
Discontinuous Constituency and BERT:
A Case Study of Dutch

Anonymous ACL submission

Abstract
In this paper, we set out to quantify the syntac-001
tic capacity of BERT in the evaluation regime002
of non-context free patterns, as occurring in003
Dutch. We devise a test suite based on a mildly004
context-sensitive formalism, from which we005
derive grammars that capture the linguistic phe-006
nomena of control verb nesting and verb raising.007
The grammars, paired with a small lexicon, pro-008
vide us with a large collection of naturalistic009
utterances, annotated with verb-subject pair-010
ings, that serve as the evaluation test bed for011
an attention-based span selection probe. Our012
results, backed by extensive analysis, suggest013
that the models investigated fail in the implicit014
acquisition of the dependencies examined.015

1 Introduction016

Assessing the ability of large-scale language mod-017

els to automatically acquire aspects of linguistic018

theory has become a prominent theme in the lit-019

erature ever since the inception of BERT (Devlin020

et al., 2019) and its many variants, largely due to021

their unanticipated performance. Standard prac-022

tice involves attaching BERT to a shallow neural023

model of low parametric complexity, and training024

the latter at detecting various linguistic patterns025

of interest, revealing in the process the amount to026

which they are encoded within BERT’s represen-027

tations. The consensus points to BERT-like mod-028

els having some capacity for syntactic understand-029

ing Rogers et al. (2020). Their contextualized repre-030

sentations encode structural hierarchies (Lin et al.,031

2019) that can be projected into parse structures,032

using linear (Hewitt and Manning, 2019) or hy-033

perbolic transformations (Chen et al., 2021), from034

which one can even obtain an accurate reconstruc-035

tion of the underlying constituency tree (Vilares036

et al., 2020).037

Despite their broadening scope, a latent bias per-038

sists in the insights provided by the probing liter-039

ature, due to its focus being, by default, on En-040

glish. English, albeit boasting a rich collection of041

evaluation resources, is characterized by a simple 042

grammar with relatively few complications over 043

the syntactic and morphological axes. Specifically 044

when it comes to syntax, English lies in close prox- 045

imity to a context-free language, a class character- 046

ized by its low rank in terms of formal complexity 047

and expressive power (Chomsky, 1956). Perhaps 048

more importantly, several commonly used evalua- 049

tion test beds, including the Penn Treebank (Klein 050

and Manning, 2001), are in themselves context- 051

free, muddying the territory between probing for 052

acquired syntactic generalization and arbitrating 053

pattern extraction. As such, claims about the syn- 054

tactic skills of language models should not be as- 055

sumed to freely transfer between languages (and, 056

in some cases, even datasets). 057

In this paper, we seek to evaluate BERT in the 058

face of patterns that go beyond context-freeness. 059

We employ a mildly context-sensitive grammar for- 060

malism to generate complex patterns that do not 061

naturally occur in English. We choose instead to 062

experiment on Dutch, a language long-argued to 063

be non-context free, due it its capacity for exhibit- 064

ing an arbitrary number of cross-serial dependen- 065

cies. In Dutch, cross-serial dependencies arise in 066

sentences where verbs form clusters, causing their 067

respective dependencies with their arguments to in- 068

tersect when drawn on a plane: Figure 1 portrays an 069

adaptation of the example of Bresnan et al. (1982). 070

... dat Jan Marie de kinderen ziet leren fietsen
... that Jan Marie the children see teach cycle

‘...that John sees Mary teach the kids to cycle’

Figure 1: Illustration of crossing dependencies in Dutch.

