpus by combining all 7 objective dimensions from the domain
datasets used in our experiments and formatting each example as a “User:”/“Assistant:” dialogue with blank-line
spacing. Math engagement conversations yield incremental stepwise instances labeled from +/−. Human value
preference pairs are mapped to chosen = 1 and rejected = 0. Math value scores are normalized per example and
thresholded (> 0.85 → 1, otherwise 0). Socratic Mind engagement and accuracy retain only multi-turn dialogues,
with accuracy excluding the last turn. This pipeline produced a total of 168,514 examples with 47.4% positives. We
then fine-tuned a pre-trained Llama-3.1-8B model with a 2-class classification head using cross-entropy. Training
used a batch size of 128, a learning rate of 1× 10−5, and ran for 2 epochs.

C TRAINING-TIME ALIGNMENT DETAILS

C.1 MATH TRAINING DETAILS

Mathematical reasoning presents a natural testbed for multi-objective alignment, as effective tutoring requires balanc-
ing computational accuracy with pedagogical engagement. We design our experimental setup to capture this funda-
mental trade-off in educational AI systems.

Preference Data Construction. We construct two complementary preference datasets using the MATH training
dataset (12k problems) to target distinct but interrelated aspects of mathematical competence:

• Accuracy-focused pairs: For each problem, we generate up to 30 response rollouts using Qwen2.5-7B-
Instruct, extract boxed numerical answers, and compare against ground truth solutions. We pair the first
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correct solution with the first incorrect one encountered, creating 5,574 preference pairs that emphasize com-
putational precision and mathematical correctness.

• Engagement-focused pairs: Using the same problem set, we generate 10 rollouts per question and employ
LLM-as-Judge evaluation (Qwen2.5-72B-Instruct, temperature=0.1) to assess pedagogical quality. We iden-
tify responses that provide clear explanations, intuitive reasoning, and educational insights versus those offer-
ing terse or mechanical solutions, yielding 7,930 preference pairs that prioritize learning effectiveness over
mere correctness.

This dual construction allows us to examine whether MAH-DPO can simultaneously optimize for mathematical rigor
and educational value—objectives that often compete in practice.

Training Configuration. We establish a consistent training pipeline across all mathematical experiments. Starting
from Qwen2.5-7B-Instruct, we first perform supervised fine-tuning (learning rate 5 × 10−6, 2 epochs) to adapt the
model to mathematical domains. We then initialize MAH-DPO with small random perturbations (scale=0.001) applied
to each head to encourage objective-specific specialization while maintaining shared representations. The multi-head
training uses learning rate 1× 10−6, batch size 128, and β = 0.1, with sequences truncated to 512 prompt tokens and
extended to 1536 total tokens to accommodate detailed mathematical reasoning over 2 epochs.

C.2 HUMAN VALUES TRAINING DETAILS

Human values alignment represents a more abstract but equally critical challenge, where models must navigate com-
peting ethical principles. We focus on three fundamental dimensions that frequently conflict in real-world applications:
helpfulness, truthfulness, and honesty.

Preference Data Construction. We leverage the UltraFeedback dataset’s rich dimensional annotations to create three
targeted preference datasets:

• Helpfulness: 59.2k preference pairs contrasting responses that provide comprehensive, actionable guidance
versus those offering minimal or irrelevant information.

• Truthfulness: 50.8k pairs emphasizing factual accuracy and evidence-based reasoning versus responses con-
taining inaccuracies or unsupported claims.

• Honesty: 57.3k pairs focusing on transparent acknowledgment of uncertainty and limitations versus responses
that overstate confidence or mask knowledge gaps.

For each dimension, we pair responses with the highest and lowest annotated scores while excluding cases with iden-
tical ratings, ensuring clear preference signals. We reserve 2k examples per dimension for comprehensive evaluation
across all three values simultaneously.

