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Abstract

In this paper, we set out to quantify the syntac-
tic capacity of BERT in the evaluation regime
of non-context free patterns, as occurring in
Dutch. We devise a test suite based on a mildly
context-sensitive formalism, from which we
derive grammars that capture the linguistic phe-
nomena of control verb nesting and verb raising.
The grammars, paired with a small lexicon, pro-
vide us with a large collection of naturalistic
utterances, annotated with verb-subject pair-
ings, that serve as the evaluation test bed for
an attention-based span selection probe. Our
results, backed by extensive analysis, suggest
that the models investigated fail in the implicit
acquisition of the dependencies examined.

1 Introduction

Assessing the ability of large-scale language mod-
els to automatically acquire aspects of linguistic
theory has become a prominent theme in the lit-
erature ever since the inception of BERT (Devlin
et al., 2019) and its many variants, largely due to
their unanticipated performance. Standard prac-
tice involves attaching BERT to a shallow neural
model of low parametric complexity, and training
the latter at detecting various linguistic patterns
of interest, revealing in the process the amount to
which they are encoded within BERT’s represen-
tations. The consensus points to BERT-like mod-
els having some capacity for syntactic understand-
ing Rogers et al. (2020). Their contextualized repre-
sentations encode structural hierarchies (Lin et al.,
2019) that can be projected into parse structures,
using linear (Hewitt and Manning, 2019) or hy-
perbolic transformations (Chen et al., 2021), from
which one can even obtain an accurate reconstruc-
tion of the underlying constituency tree (Vilares
et al., 2020).

Despite their broadening scope, a latent bias per-
sists in the insights provided by the probing liter-
ature, due to its focus being, by default, on En-
glish. English, albeit boasting a rich collection of

evaluation resources, is characterized by a simple
grammar with relatively few complications over
the syntactic and morphological axes. Specifically
when it comes to syntax, English lies in close prox-
imity to a context-free language, a class character-
ized by its low rank in terms of formal complexity
and expressive power (Chomsky, 1956). Perhaps
more importantly, several commonly used evalua-
tion test beds, including the Penn Treebank (Klein
and Manning, 2001), are in themselves context-
free, muddying the territory between probing for
acquired syntactic generalization and arbitrating
pattern extraction. As such, claims about the syn-
tactic skills of language models should not be as-
sumed to freely transfer between languages (and,
in some cases, even datasets).

In this paper, we seek to evaluate BERT in the
face of patterns that go beyond context-freeness.
We employ a mildly context-sensitive grammar for-
malism to generate complex patterns that do not
naturally occur in English. We choose instead to
experiment on Dutch, a language long-argued to
be non-context free, due it its capacity for exhibit-
ing an arbitrary number of cross-serial dependen-
cies. In Dutch, cross-serial dependencies arise in
sentences where verbs form clusters, causing their
respective dependencies with their arguments to in-
tersect when drawn on a plane: Figure 1 portrays an
adaptation of the example of Bresnan et al. (1982).

A

...dat Jan Marie de kinderen ziet leren fietsen
... that Jan Marie the children see teach cycle

‘...that John sees Mary teach the kids to cycle’

Figure 1: Illustration of crossing dependencies in Dutch.

To that end, we first identify two well-studied con-
structions in Dutch that commonly involve cross-
serial dependencies: control verb nesting and verb



raising. We produce an artificial but naturalistic
dataset of annotated samples for each construction;
each sample contains span annotations for the verb-
and noun-phrases occurring within, as well as a
mapping that associates each verb to its correspond-
ing subject. We then implement a probing model
intended to select a verb’s subject from a number
of candidate phrases, train it on a gold-standard
resource of Dutch, and employ it on our data. Our
experimental results convey a rapidly declining per-
formance in the presence of discontinuous syntax,
suggesting that the Dutch models investigated do
not automatically learn to resolve the complex de-
pendencies occurring in the language.

2 Background

2.1 Context freeness of natural languages

There has been a long debate, since the introduction
of the Chomsky hierarchy (Chomsky, 1956), on
whether all string patterns in natural language can
be encompassed by the class of context-free gram-
mars. The dispute often makes a distinction be-
tween weak and strong context-freeness, whereby
the question shifts between generating all strings
or all constituent expressions of a language. In
Dutch specifically, patterns involving cross-serial
dependencies have been commonly brought up by
linguists in arguing that at least fragments of Dutch
are context-sensitive, in turn designating the lan-
guage not strongly context-free (Huybregts, 1984;
Pullum and Gazdar, 1982; Bresnan et al., 1982;
Shieber, 1985).