To that end, we first identify two well-studied con- 071

structions in Dutch that commonly involve cross- 072

serial dependencies: control verb nesting and verb 073
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raising. We produce an artificial but naturalistic074

dataset of annotated samples for each construction;075

each sample contains span annotations for the verb-076

and noun-phrases occurring within, as well as a077

mapping that associates each verb to its correspond-078

ing subject. We then implement a probing model079

intended to select a verb’s subject from a number080

of candidate phrases, train it on a gold-standard081

resource of Dutch, and employ it on our data. Our082

experimental results convey a rapidly declining per-083

formance in the presence of discontinuous syntax,084

suggesting that the Dutch models investigated do085

not automatically learn to resolve the complex de-086

pendencies occurring in the language.087

2 Background088

2.1 Context freeness of natural languages089

There has been a long debate, since the introduction090

of the Chomsky hierarchy (Chomsky, 1956), on091

whether all string patterns in natural language can092

be encompassed by the class of context-free gram-093

mars. The dispute often makes a distinction be-094

tween weak and strong context-freeness, whereby095

the question shifts between generating all strings096

or all constituent expressions of a language. In097

Dutch specifically, patterns involving cross-serial098

dependencies have been commonly brought up by099

linguists in arguing that at least fragments of Dutch100

are context-sensitive, in turn designating the lan-101

guage not strongly context-free (Huybregts, 1984;102

Pullum and Gazdar, 1982; Bresnan et al., 1982;103

Shieber, 1985).104

To capture such patterns without employing un-105

necessary computational expressiveness (and cor-106

responding complexity), one can resort to the more107

pragmatic alternative of mildly context-sensitive108

grammars (Joshi, 1985): systems that can capture109

certain types of crossing dependencies, while re-110

maining computationally tractable.1111

2.2 Multiple Context-Free Grammars112

One of the more general classes of mildly context-113

sensitive systems are multiple context-free gram-114

mars (MCFGs), which essentially generalizes the115

notion of a context-free grammars to operations on116

tuples of strings. We defer the reader to Seki et al.117

1Theoretical analyses of cross-serial dependencies can be
found in various mildly context-sensitive frameworks, includ-
ing CCG (Steedman, 1985), Multimodal Typelogical Gram-
mar (Moortgat, 1999), the Discontinuous Lambek Calcu-
lus (Morrill et al., 2007) and others (Muskens, 2007; Koopman
and Szabolcsi, 2000).