Training Configuration. To maintain experimental consistency while adapting to the distinct characteristics of values
alignment, we modify our training approach accordingly. We perform supervised fine-tuning on Llama-3.1-8B using
UltraFeedback’s preferred responses (learning rate 5× 10−7, 1 epoch, batch size 192) to establish a strong foundation
for ethical reasoning. MAH-DPO training employs slightly larger perturbations (scale=0.005) to account for the more
nuanced nature of value judgments, with learning rate 5× 10−7, batch size 120, and sequences limited to 256 prompt
tokens and 768 total tokens to focus on concise value-aligned responses over 1 epoch.

C.3 SOCRATIC MIND TRAINING DETAILS

Socratic tutoring epitomizes the challenge of multi-objective alignment in educational settings, requiring models to
maintain factual accuracy while fostering student engagement through strategic questioning and explanation. This
domain tests our approach’s ability to handle dynamic, context-dependent trade-offs.

Preference Data Construction. We simulate realistic tutoring interactions by randomly sampling 1,000 educational
dialogues and introducing natural conversation breakpoints. At each dialogue state, we generate 5 potential assistant
responses representing different tutoring strategies—from direct instruction to guided discovery. We then employ
trained PRMs specialized for accuracy and engagement assessment to evaluate each candidate response. By selecting
the highest and lowest scoring responses for each objective, we create 1,000 preference pairs per dimension that
capture the nuanced balance between providing correct information and maintaining pedagogical effectiveness in
conversational contexts.

Training Configuration. Given the complexity of dialogue understanding, we adopt our mathematical domain con-
figuration while extending context capabilities. We fine-tune Qwen2.5-7B-Instruct (learning rate 5× 10−6, 2 epochs)
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and apply MAH-DPO with perturbation scale 0.001 to preserve dialogue coherence across heads. Training employs
learning rate 1× 10−6, batch size 256, and β = 0.1, with extended context windows (1336 prompt tokens, 1536 total
tokens) to accommodate full dialogue history while maintaining computational efficiency over 2 epochs.

These three experimental domains collectively span the spectrum from concrete mathematical reasoning to abstract
value judgments to dynamic conversational interaction, providing a comprehensive testbed for evaluating MAH-DPO’s
multi-objective alignment capabilities across diverse AI applications.

D CONTINUING HIDDEN STATE ABLATION

In this section, we provide further results for validating the effectiveness of continuing hidden state in our PRM-
guided decoding for alignment. We present comparisons between our continuing hidden state approach with classic
text chunk concatenation approach and the results are in Table 5 and 6. From Table 5, we observe that in Human
Values where there is not a clear process structure, step-wise generation using text chunk concatenation leads to
performance degradation compared to the one-pass generation. Meanwhile, our continuing hidden state approach
achieve comparable performance with one-pass generation when no guidance from PRMs is used, and also consistent
improvements over text chunk method when guided by PRMs. This demonstrates that text chunk concatenation
which requires iterative re-encoding can break the generation continuity while our hidden state approach preserve
such continuity for response generation. In Table 6, there is no major performance difference between text chunk
method and our hidden state method, which indicates the text chunk methods does not break generation continuity
when the process structure is clear and well-defined such as in Math domain.

Table 5: Further results of PRM-guided decoding in Human Values: continuing text chunk vs. continuing hidden state.

Method Help Honest Truth

One-pass generation without guided decoding (reference) 0.5800 ± 0.0066 0.3042 ± 0.0066 0.1888 ± 0.0028

Step-wise generation without guided decoding (text chunk) 0.4688 ± 0.0033 0.1857 ± 0.0016 0.1182 ± 0.0031

Step-wise generation without guided decoding (hidden state) 0.5750 ± 0.0107 0.3036 ± 0.0015 0.1904 ± 0.0036

Step-wise generation + Helpful PRM guided (text chunk) 0.6140 ± 0.0099 0.3273 ± 0.0069 0.2099 ± 0.0060

