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Abstract

Polygenic risk scores (PRS) improve coronary artery dis-
ease (CAD) prediction in many populations but suffer from
reduced portability and calibration when applied to under-
represented ancestries. We present a practical pipeline that
transfers population-adapted genomic risk into a deploy-
able electronic-health-record (EHR) survival model through
censoring-aware knowledge distillation. Using IndiGenomes
allele-frequency data to recalibrate GWAS-derived PRS for
the Indian population, we build a genomic teacher that out-
puts risk scores and survival curves; these soft targets are
distilled into a parsimonious Cox/AFT student that uses only
routine clinical features collected from a longitudinal Maha-
rashtra EHR cohort (N~~5,000). The student is trained with
a combined loss that blends the Cox partial likelihood and
an IPCW-weighted distillation term so censored observations
contribute robustly. In cross-validated experiments, our dis-
tilled student improves discrimination and net reclassification
vs. an equivalent EHR model without distillation, while re-
taining clinical interpretability and deployability. Ablations
demonstrate that recalibration using IndiGenomes allele fre-
quencies substantially enhances the benefit of distillation,
underscoring the importance of population-specific genomic
adaptation. Our approach provides a scalable route to embed
genomic risk structure into routine clinical tools in resource-
constrained settings

Introduction

Cardiovascular diseases (CVDs) remain the leading cause
of mortality in India, with coronary artery disease (CAD)
showing earlier onset and faster progression than in Western
populations (Prabhakaran, Jeemon, and Roy 2016; Gupta
and Xavier 2018). Early risk prediction is critical, yet estab-
lished clinical models such as Framingham or pooled cohort
equations capture only conventional risk factors and gener-
alize poorly to non-Western populations (Goff David et al.
2014).

Polygenic risk scores (PRS) aggregate the effects of nu-
merous genetic variants to estimate inherited susceptibility
to CAD (Khera et al. 2018; Inouye et al. 2018). While PRS
improve prediction in European cohorts, their portability
across ancestries remains limited due to differences in allele
frequencies and linkage disequilibrium (Duncan et al. 2019).
As aresult, uncalibrated PRS often misestimate risk in South
Asian populations, which are genetically diverse yet un-

derrepresented in genome-wide association studies (GWAS)
(Martin et al. 2019; Breedon et al. 2023).

Recent Indian genome initiatives such as IndiGen provide
population-specific allele-frequency data that enable recal-
ibration of PRS models (Jain et al. 2021). However, large-
scale genotyping remains rare in Indian healthcare, where
electronic health records (EHRs) offer the most comprehen-
sive longitudinal clinical data (Sharma, Kumar, and Tyagi
2023). This gap limits the integration of genomic risk infor-
mation into routine clinical prediction.

We address this challenge through a censoring-aware
knowledge distillation framework that transfers genomic
risk into EHR-based survival models. A genomic teacher,
constructed by recalibrating GWAS-derived CAD effect
sizes with IndiGen allele frequencies, outputs population-
adapted risk and survival estimates. A student survival
model, trained on longitudinal EHR data from approxi-
mately 5,000 cardiac patients in Maharashtra, learns to repli-
cate these outputs while fitting observed time-to-event out-
comes.

To accommodate censoring, the training objective com-
bines the Cox partial-likelihood with an inverse-probability-
of-censoring-weighted (IPCW) distillation term (Kvamme,
Borgan, and Scheel 2019; Kuo et al. 2024), enabling effec-
tive learning from both observed and censored samples.

Preliminary results show that this population-adapted dis-
tillation improves discrimination and calibration compared
to EHR-only baselines, while maintaining interpretability.
The approach highlights how population-specific genomic
adaptation using open-source Indian allele-frequency data
can enable scalable, deployable, and ancestry-aware survival
risk models.

Related Work
Polygenic Risk Scores for Coronary Risk.

Polygenic risk scores (PRS) aggregate the effects of thou-
sands of genetic variants to quantify inherited susceptibility
to common diseases such as coronary artery disease (CAD).
Large biobank studies have shown that individuals in the
highest decile of a CAD PRS can exhibit a multi-fold in-
crease in event risk relative to the lowest decile, highlight-
ing the utility of germline genetics for early risk stratifi-
cation (Fahed and Natarajan 2023; Lindstrém et al. 2022).



However, PRS models derived from European-ancestry
genome-wide association studies (GWAS) often show de-
graded performance when transferred to non-European pop-
ulations, primarily due to differences in allele frequen-
cies, linkage disequilibrium structure, and environmental
context (Mostafavi et al. 2019; Moreno-Grau et al. 2024;
Lambert et al. 2023). Recent work demonstrates that even
within a single ancestry, prediction accuracy varies across
socio-economic and demographic strata, suggesting limits
to current portability (Mostafavi et al. 2019; Martin et al.
2024). To mitigate these effects, multi-ancestry and cross-
population adaptation methods have been proposed, such as
polygenic transcriptome risk scores (PTRS) that rely on pre-
dicted gene expression rather than raw variants (Mancuso
et al. 2021), or functional-variant prioritisation frameworks
that improve trans-ancestral portability (Kelley et al. 2022).