(1991) for a full definition and discussion of the 118

properties of MCFGs. Instead we provide a simpli- 119

fied, computationally-oriented description that is 120

more in line with our purposes and implementation. 121

An m-multiple MCFG can be thought of as a tuple 122

⟨A,N , d, C,R, S0⟩, where: 123

• A is the terminal alphabet 124

• N is a set of non-terminals and d : N → N a 125

function from non-terminals to natural num- 126

bers; each non-terminal N is encoding a tuple 127

of strings of fixed arity d(N) and the maximal 128

arity of N decides the grammar’s multiplicity 129

• C is a mapping that associates each non- 130

terminal N to a (possibly empty) set of el- 131

ements from the d(N)-ary cartesian product 132

(A∗)d(N); put simply, the set of constants CN 133

prescribes all the possible ways of initializing 134

the non-terminal N 135

• R a set of rewriting rules; rules are functions 136

N × · · · × N → N that provide recipes on 137

how to combine a number of non-terminals 138

into a single non-terminal by rearranging and 139

concetenating their contents; we will write: 140

C(z1, . . . zk)← A(x1, . . . xm) B(y1, . . . yn) 141

to denote a rule that combines non-terminals 142

A and B of arities m and n into a non-terminal 143

C of arity k, where each of the left-hand side 144

coordinates x1, . . . yn is used exactly once in 145

the right-hand side coordinates z1, . . . zk 146

• S0 the start symbol, a distinguished element 147

of N satisfying d(S0) = 1 148

The choice of MCFGs as our formal backbone 149

comes due to their many advantages. Being a sub- 150

tle but powerful generalization of CFGs, MCFGs 151

have a familiar presentation that makes them easy 152

to reason about, while remaining computationally 153

tractable (Ljunglöf, 2012; Kallmeyer, 2010). At 154

the same time, they offer an appealing dissociation 155

between abstract and surface syntax and lexical 156

choice. A derivation inspected purely on the level 157

of rule type signatures takes the form of an ab- 158

stract syntax tree that is reminiscent of a traditional 159

CFG parse. Normalizing an MCFG so as to dis- 160

allow rules from freely inserting constant strings 161

(i.e. wrapping all constants under a non-terminal) 162

allows us to (i) trace back all substrings of the fi- 163

nal yield to a single non-terminal and (ii) provide 164

a clear computational interpretation that casts an 165

MCFG as a linear type system, and its derivation 166

as a functional program (De Groote and Pogodalla, 167

2003). 168
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3 Methodology169

3.1 Linguistic background170

We focus on two patterns in Dutch: control verb171

nesting and verb raising.172

Control Verb Nesting Control verbs select a (ref-173

erential) noun phrase and an infinitival complement174

which lacks an overt subject. This missing depen-175

dent (a so-called understood subject) can be traced176

back to a higher level of the syntax tree, materialis-177

ing as a dependent of the matrix clause; from a se-178

mantic standpoint, it is implicitly carried over to the179

subordinate clause by the control verb. The choice180

of which of the (possibly many) dependents is car-181

ried over is purely lexical, and essentially deter-182

mined by the choice of verb (Augustinus, 2015)2:183

(1) a. de student
the student

belooft
promises

de docent
the teacher

te
to

studeren
study

184

‘the student promises the teacher to study’185

b. de docent
the teacher

vraagt
asks

de student
the student

te
to

studeren
study

186

‘the teacher asks the student to study’187

The two sentences of example (1) agree in their sur-188

face form, but differ in how the agent understood as189

‘studying’ is selected; in (1a) it is the main clause190

subject (‘promise’ being a subject control verb),191

whereas in (1b) it is the main clause object (‘ask’192

being an object control verb).193

The basic constructions above can quickly be-194

come more nuanced in a variety of ways:195

(2) a. de hond
the dog

vraagt
asks

de student
the student

de oefeningen
the exercises

te
to

196

eten
eat

197

‘the dog asks the student to eat the exercises’198

b. de docent
the teacher

vraagt
asks

de hond
the dog

de student
the student

199

de oefeningen
the exercises

te
to

laten
let

doen
do

200

‘the teacher asks the dog to let the student201

do the exercises’202

c. de docent
the teacher

vraagt
asks

de hond
the dog

de student
the student

te
to

203

beloven
promise

de oefeningen
the exercises

niet
not

te
to

eten
eat

204

‘the teacher asks the dog to promise the stu-205

dent not to eat the exercises’206

To begin with, if the head of the subordinate clause207

is a transitive infinitive, its object is positioned208

immediately after the main clause; this has the209

2Some of the verbs that we select are optional clustering
verbs, but we use them only in the control setting.