Step-wise generation + Helpful PRM guided (hidden state) 0.6706 ± 0.0093 0.4050 ± 0.0035 0.2791 ± 0.0023

Step-wise generation + Honest PRM guided (text chunk) 0.6148 ± 0.0150 0.3860 ± 0.0106 0.2544 ± 0.0062

Step-wise generation + Honest PRM guided (hidden state) 0.6448 ± 0.0050 0.4693 ± 0.0045 0.3383 ± 0.0025

Step-wise generation + Truth PRM guided (text chunk) 0.5775 ± 0.0155 0.3165 ± 0.0028 0.2500 ± 0.0062

Step-wise generation + Truth PRM guided (hidden state) 0.6350 ± 0.0032 0.4394 ± 0.0036 0.3296 ± 0.0056

Table 6: Further results of PRM-guided decoding in Math: continuing text chunk vs. continuing hidden state.

Method Accuracy Engagement

One-pass generation without guided decoding (reference) 0.7107 ± 0.0090 0.5007 ± 0.0289

Step-wise generation without guided decoding (text chunk) 0.7040 ± 0.0092 0.4907 ± 0.0358

Step-wise generation without guided decoding (hidden-state) 0.6853 ± 0.0163 0.5133 ± 0.0543

Step-wise generation + Engaging PRM guided (text-chunk) 0.7187 ± 0.0147 0.6353 ± 0.0099

Step-wise generation + Engaging PRM guided (hidden-state) 0.7013 ± 0.0352 0.7187 ± 0.0266

Step-wise generation + Accuray PRM guided (text-chunk) 0.7973 ± 0.0083 0.4807 ± 0.0205

Step-wise generation + Accuracy PRM guided (hidden-state) 0.7993 ± 0.0172 0.4553 ± 0.0221
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E SYSTEM PROMPTS

In this section, we provide the system prompts used for response generation and LLM-as-Judge. Apart from the
domains or alignment objective dimensions specified as follows, no system prompt is used. For example, we do not
use system prompt for response generation in Human Values experiments.

E.1 MATH SYSTEM PROMPTS

Response Generation System Prompt in Math

Normal
Please reason step by step, and put your final answer within \\boxed{}.

Engaging
Please reason step by step using intuitive explanations, relatable examples, and clear language that helps deepen under-
standing of the underlying concepts, and put your final answer within \\boxed{}.

Non-Engaging
Please reason step by step using formal mathematical notation and precise terminology. Minimize explanatory content,
focus exclusively on necessary calculations and logical steps, and put your final answer within \\boxed{}.

Engagement LLM-as-Judge System Prompt in Math

You are an expert evaluator of mathematical explanations. Your task is to determine whether the mathematical content
presented is ENGAGING or NOT ENGAGING.

ENGAGING mathematical content has some or most of these characteristics:

• Uses intuitive explanations and relatable examples

• Provides clear language that helps deepen understanding

• Makes abstract concepts accessible and interesting

• Includes explanatory content that builds conceptual understanding

• Presents reasoning that is easy to follow

• Balances formal notation with helpful explanations

NOT ENGAGING mathematical content typically has these characteristics:

• Uses primarily formal mathematical notation and terminology

• Provides minimal explanations beyond the calculations

• Focuses exclusively on necessary calculations and logical steps

• Lacks intuitive explanations or relatable examples

• Uses dense, technical language that may be harder to follow

• Prioritizes brevity and formality over accessibility

Evaluate only the engagingness of the content, not its correctness.

Your evaluation must be in JSON format with two fields:

{"analysis": "<specific reasons why the content is or is not engaging>",
"judgment": "<ENGAGING or NOT ENGAGING>"}

Please evaluate the following mathematical content:

PROBLEM:

{problem}

SOLUTION:

{solution}
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E.2 SOCRATIC MIND SYSTEM PROMPTS

Accuracy LLM-as-Judge System Prompt in Socratic Mind

You are an evaluator of tutoring dialogues. Your task is to judge the ACCURACY of the ASSISTANT’S LAST MES-
SAGE. Use the student’s immediate reply only as a probe. The label will train a reward model that must also work when
only the assistant message is present.