To capture such patterns without employing un-
necessary computational expressiveness (and cor-
responding complexity), one can resort to the more
pragmatic alternative of mildly context-sensitive
grammars (Joshi, 1985): systems that can capture
certain types of crossing dependencies, while re-
maining computationally tractable.!

2.2 Multiple Context-Free Grammars

One of the more general classes of mildly context-
sensitive systems are multiple context-free gram-
mars (MCFGs), which essentially generalizes the
notion of a context-free grammars to operations on
tuples of strings. We defer the reader to Seki et al.

'Theoretical analyses of cross-serial dependencies can be
found in various mildly context-sensitive frameworks, includ-
ing CCG (Steedman, 1985), Multimodal Typelogical Gram-
mar (Moortgat, 1999), the Discontinuous Lambek Calcu-
lus (Morrill et al., 2007) and others (Muskens, 2007; Koopman
and Szabolcsi, 2000).

(1991) for a full definition and discussion of the
properties of MCFGs. Instead we provide a simpli-
fied, computationally-oriented description that is
more in line with our purposes and implementation.
An m-multiple MCFG can be thought of as a tuple
(A,N,d,C,R,So), where:

A is the terminal alphabet

* Nis a set of non-terminals and d : N' — N a
function from non-terminals to natural num-
bers; each non-terminal N is encoding a tuple
of strings of fixed arity d(N) and the maximal
arity of N decides the grammar’s multiplicity

* C is a mapping that associates each non-
terminal N to a (possibly empty) set of el-
ements from the d(N)-ary cartesian product
(A*)I™: put simply, the set of constants Cy
prescribes all the possible ways of initializing
the non-terminal N

* R a set of rewriting rules; rules are functions
N x -+ x N'— N that provide recipes on
how to combine a number of non-terminals
into a single non-terminal by rearranging and
concetenating their contents; we will write:

C(21,...2k) < A(T1,. .. Zm) B(Y1, ... Yn)

to denote a rule that combines non-terminals
A and B of arities m and n into a non-terminal
C of arity k, where each of the left-hand side
coordinates 1, . . . ¥, is used exactly once in
the right-hand side coordinates 21, . .. 2

* So the start symbol, a distinguished element
of NV satisfying d(So) = 1

The choice of MCFGs as our formal backbone
comes due to their many advantages. Being a sub-
tle but powerful generalization of CFGs, MCFGs
have a familiar presentation that makes them easy
to reason about, while remaining computationally
tractable (Ljunglof, 2012; Kallmeyer, 2010). At
the same time, they offer an appealing dissociation
between abstract and surface syntax and lexical
choice. A derivation inspected purely on the level
of rule type signatures takes the form of an ab-
stract syntax tree that is reminiscent of a traditional
CFG parse. Normalizing an MCFG so as to dis-
allow rules from freely inserting constant strings
(i.e. wrapping all constants under a non-terminal)
allows us to (i) trace back all substrings of the fi-
nal yield to a single non-terminal and (ii) provide
a clear computational interpretation that casts an
MCEFG as a linear type system, and its derivation
as a functional program (De Groote and Pogodalla,
2003).



3 Methodology

3.1 Linguistic background

We focus on two patterns in Dutch: control verb
nesting and verb raising.

Control Verb Nesting Control verbs select a (ref-
erential) noun phrase and an infinitival complement
which lacks an overt subject. This missing depen-
dent (a so-called understood subject) can be traced
back to a higher level of the syntax tree, materialis-
ing as a dependent of the matrix clause; from a se-
mantic standpoint, it is implicitly carried over to the
subordinate clause by the control verb. The choice
of which of the (possibly many) dependents is car-
ried over is purely lexical, and essentially deter-
mined by the choice of verb (Augustinus, 2015):

(1) a. de student belooft de docent te studeren
the student promises the teacher to study
‘the student promises the teacher to study’

b. de docent vraagt de student te studeren
the teacher asks the student to study
‘the teacher asks the student to study’

The two sentences of example (1) agree in their sur-
face form, but differ in how the agent understood as
‘studying’ is selected; in (1a) it is the main clause
subject (‘promise’ being a subject control verb),
whereas in (1b) it is the main clause object (‘ask’
being an object control verb).