effect of creating a sequence of noun phrases that 210

precede the verbal complement (2a). Further, in the 211

case of the infinitive being a causative which selects 212

for another infinitive, subject selection is preserved 213

for the former, but flipped for the latter (2b). 214

Finally, things get interesting when realizing that 215

the above patterns can recurse, as a verbal com- 216

plement may act as the object of another verbal 217

complement (2c). 218

The nesting of control verbs makes for a chal- 219

lenging probing task, as the dependency between 220

a verb and its subject may span multiple depths of 221

the syntax tree, while at the same time requiring 222

subtle lexical distinctions to resolve correctly. 223

Verb Raising Dutch verb raising is the phe- 224

nomenon whereby the head of an infinitival com- 225

plement attaches to the verb governing it, creating 226

a cluster in the process (Evers et al., 1976). Verbs 227

allowing this construction select for bare comple- 228

ments (i.e. do not require the complementizer te). 229

Unlike the previous case, the verbal complement 230

does now contain a material subject; the complica- 231

tion is this time due to each nested verbal comple- 232

ment adding yet another set of crossing dependen- 233

cies. 234

(3) a. de docent
the teacher

ziet
sees

de student
the student

de hond
the dog

235

de oefeningen
the exercises

leren
teach

eten
eat

236

‘the teacher sees the student teach the dog to 237

eat the exercises’ 238

b. de docent
the teacher

ziet
sees

de hond
the dog

de student
the student

de eend
the duck

239

de oefeningen
the exercises

helpen
help

leren
teach

eten
eat

240

‘the teacher sees the dog help the student 241

teach the duck to eat the exercises’ 242

By construction, the verb raising grammar isolates 243

the problem of resolving verb-subject dependencies 244

in a purely syntactic setting, as no lexical variation 245

will change the choice of dependent for a given 246

verb. As such, it allows us to probe for a model’s 247

potential at syntactic generalization that does no 248

longer rely on lexical cues. 249

3.2 Data generation 250

For our data generation needs, we design a custom 251

implementation of an MCFG enriched with two 252

added functionalities. First, we define two sets 253

Nv, Nn ⊂ N that specify which non-terminals 254

correspond to verb- and noun phrases respectively. 255

Every occurrence of a marked non-terminal indi- 256
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S(xyzu1u2) ←− NP(x) TV(y) NP(z) VC(u1, u2) (A1)

S(xyzuw1vw2) ←− NP(x) TV(y) NP(z) NP(u) CV(v) VC(w1, w2) (A2)

VC(x, y) ←− TE(x) INFiv(y) (A3)

VC(zx, y) ←− TE(x) INFtv(y) NP(z) (A4)

VC(xy, zu0u1) ←− NP(x) TE(y) INFc(z) VC(u0, u1) (A5)

VC(xyu, zv1v2) ←− NP(x) TE(y) INFc(z) CV(u) VC(v1, v2) (A6)

S(xyzvu1u2) ←− NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Am
1 )

S(vyxzu1u2) ←− NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Ai
1)

...
(a) 2-MCFG for control verbs.

S(xy1y2) ←− PREF(x) SUB(y1, y2) (B1)

SUB(x, y) ←− NP(x) INFiv(y) (B2)

SUB(xy, z) ←− NP(x) NP(y) INFtv(z) (B3)

SUB(xz, yu) ←− NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

cates a unique phrase in the final yield, which we257

can trace by traversing the derivation tree. This,258

in turn, gives us the possibility of assigning one259

or more labels to the constituent substrings that260

make up a sentence, according to which phrase(s)261

they were part of, even in the case of discontinu-262

ous and/or overlapping substrings. Additionally,263

we decorate MCFG rules with subject inheritance264

schemes. In the simplest case, a scheme may di-265

rectly specify the subject noun of a verb, if the non-266

terminals of both occur on the same rule, i.e. they267

inhabit the same depth of the generation tree. Alter-268

natively, when the two occur at different depths, a269

scheme may defer the decision by propagating verb270

indices down through non-nominal constituents271

that will contain the matching subject, but at an272

arbitrary nesting depth (see Figure 3 for an exam-273

ple). Lexical constants for primitive categories are274

populated by means of an automatically compiled275

but manually verified lexicon.276

3.3 Grammars277

We use the above framework to instantiate distinct278

grammars for both syntactic phenomena of interest.279

Note that the grammars are not purposed for the280

construction of exhaustive or accurate analyses of281

the phrase structures considered, but rather for the282

controlled generation and annotation of suitable 283

samples. 284

Control Verb grammar Our first grammar, 285

given in Figure 2a, models control verb nesting. 286

The grammar accounts for the mobility of verbal 287

complements by encoding them as non-terminals 288

of multiplicity 2, making the grammar a 2-MCFG. 289

We have two constructors for sentences that com- 290

bine two noun phrases and a transitive verb with a 291

verbal complement (A1), optionally under the con- 292

text of a causative verb and its direct object (A2). In 293

the base case, verbal complements are constructed 294

with te and either an intransitive infinitive (A3) or 295

a transitive infinitive and its object (A4). In the 296

inductive case, a verbal complement can contain 297

a control verb in infinitival form together with a 298

noun phrase and another verbal complement, either 299

alone or with a causative (A5 and A6). To increase 300

the variance of generated samples, we also con- 301

sider two variations for each of the first two rules 302

that incorporate adverbial modifiers: one where the 303

adverb is inserted after the verb (Am
1 ) and, more in- 304

terestingly, one where the adverb is inserted before 305

the verb (Ai
1); Dutch being a V2 language, this has 306

the effect of inverting the position of the verb and 307

subject of the main clause. 308
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S