Goal
Decide whether the assistant’s last message is factually correct, specific, and checkable so that a competent student could
reach a correct answer without extra unstated information. Use the student reply to test this, but base the label on the
assistant message itself.

Scope
Read only the final assistant message and the immediately following student reply. Consult earlier turns only to decode
terms, variable meanings, or given values when strictly needed. Do not judge engagement, style, or tone.

Strict Criteria (all must hold for ACCURATE)
• Correctness: Facts, formulas, code, and reasoning in the assistant message are correct for the stated task and

context.

• Sufficiency: The message includes the key inputs, units, constraints, and acceptance criteria needed to verify a
result. It does not rely on hidden assumptions.

• Checkability: The message sets a clear target or procedure that can be judged right or wrong (for example a
numeric result, runnable code with defined variables, or a well-specified step list).

• Consistency: The message does not conflict with earlier defined variables, values, or conditions.

Stricter Default
If there is reasonable doubt about correctness or checkability, choose INACCURATE. Praise, summaries, or meta talk that
do not set a checkable target are INACCURATE for this accuracy task.

How to Use the Student Reply
Use it only as evidence of whether the assistant message was clear and correct. If the reply is wrong or a non-answer and
the assistant message was underspecified, ambiguous, misleading, or used wrong facts/code, label INACCURATE. If the
reply is wrong but the assistant message was fully correct and checkable, you may still label ACCURATE. If there is no
reply, judge the assistant message alone by the strict criteria.

Concrete Failure Patterns that Require INACCURATE
• The message contains a wrong fact, wrong formula, or code that would error or produce a wrong result as written

(undefined names, wrong API, wrong boundary).

• The task depends on data or tools not provided and the message does not state allowed assumptions.

• The target is not objectively checkable (for example “share your thoughts”) or key constraints/units are missing
so multiple incompatible answers fit.

• The message conflicts with established context (for example uses 2.5 when 3.0 was specified) or repeats a ques-
tion already answered without adding a checkable requirement.

Decision Rules
1. If the message satisfies all strict criteria, and the student reply is correct or an acknowledgment to a correct final

answer→ ACCURATE.

2. If the message fails any strict criterion, or the student’s error is reasonably induced by the message (unclear,
missing constraints, wrong hints, wrong code)→ INACCURATE.

3. In uncertain cases, default to INACCURATE.

Dialogue: {conversation}

Your evaluation must be in JSON format:

{
"label": "ACCURATE" or "INACCURATE"

}
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Engagement LLM-as-Judge System Prompt in Socratic Mind

You are an evaluator of programming tutoring dialogues. Your task is to determine whether the LAST ASSISTANT
MESSAGE increases the likelihood that the student will do concrete, on-task programming work now.

Scope and Evidence
Read the LAST ASSISTANT MESSAGE. Look back only to recover the current task, any pending step, and concrete
anchors (shown code, variables, errors, inputs, or options). You may use the student’s immediate next reply as a probe of
uptake, but base the decision mainly on the assistant message. Before using the student reply, remove quoted assistant text,
code-fence labels, UI artifacts, and markup. Do not judge tone.

What Counts as Engagement-Raising
The message raises engagement when it asks for a clear, task-specific programming action that yields a result verifiable
from the dialogue now. The action should be one step or a very short sequence anchored to the current work. The following
qualify (treat any one as sufficient):

• Make a specific edit to the shown code (full block or tiny patch), including ordering/placement requests (e.g.,
“insert this condition before the < 30 check”, “swap these two arguments”, “replace = with == on line 1”). The
edited code itself is the check.

• Write or complete a small snippet (≈10 lines or fewer) tied to the current construct (e.g., “rewrite the function
using elif”, “show a while loop that uses break to exit when input is ‘stop””).

