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Abstract

We develop a series of differential privacy (DP) algorithms from a family of
random projection (RP) and sign random projection (SignRP) methods. We first
show how to improve the previous DP-RP approach using the “optimal Gaussian
mechanism”. Then, we propose a series of DP-SignRP algorithms that leverage
the robustness of the “sign flipping probability” of random projections. That is,
given x =

∑p
i=1 uiwi where u is a p-dimensional data vector and w is a symmetric

random vector, sign(x) only has a fairly small probability to be flipped if there is
a small modification on data u, depending on the specific distribution of w. This
robustness leads to our novel design of “smooth flipping probability” for SignRP-
type algorithms with better utility than using the standard randomized response
mechanism. Retrieval and classification experiments demonstrate that, among the
presented DP-RP algorithms, DP-SignOPORP (where OPORP is an improvement
over the celebrated count-sketch algorithms), performs the best in general.

In the industrial practice, DP methods were not very popular for machine learning
or search, largely because the performance typically would drop substantially if
DP is applied. Since our proposed new DP algorithms have significantly improved
the performance, it is anticipated that our work will motivate a wide adoption of
DP in practice. Finally, we stress that, since our methods are applied to the original
data (i.e., feature vectors), the privacy of downstream tasks is naturally protected.

1 Introduction

Protecting data privacy has become an urgent need and a trending research topic recently. Among
many notions of privacy, the “differential privacy” (DP) [30] has gained tremendous attention in both
the research community and industrial applications, and has been widely applied to numerous tasks
such as frequency estimation [32, 26], clustering [36, 34], regression and classification [14, 85], DP-
SGD [1, 35], principle component analysis [40], empirical risk minimization [15], graph analysis [33],
matrix completion [8, 45], etc. In a machine learning model, there are several choices on when to
deploy differential privacy (DP): (a) at the data collection/processing stage [84, 81, 5, 19]; (b) during
the model training stage [1, 78]; and (c) on the model output (or summary statistics) [29]. Among
them, applying DP as early as at the data collection stage provides strong protection in the sense
that the subsequent operations or outputs will become private by the post-processing property of DP.
Moreover, when the data holder needs to release the data to third-parties, a privacy-preserving data
publishing mechanism (at an early stage) becomes necessary.

In this paper, we focus on the differential privacy of the broad family of random projection (RP)
methods, including RP, sign random projections (SignRP) and count-sketch-type algorithm. Our
algorithms can be applied to data publishing and processing for downstream machine learning tasks.
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1.1 Random Projections (RP) and Sign Random Projections (SignRP)

In practice, data compression and dimension reduction techniques can be crucial when dealing
with massive (high-dimensional) data. The random projection (RP) method is an important and
fundamental dimensionality reduction algorithm. Denote u ∈ Rp as the data vector with p features.
With some k (and typically k ≪ p), we define the random projection of u as

X =
1√
k
WTu, W ∈ Rp×k. (1)

The entries of the random matrix W typically follow the Gaussian distribution or Gaussian-like
distribution such as the Rademacher (symmetric Bernoulli) distribution. It has been well-understood
that, with a sufficient number of projections (k), the distance between two vectors (using the same
projection W ) is preserved within a small multiplicative error with high probability. The dimension-
ality reduction and geometry preserving properties make RP widely useful in numerous applications,
such as distance estimation, nearest neighbor search, clustering, classification, compressed sensing,
permutation recovery, etc. [46, 44, 22, 6, 2, 37, 24, 76, 10, 28, 56, 38, 23, 21, 60, 68, 75, 82, 83].

While RP is able to reduce the dimensionality, storing and transmitting projected data might still be
expensive for large datasets. One can further compress the RPs by quantization/discretization, where
we only use a few bits to represent the projected values [41, 9, 27, 89, 54, 58, 50, 55, 61, 62]. In this
paper, we will consider the differential privacy of the extreme case of sign (1-bit) random projection
(SignRP), also known as the “SimHash” [13, 24], where only the sign of the projected data is stored.
The signs still preserve the angle/cosine information. SignRP has been widely used for approximate
near neighbor (ANN) search [39] by building hash tables from the bits [44, 13, 71]. RP and SignRP
can also be extended to non-linear random features [69, 63, 64].

1.2 Count-Sketch and OPORP: Efficient RP-type Alternatives

The celebrated count-sketch [12] can be viewed as a highly efficient RP-type algorithm, because, as
an option, it only requires “one permutation + one random projection” (OPORP) [57], as opposed
to k projections in RP. Applications of count-sketch include graph embedding [80], word & image
embedding [16, 87, 3, 72, 86], model & communication compression [79, 17, 70, 42, 59], etc. The
recent work by [57] improved the original count-sketch in two aspects: (i) using a fixed-length
binning scheme makes the algorithms more convenient and also reduces the variance by a factor of
p−k
p−1 ; (ii) the projected data (i.e., vectors in k dimensions) should be normalized before they are used
to estimate the original cosine ρ, which also substantially reduces the estimation variance, essentially
from (1 + ρ2)/k (un-normalized) to (1− ρ2)2/k (normalized).

The main contributions of this work include the following:

• In Section 3, for DP-RP, we first revisit the prior work [49] on the (ϵ, δ)-DP random
projection based on Gaussian noise addition (called DP-RP-G). Then we incorporate the
optimal Gaussian mechanism and propose an improved method DP-RP-G-OPT. We also
develop DP-OPORP based on the optimal Gaussian mechanism.

• In Section 4, we propose two algorithms for privatizing the (1-bit) DP-SignRP. The first
method, DP-SignRP-RR, is based on the standard “randomized response” (RR). Then, we
propose an improved method named DP-SignRP-RR-smooth based on a proposed concept of

“smooth flipping probability”, thanks to the robustness brought by the “aggregate-and-sign”
operations of SignRP. Finally, we extend the idea of smooth flipping probability to OPORP
and show that DP-SignOPORP is more advantageous in terms of privacy.

• In Section 5, we conduct retrieval and classification experiments on benchmark datasets.
For full-precision methods, the proposed DP-OPORP substantially improves prior method
DP-RP-G. For the 1-bit RP variants, the suggested DP-SignOPORP can outperform DP-RP
and DP-OPORP especially when ϵ is not large (e.g., ϵ ≤ 5). Our results also verify the
advantage of smooth flipping probability over the classic bit flipping strategy.
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2 Background on Differential Privacy

Throughout the paper, ∥ · ∥1 and ∥ · ∥2 are the l1 and l2 norms, respectively, and ∥ · ∥ will denote the
l2 norm if there no risk of confusion. Let u ∈ U be the data vector of a user where U denotes the data
domain. In this paper, we consider real-valued data vectors with bounded range, i.e., U = [−1, 1]p for
convenience. We also assume ∥u∥ > 0, i.e., there is no all-zero data sample. The formal definition of
differential privacy (DP) is given as follows.

Definition 2.1 (Differential Privacy [30]). For a randomized algorithm M : U 7→ Range(M), if for
any two adjacent datasets u and u′, it holds that

Pr[M(u) ∈ O] ≤ eϵPr[M(u′) ∈ O] + δ (2)

for ∀O ⊂ Range(M) and some ϵ, δ ≥ 0, then algorithm M is called (ϵ, δ)-differentially private. If
δ = 0, M is called ϵ-differentially private.

In this work, we follow the standard setup in the literature of DP sketching/hashing (e.g., [7, 49, 73,
74, 88, 25, 65]) that neighboring data vectors u and u′ only differ in one dimension, which is usually
referred to as the “attribute-level DP”—an adversary cannot detect a small change in any attribute of
u based on the output of the algorithm.

Definition 2.2 (β-adjacency). Let u ∈ [−1, 1]p be a data vector. A vector u′ ∈ [−1, 1]p is said to be
β-adjacent to u if u′ and u differ in one dimension i, and |ui − u′

i| ≤ β.

Data vectors u and u′ satisfying Definition 2.2 are called β-adjacent or β-neighboring. In the literature
(e.g., [49]), β = 1 is typically used. We allow a general β to accommodate the practical needs.
Moreover, the concept of sensitivity is important for the design of DP noise addition mechanisms.

Definition 2.3 (l2-sensitivity). Let Nb(u) denote the neighbor set of u, and N (U) = {(u, u′) : u′ ∈
Nb(u), u, u′ ∈ U} be the collection of all possible neighboring data pairs. The l2-sensitivity of a
function f : U 7→ Rk is defined as △2 = max(u,u′)∈N (U) ∥f(u)− f(u′)∥2.

The following composition theorem of DP is also useful in our analysis.

Theorem 2.1 (Composition Theorem [31]). Let Mj : U → R be an (ϵj , δj)-DP algorithm for
j = 1, ..., k. Then M(u) = (M1(u), ...,Mk(u)) is (

∑k
j=1 ϵi,

∑k
j=1 δj)-DP.

3 Revisiting Differentially Private Random Projection Methods

We first revisit the DP noise addition mechanism for random projections and show how to apply the
optimal Gaussian mechanism [4] to improve prior methods. We also propose a DP algorithm based
on a variant of count-sketch which is computationally much more efficient than dense projections.

3.1 Gaussian Noise Mechanism for DP-RP

Let N = {u, u′ ∈ U : u ∈ Nb(u)} be the collection of all possible β-neighboring data pairs, where
Nb(u) is the neighbor set of u. For a p-by-k projection matrix W , the l2-sensitivity of the RP (1),
according to Definition 2.3, can be precisely computed by

△2 =
1√
k
β max

(u,u′)∈N (U)
∥WTu−WTu′∥2 =

1√
k
β max

i=1,...,p
∥W[i,:]∥2, (3)

where W[i,:] denotes the i-th row of W . As such, the DP noise level depends on the choice of
projection matrix W . A comparison of Rademacher vs. Gaussian projection in DP-RP method can
be found in Section B.1. With this calculation, the general Gaussian noise mechanism for DP-RP is
summarized in Algorithm 1. We present the algorithms for a single data point u, and the procedure
is applied to every data vector in the database (with same W but independent noise). After random
projection, we simply add a random Gaussian noise vector following iid N(0, σ2) to the projected
data. The following “DP-RP-G” result is known in the literature.