The basic constructions above can quickly be-
come more nuanced in a variety of ways:

(2) a. de hond vraagt de student de oefeningen te
thedog asks  the student
eten
eat
‘the dog asks the student to eat the exercises’

b. de docent vraagt de hond de student
the teacher asks the dog the student
de oefeningen te laten doen
the exercises to let do

‘the teacher asks the dog to let the student
do the exercises’

the exercises to

c. de docent vraagt de hond de student te
the teacher asks  the dog
beloven de oefeningen niet te eten
promise the exercises not to eat
‘the teacher asks the dog to promise the stu-

dent not to eat the exercises’

the student to

To begin with, if the head of the subordinate clause
is a transitive infinitive, its object is positioned
immediately after the main clause; this has the

2Some of the verbs that we select are optional clustering
verbs, but we use them only in the control setting.

effect of creating a sequence of noun phrases that
precede the verbal complement (2a). Further, in the
case of the infinitive being a causative which selects
for another infinitive, subject selection is preserved
for the former, but flipped for the latter (2b).

Finally, things get interesting when realizing that
the above patterns can recurse, as a verbal com-
plement may act as the object of another verbal
complement (2c¢).

The nesting of control verbs makes for a chal-
lenging probing task, as the dependency between
a verb and its subject may span multiple depths of
the syntax tree, while at the same time requiring
subtle lexical distinctions to resolve correctly.

Verb Raising Dutch verb raising is the phe-
nomenon whereby the head of an infinitival com-
plement attaches to the verb governing it, creating
a cluster in the process (Evers et al., 1976). Verbs
allowing this construction select for bare comple-
ments (i.e. do not require the complementizer te).
Unlike the previous case, the verbal complement
does now contain a material subject; the complica-
tion is this time due to each nested verbal comple-
ment adding yet another set of crossing dependen-
cies.

(3) a. de docent ziet de student de hond

the teacher sees the student the dog

de oefeningen leren eten
the exercises teach eat
‘the teacher sees the student teach the dog to

eat the exercises’

b. de docent ziet de hond de student de eend
the teacher sees the dog the student the duck
de oefeningen helpen leren eten
the exercises help teach eat

‘the teacher sees the dog help the student
teach the duck to eat the exercises’

By construction, the verb raising grammar isolates
the problem of resolving verb-subject dependencies
in a purely syntactic setting, as no lexical variation
will change the choice of dependent for a given
verb. As such, it allows us to probe for a model’s
potential at syntactic generalization that does no
longer rely on lexical cues.

3.2 Data generation

For our data generation needs, we design a custom
implementation of an MCFG enriched with two
added functionalities. First, we define two sets
Ny, Ny C N that specify which non-terminals
correspond to verb- and noun phrases respectively.
Every occurrence of a marked non-terminal indi-



S(zyzujug) <— NP(z) TV(y) NP(z) VC(u1,us2) (Ay)
S(zyzuwivwe) —  NP(x) TV(y) NP(z) NP(u) CV(v) VC(wy, wa) (Ag)
ve(z,y) <—  TE(z) INFi(y) (A3)
vC(zz,y) «—  TE(x) INFy(y) NP(2) (Ayg)
vC(zy, zupuy) <— NP(z) TE(y) INF.(2) VC(ug,u1) (As)
VC(zyu, zv1ve) +— NP(z) TE(y) INF.(2) CV(u) VC(vy,v2) (Ap)
S(zyzvuiug) <— NP(z) TV(y) NP(z) VC(u1,u2) ADV(v) (AT
S(vyxzujug) <— NP(z) TV(y) NP(z) VC(ui,u2) ADV(v) (AY)
(a) 2-MCFG for control verbs.
S(zy1y2) <— PREE(x) SUB(y1,¥2) (B1)
SUB(x,y) <— NP(z) INF;(y) (B2)
SUB(zy,z) «— NP(x)NP(y) INFyy(2) (B3)
SUB(zz,yu) <— NP(z)RV(y) SUB(z,u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