• Predict one concrete outcome tied to the code and inputs (e.g., “what prints for level = 90?”, “which branch runs
when time left == 30?”, “will this raise a SyntaxError?”).

• Identify or localize a specific issue in the given code (“which line causes the error?”, “what rule is violated by
this call?”) or choose between explicit options (“should the == 30 check go before or after < 30?”).

• Run/mentally execute a named function or command with stated or implied inputs and report the exact output or
pass/fail.

• Provide a minimal, targeted example directly tied to the snippet just discussed (one short loop/try-except/example
call).

Also count as engagement-raising:

• Requests to finish a started step (e.g., “complete the code you began with the missing elif...”), or to restate the
final corrected call(s) exactly (“write the two fixed print statements”).

• Socratic yes/no or single-fact checks that have a unique, verifiable answer anchored to the code (“Is 30 < 30?”,
“Would the elif run when time left is 30?”).

What is Not Engagement-Raising
The message is NOT engagement-raising when it only explains/summarizes; asks open “why/how/compare/explain” with-
out anchoring to the current code or a bounded artifact; gives a full final solution leaving nothing to do; posts long code or
text without a precise “do-now” instruction; goes off task; or tells the student to wait/stop while a step is pending.

Pending-Step Handling
If an earlier assistant turn set a step that is still unfinished (write/implement/fix/modify/calculate/answer/show code/run
and report), the LAST ASSISTANT MESSAGE should push that step forward with a precise instruction or a small substep
plus an observable result. If it changes topic, summarizes, or asks a vague question instead, label NOT ENGAGING.

Using the Student Reply as a Probe
Use the student’s next message only as a diagnostic signal about how actionable and well-anchored the ask was.

• Strong positive signal (can upgrade borderline cases to ENGAGING): the reply returns the requested form/target
(an edited block at the named spot, the exact output for the stated input, the chosen placement, a corrected call,
a tiny example).

• Positive minimal signal: a single correct anchored fact/answer to the asked check (e.g., “no” to “Is 30 < 30?”)
counts as uptake.

• Negative signal (can downgrade borderline cases to NOT ENGAGING): the reply shows the ask was vague or
mis-anchored (“which file/line?”, undefined inputs), or is off-target.

• Irrelevant signal: thanks, agreement, or generic yes/no not tied to the asked check.

Decision Rule
Output ENGAGING if ANY of the following holds: the LAST ASSISTANT MESSAGE issues a concrete, non-trivial,
anchored do-now task with a verifiable result; or it advances a pending step with an explicit, immediately doable action;
or the cleaned student reply shows anchored uptake that advances the work in the requested form. Otherwise output
NOT ENGAGING.
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Engagement LLM-as-Judge System Prompt in Socratic Mind (Continued)

Edge Handling
• If the assistant supplies a full solution AND the only ask is generic confirmation, label NOT ENGAGING.

• If an explanation ends with a concrete do-now request (e.g., “now change X and rerun/predict output”), treat that
request as decisive.

• Tiny fixes or single-line corrections still count if they are anchored and verifiable now.

Dialogue: {conversation}

Your evaluation must be in JSON format:

{
"label": "ENGAGING" or "NOT_ENGAGING"

}

Assistant/Student Simulator System Prompt in Socratic Mind

Next Assistant Turn Simulation
You are a tutor who is helping a beginner student learn programming. Continue as the same tutor and reply similarly to the
last student message, matching EXACTLY the SAME speaking tone and tutoring style as in your earlier messages (e.g.
reply to the student’s last message concisely in 1-2 sentences and then always ask a meaningful follow-up question).

Next User Turn Simulation
You are a student who is learning programming as a beginner with a tutor. Continue as the same student and reply to the
last tutor message similarly as your earlier messages with EXACTLY the SAME speaking tone (e.g., curious, impatient,
informal, etc.), response style (e.g., short, long, incomplete, etc.), amount of discourse marker (e.g., not using any discourse
markers), understanding level (e.g., making mistakes), and engagement level (e.g., less engaged in the session).