Theorem 3.1 (DP-RP-G [49]). Let △2 be defined in (3). For any ϵ > 0 and 0 < δ < 1
2 , DP-RP-G in

Algorithm 1 is (ϵ, δ)-DP if σ ≥ △2

√
2(log(1/δ)+ϵ)

ϵ .
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Algorithm 1: DP-RP-G and DP-RP-G-OPT
1 Input: Data u ∈ [−1, 1]p, privacy parameters ϵ > 0, δ ∈ (0, 1), number of projections k
2 Output: (ϵ, δ)-differentially private random projections x̃ ∈ Rk

3 Apply RP x = 1√
k
WTu, where W ∈ Rp×k has iid entries from N(0, 1) or Rademacher

4 Compute the sensitivity △2 by (3)
5 Generate the random noise vector G ∈ Rk whose entries are iid samples from N(0, σ2) where σ

is obtained by Theorem 3.1 (DP-RP-G) or Theorem 3.2 (DP-RP-G-OPT)
6 Return x̃ = x+G

Remark 3.1. Note that in implementation, △2 is computed by (3) using the realization of the
projection matrix W . In Appendix A, we provide a high probability bound on △2 and more analysis
and discussion on the Laplace mechanism for DP-RP.

In Theorem 3.1 (as well as the classical Gaussian mechanism, e.g., [31]), the analysis on the noise
level is based on upper bounding the tail of Gaussian distribution. It can be improved by computing
the exact tail probabilities. [4, Theorem 8] proposed an optimal Gaussian mechanism based on this
idea, which allows us to improve Theorem 3.1 and obtain the DP-RP-G-OPT method as follows.

Theorem 3.2 (DP-RP-G-OPT). Suppose △2 is defined as (3). For any ϵ > 0 and 0 < δ < 1,
DP-RP-G-OPT in Algorithm 1 achieves (ϵ, δ)-DP if σ ≥ σ∗ where σ∗ is the solution to the equation

Φ

(
△2

2σ
− ϵσ

△2

)
− eϵΦ

(
−△2

2σ
− ϵσ

△2

)
= δ, (4)

where Φ(·) is the cdf of the standard normal distribution.

Remark 3.2. For both Theorem 3.2 and Theorem 3.1, the Gaussian noise level is σ = O(△2

ϵ ) when
ϵ → 0, and σ = O(△2√

ϵ
) when ϵ → ∞, which is rate optimal [4]. Essentially, Theorem 3.2 reduces

the noise variance of Theorem 3.1 by analyzing the tail probability exactly.

3.2 DP-OPORP: A More Efficient Alternative

The standard random projections (1) require k projections. We can reduce the cost from O(kp)
to O(p) by count-sketch: “binning + Rademacher RP”. Basically, we split the data entries into k
bins, and apply RP in each bin to generate k samples. [88] studied noise injection mechanism for
count-sketch [12]. Recently, [57] proposed OPORP (One Permutation + One Random Projection), an
improved variant of count-sketch using fixed-length binning and the normalized estimator. The steps
are summarized in Algorithm 2. Note that the output xi can be l2 normalized to reduce variance.

Algorithm 2: OPORP: count-sketch with fixed-length binning
1 Input: Data vector u ∈ Rp; Number of projected samples k
2 Output: k OPORP samples
3 Apply a permutation Π : [p] 7→ [p] to u to get uΠ

4 Split the p permuted data columns into k consecutive length-p/k bins: uΠ = [u
(1)
Π , ..., u

(k)
Π ]

5 Generate a vector w ∈ Rp following Rademacher distribution, denoted as w = [w(1), ..., w(k)]

6 Return k projected samples by xi = w(i)Tu
(i)
Π , for i = 1, ..., k.

For OPORP, the sensitivity △2 = β, due to the binning and Rademacher projection: changing one
coordinate of u by β leads to a change of β in term of l2 distance between the projected vectors.

Theorem 3.3 (DP-OPORP). Adding noise from iid N(0, σ2) to OPORP (the output of Algorithm 2)
achieves (ϵ, δ)-DP, where σ is the solution to (4) with △2 = β.

The advantages of DP-RP and DP-OPORP over the approach of adding Gaussian noise to raw data
for inner product estimation are theoretically justified in Appendix C.
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4 DP-SignRP: Differentially Private Sign Random Projections

We now propose our main algorithms that output SignRP with DP guarantees. Firstly, we analyze the
standard randomized response (RR) technique, DP-SignRP-RR, under Gaussian random projections.
Next, we propose the concept of “smooth flipping probability” and develop DP-SignRP-RR-smooth
as an improvement. Finally, we propose DP-SignOPORP that combines all the techniques.

4.1 DP-SignRP-RR by Randomized Response

Algorithm 3: DP-SignRP-RR

1 Input: Data u ∈ [−1, 1]p; ϵ > 0, 0 < δ < 1; Number of projections k; norm lower bound m

2 Output: Differentially private sign random projections

3 Apply RP by x = 1√
k
WTu, where W ∈ Rp×k is a random N(0, 1) matrix

4 Let N+(m, δ, k, p) be computed as in Proposition 4.3

5 Compute s̃j =

{
sign(xj), with prob. eϵ

′

eϵ′+1

−sign(xj), with prob. 1
eϵ′+1

for j = 1, ..., k, with ϵ′ = ϵ/N+(m, δ, k, p)

6 Return s̃ as the DP-SignRP of u

We develop DP-SignRP-RR based on the classic randomized response (RR) mechanism [77, 31].
As summarized in Algorithm 3, after we apply random projection x = WTu, we take s = sign(x).

Then, for each sj , we keep the sign with probability eϵ
′

eϵ′+1
and flip the sign with probability 1

eϵ′+1
.

Here ϵ′ = ϵ/N+, where N+(m, δ, k, p) is an upper bound on the number of different signs (among
k signs) of x = WTu and x = WTu′ for any β-adjacent (u, u′), which will be derived later in
Proposition 4.3. Here, m is a lower bound on the l2 norm of the data, i.e., ∥u∥ ≥ m for all u ∈ U .
The final output is s̃ after perturbing s by the above procedure.
Theorem 4.1. Algorithm 3 is (ϵ, δ)-DP.

Proof. For any data point u ∈ U and its β-adjacent neighbor u′, denote s = sign(WTu) ∈
{−1,+1}k, s′ = sign(WTu′) ∈ {−1,+1}k, and let s̃ and s̃′ be the corresponding randomized sign
vectors output by Algorithm 3. Denote S = {i : sj ̸= s′j} and Sc = [k] \ S. For any vector y ∈
{−1,+1}k, define S0 = {j ∈ S : sj = yj}, S1 = {j ∈ S : sj ̸= yj}, Sc

0 = {j ∈ Sc : sj = yj}
and Sc

1 = {j ∈ Sc : sj ̸= yj}. By Proposition 4.3, we know that the event {|S| ≤ N+(m, δ, k, p)}
happens with probability at least 1− δ. In this event, we have

log
Pr(s̃ = y)

Pr(s̃′ = y)
= log

∏
j∈Sc

0

eϵ
′

eϵ′+1

∏
j∈Sc

1

1
eϵ′+1

∏
j∈S0

eϵ
′

eϵ′+1

∏
j∈S1

1
eϵ′+1∏

j∈Sc
0

eϵ′

eϵ′+1

∏
j∈Sc

1

1
eϵ′+1

∏
j∈S0

1
eϵ′+1

∏
j∈S1

eϵ′

eϵ′+1

≤ log

∏
j∈S

eϵ
′

eϵ′+1∏
j∈S

1
eϵ′+1

= |S|ϵ′ ≤ N+ϵ
′ = ϵ.

Since this event occurs with probability at least 1− δ, the overall procedure is (ϵ, δ)-DP.

4.1.1 The flipping probability and calculation of N+

In the proof of Theorem 4.1, N+ is a upper bound on S = {i : sj ̸= s′j} where s = sign(WTu) and
s′ = sign(WTu′) for neighboring data (u, u′), which determines the flipping probability thus the
utility. Next, we analyze N+. The following is a useful lemma; all proofs are placed in Appendix E.

Lemma 4.2. Let X1, ..., Xp be iid N(0, σ2
x) variables. Let Y ∼ N(0, σ2

y) be another Gaussian
random variable with arbitrary dependence structure with Xi’s. Let r = σx/σy ≤ 1. Then

P+(r, p) := Pr( max
i=1,...,p

|X| > |Y |) ≤
∫ ∞

0

2p[2Φ(t)− 1]p−1[2Φ(rt)− 1]ϕ(t)dt, (5)

where ϕ(x) and Φ(x) are the standard Gaussian pdf and cdf, respectively.
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Equipped with Lemma 4.2, we can derive N+ in Algorithm 3, an upper bound on the number of
projected signs that are possible to change when u is replaced by any neighboring data vector u′.

Proposition 4.3 (Bound N+). Suppose u ∈ [−1, 1]p and β ≤ ∥u∥. Denote r = β
∥u∥ and F∥u∥,p =

P+(
β

∥u∥ , p) in (5). Denote s = sign(WTu) and s′ = sign(WTu′) for β-neighboring (u, u′), and
S = {i : sj ̸= s′j}. Then with probability 1− δ, |S| ≤ N+(∥u∥, δ, k, p) = B−1(δ;F∥u∥,p, k), where
B−1(δ;F∥u∥,p, k) represents the inverse cdf of Binomial distribution with rate F∥u∥,p and k trials.

Since F∥u∥,p = P+(r, p) is an increasing function in r = β/∥u∥, N+ would be smaller if β/∥u∥ is
smaller. Therefore, in DP-SignRP-RR, the probability of flipping the true SignRP, 1

eϵ/N++1
, would

be smaller when the data norm (or, its lower bound m) is large compared with β.

4.1.2 Utility in angle estimation by DP-SignRP-RR

Define the DP-SignRP-RR estimator of the angle between two data points u and v as

θ̂RR = π(1− P̂RR), where P̂RR =
(eϵ

′
+ 1)2

(eϵ′ − 1)2
1

k

k∑
j=1

1{s̃1j = s̃2j} −
2eϵ

′

(eϵ′ − 1)2
. (6)

Theorem 4.4. Let ρ = cos(u, v) and θ = cos−1(ρ). Run Algorithm 3 with N+ given in Proposi-
tion 4.3 and define the DP-SignRP-RR angle estimator by (6). We have E[θ̂RR] = θ. As k → ∞,
θ̂RR → N(θ, VRR

k ), with

VRR = θ(π − θ) +
2π2eϵ/N+

(eϵ/N+ − 1)2
+

4π2e2ϵ/N+

(eϵ/N+ − 1)4
.