cates a unique phrase in the final yield, which we
can trace by traversing the derivation tree. This,
in turn, gives us the possibility of assigning one
or more labels to the constituent substrings that
make up a sentence, according to which phrase(s)
they were part of, even in the case of discontinu-
ous and/or overlapping substrings. Additionally,
we decorate MCFG rules with subject inheritance
schemes. In the simplest case, a scheme may di-
rectly specify the subject noun of a verb, if the non-
terminals of both occur on the same rule, i.e. they
inhabit the same depth of the generation tree. Alter-
natively, when the two occur at different depths, a
scheme may defer the decision by propagating verb
indices down through non-nominal constituents
that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
ple). Lexical constants for primitive categories are
populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the

controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (As). In
the base case, verbal complements are constructed
with ze and either an intransitive infinitive (As) or
a transitive infinitive and its object (A4). In the
inductive case, a verbal complement can contain
a control verb in infinitival form together with a
noun phrase and another verbal complement, either
alone or with a causative (A5 and Ag). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules
that incorporate adverbial modifiers: one where the
adverb is inserted after the verb (A7") and, more in-
terestingly, one where the adverb is inserted before
the verb (A}); Dutch being a V2 language, this has
the effect of inverting the position of the verb and
subject of the main clause.



NP TV NP NP cvebd TS vC

. L [ Ir I

| . | | : | - |

| | | | | .

: : : - : Ay

! ! ! ! !

| | | | |

| | | | | NP TE  INFy,

I I I I I | | |

l l l l l 1 1 !
de docent vraagt de hond de student laten de oefeningen te  doen

Figure 3: Generation tree for example (2b). Boxed nodes correspond to rule applications. Non-terminal super-
scripts denote verbal subtype (subject- or object control). Dashed lines assign lexical constants to non-terminals.
Dotted lines demonstrate how verbs select for their subjects: TV®* and cv°% both find their subjects at the
same depth of the tree, but the presence of the latter signifies that the main clause object will be propagated to
the verbal complement, to be there selected by INF.,. Note that the tree presented should not be confused for
a constituency parse — a more fitting paradigm would be an abstract syntax tree, that prescribes the program
Ay (NP(de docent)7 TV(vraagt)7 NP(de hond), NP(de studen’c)7 CV(laten), Ay (NP(de oefeningen), TE(te), INFyy (doen))) — (2b).

We set NV, := {TV, MV, INF, } and \V;, := {NP}.
We divide each of TV MV and INF,. into two sub-
types, specifying whether they are subject- or
object-selecting; each subtype has a distinct set of
lexical entries. Finally we decorate each rule with
subject propagation schemes, dependent on the
subtypes of the participating verbal non-terminals;
rather than explicitly enumerate these schemes
here, we provide a visual example in Figure 3.

Verb Raising grammar For the second gram-
mar we can do with just four rules (Figure 2b). The
grammar is centered around a single non-terminal
of multiplicity 2 that encodes subordinate clauses.
In the base case, such a clause can be constructed
with the aid of either a noun-phrase and an intran-
sitive infinitive (B2), or two noun phrases and a
transitive (Bg). In the inductive case, a subordi-
nate clause is embedded within a broader subor-
dinate clause, where it occupies the object posi-
tion of a raising verb (By). Finally, a sentence
is generated by joining a subordinate clause to
a matrix clause missing its verbal complement
— we avoid deconstructing the matrix clause and
denote it as a fixed prefix string (B;). We set
N, := {INFjy, INF4,,, RV} and N, := {NP}. Un-
like in the case of control verb nesting, there is no
subject inheritance necessary; rules Bo, B3, and By
all add a verb and their subject simultaneously.

3.4 Probing Model

Our probing model first aggregates the contextual-
ized token representations for each verb- and noun-
phrase, before computing a verb-to-noun cross-
attention matrix.

The aggregation process is essentially an atten-
tive pooling over (two types of) variably sized, po-
tentially overlapping clusters (Li et al., 2015). We
start by representing each distinct verb- and noun-
phrase as a binary mask over the tokenized input
sentence; each sentence is then associated with a
variable number of both types of masks. Using
a pair of learned projections, we map the BERT-
contextualized token representations into scalar val-
ues denoting attention scores. For each phrase,
attention weights for participating (potentially dis-
continuous) tokens are computed by softmaxing
their corresponding attention scores; summing the
attention-weighted BERT representations yields a
single vector for each phrase. We use the imple-
mentation of Fey and Lenssen (2019) to efficiently
compute batch-wide representations leveraging the
sparsity of the phrasal masks.