A2

NP

de docent

TVsu

vraagt

NP

de hond

NP

de student

CVobj

laten

VC

A4

NP

de oefeningen

TE

te

INFtv

doen

Figure 3: Generation tree for example (2b). Boxed nodes correspond to rule applications. Non-terminal super-
scripts denote verbal subtype (subject- or object control). Dashed lines assign lexical constants to non-terminals.
Dotted lines demonstrate how verbs select for their subjects: TVsu and CVobj both find their subjects at the
same depth of the tree, but the presence of the latter signifies that the main clause object will be propagated to
the verbal complement, to be there selected by INFtv. Note that the tree presented should not be confused for
a constituency parse – a more fitting paradigm would be an abstract syntax tree, that prescribes the program
A2 (NP(de docent), TV(vraagt), NP(de hond), NP(de student), CV(laten), A4 (NP(de oefeningen), TE(te), INFtv(doen))) 7→ (2b).

We setNv := {TV, MV, INFx} andNn := {NP}.309

We divide each of TV MV and INFc into two sub-310

types, specifying whether they are subject- or311

object-selecting; each subtype has a distinct set of312

lexical entries. Finally we decorate each rule with313

subject propagation schemes, dependent on the314

subtypes of the participating verbal non-terminals;315

rather than explicitly enumerate these schemes316

here, we provide a visual example in Figure 3.317

Verb Raising grammar For the second gram-318

mar we can do with just four rules (Figure 2b). The319

grammar is centered around a single non-terminal320

of multiplicity 2 that encodes subordinate clauses.321

In the base case, such a clause can be constructed322

with the aid of either a noun-phrase and an intran-323

sitive infinitive (B2), or two noun phrases and a324

transitive (B3). In the inductive case, a subordi-325

nate clause is embedded within a broader subor-326

dinate clause, where it occupies the object posi-327

tion of a raising verb (B4). Finally, a sentence328

is generated by joining a subordinate clause to329

a matrix clause missing its verbal complement330

– we avoid deconstructing the matrix clause and331

denote it as a fixed prefix string (B1). We set332

Nv := {INFiv, INFtv, RV} and Nn := {NP}. Un-333

like in the case of control verb nesting, there is no334

subject inheritance necessary; rules B2, B3, and B4335

all add a verb and their subject simultaneously.336

3.4 Probing Model 337

Our probing model first aggregates the contextual- 338

ized token representations for each verb- and noun- 339

phrase, before computing a verb-to-noun cross- 340

attention matrix. 341

The aggregation process is essentially an atten- 342

tive pooling over (two types of) variably sized, po- 343

tentially overlapping clusters (Li et al., 2015). We 344

start by representing each distinct verb- and noun- 345

phrase as a binary mask over the tokenized input 346

sentence; each sentence is then associated with a 347

variable number of both types of masks. Using 348

a pair of learned projections, we map the BERT- 349

contextualized token representations into scalar val- 350

ues denoting attention scores. For each phrase, 351

attention weights for participating (potentially dis- 352

continuous) tokens are computed by softmaxing 353

their corresponding attention scores; summing the 354

attention-weighted BERT representations yields a 355

single vector for each phrase. We use the imple- 356

mentation of Fey and Lenssen (2019) to efficiently 357

compute batch-wide representations leveraging the 358

sparsity of the phrasal masks. 359

The pair-wise agreement between verb and noun 360

representations is computed using standard dot- 361

product attention, restricted to pairs occurring in 362

the same sentence via dynamic masking. Prior to 363

computing this attention matrix, we map the verb 364

and noun representations to a lower dimension us- 365

ing another pair of learned projections; this serves 366
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to add a hint of expressive capacity to the probe,367