Theorem 4.4 says that θ̂RR is an unbiased estimator of θ and asymptotically normal. Compared with
θ(π−θ)

k , the variance of the cosine estimator from non-DP SignRP [41, 13], we see that θ̂RR incurs an

extra variance (i.e., utility loss) of π2

k

[
2eϵ/N+

(eϵ/N+−1)2
+ 4e2ϵ/N+

(eϵ/N+−1)4

]
. This quantity increases as ϵ gets

smaller, illustrating the utility-privacy trade-off of DP-SignRP-RR.

Optimal projection dimension k∗. Since by Proposition 4.3 we know that N+ ≍ F∥u∥,pk roughly,

the term
[

2eϵ/N+

(eϵ/N+−1)2
+ 4e2ϵ/N+

(eϵ/N+−1)4

]
would increase with k. Therefore, there exists an optimal k∗

that minimizes the estimation variance. When k is sufficiently large, we have

VRR

k
≈ θ(π − θ)

k
+

2π2F 2
∥u∥,pk

ϵ2
+

8π2F 4
∥u∥,pk

3

ϵ4
,

using the approximation that ex − 1 ≈ x when x is small. To find the optimal k minimizing this
expression, we compute the derivative and set it as zero:

−θ(π − θ)

k2
+

2π2F 2
∥u∥,p

ϵ2
+

24π2F 4
∥u∥,pk

2

ϵ4
= 0 =⇒ k∗ ≍ ϵθ(π − θ)

F∥u∥,p
.

This analysis suggests the optimal k∗ of DP-SignRP-RR is larger when: (1) ϵ is large; (2) F∥u∥,p is
small, which is typically true when the norm of the data is relatively large.

4.2 Smooth Flipping Probability: the Benefit of Robustness

Next, we improve DP-SignRP-RR based on a novel tool which we call “smooth flipping probability”.
The idea is inspired by the “smooth sensitivity” for DP noise addition [66], which essentially says
that, the farther u is from a high “local sensitivity” region, the less noise is needed for u to achieve DP.
The local sensitivity at a specific data point u is defined as LS(u) = maxu′∈Nb(u) ∥f(u)− f(u′)∥2,
which differs from Definition 2.3 in that local sensitivity only considers the local neighbors of u.

What is the “local perturbation” for flipping the SignRP? Consider one projection xj = W [:, j]Tu and
sj = sign(xj). For a neighbor u′ of u, denote x′

j = W [:, j]Tu′ and s′j = sign(x′
j). By β-adjacency,

s′j is possible to be different from sj only if |xj | < βmaxi=1,...,p |Wij |. This implies:
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• When |xj | < βmaxi=1,...,p |Wij |, the “local sign flipping” is required, since s′j may differ

from sj . We can apply the standard RR: keep sj with prob. eϵ/k

eϵ/k+1
and flip otherwise.

• When |xj | ≥ βmaxi=1,...,p |Wij |, there does not exist u′ ∈ Nb(u) such that s′j ̸= sj .
Thus, the “local sign flipping” is not needed. However, if we do not perturb sj , DP would
be violated since s′j might need random flipping. Instead, we use a “smooth flipping
probability” which applies less perturbation for points far away from the “high perturbation
region”, i.e., the regime where |xj | < βmaxi=1,...,p |Wij |. Specifically, we define Lj =

⌈ |xj |
βmaxi=1,...,p |Wij |⌉. The probability of keeping the sign sj is P (u)

j = e
ϵ′j

e
ϵ′
j+1

where ϵ′j =

Lj

k ϵ. It can be shown (e.g., in the proof of Theorem 4.5) that this flipping probability is

“smooth”: for ∀u, u′ that are neighbors, P (u)
j ≤ eϵ/kP

(u′)
j , which justifies its name.

Algorithm 4: DP-SignRP-RR-smooth using smooth flipping probability

1 Input: Data u ∈ [−1, 1]p; ϵ > 0; Number of projections k
2 Output: Differentially private sign random projections

3 Apply RP by x = WTu, where W ∈ Rp×k is a random N(0, 1) matrix
4 Compute Lj = ⌈ |xj |

βmaxi=1,...,p |Wij |⌉ for j = 1, ..., k

5 Compute s̃j =

sign(xj), with prob. e
ϵ′j

e
ϵ′
j+1

−sign(xj), with prob. 1

e
ϵ′
j+1

for j = 1, ..., k, with ϵ′j =
Lj

k ϵ

6 Return s̃ as the DP-SignRP of u

1 2 3 4 5 6 7 8

L

0

0.1

0.2

0.3

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

smooth flip prob.

local flip prob.

global flip prob.

Figure 1: The smooth flipping prob., local
flipping prob., and the global upper bound.
ϵ = 1, k = 1. L is from Algorithm 4.

The concrete steps of DP-SignRP-RR-smooth are
summarized in Algorithm 4. Note that, the above
two cases can be unified into one, since eϵ/k

eϵ/k+1
is the

smooth flipping probability with Lj = 1. In Figure 1,
we provide an illustrative example of the smooth
flipping probability (red) and the “local flipping prob-
ability” (green) discussed above. The global upper
bound (black dash) corresponds to the standard ran-
domized response. The local flipping probability is
only non-zero at L = 1. The proposed smooth flip-
ping probability is non-zero for all L > 0, but keeps
shrinking exponentially as L gets larger, i.e., as the
projected value is farther from 0.

Theorem 4.5. Algorithm 4 achieves ϵ-DP.

Comparison with DP-SignRP-RR (Algorithm 3). In terms of algorithm design and privacy,
DP-SignRP-RR-smooth (Algorithm 4) has two advantages over the standard DP-SignRP-RR method:

1. DP-SignRP-RR-smooth does not require (assume) a lower bound m on the data norms;

2. DP-SignRP-RR-smooth achieves ϵ-DP, while DP-SignRP-RR only guarantee (ϵ, δ)-DP.

Note that Algorithm 3 can also achieve ϵ-DP if we set the flipping probability to be 1
eϵ/k+1

(for all
projected values). This corresponds to the global upper bound (black dotted line) in Figure 1. Thus,
DP-SignRP-RR-smooth requires much smaller flipping probability than DP-SignRP-RR.

DP-SignRP with Rademacher projection. Similar to DP-RP, the flipping probabilities also depend
on the projection matrix W through N+ (for DP-SignRP-RR) and L (for DP-SignRP-RR-smooth).
In Appendix B.2, we analytically show that Rademacher RP requires smaller flipping probability
than that of Gaussian RP for both variants.
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4.3 DP-SignOPORP with Smooth Flipping Probability

We incorporate the smooth flipping technique to develop DP-SignOPORP, as given in Algorithm 5
with two variants. DP-SignOPORP-RR is based on the standard randomized response (RR), while
DP-SignOPORP-RR-smooth is an improved version with our proposed smooth flipping probability.

Algorithm 5: DP-SignOPORP-RR and DP-SignOPORP-RR-smooth

1 Input: Data u ∈ [−1, 1]p; ϵ > 0; Number of projections k
2 Output: Differentially private sign OPORP
3 Apply Algorithm 2 with a random Rademacher projection vector to get the OPORP x

DP-SignOPORP-RR:

4 Compute s̃j =

{
sign(xj), with prob. eϵ

eϵ+1

−sign(xj), with prob. 1
eϵ+1

for j = 1, ..., k

DP-SignOPORP-RR-smooth:
5 Compute Lj = ⌈ |xj |

β ⌉ for j = 1, ..., k

6 Compute s̃j =

sign(xj), with prob. e
ϵ′j

e
ϵ′
j+1

−sign(xj), with prob. 1

e
ϵ′
j+1

for j = 1, ..., k, with ϵ′j = Ljϵ

7 For s̃j = 0, assign a random coin in {−1, 1}
8 Return s̃ as the DP-SignRP of u

Benefit of binning. In Algorithm 5, the key difference compared with DP-SignRP methods is that,
the 1

N+
(in Algorithm 3) or 1

k (in Algorithm 4) is removed from the flipping probability formulas,
which is a significant advantage in privacy. This improvement is a result of the binning step. By
Definition 2.2, two neighboring data u′ and u differ in one coordinate. For SignRP, since each
projected data is an aggregation of the whole data vector, when we switch from u to u′, (in principle)
all k projections are possible to change. In contrast, in OPORP, since each data entry appears in only
one bin, u′ will only cause exactly one projected output to change, which enhances privacy.

Theorem 4.6. Both variants in Algorithm 5 are ϵ-DP.

Proof. The proof follows the idea of the proofs of DP-SignRP methods, but we need to additionally
consider the empty bins. Denote x and x′ as the OPORP from Algorithm 2 using a same random
vector w, and let s = sign(x), s′ = sign(x′). Suppose u and u′ differ in dimension i, and dimension
i is assigned to the j∗-th bin with j∗ = ⌈π(i)/(p/k)⌉, where π : [p] 7→ [p] is the permutation in
OPORP. For any y ∈ {−1, 1}k, it is easy to see that to compute log Pr(s̃=y)

Pr(s̃′=y) , it suffices to look at the
j∗-th output sample because other probabilities cancel out. For the j∗-th sample, when sj∗ ̸= 0 and
s′j∗ ̸= 0, by the same arguments as in the proof of Theorem 4.5, we know that e−ϵ ≤ Pr(sj∗ )=a

Pr(s′
j∗ )=a ≤ eϵ,

a ∈ {−1, 1}, for both variants (DP-SignOPORP-RR and DP-SignOPORP-RR-smooth). When one
of sj∗ and s′j∗ equals 0, it is also easy to see that (assume sj∗ = 1 and s′j∗ is a random coin)

1 ≤ Pr(sj∗) = 1

Pr(s′j∗) = 1
=

2eϵ

eϵ + 1
≤ eϵ, e−ϵ ≤ Pr(sj∗) = −1

Pr(s′j∗) = −1
=

2

eϵ + 1
≤ 1.

This holds for both variants. In particular, this case corresponds to Lj∗ = 1 for the smooth flipping
probability. This proves the theorem.