F FULL RESULTS WITH STANDARD DEVIATION

Table 7: Full results with standard deviations in Human Values.

Method Help Honest Truth

Training-time alignment
Base 0.5800 ± 0.0066 0.3042 ± 0.0066 0.1888 ± 0.0028
SFT 0.5546 ± 0.0043 0.2998 ± 0.0021 0.1992 ± 0.0087
Single-Head DPO 0.6043 ± 0.0075 0.3055 ± 0.0100 0.2014 ± 0.0098
MODPO 0.6175 ± 0.0017 0.3477 ± 0.0013 0.2325 ± 0.0033
MAH-DPO Helpful Head (Head 1) 0.6309 ± 0.0045 0.3465 ± 0.0070 0.2239 ± 0.0098
MAH-DPO Honesty Head (Head 2) 0.6257 ± 0.0054 0.3516 ± 0.0078 0.2303 ± 0.0051
MAH-DPO Truthful Head (Head 3) 0.6257 ± 0.0010 0.3461 ± 0.0031 0.2286 ± 0.0058
MAH-DPO Ensemble Head 0.6389 ± 0.0035 0.3687 ± 0.0038 0.2478 ± 0.0074

Test-time guided decoding alignment
Base 0.5750 ± 0.0107 0.3036 ± 0.0015 0.1904 ± 0.0036
Helpful PRM-guided 0.6706 ± 0.0093 0.4050 ± 0.0035 0.2791 ± 0.0023
Honesty PRM-guided 0.6448 ± 0.0050 0.4693 ± 0.0045 0.3383 ± 0.0025
Truthful PRM-guided 0.6350 ± 0.0032 0.4394 ± 0.0036 0.3296 ± 0.0056

Combined: training + decoding alignment
MAH-DPO Ensemble Head + Help PRM-guided 0.7165 ± 0.0029 0.4554 ± 0.0028 0.3890 ± 0.0049
MAH-DPO Ensemble Head + Honest PRM-guided 0.6968 ± 0.0035 0.5196 ± 0.0016 0.4107 ± 0.0011
MAH-DPO Ensemble Head + Truth PRM-guided 0.6834 ± 0.0053 0.4872 ± 0.0038 0.3630 ± 0.0035
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Table 8: Full results with standard deviations in Math.

Method Accuracy Engagement

Training-time alignment
Base 0.7107 ± 0.0090 0.5007 ± 0.0289
SFT 0.7300 ± 0.0060 0.5920 ± 0.0171
Single-Head DPO 0.7253 ± 0.0050 0.7160 ± 0.0257
MODPO 0.7280 ± 0.0072 0.7367 ± 0.0070
MAH-DPO Accuracy Head (Head 1) 0.7353 ± 0.0070 0.8667 ± 0.0092
MAH-DPO Engaging Head (Head 2) 0.7267 ± 0.0082 0.8840 ± 0.0058
MAH-DPO Ensemble Head 0.7247 ± 0.0117 0.8733 ± 0.0069

Test-time guided decoding alignment
Base wt normal prompt 0.6853 ± 0.0163 0.5133 ± 0.0543
Engaging PRM-guided wt normal prompt 0.7013 ± 0.0352 0.7187 ± 0.0266
Accuracy PRM-guided 0.7633 ± 0.0050 0.4720 ± 0.0072
Accuracy Value-guided 0.7993 ± 0.0172 0.4553 ± 0.0221
Base wt engaging prompt 0.6827 ± 0.0250 0.7007 ± 0.0031
Engaging PRM-guided wt engaging prompt 0.7000 ± 0.0060 0.9033 ± 0.0050

Combined: training + decoding alignment
MAH-DPO Ensemble Head + Accuracy Value-guided 0.8000 ± 0.0231 0.8553 ± 0.0136
MAH-DPO Ensemble Head + Engaging PRM-guided 0.7107 ± 0.0114 0.6813 ± 0.0199
MAH-DPO Ensemble Head + Engaging PRM-guided wt engaging prompt 0.7207 ± 0.0030 0.9060 ± 0.0053

Table 9: Full results with standard deviations in Socratic Mind.