while also reducing the memory footprint of the368

matrix multiplication. Finally, softmaxing the at-369

tention weights over the noun-dimension allows370

us to retrieve a trainable subject selection for each371

occurrence of a verb.372

4 Experiments & Results373

4.1 Experimental setup374

The experiments with our grammars consist of sev-375

eral parts. We first carry out an automatic filtering376

and annotation process on a gold standard corpus377

to gather a collection of suitable sentences, with378

which we train our probe on a natural, “real-world”379

dataset. To obtain our datasets, we start by fixing a380

maximal recursion depth for each grammar, and ex-381

haustively generate the corresponding sets of deriv-382

able abstract trees. We then semi-automatically383

assemble a lexicon, with which we populate the384

various primitive categories employed by our gram-385

mars. From each tree, we obtain a set number of386

unique sentences by randomly sampling the con-387

stants behind leaf non-terminals with a preset seed.388

Finally, we apply the trained probe on the artifi-389

cial samples and measure its performance across390

various generation parameters.391

Probe Training An inevitable downside of using392

a rule-based system for generation purposes is low393

variance in several aspects of the output data. In394

our case, the limited number of rules employed, in395

combination with their relative simplicity, would396

mean a fair amount of repeating patterns that are397

easy to decipher and memoize. Albeit an advantage398

for interpretability and analysis purposes, this can399

potentially backfire if we are to use our grammars’400

yield for training: one can assume that BERT’s con-401

textualization preserves, at least in part, the rela-402

tive position information contained within its input,403

thus providing the probe with a workaround (or404

confound) to the actual problem. To avoid overfit-405

ting, we consequently choose to train the probe on406

an external data source derived from Lassy-Small,407

the gold standard corpus of written Dutch (Van No-408

ord et al., 2013). Lassy makes for an excellent data409

source for our task, as it provides analyses in the410

form of graphs, rather than trees, so as to explicitly411

account for several non-local phenomena (crucially,412

this includes the semantic subjects of verbal com-413

plements). We traverse the Lassy graphs to anno-414

tate noun phrases (all leaf nodes that descent from415

a noun phrase or are otherwise marked as a noun 416

or pronoun) and verbs of interest (phrasal heads 417

within a dependency frame that contains a subject 418

previously identified as a noun phrase). From the 419

65 000 samples of Lassy, we extract about 12 000 420

that contain at least two distinct subjects without 421

exceeding a word length of 30. We split the lat- 422

ter into two mutually exclusive sets of 10 000 and 423

2 000 samples: we train with the first and use the 424

second for model selection. 425

We experiment with two Dutch language mod- 426

els: BERTje (de Vries et al., 2019) and Rob- 427

BERT (Delobelle et al., 2020), based on BERT 428

and RoBERTa (Liu et al., 2019) respectively. For 429

each model, we train 3 probes that differ in their 430

initialization seeds, using AdamW (Loshchilov and 431

Hutter, 2018) with a learning rate of 10−4, a batch 432

size of 32 and a dropout rate of 15%, applied at 433

BERT’s output. We perform model selection using 434

accuracy over the validation set as our metric, mea- 435

sured over individual verb predictions; validation 436

accuracy converges after ca. 80 training epochs. 437

Controlled data generation Despite remaining 438

grammatical, sentences start looking odd and un- 439

natural when allowing recursion to arbitrary depth 440

– we impose an upper limit that leads to complex 441

but still human-parsable data: 4 and 6 for the ver- 442

bal control and raising grammars, respectively. To 443

cast the generated trees into sentences, we populate 444