Multiple repetitions. In Algorithm 5 Line 7, if OPORP generates an empty bin (i.e., xj = 0), we
must assign a random sign to it in order to maintain DP. This tends to undermine the utility since a
random coin does not provide any useful information about the data. To avoid too many empty bins,
one simple way is to repeat the DP-SignOPORP (with smaller k) for t > 1 times, and concatenate
the output vectors [12]. For example, if the target k = 256, we may run Algorithm 5 for t = 4 times,
each time with 256/4 = 64 projected values and privacy budget ϵ/4. We still obtain a length-256 bit
vector with ϵ-DP by the composition theorem. In the experiments, we will see that this strategy may
improve the overall performance of DP-SignOPORP.
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5 Experiments

We present experiments on retrieval and classification tasks to demonstrate the effectiveness of our
proposed methods. We compare the following algorithms:

• Raw-data-G-OPT: adding optimal Gaussian noise with sensitivity β to the original data,
which is the most basic DP method for privatizing the original data.

• DP-RP-G (Algorithm 1 + Theorem 3.1): Gaussian DP-RP with the Gaussian mechanism.

• DP-RP-G-OPT (Algorithm 1 + Theorem 3.2): DP-RP with Gaussian random projection
matrix and the optimal Gaussian noise.

• DP-OPORP (Theorem 3.3): one permutation + one random projection with Rademacher
projection vector and optimal Gaussian noise.

• DP-SignOPROP-RR and DP-SignOPORP-RR-smooth (Algorithm 5): signed OPORP with
standard randomized response and with smooth flipping probability, respectively.

As noted in Section 4.3, due to binning, DP-SignOPORP is substantially better than DP-SignRP.
Thus we present results for DP-SignOPORP in our experiments (and only β = 1 for conciseness).

Similarity Search. We first test the methods in similarity search problems, using two standard image
retrieval datasets, MNIST [53] and CIFAR [51]. For both datasets, we treat the training set as the
database, and use the samples from the test set as the queries. We set the ground truth neighbors for
each query as the top-50 sample vectors with the highest cosine similarity to the query. To search
with DP-RP (and DP-OPORP), we estimate the cosine between a query and a sample point by the
cosine between their corresponding output noisy projected values. We report only the precisions (and
please see Appendix for other metrics), averaged over 10 repetitions.
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Figure 2: Retrieval recall and precision on MNIST and CIFAR, β = 1, δ = 10−6.

Figure 2 shows that, as a result of the optimal Gaussian mechanism, DP-RP-G-OPT substantially
outperforms the prior method in the literature, DP-RP-G, at all ϵ. DP-OPORP achieve better
performance than DP-RP-G-OPT and is recommended as the best (full-precision) DP-RP variant.
These two methods provide much higher precision and recall than the optimal Gaussian mechanism
applied to the original data (Raw-data-G-OPT).

In Figure 3, we plot the precision and recall of DP-SignOPORP-RR (with standard randomized
response), and DP-SignOPORP-RR-s (with smooth flipping probability). We present the results with
repetition t = 2, 4 which yield good overall performance. As we can see, (i) the proposed smooth
flipping probability considerably improves the standard randomized response technique, and (ii)
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Figure 3: Retrieval on MNIST with DP-SignOPORP-RR and DP-SignOPORP-RR-smooth. For
DP-OPORP, DP-SignOPORP-RR, and Raw-data-G-OPT, δ = 10−6.
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Figure 4: SVM test accuracy on WEBSPAM. For (ϵ, δ)-DP methods, δ = 10−6.

DP-SignOPORP in general provides better search accuracy than DP-OPORP when ϵ < 10 ∼ 15.
This range of ϵ is common in the use cases of DP for providing reasonable privacy protection. Also,
we note that smaller t (repetitions) typically performs better with smaller ϵ but worse when ϵ is large.

Classification. We evaluate the performance of DP-SignOPORP in classification problems trained by
SVM [20], on the WEBSPAM dataset [11]. We apply the “max normalization”, i.e., divide each data
column by its largest magnitude such that the data entries are bounded in [−1, 1]. The SVM results
are presented in Figure 4. For this task, we plot DP-SignOPORP with t = 1. We again observe the
advantage of DP-SignOPORP over DP-OPORP, and the advantage of the proposed smooth flipping
probability over the standard randomized response. Specifically, when ϵ ≈ 5, the test accuracy of
Raw-data-G-OPT is around 60% (for WEBSPAM, this is almost the same as random guessing), but
DP-SignOPORP can achieve 95% classification accuracy with k = 1024.

6 Conclusion

For a database U ∈ Rn×p consisting of n data points, our goal is to make its random projections (RP)
and SignRP differentially private—the DP guarantee we have derived holds independently and
simultaneously for every data vector u ∈ U . There are works on randomized algorithms that assume
the randomness of the algorithm are “internal” and also kept private [7, 73, 25]. We assume the
projection matrix W is known/public, which is stronger in privacy and enables broader applications
of the released data. Also, a “known projection matrix” is typical in the local DP setting [47, 18],
since the projection matrix is created and shared among the users by the data aggregator.

In our study, we first revisit the prior work [49] on the (ϵ, δ)-DP random projection based on Gaussian
noise addition (“DP-RP-G”). Then we incorporate the optimal Gaussian mechanism and propose
an improved method DP-RP-G-OPT. We also develop DP-OPORP based on the optimal Gaussian
mechanism. We then propose algorithms for privatizing the (1-bit) DP-SignRP: “DP-SignRP-RR”
based on the standard “randomized response” (RR), and “DP-SignRP-RR-smooth” based on a
proposed concept of “smooth flipping probability” of SignRP. We extend the idea of smooth flipping
probability to OPORP (a variant of count-sketch) and demonstrate the advantage of DP-SignOPORP.

Experiments on retrieval and classification tasks justify the effectiveness of our proposed methods. In
particular, DP-SignOPORP outperforms other methods especially when ϵ is not large (e.g., ϵ ≤ 5).
These results also verify the advantage of using the smooth flipping probability.
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A Analytic DP-RP and the Laplace Mechanism

A.1 Analytic DP-RP-G Approach: Bounding the Sensitivity

According to Theorem 3.1, one will choose σ based on the observed ∆2 which is calculated according
to (3) for a given realization of the projection matrix W . For the convenience of theoretical analysis,
it is often helpful to derive the criterion for choosing σ directly in terms of the input parameters ϵ, δ,
p, and k, to understand and better compare the noise level. We call the corresponding algorithm to be
“Analytic DP-RP-G”. This is achieved by bounding ∆2 in high probability.

Lemma A.1 ([52]). Let Y1, ..., Yn be iid standard Gaussian random variables, and denote Zi =∑n
i=1 Y

2
i . Then for any t > 0,

Pr(Z ≥ n+ 2
√
nt+ 2t) ≤ exp(−t).

Lemma A.2 (Bounding ∆2). Let W ∈ Rp×k be a random matrix with iid N(0, 1) entries, and ∆2

be defined in (3). Then for any 0 < δ < 1,

Pr

(
∆2 ≥ β

√
1 + 2

√
log(p/δ)/k + 2 log(p/δ)/k

)
≤ δ.

Proof. Let ei be the unit base vector with the i-th dimension being 1 and all other dimensions being
zero. For each i = 1, ..., p, WT ei follows iid chi-square distribution with k degree of freedom.
Applying Lemma A.1 we have that for any δ′ > 0,

Pr
(
∥WT ei∥2 ≥ β2(k + 2

√
k log(1/δ′) + 2 log(1/δ′))

)
≤ δ′, ∀i = 1, ..., p.

Applying union bound gives

Pr

(
1

k
β2 max

i=1,...,p
∥WT ei∥2 ≥ 1 + 2

√
log(1/δ′)/k + 2 log(1/δ′)/k

)
≤ pδ′.

Setting δ = pδ′ and taking the square root on both sides completes the proof.

With the high probability bound on the l2-sensitivity ∆2, we have the following result.
Theorem A.3 (Analytic DP-RP-G). For any ϵ > 0 and 0 < δ < 1

2 , Algorithm 1 achieves (ϵ, δ)-DP

when σ ≥ β
√

1+2
√

log(2p/δ)/k+2 log(2p/δ)/k
√

2(log(2/δ)+ϵ)

ϵ .

Proof. By Lemma A.2, we know that with probability δ/2, ∆2 is bounded by

β
√
1 + 2

√
log(2p/δ)/k + 2 log(2p/δ)/k. In this event, by Theorem 3.1, Algorithm 1 is

(ϵ, δ/2)-DP when σ ≥ ∆2

√
2(log(2/δ)+ϵ)

ϵ . Therefore, the approach is (ϵ, δ)-DP.

We remark that, since this analytic version is built upon a high probability bound on the sensitivity, in
most cases, the noise variance in Theorem A.3 will be slightly larger than the one computed by the
realized/exact sensitivity in Theorem 3.1.

A.2 The Laplace Noise Mechanism for DP-RP

We briefly discuss the Laplace mechanism for DP-RP (and why we did not use it).
Definition A.1 (l1-sensitivity). Let Nb(u) denote the neighbor set of u, and N (U) = {(u, u′) : u′ ∈
Nb(u), u, u′ ∈ U} be the collection of all possible neighboring data pairs. The l1-sensitivity of a
function f : U 7→ Rk is defined as △1 = max(u,u′)∈N (U) ∥f(u)− f(u′)∥1.

Theorem A.4 (Laplace mechanism [30]). Given any function f : U 7→ Rk and ϵ > 0, the randomized
algorithm M(u) = f(u) + (Z1, ..., Zk) is ϵ-DP, where Z1, ..., Zk follow iid Laplace(∆1/ϵ). The
centered Laplace distribution with scale λ has density function g(x) = 1

2λe
− |x|

λ .
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Algorithm 6: DP-RP-L
1 Input: Data u ∈ [−1, 1]p, privacy parameters ϵ > 0, number of projections k
2 Output: ϵ-differentially private random projections x̃ ∈ Rk

3 Apply RP x = 1√
k
WTu, where W ∈ Rp×k is a random N(0, 1) matrix

4 Compute sensitivity ∆1 by Definition A.1
5 Generate iid random noise vector L ∈ Rk following Laplace(∆1

ϵ )
6 Return x̃ = x+ L

By Theorem A.4, one may add Laplace(λ) noise to the projected data with λ = ∆1/ϵ to achieve
ϵ-DP. For completeness, we detail the approach in Algorithm 6, which is the same as Algorithm 1
except for the noise added. ∆1 is the l1-sensitivity for a given W given in Definition A.1: ∆1 =
1√
k
βmaxi=1,...,p ∥W[i,:]∥1. Each term in the maximum operator is a sum of k iid standard half-

normal random variables (Y = |X| where X is standard normal). The readers might be interested
in a comparison between the noise level of the two noise addition mechanisms, i.e., DP-RP-G and
DP-RP-L. To observe the dependence of the noise level λ on ϵ, k and p, we derive a tail bound on the
l1-sensitivity. We first establish the following lemma.