Knowledge Distillation for Biomedical Prediction.

Knowledge distillation (KD) transfers knowledge from a
complex “teacher” model to a simpler “student” model
to improve generalisation or interpretability. Surveys such
as (Mansourian et al. 2024; Moslemi et al. 2024) summarise
the rapid evolution of KD from model compression to cross-
domain knowledge transfer. In biomedicine, KD has been
applied to multi-omics integration and sparse survival mod-
elling, where it helps produce compact, interpretable learn-
ers without major loss in accuracy. For example, recent work
by Wei et al. (Wei et al. 2024) introduces censoring-aware
distillation losses for genomic survival tasks, demonstrating
that KD can effectively handle right-censored time-to-event
data.

Gap and Motivation.

While both PRS portability and knowledge distillation
have been studied independently, their integration remains
largely unexplored. Specifically, there is no existing frame-
work that combines population-adapted genomic risk with
censoring-aware knowledge distillation in an EHR-based
survival model for underrepresented populations such as In-
dia. This gap motivates our proposed approach, which distils
a population-recalibrated genomic teacher, based on Indi-
Gen allele frequencies, into a deployable, interpretable EHR
survival model.

Methodology
Genomic Teacher Construction

We begin by constructing a genomic teacher model that
quantifies inherited CAD risk for the Indian population.
Starting with GWAS summary statistics from large consortia
(e.g., multi-ancestry CAD meta-analyses (Patel et al. 2023)),
we build a PRS per individual (or per stratum) weighted by
effect sizes. We then use allele-frequency data from the Indi-
Gen consortium to recalibrate the PRS weights so that allele
frequency differences between Indian and European popula-
tions are accounted for. The recalibrated PRS is either con-
verted into a continuous risk score z; or, when possible, a

survival hazard estimate S (t | z;) for each individual i.

Student Survival Model & Distillation

Our student model is a parsimonious survival model (e.g.,
Cox proportional hazards or Weibull/AFT) trained on rou-

tine EHR features X i(S) from a longitudinal Indian cohort
(N~~5,000). The student is optimised with a composite loss:
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where Ly, is the Cox partial-likelihood loss (or AFT neg-
ative log-likelihood) on survival time ¢, event indicator §.
The distillation term L ;s is defined as an IPCW (inverse-
probability-of-censoring weighted) mean-squared error be-
tween student output and teacher target z. R(#) is a regular-
izer (e.g., Ly for sparsity). At deployment, the student uses
only clinical EHR inputs and no genomic data.

Evaluation and Ablations

We recommend a 5-fold cross-validation scheme within the
Indian EHR cohort. Key metrics include Harrell’s C-index
for discrimination, calibration plots at 1-, 3-, and 5-year
horizons, and net reclassification improvement (NRI) com-
pared to a baseline EHR model without distillation. Abla-
tion experiments isolate the contributions of: (i) including
distillation vs. not, (ii) recalibrating PRS with Indian allele
frequencies vs. naive transfer, and (iii) student regularisation
for sparsity.
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Figure 1: Allele frequency distribution of key CAD-
associated loci across populations.

Demonstration

The proposed framework leverages well-established coro-
nary artery disease (CAD)-associated loci. Our study is cur-
rently studying nearly 50+ well known alleles and their vari-
ants that are closely associated with cardiac risk. We are
studying several public genomic datasets in the Indian con-
texts including the IndiGenomes project (Jain et al. 2021).
Figure 1 presents the allele frequency distribution of five ex-
ample variants near CDKN2A/B (9p21), PHACTRI (6p24),
ADAMTS7 (15q24), SORTI (1p13), and LPA (6q26) from
the IndiGenomes dataset. The variation across European,
South Asian, and American cohorts highlights the need for
ancestry-specific calibration of polygenic risk scores to im-
prove predictive accuracy in Indian populations. Variants
near CDKN2A/B modulate vascular smooth muscle pro-
liferation and atherosclerotic plaque stability; PHACTRI



influences endothelial nitric oxide signaling; ADAMTS7
promotes arterial wall remodeling; SORTI regulates hep-
atic lipid metabolism; and LPA strongly affects circulat-
ing lipoprotein(a) levels. These markers form the basis of
the recalibrated polygenic risk score (PRS) that guides the
genomic teacher model within our knowledge distillation
pipeline.

During the conference demonstration, we will present
the full end-to-end workflow, from recalibration of GWAS-
derived PRS using IndiGenomes allele frequencies to train-
ing of a censoring-aware knowledge distillation model that
integrates genomic risk with longitudinal EHR-based sur-
vival data. Interactive visualizations will showcase key
steps, including recalibrated PRS distributions, student-
predicted survival trajectories, and comparative perfor-
mance metrics (C-index and calibration). The live session
will highlight how population-specific genomic informa-
tion can be distilled into interpretable, deployable EHR
survival models, emphasizing scalability, adaptability, and
relevance to precision-cardiology applications in resource-
limited healthcare settings.
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