Method Accuracy Engagement

Training-time alignment
Base 0.6560 ± 0.0035 0.3220 ± 0.0382
SFT 0.6793 ± 0.0081 0.3473 ± 0.0042
Single-Head DPO 0.7040 ± 0.0053 0.4460 ± 0.0129
MODPO 0.7047 ± 0.0117 0.3600 ± 0.0122
MAH-DPO Accuracy Head (Head 1) 0.7007 ± 0.0257 0.4447 ± 0.0012
MAH-DPO Engaging Head (Head 2) 0.6953 ± 0.0081 0.4480 ± 0.0231
MAH-DPO Ensemble Head 0.6893 ± 0.0070 0.4513 ± 0.0127

Test-time guided decoding alignment
Base 0.6367 ± 0.0351 0.3407 ± 0.0122
Accuracy PRM-guided 0.7127 ± 0.0170 0.2660 ± 0.0171
Engaging PRM-guided 0.6507 ± 0.0110 0.4663 ± 0.0110

Combined: training + decoding alignment
MAH-DPO Ensemble Head + Accuracy PRM-guided 0.6659 ± 0.0210 0.3849 ± 0.0140
MAH-DPO Ensemble Head + Engaging PRM-guided 0.6514 ± 0.0131 0.5149 ± 0.0152
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Table 10: Full results of varying head weights with standard deviations in Math.

Weight Combination Accuracy Engagement

MAH-DPO (Accuracy head, 1.0, 0.0) 0.7353 ± 0.0070 0.8667 ± 0.0092

MAH-DPO (0.75, 0.25) 0.7347 ± 0.0145 0.8640 ± 0.0087

MAH-DPO (0.5, 0.5) 0.7247 ± 0.0117 0.8733 ± 0.0069

MAH-DPO (0.25, 0.75) 0.7193 ± 0.0175 0.8767 ± 0.0110

MAH-DPO (Engagement head, 0.0, 1.0) 0.7267 ± 0.0082 0.8840 ± 0.0058

Table 11: Full results of varying head weights with standard deviations in Human Values.

Weight Combination Help Honest Truth

MAH-DPO (Help head, 1.0, 0.0, 0.0) 0.6309 ± 0.0045 0.3465 ± 0.0070 0.2239 ± 0.0098

MAH-DPO (0.5, 0.5, 0.0) 0.6406 ± 0.0075 0.3692 ± 0.0067 0.2455 ± 0.009

MAH-DPO (Honesty head, 0.0, 1.0, 0.0) 0.6257 ± 0.0054 0.3516 ± 0.0078 0.2303 ± 0.0051

MAH-DPO (1/3, 1/3, 1/3) 0.6389 ± 0.0035 0.3687 ± 0.0038 0.2478 ± 0.0074

MAH-DPO (0.0, 0.5, 0.5) 0.6326 ± 0.0069 0.3650 ± 0.0060 0.2422 ± 0.0010

MAH-DPO (Truth head, 0.0, 0.0, 1.0) 0.6257 ± 0.0010 0.3461 ± 0.0031 0.2286 ± 0.0058

MAH-DPO (0.5, 0.0, 0.5) 0.6366 ± 0.0022 0.3645 ± 0.0085 0.2425 ± 0.0020

G SOCRATIC MIND DATA SAMPLE

Homework Bedtime Python Conversation Example

Assistant: Consider the following Python code:

homework_complete = True
time_left = 20

if homework_complete:
print("Get ready for bed")

elif time_left < 30:
print("Finish homework")

else:
print("Work for 1 hour")

Explain what this code does. Describe each conditional statement and its purpose.