Lemma A.5 (Half-normal tail bound). Let X1, ..., Xn be iid N(0, 1) random variables and let
Yi = |Xi|, ∀i. Denote Z =

∑n
i=1 Yi. Then for any t > 0, it holds that

Pr(Z ≥
√
2n2 log 2 + 2nt) ≤ exp(−t).

Proof. By the Markov inequality, we write (with some ζ > 0)

Pr(Z ≥ t) = Pr(exp(ζ

n∑
i=1

Yi) ≥ exp(ζt)) ≤
E[exp(ζ

∑n
i=1 Yi]

exp(ζt)
.

By the independence of Yi and the moment generating function of half-normal distribution, we have

E[exp(ζ
n∑

i=1

Yi] =

n∏
i=1

E[exp(ζYi)] = exp(
nζ2

2
)(2Φ(ζ))n = exp(

nζ2

2
+ n log 2Φ(ζ))

≤ exp(
nζ2

2
+ n log 2).

Hence, we have

Pr(Z ≥ t) ≤ exp(
nζ2

2
− tζ + n log 2),

which is minimized at ζ = t
n , leading to

Pr(Z ≥ t) ≤ exp(− t2

2n
+ n log 2).

Taking t =
√
2n2 log 2 + 2nt completes the proof.

Using Lemma A.5, we obtain a high probability bound on the l1-sensitivity as follows. The proof is
omitted since it is similar to the proof of Lemma A.2.

Lemma A.6 (Bounding ∆1). Let W ∈ Rp×k be a random matrix with iid N(0, 1) entries, and ∆1

be defined in Definition A.1. Then for any 0 < δ < 1,

Pr
(
∆1 ≥ β

√
2k log 2 + 2 log(p/δ)

)
≤ δ.

It is important to point out that, unlike in the Gaussian mechanism, simply inserting the upper bound
in Lemma A.6 to replace the (exact) ∆1 in the noise level of Laplace(∆1/ϵ) in Algorithm 6 does not
provide pure ϵ-DP. In other words, we must compute the actual ∆1 by Definition A.1 for a realization

19



of the projection matrix W . This is because, using the high probability bound of ∆1 would introduce
a failure probability (i.e., when the actual ∆1 is larger than the bound) which violates ϵ-DP.

Comparison with DP-RP-G-OPT. Lemma A.6 provides an estimate of the noise level required by
the Laplace mechanism. We can roughly compare DP-RP-L with DP-RP-OPT in terms of the noise
variances, which equal σ2 for Gaussian and 2λ2 for Laplace, respectively. Lemma A.6 shows that in
most cases, the Laplace noise requires λ = O(

√
k
ϵ ). Recall that in DP-RP-G and DP-RP-G-OPT, the

Gaussian noise level σ = O( 1ϵ ) when ϵ → 0 and σ = O( 1√
ϵ
) when ϵ → ∞. Thus, the Gaussian noise

would be smaller with relatively small ϵ, and the Laplace noise would be smaller only when ϵ = Ω(k),
which is usually too large to be useful since in practice k is usually hundreds to thousands. As a
result, we would expect DP-RP-G methods to perform better than DP-RP-L in common scenarios.
Therefore, in this work, we mainly focused on the Gaussian mechanism for DP-RP noise addition.

B Comparison of Different Projection Matrices and the Benefits of
Rademacher RP

Besides Gaussian random projection, we can also adopt other types of projection matrices which
might even work better for DP. The following distributions of wij are popular:

• The uniform distribution,
√
3×unif [−1, 1]. The

√
3 factor is placed here to have E(w2

ij) =
1 by following the convention in the practice of random projections.

• The “very sparse” distribution, as used in [56]:

wij =
√
s×

{ −1 with prob. 1/(2s)
0 with prob. 1− 1/s,

+1 with prob. 1/(2s)
(7)

which generalizes [2] (for s = 1 and s = 3). Note that when s = 1, it is also called the
“symmetric Bernoulli” distribution or the “Rademacher” distribution.

Next, we compare these various types of projection matrices and show that Rademacher (symmetric
Bernoulli) random projection is superior to Gaussian random projection for both DP-RP and DP-
SignRP in that less perturbation is required to achieve the same privacy level.

B.1 Rademacher Projection for DP-RP

From Theorem 3.1 and Theorem 3.2, it is clear that the noise magnitude of Gaussian noise in DP-RP
directly depends on the l2-sensitivity △2, which, according to (3), equals the largest row norm of the
projection matrix W . Among the above mentioned distributions, the dense Rademacher projection
(s = 1 in (7)) has △2 = 1√

k
β ×

√
k = β which is independent of p. This could be much smaller

than the dense Gaussian projection (i.e., DP-RP-G-OPT).
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Figure 5: The l2-sensitivity △2 (3) for different types of random projection matrices against the data
dimensionality p, at k = 256 and k = 512, respectively. β = 1.
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In Figure 5, we numerically simulate the △2 of different projection matrices, which shows that
the Rademacher projection produces the smallest sensitivity. This, when plugged into the optimal
Gaussian mechanism (Theorem 3.2), leads to smaller Gaussian noise variance needed.

B.2 Rademacher Projection for DP-SignRP

From our analysis, it is clear that the flipping probability of DP-SignRP (both DP-SignRP-RR and
DP-SignRP-RR-smooth) essentially depends on how concentrated the projected data is around zero.
Particularly, N+ in Algorithm 3, as given in Proposition 4.3, is a high probability upper bound
on a Binomial random variable with success probability Pr(βmaxi=1,...,p |wi| ≥ |wTu|) with

w ∼ N(0, 1). In Algorithm 4, Lj = ⌈ |wT
j u|

βmaxi=1,...,p |Wij |⌉. For both quantities, a smaller value leads
to a smaller sign flipping probability and thus better utility.

N+ in DP-SignRP-RR. We first consider the N+ in Algorithm 3, which determines the flipping
probability 1

eϵ/N++1
. Particularly, N+ in Algorithm 3, as given in Proposition 4.3, is a high probability

upper bound on a Binomial random variable with success probability

P+ = Pr

(
β max

i=1,...,p
|wi| ≥ |wTu|

)
, (8)

where w is the p-dimensional projection vector. When wi is sampled from the Rademacher distribu-
tion, i.e., wi ∈ {−1,+1} with equal probabilities, the probability calculation can be simplified:

P+,b = Pr

(
β max

i=1,...,p
|wi| ≥ |

p∑
i=1

wiui|

)
= Pr

(
β ≥ |

p∑
i=1

wiui|

)
≈ 2Φ

(
β

∥u∥

)
− 1. (9)

Based on the central limit theorem, the normal approximation (9) is accurate unless p is very small.
Recall that, when wi’s are sampled from the Gaussian distribution, we can calculate an upper bound
in (20), which is re-written as below:

P+,g = Pr

(
β max

i=1,...,p
|wi| ≥ |

p∑
i=1

wiui|

)
≤
∫ ∞

0

2p[2Φ(t)− 1]p−1[2Φ(βt/∥u∥)− 1]ϕ(t)dt.

(10)

Next, we provide a simulation study to justify the approximation and compare different distributions
in terms of their impact on the probability (8), for β = 1 as well as β = 0.1. For simplicity, we
simulate the data as a p-dimensional vector of uniform random numbers sampled from unif [−1, 1].
We experiment with five different choices of w: the standard Gaussian, the uniform, the “very sparse”
distribution (7) with s = 1, s = 3, and s = 10. We vary p from 10 to 1000. For each case, we repeat
the simulations 107 times to ensure sufficient accuracy. Figure 6 verifies that the two approximations
(9) and (10) are accurate. In Figure 7, we provide the curves for more types of projection matrices.
From both figures, we clearly see that using the Rademacher projection can considerably reduce (8)
compared with Gaussian (and other) projections, leading to smaller N+ value. This typically implies
better utility.

Lj in DP-SignRP-RR-smooth. Similarly, we numerically evaluate the Lj in Algorithm 4. We
run Algorithm 4 with k = 512, which gives 512 Lj values. In Figure 8, we plot the proportion (or
the approximated distribution) of the values of Lj among k projections. As we see, Rademacher
projection produces least number of small Lj values, and largest number of higher Lj values. As the
smooth flipping probability equals 1

exp(
Lj
k ϵ)+1

, larger Lj leads to smaller probability of sign flipping.

Hence, Rademacher is again the best choice for the projection matrix.
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Figure 6: Simulations for evaluating (9) and (10), using two choices for w: the Gaussian distribution
and the Rademacher distribution (i.e., (7) with s = 1). We plot the two upper bounds (9) and (10) as
black dashed curves, which both overlap with their corresponding simulations.
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Figure 7: Simulations (same as in Figure 7) for evaluating (8), using five different choices for w:
the Gaussian, the uniform, the “very sparse” distribution (7) with s = 1, 3 and 10. s = 1 is the
Rademacher distribution. The data vector is simulated by sampling each entry from unif [−1, 1].

C Comparison of DP-RP and DP-OPORP on Inner Product Estimation

In this section, we theoretically compare DP-RP and DP-OPORP. In Section B, we have shown that
Rademacher projection requires lowest noise magnitude. Thus, we consider DP-RP with Rademacher
projections here. For clarity, we summarize the algorithm in Algorithm 7. We name it “DP-RP-
G-OPT-B”, where “G” stands for the Gaussian noise mechanism and “B” stands for “symmetric
Bernoulli” projections.