primitive categories (that is, categories that can be 445

instantiated lexically rather than – or in addition to 446

– by rule) with sets of semi-automatically assem- 447

bled constants. For simplicity, we consider only 448

the case of verbs accepting a person as their indi- 449

rect object; we filter 40 such verbs from a larger 450

collection of ditransitives crawled from Lassy, and 451

manually gather 30 temporal, locative and manner 452

adverbs that can modify them. All verbs are drawn 453

from Lassy (Van Noord et al., 2013) and the lists 454

of Augustinus (2015): we gather 9 subject- and 455

33 object-control verbs, 2 causatives and 7 raising 456

verbs. A comprehensive set of around 10 000 gen- 457

dered nouns (the ones that have de as their article) 458

is finally obtained from the Algemeen Nederlands 459

Woordenboek.3 In the verb raising grammar, we 460

trigger subordination by prefixing generated ex- 461

pressions with the string Iemand ziet (‘somebody 462

sees’). 463

From each generated abstract tree, we obtain 10 464

syntactically identical sentences that vary only in 465

3https://anw.ivdnt.org
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# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4

BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7

RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

their meaning by performing controlled sampling466

over the lexicon; the very large product space of467

constants guarantees sample uniqueness. This pa-468

rameterization means we can inspect and group469

samples on the basis of either their surface form470

or their underlying tree, a property that will come471

when analyzing model performance. To ensure nat-472

urality and consistency in the model’s input, we473

capitalize and punctuate generated sentences in a474

final post-processing step.475

4.2 Results476

The trained probes are tested on our generated data,477

yielding a prediction for every verb occurrence. For478

each model, we report the seed-averaged accuracy479

on each experiment in Table 2: test performance480

is substantially lower than in the validation bench-481

marks.482

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

To facilitate analysis, we group predictions ac-483

cording to their context, namely (i) number of noun484

phrases in the sentence (classification targets), (ii)485

maximal depth of the underlying abstract syntax486

tree and (iii) production rule, and aggregate them487

into accuracy scores, presented in Table 1. This488

breakdown suggests that model performance re-489

mains passable for the easier portion of the dataset,490

but degrades quickly as the difficulty of the task491

increases; models have a harder time associating a492

verb to its subject as sentences get longer and more493

complicated. The over-representation of harder-494

samples due to the dominance of deeper abstract 495

syntax trees then serves to explain the striking per- 496

formance decline. 497

Control Verbs Focusing on the control gram- 498

mar first, we remark that both models consistently 499

score above the random baseline (i.e. 1 divided 500

by the number of classification targets), seemingly 501

indicating that some notion of semantic compre- 502

hension perseveres in the presence of control verb 503

nestings. Grouping scores by rule is revealing: the 504

main clause subject is (almost) always correctly de- 505

tected, regardless of nestedness of the co-occurring 506

complement and unperturbed by the presence of 507

word-order variations due to modifiers (AX
1 ). Ver- 508

bal complements and causatives, on the other hand, 509

are more often than not incorrectly analyzed, even 510

in the simplest cases of a bare infinitive in isola- 511

tion (A3), or a causative occurring at the topmost 512

branch of the tree (AX
2 ). 513

Control Scope
Consistency

Model subject object

BERTje 34.4 36.1 68.4

RobBERT 18.7 37.8 63

Table 3: Metrics specific to the Control Verb grammar.