User: This code uses an if-elif-else structure to check different conditions and execute specific actions based on those
conditions. Let’s break it down:
1. if homework complete: Condition: Checks if the variable homework complete is True.
Purpose: If homework complete is True (meaning the homework is finished), it will execute the first action (print("Get
ready for bed")).
Outcome: If this condition is true, it prints “Get ready for bed” and skips the other conditions.
2. elif time left < 30: Condition: This is checked only if the first if condition was false (meaning home-
work complete is False). Now, it checks if time left is less than 30.
Purpose: If there is less than 30 minutes left (time left ¡ 30), it prints “Finish homework” because it suggests there’s just
enough time to finish the homework before heading to bed.
Outcome: This will be executed if homework complete is False and time left is less than 30.
3. else: Condition: This block is executed if both previous conditions are false (i.e., if homework complete is False and
time left is not less than 30).
Purpose: If neither of the previous conditions is true, it prints “Work for 1 hour”, implying that there is enough time (30 or
more minutes) left to work on something else before going to bed.
Outcome: This is the default action that runs when none of the earlier conditions hold true.
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Homework Bedtime Python Conversation Example (Continued)

Assistant: Excellent explanation! You’ve clearly understood the if-elif-else structure and how the conditions are evaluated
sequentially. You correctly identified that once a condition is met, the corresponding block executes and the rest are
skipped.
I particularly like how you explained the purpose of each condition in context - showing you understand not just the syntax
but the logic behind the code.
Now, let’s move to the next question:
Modify the code snippet from the previous part so that it includes a new condition to check if time left is exactly 30
minutes, printing “Almost done” in that case. Explain your modification and its impact on the code’s flow.

User:
homework_complete = True
time_left = 20

if homework_complete:
print("Get ready for bed")

elif time_left == 30:
print("Almost done")

elif time_left < 30:
print("Finish homework")

else:
print("Work for 1 hour")

Explanation of the Modification: New condition: We added a new elif statement: elif time left == 30:.
Purpose: This checks if time left is exactly 30 minutes. If it is, it will print “Almost done”.
This condition is evaluated before checking if time left is less than 30 (in the previous elif time left < 30), en-
suring that if time left is exactly 30, the program will print “Almost done” instead of “Finish homework”.
Impact on the flow:
This modification adds an additional check specifically for when time left is exactly 30 minutes.
The flow now evaluates conditions in the following order:
First: If homework complete is True, it prints “Get ready for bed”.
Second: If time left == 30, it prints “Almost done”.
Third: If time left ¡ 30 (and the first two conditions are false), it prints “Finish homework”.
Finally: If none of the above conditions are true (e.g., homework complete is False and time left ¿ 30), it prints “Work for
1 hour”.

Assistant: Perfect! You’ve correctly modified the code and provided an excellent explanation of your changes. Your
placement of the new condition is spot on - checking for time left == 30 before checking if it’s less than 30.
I appreciate how you walked through the entire flow of the program after your modification, showing a clear understanding
of how the order of conditions affects execution. You’ve demonstrated a solid grasp of conditional logic and how to
structure conditions to achieve the desired behavior.
Session Summary: You demonstrated excellent understanding of conditional statements in Python. You accurately ex-
plained the if-elif-else structure, the sequential evaluation of conditions, and how only one block executes based on the
first condition that evaluates to True. When modifying the code, you correctly placed the new condition in the appro-
priate position and explained how this affects the program’s flow. Your explanations were thorough and showed strong
comprehension of control flow concepts.
Strengths:

• Clear understanding of conditional logic and execution flow

• Ability to modify existing code to implement new requirements

• Excellent explanation of both code functionality and purpose

Areas for continued growth:
• Continue practicing with more complex nested conditionals

• Explore combining conditions with logical operators (and, or, not)
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