Algorithm 7: DP-RP-G-OPT-B
1 Input: Data u ∈ [−1, 1]p, privacy parameters ϵ > 0, δ ∈ (0, 1), number of projections k
2 Output: (ϵ, δ)-differentially private random projections x̃ ∈ Rk

3 Apply RP x = 1√
k
WTu, where W ∈ Rp×k is a random Rademacher matrix

4 Generate iid random noise vector G ∈ Rk following N(0, σ2) where σ is obtained by
Theorem 3.2 with △2 = β

5 Return x̃ = x+G

In our analysis, for simplicity we assume the data are normalized, i.e., the data vector has l2 norm
equal to 1. In this case, the inner product is also the cosine. The baseline method is the most
straightforward: we add optimal Gaussian noise to each dimension of the original data (Raw-data-
G-OPT). For this strategy, the sensitivity is also △2 = β. This means, when we compare all three
methods: Raw-data-G-OPT, DP-RP-G-OPT-B, and DP-OPORP, the noise level σ is the same. This
makes it convenience to conduct the comparisons, from which we can gain valuable insights.
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Figure 8: Simulations for evaluating Lj in Algorithm 4, using different choices for w. s = 1 is the
Rademacher distribution. Left: p = 100, right: p = 1000. The y-axis is the proportion (normalized
histogram) of the values of all the Lj , j = 1, ..., k computed using k = 512 projected samples.

Theorem C.1 (Raw-data-G-OPT, i.e., adding optimal Gaussian noise on raw data). Let σ be the
solution to (4) with △2 = β. For any u, v ∈ U , let ũi = ui + ai and ṽi = vi + bi be the DP noisy
vectors, with ai, bi ∼ N(0, σ2) i.i.d. Then, denote ĝorg =

∑p
i=1 ũiṽi. we have

E[ĝorg] =
p∑

i=1

uivi, V ar (ĝorg) = σ2

p∑
i=1

(
u2
i + v2i

)
+ pσ4. (11)

Proof. To add Gaussian noise to the original data, it suffices to find the sensitivity, which, by
Definition 2.2, is △2 = β. Thus, the approach is (ϵ, δ)-DP according to the optimal Gaussian
mechanism (Theorem 3.2). To compute the mean and variance, consider some i ∈ [p]. We have

E [(ui + ai) (vi + bi)] = E[uivi + aivi + biui + aibi] = uivi.

Thus, taking the sum implies E[ĝorg] =
∑p

i=1 uivi. For the variance,

E [(ui + ai) (vi + bi)]
2
= E[uivi + aivi + biui + aibi]

2 = u2
i v

2
i + σ2

(
u2
i + v2i

)
+ σ4,

which leads to

V ar ((ui + ai) (vi + bi)) = σ2
(
u2
i + v2i

)
+ σ4.

Therefore, by independence,

V ar (ĝorg) = V ar

(
p∑

i=1

(ui + ai) (vi + bi)

)
= σ2

p∑
i=1

(
u2
i + v2i

)
+ pσ4,

which proves the claim.

For DP-RP-G-OPT-B and DP-OPORP, we have the following results.
Theorem C.2 (DP-RP-G-OPT-B inner product estimation). Let σ be the solution to (4) with △2 = β.
In Algorithm 7, let W ∈ {−1, 1}p×k be a Rademacher random matrix. Denote x = 1√

k
WTu,

y = 1√
k
WT v, and a, b are two random Gaussian noise vectors following N(0, σ2). Let ĝrp =∑k

j=1(xj + aj)(yj + bj). Then, E[ĝrp] =
∑p

i=1 uivi, and

V ar (ĝrp) = σ2

p∑
i=1

(
u2
i + v2i

)
+ kσ4 +

1

k

 p∑
i=1

u2
i

p∑
i=1

v2i +

(
p∑

i=1

uivi

)2

− 2

p∑
i=1

u2
i v

2
i

 . (12)

Proof. The conditional mean and variance can be computed as

E

 k∑
j=1

(xj + aj) (yj + bj) |xj , yj , j = 1, ..., k

 =

k∑
j=1

xjyj ,
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V ar

 k∑
j=1

(xj + aj) (yj + bj) |xj , yj , j = 1, ..., k

 = σ2
k∑

j=1

(x2
j + y2j ) + kσ4,

where the variance calculation follows from Theorem C.1. Hence, we have

E

 k∑
j=1

(xj + aj) (yj + bj)

 = E

 k∑
j=1

xjyj

 =

p∑
i=1

uivi,

V ar (ĝrp) =E

σ2
k∑

j=1

(x2
j + y2j ) + kσ4

+ V ar

 k∑
j=1

xjyj


=σ2

p∑
i=1

(
u2
i + v2i

)
+ kσ4 +

1

k

 p∑
i=1

u2
i

p∑
i=1

v2i +

(
p∑

i=1

uivi

)2

− 2

p∑
i=1

u2
i v

2
i

 . (13)

In the above calculation, the formula of V ar
(∑k

j=1 xjyj

)
is from the result in [56] with s = 1 for

Rademacher distribution.

Algorithm 8: DP-OPORP
1 Input: Data u ∈ [−1, 1]p, privacy parameters ϵ > 0, δ ∈ (0, 1), number of projections k
2 Output: Differentially private OPORP
3 Apply Algorithm 2 with a random Rademacher projection vector to obtain the OPORP x
4 Set sensitivity ∆2 = β

5 Generate iid random vector G ∈ Rk following N(0, σ2) where σ is computed by Theorem 3.2
6 Return x̃ = x+G

Theorem C.3 (DP-OPORP inner product estimation). Let σ be the solution to (4) with △2 = β.
Let w ∈ {−1, 1}p be a Rademacher random vector. In Algorithm 8, let x and y be the OPORP
of u and v, and a, b be two random Gaussian noise vectors following N(0, σ2). Denote ĝoporp =∑k

j=1(xj + aj)(yj + bj). Then, E[ĝoporp] =
∑p

i=1 uivi, and

V ar (ĝoporp) = σ2

p∑
i=1

(
u2
i + v2i

)
+ kσ4 +

1

k

 p∑
i=1

u2
i

p∑
i=1

v2i +

(
p∑

i=1

uivi

)2

− 2

p∑
i=1

u2
i v

2
i

 p− k

p− 1
.

(14)

Proof. The proof is similar to that of Theorem C.2, with the help of the result in [57].

The variance reduction factor p−k
p−1 can be quite beneficial when p is not very large. Also, see [57]

for the normalized estimators for both OPORP and VSRP (very sparse random projections). The
normalization steps can substantially reduce the estimation variance.

Comparison. For the convenience of comparison, let us assume that the data are row-normalized,
i.e., ∥u∥2 = 1 for all u ∈ U . Let ρ =

∑p
i=1 uivi. We have

V ar (ĝorg) = 2σ2 + pσ4,

V ar (ĝrp) = 2σ2 + kσ4 +
1

k

(
1 + ρ2 − 2

p∑
i=1

u2
i v

2
i

)
,

V ar (ĝoporp) = 2σ2 + kσ4 +
1

k

(
1 + ρ2 − 2

p∑
i=1

u2
i v

2
i

)
p− k

p− 1
.
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For high-dimensional data (large p), we see that ĝrp and ĝoporp has roughly the same variance,
approximately 2σ2 + kσ4 + 1

k . We would like to compare this with V ar (ĝorg) = 2σ2 + pσ4 the
variance for adding noise directly to the original data.

Let’s define the ratio of the variances:

R =
2σ2 + pσ4

2σ2 + kσ4 + 1
k

∼ pσ4

kσ4
=

p

k
(if p is large or σ is high) (15)

to illustrate the benefit of RP-type algorithms (DP-RP and DP-OPORP) in protecting the privacy
of the (high-dimensional) data. If p

k = 100, then it is possible that the ratio of the variances can be
roughly 100. This would be a huge advantage. Figure 9 plots the ratio R for p = 1000 and p = 10000
as well as a series of k/p values, with respect to σ.
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Figure 9: We plot the ratio of variances in (15) for p = 1000 and p = 10000. We choose k values
with k/p ∈ {0.01, 0.05, 0.1, 0.5}. Then for any σ value, we are able to compute the ratio R. For
larger σ, we have R ∼ p

k as expected. See Figure 10 for the relationship among σ, ∆, and ϵ (and δ).
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Figure 10: Left panel: the optimal Gaussian noise σ versus ϵ for a series of ∆2 values, by solving
the nonlinear equation (4) in Theorem 3.2, for δ = 10−6. Right panel: the optimal Gaussian noise σ
versus ∆2 for a series of ϵ values.

Figure 9 also illustrates when it might be a good strategy to directly add noise to the original data. For
example, when p = 1000, the ratio can be below 1 if σ < 0.1. One can numerically verify that, (in
Figure 10) in order for σ < 0.1 at ∆2 = β = 1, we need ϵ > 100. In other words, adding noise to the
raw data might be plausible when ϵ > 100. In the literature, however, many DP applications typically
require a much smaller ϵ, such as ϵ ∈ [0.1, 20] (e.g., [43, 48]). Therefore, DP-RP and DP-OPORP is
much better (i.e., has much smaller inner product estimation variance) than adding noise to the raw
data in common privacy regimes.
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D More Experiment Results

We provide the complete set of plots of our experimental results. In Figure 11 and Figure 12, we
report the precision@10 and recall@100 curves of DP-RP variants and DP-OPORP on MNIST and
CIFAR, respectively. In Figure 13, we report the test accuracy on the Webspam dataset of these
methods. From all plots, we see that DP-RP-G-OPT-B and DP-OPORP perform equally the best on
all the tasks, significanly better than the strategy of adding Gaussian noise to the raw data.

In Figure 14, we report the recall@100 metric of DP-SignOPORP methods in addition to the
precision@10 metric shown in the main paper. For completeness, we also include the SVM test
accuracy in Figure 15, which is the same as Figure 4 in the main context.
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Figure 11: Retrieval recall and precision on MNIST, β = 1, δ = 10−6.
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Figure 12: Retrieval recall and precision on CIFAR, β = 1, δ = 10−6.
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Figure 13: SVM classification on WEBSPAM, β = 1, δ = 10−6.
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Figure 14: Retrieval on MNIST with DP-SignOPORP-RR and DP-SignOPORP-RR-smooth (in the
caption, “-s” stands for “-smooth”. For DP-OPORP and Raw-data-G-OPT, we let δ = 10−6.
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Figure 15: SVM classification on Webspam with DP-SignOPORP-RR and DP-SignOPORP-RR-s.
For DP-OPORP and Raw-data-G-OPT, we let δ = 10−6.
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E Deferred Proofs

The following lemma on Gaussian random variables will be used in our proof for Lemma 4.2, and
may also be of independent interest.