The pair-wise agreement between verb and noun
representations is computed using standard dot-
product attention, restricted to pairs occurring in
the same sentence via dynamic masking. Prior to
computing this attention matrix, we map the verb
and noun representations to a lower dimension us-
ing another pair of learned projections; this serves



to add a hint of expressive capacity to the probe,
while also reducing the memory footprint of the
matrix multiplication. Finally, softmaxing the at-
tention weights over the noun-dimension allows
us to retrieve a trainable subject selection for each
occurrence of a verb.

4 Experiments & Results

4.1 Experimental setup

The experiments with our grammars consist of sev-
eral parts. We first carry out an automatic filtering
and annotation process on a gold standard corpus
to gather a collection of suitable sentences, with
which we train our probe on a natural, “real-world”
dataset. To obtain our datasets, we start by fixing a
maximal recursion depth for each grammar, and ex-
haustively generate the corresponding sets of deriv-
able abstract trees. We then semi-automatically
assemble a lexicon, with which we populate the
various primitive categories employed by our gram-
mars. From each tree, we obtain a set number of
unique sentences by randomly sampling the con-
stants behind leaf non-terminals with a preset seed.
Finally, we apply the trained probe on the artifi-
cial samples and measure its performance across
various generation parameters.

Probe Training An inevitable downside of using
a rule-based system for generation purposes is low
variance in several aspects of the output data. In
our case, the limited number of rules employed, in
combination with their relative simplicity, would
mean a fair amount of repeating patterns that are
easy to decipher and memoize. Albeit an advantage
for interpretability and analysis purposes, this can
potentially backfire if we are to use our grammars’
yield for training: one can assume that BERT’s con-
textualization preserves, at least in part, the rela-
tive position information contained within its input,
thus providing the probe with a workaround (or
confound) to the actual problem. To avoid overfit-
ting, we consequently choose to train the probe on
an external data source derived from Lassy-Small,
the gold standard corpus of written Dutch (Van No-
ord et al., 2013). Lassy makes for an excellent data
source for our task, as it provides analyses in the
form of graphs, rather than trees, so as to explicitly
account for several non-local phenomena (crucially,
this includes the semantic subjects of verbal com-
plements). We traverse the Lassy graphs to anno-
tate noun phrases (all leaf nodes that descent from

a noun phrase or are otherwise marked as a noun
or pronoun) and verbs of interest (phrasal heads
within a dependency frame that contains a subject
previously identified as a noun phrase). From the
65 000 samples of Lassy, we extract about 12 000
that contain at least two distinct subjects without
exceeding a word length of 30. We split the lat-
ter into two mutually exclusive sets of 10 000 and
2000 samples: we train with the first and use the
second for model selection.

We experiment with two Dutch language mod-
els: BERTje (de Vries et al., 2019) and Rob-
BERT (Delobelle et al., 2020), based on BERT
and RoBERTa (Liu et al., 2019) respectively. For
each model, we train 3 probes that differ in their
initialization seeds, using AdamW (Loshchilov and
Hutter, 2018) with a learning rate of 10~%, a batch
size of 32 and a dropout rate of 15%, applied at
BERT’s output. We perform model selection using
accuracy over the validation set as our metric, mea-
sured over individual verb predictions; validation
accuracy converges after ca. 80 training epochs.

Controlled data generation Despite remaining
grammatical, sentences start looking odd and un-
natural when allowing recursion to arbitrary depth
— we impose an upper limit that leads to complex
but still human-parsable data: 4 and 6 for the ver-
bal control and raising grammars, respectively. To
cast the generated trees into sentences, we populate
primitive categories (that is, categories that can be
instantiated lexically rather than — or in addition to
— by rule) with sets of semi-automatically assem-
bled constants. For simplicity, we consider only
the case of verbs accepting a person as their indi-
rect object; we filter 40 such verbs from a larger
collection of ditransitives crawled from Lassy, and
manually gather 30 temporal, locative and manner
adverbs that can modify them. All verbs are drawn
from Lassy (Van Noord et al., 2013) and the lists
of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.> In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string lemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in

*https://anw.ivdnt.org


https://anw.ivdnt.org

# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 AY AT A Ay As Ag
BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1
RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar

# Nouns Tree Depth Rule

Model 2 3 4 5 2 4 5 6 B> Bs By
BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7
RobBERT  46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising
BERTje 97.6 48 43.1
RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-

samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (A{( ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (As), or a causative occurring at the topmost
branch of the tree (A2°).