To procure an explanation for this discrepancy, 514

we start by measuring accuracy in verbs occurring 515

under subject- and object control scopes separately. 516

The remarkably low results hint that models strug- 517

gle with both kinds of control, while indicating 518

the presence of an implicit bias slightly favouring 519

the more common object control reading (espe- 520

cially so in the case of RobBERT). Next, we in- 521

vestigate whether the low performance is due to 522

models simply misreading certain constructions, 523

7



assigning subjecthood to the (same) wrong noun524

phrase. To quantify how consistent the models525

are, we gather all predictions occurring in the same526

context (i.e. same part of the same tree under the527

same scope, object or subject) and varying only in528

terms of lexical realization. The consistency of a529

model in a specific context is calculated as the fre-530

quency of the most common prediction (correct or531

otherwise); the model’s overall consistency is then532

the average consistency over all contexts. Mod-533

els generally fail at producing the same prediction534

given the same syntactic template, instead being535

susceptible to distraction from word variations.536

Verb Raising The story is no different when it537

comes to the second grammar: both models fail to538

draw close to their validation benchmarks. Surpris-539

ingly, RobBERT’s metrics lie below the random540

baseline, positing that it encodes a wrong syntactic541

structure in verb cluster formations, rather than sim-542

ply not acquiring the correct one. The dispropor-543

tionately high accuracy of rule B2 readily provides544

an explanation: the noun-phrase directly preceding545

an infinitive is assumed to be its subject. BERTje,546

on the other hand, is more trustworthy, maintaining547

comparable performance in both intransitive (B2)548

and transitive (B3) infinitival phrases. The degra-549

dation associated with deeper trees coincides with550

the drop in performance for the recursive rule B4.551

4.3 One-Shot Learning552

Given the purported inadequacy of both models at553

correctly or consistently predicting subjecthood in554

our datasets’ cross-serial constructions, we resort555

to one final experiment that serves as a sanity check556

for the quality of our data. Using a different lexi-557

cal sampling seed, we generate a single sentence558

from each abstract syntax tree, resulting in datasets559

of 307 and 30 samples for the control verb and560

verb raising grammars, respectively. These com-561

pact datasets are then used for fine-tuning the two562

models (combined with probes) in a one-shot learn-563

ing fashion; after a few epochs of training, we test564

the resulting models on the corresponding original565

datasets.566

Model Control Raising

BERTje 92.4 68.5

RobBERT 61.6 36.7

Table 4: Model results for the one-shot setup.

The results, presented in Table 4, show that min-567

imal supervision does improve model performance, 568

indicating that the learned parameter updates gener- 569

alize beyond the lexical choices of the fine-tuning 570

data, thereby verifying the generation pipeline’s 571

internal consistency. Improvement is lower in the 572

case of the verb raising grammar; we posit that the 573

task is harder to acquire due to its predominantly 574

syntactic nature but also the smaller number of 575

training samples. 576

5 Conclusion 577

We implemented a test suite based on multiple 578

context-free grammars to generate a large collec- 579

tion of sentences containing complicated syntactic 580

phenomena specific to Dutch. We trained a probing 581

model on extracting verb-to-subject pairings from 582

the contextualized representations of state-of-the- 583

art pretrained Dutch language models using an ex- 584

ternal resource of generic text accompanied by gold 585

standard annotations. We then tested the probe on 586

our generated data, and found it to perform substan- 587

tially below its own validation benchmarks. After 588

conducting extensive analysis aimed at identifying 589

the source of this discrepancy, we showed that the 590

probe’s predictions are inconsistent and its accu- 591

racy quickly diminishes as the complexity of the 592

syntactic patterns increases. Based on the above, 593

we conclude that neither of the BERT models in- 594

vestigated has learned to internalize syntactic and 595

semantic subjecthood in nested constructions in- 596

volving cross-serial dependencies. Our findings 597

serve as empirical evidence hinting at unsupervised 598

language models having difficulty in the automatic 599

acquisition of discontinuous syntactic patterns. 600

We leave several directions open for future 601

work. To begin with, one could mirror the patterns 602

analyzed to other languages and compare model 603

performance cross-linguistically, juxtaposed by the 604

corresponding grammar complexity. Alternatively, 605

one could render more elaborate grammars 606

intended to capture other syntactic or semantic 607

phenomena of interest. Finally, it is worth 608

investigating the extent to which the “real-world” 609

validation samples incorrectly classified are 610

exemplars of the types of discontinuity captured 611

by our grammars. To facilitate further research on 612

the topic, we plan on making our code publicly 613

available. 614

615
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