Lemma E.1. Let
(
X
Y

)
∼ N

(
σ2
x ρσxσy

ρσxσy σ2
y

)
. Denote r = σx/σy . Then we have:

1. Pr(|X| > |Y |) = 1
π

[
tan−1

(
r−ρ√
1−ρ2

)
+ tan−1

(
r+ρ√
1−ρ2

)]
. When r ≤ 1, the maximum is

achieved at ρ = 0, i.e., maxρ Pr(|X| < |Y |) = 2
π tan−1(r).

2. The conditional expectation:

E
[
|X|
∣∣|X| > |Y |

]
= σx

√
π

2
·

r−ρ√
1+r2−2rρ

+ r+ρ√
1+r2+2rρ

tan−1

(
r−ρ√
1−ρ2

)
+ tan−1

(
r+ρ√
1−ρ2

) .

3. The conditional tail probability: for any r > 0, ρ ∈ (−1, 1), for any t > 0,

Pr(|X| > t
∣∣|X| > |Y |) ≤ exp

(
− t2

2σ2
x

)
.

Proof. The bivariate normal density function is

f(x, y) =
1

2πσxσy

√
1− ρ2

exp

−
x2

σ2
x
− 2ρxy

σxσy
+ y2

σ2
y

2(1− ρ2)


=

1

2πσxσy

√
1− ρ2

exp

(
− x2

2σ2
x

)
exp

(
−
( y
σy

− ρ x
σx

)2

2(1− ρ2)

)
.

Therefore, we have E
[
|X|
∣∣|X| > |Y |

]
= A

P , with

A =

∫ ∞

−∞

|x|
√
2πσx

√
1− ρ2

exp

(
− x2

2σ2
x

)
dx

∫ |x|

−|x|

1√
2πσy

exp

(
−
( y
σy

− ρ x
σx

)2

2(1− ρ2)

)
dy,

P =

∫ ∞

−∞

1
√
2πσx

√
1− ρ2

exp

(
− x2

2σ2
x

)
dx

∫ |x|

−|x|

1√
2πσy

exp

(
−
( y
σy

− ρ x
σx

)2

2(1− ρ2)

)
dy.

Note that P = Pr(|X| > |Y |) in the first statement of the theorem. Our calculation will use the
following two identities involving the Gaussian functions [67]:∫ ∞

0

ϕ(ax)Φ(bx)dx =
1

2π|a|

(
π

2
+ tan−1

(
b

|a|

))
, (16)∫ ∞

0

xϕ(ax)Φ(bx)dx =
1

2
√
2π

(
1 +

b√
1 + b2

)
, (17)

where ϕ(x) and Φ(x) are the pdf and cdf of the standard Gaussian distribution.

With a proper change of random variables, we can compute A as

A =

∫ ∞

−∞

|x|
√
2πσx

√
1− ρ2

exp

(
− x2

2σ2
x

)
dx

∫ |x|
σy

−ρ x
σx√

1−ρ2

−|x|
σy

−ρ x
σx√

1−ρ2

√
1− ρ2

1√
2π

e−s2ds

=

∫ ∞

−∞

|x|√
2πσx

exp

(
− x2

2σ2
x

)Φ
 |x|

σy
− ρ x

σx√
1− ρ2

− Φ

 −|x|
σy

− ρ x
σx√

1− ρ2

 dx

=

∫ ∞

−∞

σx|t|√
2π

exp

(
− t2

2

)[
Φ

(
σx

σy
|t| − ρt√
1− ρ2

)
− Φ

(
−

σx

σy
|t| − ρt√
1− ρ2

)]
dt

:=A1 −A2.
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For the first term we have

A1 = σx

[∫ ∞

0

t√
2π

exp

(
− t2

2

)
Φ

(
σx

σy
− ρ√

1− ρ2
t

)
dt+

∫ 0

−∞

−t√
2π

exp

(
− t2

2

)
Φ

(
−

σx

σy
+ ρ√

1− ρ2
t

)
dt

]

= σx

[∫ ∞

0

t√
2π

exp

(
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2

)
Φ

(
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− ρ√

1− ρ2
t
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dt+
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0

s√
2π

exp

(
−s2

2

)
Φ

(
σx

σy
+ ρ√

1− ρ2
s

)
ds

]

= σx

 1

2
√
2π

1 +

σx
σy

−ρ√
1−ρ2√

1 +
(σx
σy

−ρ)2

1−ρ2

+
1

2
√
2π
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σx
σy

+ρ√
1−ρ2√

1 +
(σx
σy

+ρ)2

1−ρ2




= σx

[
1√
2π

+
1

2
√
2π

(
r − ρ√

1 + r2 − 2rρ
+

r + ρ√
1 + r2 + 2rρ

)]
,

where we denote r = σx

σy
and use (17). Similarly, we have that

A2 = σx

[∫ ∞

0

t√
2π

exp

(
− t2

2

)
Φ

(
− r + ρ√

1− ρ2
t

)
dt+

∫ 0

−∞

−t√
2π

exp

(
− t2

2

)
Φ

(
r − ρ√
1− ρ2

t

)
dt

]

= σx

[∫ ∞

0

t√
2π

exp

(
− t2

2

)
Φ

(
− r + ρ√

1− ρ2
t

)
dt+

∫ ∞

0

s√
2π

exp
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(
− r − ρ√

1− ρ2
s

)
ds

]

= σx

[
1√
2π

− 1

2
√
2π

(
r − ρ√

1 + r2 − 2rρ
+

r + ρ√
1 + r2 + 2rρ

)]
.

Therefore, we obtain

A(ρ, r) = A1 −A2 =
σx√
2π

(
r − ρ√

1 + r2 − 2rρ
+

r + ρ√
1 + r2 + 2rρ

)
. (18)

To compute P , by doing a similar change of variables, we have

P =

∫ ∞

−∞

1√
2π

exp

(
− t2

2

)[
Φ

(
r|t| − ρt√
1− ρ2

)
− Φ

(
− r|t| − ρt√

1− ρ2

)]
dt

:=P1 − P2.

Using (16), we obtain

P1 =

∫ ∞

0

1√
2π

exp

(
− t2

2

)
Φ

(
r − ρ√
1− ρ2

t

)
dt+

∫ 0

−∞

1√
2π

exp

(
− t2

2

)
Φ

(
− r + ρ√

1− ρ2
t

)
dt

=

∫ ∞

0

1√
2π

exp

(
− t2

2

)
Φ

(
r − ρ√
1− ρ2

t

)
dt+

∫ ∞

0

1√
2π

exp

(
−s2

2

)
Φ

(
r + ρ√
1− ρ2

s

)
ds

=
1

2π

(
π

2
+ tan−1

(
r − ρ√
1− ρ2

))
+

1

2π

(
π

2
+ tan−1

(
r + ρ√
1− ρ2

))

=
1

2
+

1

2π

[
tan−1

(
r − ρ√
1− ρ2

)
+ tan−1

(
r + ρ√
1− ρ2

)]
,

P2 =
1

2
− 1

2π

[
tan−1

(
r − ρ√
1− ρ2

)
+ tan−1

(
r + ρ√
1− ρ2

)]
,

which leads to

P (ρ, r) = P1 − P2 =
1

π

[
tan−1

(
r − ρ√
1− ρ2

)
+ tan−1

(
r + ρ√
1− ρ2

)]
(19)
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Therefore, we know that

E
[
|X|
∣∣|X| > |Y |

]
=

A(ρ, r)

P (ρ, r)
= σx

√
π

2
·

r−ρ√
1+r2−2rρ

+ r+ρ√
1+r2+2rρ

tan−1

(
r−ρ√
1−ρ2

)
+ tan−1

(
r+ρ√
1−ρ2

) ,

with r = σx/σy . We now investigate the derivative of P . By some algebra, we can show that

∂P (ρ, r)

∂ρ
=

2rρ(r2 − 1)

(1 + r2 − 2rρ)(1 + r2 + 2rρ)
√
1− ρ2

.

When 0 < r ≤ 1, ∂P (ρ,r)
∂ρ ≥ 0 when ρ ≤ 0 and ∂P (ρ,r)

∂ρ ≤ 0 when ρ > 0. Therefore, maxρ P (ρ, r) =

P (0, r) = 2
π tan−1(r).

Tail bound. By our previous calculations, the conditional distribution of X given |X| > |Y | is

f(x
∣∣|X| > |Y |) =

1√
2π

exp
(
−x2

2

)[
Φ

(
r|x|−ρx√

1−ρ2

)
− Φ

(
− r|x|−ρx√

1−ρ2

)]
P

, x ∈ R,

with P = Pr(|X| > |Y |) in (19) the normalizing constant to make the integral equal to 1.

The conditional tail probability can be computed as follows. For some t > 0, by symmetry,

Pr(|X| > t, |X| > |Y |)

=2

∫ ∞

t

1√
2πσx

exp

(
− x2

2σ2
x

)[
Φ

(
r|x| − ρx√

1− ρ2

)
− Φ

(
−r|x| − ρx√

1− ρ2

)]
dx

=2

∫ ∞

t
σx

1√
2π

exp

(
−x2

2

)[
Φ

(
r|x| − ρx√

1− ρ2

)
− Φ

(
−r|x| − ρx√

1− ρ2

)]
dx

:=2(P̃1 − P̃2).

For P̃1, using polar coordinates we have

P̃1 =
1

2π

∫ ∞

t
σx

e−
x2

2 dx

∫ r−ρ√
1−ρ2

x

−∞
e−

y2

2 dy

=
1

2π

∫ tan−1( r−ρ√
1−ρ2

)

−π
2

dθ

∫ ∞

t
σx cos(θ)

e−
r2

2 rdr

=
1

2π

∫ tan−1( r−ρ√
1−ρ2

)

−π
2

exp

(
− t2

2σ2
x cos

2(θ)

)
dθ.

Similarly,

P̃2 =
1

2π

∫ tan−1(− r+ρ√
1−ρ2

)

−π
2

exp

(
− t2

2σ2
x cos

2(θ)

)
dθ.