Control Scope

. . Consistency
Model subject  object
BERTje 34.4 36.1 68.4
RobBERT 18.7 37.8 63

Table 3: Metrics specific to the Control Verb grammar.

To procure an explanation for this discrepancy,
we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring
the more common object control reading (espe-
cially so in the case of RobBERT). Next, we in-
vestigate whether the low performance is due to
models simply misreading certain constructions,



assigning subjecthood to the (same) wrong noun
phrase. To quantify how consistent the models
are, we gather all predictions occurring in the same
context (i.e. same part of the same tree under the
same scope, object or subject) and varying only in
terms of lexical realization. The consistency of a
model in a specific context is calculated as the fre-
quency of the most common prediction (correct or
otherwise); the model’s overall consistency is then
the average consistency over all contexts. Mod-
els generally fail at producing the same prediction
given the same syntactic template, instead being
susceptible to distraction from word variations.

Verb Raising The story is no different when it
comes to the second grammar: both models fail to
draw close to their validation benchmarks. Surpris-
ingly, RobBERT’s metrics lie below the random
baseline, positing that it encodes a wrong syntactic
structure in verb cluster formations, rather than sim-
ply not acquiring the correct one. The dispropor-
tionately high accuracy of rule Bs readily provides
an explanation: the noun-phrase directly preceding
an infinitive is assumed to be its subject. BERTje,
on the other hand, is more trustworthy, maintaining
comparable performance in both intransitive (B3)
and transitive (B3) infinitival phrases. The degra-
dation associated with deeper trees coincides with
the drop in performance for the recursive rule Bj.

4.3 One-Shot Learning

Given the purported inadequacy of both models at
correctly or consistently predicting subjecthood in
our datasets’ cross-serial constructions, we resort
to one final experiment that serves as a sanity check
for the quality of our data. Using a different lexi-
cal sampling seed, we generate a single sentence
from each abstract syntax tree, resulting in datasets
of 307 and 30 samples for the control verb and
verb raising grammars, respectively. These com-
pact datasets are then used for fine-tuning the two
models (combined with probes) in a one-shot learn-
ing fashion; after a few epochs of training, we test
the resulting models on the corresponding original
datasets.

Model Control Raising
BERTje 92.4 68.5
RobBERT 61.6 36.7

Table 4: Model results for the one-shot setup.

The results, presented in Table 4, show that min-

imal supervision does improve model performance,
indicating that the learned parameter updates gener-
alize beyond the lexical choices of the fine-tuning
data, thereby verifying the generation pipeline’s
internal consistency. Improvement is lower in the
case of the verb raising grammar; we posit that the
task is harder to acquire due to its predominantly
syntactic nature but also the smaller number of
training samples.

5 Conclusion

We implemented a test suite based on multiple
context-free grammars to generate a large collec-
tion of sentences containing complicated syntactic
phenomena specific to Dutch. We trained a probing
model on extracting verb-to-subject pairings from
the contextualized representations of state-of-the-
art pretrained Dutch language models using an ex-
ternal resource of generic text accompanied by gold
standard annotations. We then tested the probe on
our generated data, and found it to perform substan-
tially below its own validation benchmarks. After
conducting extensive analysis aimed at identifying
the source of this discrepancy, we showed that the
probe’s predictions are inconsistent and its accu-
racy quickly diminishes as the complexity of the
syntactic patterns increases. Based on the above,
we conclude that neither of the BERT models in-
vestigated has learned to internalize syntactic and
semantic subjecthood in nested constructions in-
volving cross-serial dependencies. Our findings
serve as empirical evidence hinting at unsupervised
language models having difficulty in the automatic
acquisition of discontinuous syntactic patterns.

We leave several directions open for future
work. To begin with, one could mirror the patterns
analyzed to other languages and compare model
performance cross-linguistically, juxtaposed by the
corresponding grammar complexity. Alternatively,
one could render more elaborate grammars
intended to capture other syntactic or semantic
phenomena of interest. Finally, it is worth
investigating the extent to which the “real-world”
validation samples incorrectly classified are
exemplars of the types of discontinuity captured
by our grammars. To facilitate further research on
the topic, we plan on making our code publicly
available.
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