Therefore, we obtain

Pr(|X| > t, |X| > |Y |) = 1

π

∫ tan−1( r−ρ√
1−ρ2

)

tan−1(− r+ρ√
1−ρ2

)

exp

(
− t2

2σ2
x cos

2(θ)

)
dθ

=
1

π

∫ tan−1( r−ρ√
1−ρ2

)

− tan−1( r+ρ√
1−ρ2

)

exp

(
− t2

2σ2
x cos

2(θ)

)
dθ

≤ e
− t2

2σ2
x
1

π

∫ tan−1( r−ρ√
1−ρ2

)

− tan−1( r+ρ√
1−ρ2

)

dθ,
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since cos2(θ) ∈ [0, 1]. Notice that P in (19) can be written as P = 1
π

∫ tan−1( r−ρ√
1−ρ2

)

− tan−1( r+ρ√
1−ρ2

)
dθ. Hence, we

know that the conditional tail probability is

Pr(|X| > t
∣∣|X| > |Y |) = Pr(|X| > t, |X| > |Y |)

Pr(|X| > |Y |)

≤ exp

(
− t2

2σ2
x

)
, ∀r > 0, ρ ∈ (−1, 1).

At the boundaries ρ = 1, ρ = −1, one can verify Pr(|X| > |Y |) = 0. This concludes the proof.

E.1 Proof of Lemma 4.2

Proof. By Lemma E.1 and independence, we know that Pr(maxi=1,...,p |X| > |Y |) reaches its
maximum when Xi is independent of Y , i.e., when ρ(Xi, Y ) = 0, ∀i = 1, ..., p. Since |Xi| follows
a half-normal distribution with cdf being erf( x√

2σx
), we have

Pr( max
i=1,...,p

|Xi| ≤ t) = erf

(
t√
2σx

)p

=

[
2Φ

(
x

σx

)
− 1

]p
,

and probability density function g(x) = 2p[Φ( x
σx

)− 1]p−1 1√
2πσx

e
− x2

2σ2
x . When Y is independent of

all Xi’s (which gives the upper bound), we have

Pr( max
i=1,...,p

|X| > |Y |) =
∫ ∞

0

2p

[
Φ

(
x

σx

)
− 1

]p−1
1√
2πσx

e
− x2

2σ2
x Pr(|Y | < x)dx

=

∫ ∞

0

2p

[
Φ

(
x

σx

)
− 1

]p−1
1√
2πσx

e
− x2

2σ2
x erf

(
x√
2σy

)
dx

=

∫ ∞

0

2p[2Φ(t)− 1]p−1[2Φ(rt)− 1]ϕ(t)dt,

with a proper change of variables. This gives an upper bound as shown above.

E.2 Proof of Proposition 4.3

Proof. Consider a single Gaussian projection vector w with iid N(0, 1) entries. Since wTu =∑p
i=1 uiwi and each wi ∼ N(0, 1), we know that

(
βwi

x

)
∼ N

(
β2 ρiβ∥u∥

ρiβ∥u∥ ∥u∥2
)

where ρi =

ui

∥u∥ is the correlation coefficient. Since |wT (u − u′)| ≤ βmaxi=1,...,p |wi| by Definition 2.2 of
β-neighboring (and more generally, when ∥u− u′∥1 ≤ β), we have

Pr( max
u′∈Nb(u)

|wT (u− u′)| ≥ |wTu|) = Pr(β max
i=1,...,p

|wi| ≥ |wTu|).

Note that, βmaxi=1,...,p |wi| ≥ |wTu| is a necessary condition for the event that there exists a
neighbor such that sign(wTu) ̸= sign(wTu′). Denote I = 1{βmaxi=1,...,p |wi| ≥ |wTu|}.
Applying Lemma 4.2 with r = β/∥u∥ ≤ 1 yields

E[I] = Pr(β max
i=1,...,p

|wi| ≥ |wTu|)

≤ F∥u∥,p =

∫ ∞

0

2p[2Φ(t)− 1]p−1[2Φ(rt)− 1]ϕ(t)dt (20)

as given by (5). Let Ij be the corresponding indicator function w.r.t. each column in the projection
matrix W . Denote N+ =

∑k
j=1 Ij , and by the above reasoning, we know that |S| ≤ N+ where S is

defined in the theorem. Since the columns of W are independent, N+ follows a Binomial(k,E[I])
distribution with k trials and success probability E[I] bounded as above. Therefore, with probability
1− δ, we have N+ ≤ B−1(δ;F∥u∥,p, k), where B−1 is the inverse cdf of the Binomial distribution.
This proves the claim as desired.
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E.3 Proof of Theorem 4.4

Proof. Let s = sign(WTu) ∈ {−1,+1}k, s′ = sign(WTu′) ∈ {−1,+1}k. We denote the
collision probability of non-private SignRP as

PSRP = Pr(s1j = s2j) = 1− cos−1(ρ)

π
= 1− θ

π
.

Hence, the collision probability of DP-SignRP-RR can be computed as

P̃ := Pr(s̃1j = s̃2j) = Pr(s1j = s2j , both change sign or not change sign)
+ Pr(s1j ̸= s2j , one sign changes)

= PSRP [(
eϵ

′

eϵ′ + 1
)2 + (

1

eϵ′ + 1
)2] + 2(1− PSRP )

eϵ
′

(eϵ′ + 1)2

= PSRP
(eϵ

′ − 1)2

(eϵ′ + 1)2
+

2eϵ
′

(eϵ′ + 1)2
,

which increases linearly in PSRP . Thus, it holds that

E[P̂RR] =
(eϵ

′
+ 1)2

(eϵ′ − 1)2
P̃ − 2eϵ

′

(eϵ′ − 1)2
= PSRP = 1− θ

π
,

which implies E[θ̂RR] = π
(
1− (1− θ

π )
)
= θ. To compute the variance, we first estimate θ =

cos−1(ρ) by

θ̂ = π(1− P̂RR).

Then according to the Central Limit Theorem (CLT), for the sample mean of iid Bernoulli’s, as
k → ∞, we have

1

k

k∑
j=1

1{s̃1j = s̃2j} → N(P̃ ,
P̃ (1− P̃ )

k
).

As a result, we have θ̂ → N(θ, VRR

k ), where

VRR =
π2(eϵ

′
+ 1)4

(eϵ′ − 1)4

[
(1− θ

π
)
(eϵ

′ − 1)2

(eϵ′ + 1)2
+

2eϵ
′

(eϵ′ + 1)2

][ e2ϵ
′
+ 1

(eϵ′ + 1)2
− (1− θ

π
)
(eϵ

′ − 1)2

(eϵ′ + 1)2

]
=

π2(eϵ
′
+ 1)4

(eϵ′ − 1)4

[
(1− θ

π
)
(eϵ

′ − 1)2

(eϵ′ + 1)2
+

2eϵ
′

(eϵ′ + 1)2

][ θ
π

(eϵ
′ − 1)2

(eϵ′ + 1)2
+

2eϵ
′

(eϵ′ + 1)2

]
=

π2θ

π
(1− θ

π
) + (1− θ

π
)

2eϵ
′

(eϵ′ − 1)2
+

θ

π

2eϵ
′

(eϵ′ − 1)2
+

4e2ϵ
′

(eϵ′ − 1)4

= θ(π − θ) +
2π2eϵ

′

(eϵ′ − 1)2
+

4π2e2ϵ
′

(eϵ′ − 1)4
.

We conclude the proof by replacing ϵ′ = ϵ/N+.

E.4 Proof of Theorem 4.5

Proof. Let us consider a single projection vector wj = W[:,j]. Denote xj = wT
j u and x′

j = wT
j u

′ for

a neighboring data u′ of u, and sj = sign(xj), s′j = sign(x′
j). Also, let Lj = ⌈ |xj |

βmaxi=1,...,p |Wij |⌉

and L′
j = ⌈ |x′

j |
βmaxi=1,...,p |Wij |⌉. W.l.o.g., we can assume sj = 1 by the symmetry of random

projection and the symmetry of DP. Consider two cases:

• Case I: Lj ≥ 2. In this case, we know that s′j = sj , i.e., the change from u to u′ will not
change the sign of the projection. Thus, in Algorithm 4, we have

Pr(s̃j = 1)

Pr(s̃′j = 1)
= exp(

Lj − L′
j

k
ϵ)
exp(

L′
j

k ϵ) + 1

exp(
Lj

k ϵ) + 1
.
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By the definition of β-adjacency, |Lj−L′
j | equals either 0 or 1. When Lj = L′

j , Pr(s̃j=1)
Pr(s̃′j=1) =

1. When Lj − L′
j = 1, we have

Pr(s̃j = 1)

Pr(s̃′j = 1)
=

exp(
Lj

k ϵ) + exp( 1k ϵ)

exp(
Lj

k ϵ) + 1
.

Hence, we have 1 ≤ Pr(s̃j=1)
Pr(s̃′j=1) ≤ e

ϵ
k by the numeric identity 1 ≤ a+c

b+c ≤ a
b for a ≥ b > 0

and c > 0. Thus, by symmetry, e−
ϵ
k ≤ Pr(s̃j=1)

Pr(s̃′j=1) ≤ e
ϵ
k . On the other hand,

Pr(s̃j = −1)

Pr(s̃′j = −1)
=

exp(
L′

j

k ϵ) + 1

exp(
Lj

k ϵ) + 1
.

Similarly, when Lj = L′
j , the ratio equals 1. When Lj = L′

j − 1, we have Pr(s̃j=−1)
Pr(s̃′j=−1) ≤

exp(
L′

j

k ϵ− Lj

k ϵ) = e
ϵ
k . By symmetry we obtain e−

ϵ
k ≤ Pr(s̃j=−1)

Pr(s̃′j=−1) ≤ e
ϵ
k .

• Case II: Lj = 1. In this case, sj might be different from s′j . First, if L′
j = 2, then the above

analysis also applies that Pr(s̃j=1)
Pr(s̃′j=1) and Pr(s̃j=−1)

Pr(s̃′j=−1) are both lower and upper bounded by

e−
ϵ
k and e

ϵ
k , respectively. It suffices to examine the case when L′

j = 1. In this case, if
s′j = sj = 1 then the probability ratios simply equal 1. If s′j = −1, we have

Pr(s̃j = 1)

Pr(s̃′j = 1)
=

exp( ϵ
k )

exp( ϵ
k )+1

1
exp( ϵ

k )+1

= e
ϵ
k ,

P r(s̃j = −1)

Pr(s̃′j = −1)
=

1
exp( ϵ

k )+1

exp( ϵ
k )

exp( ϵ
k )+1

= e−
ϵ
k .

Combining two cases, we have that log Pr(s̃j=t)
Pr(s̃′j=t) ≤

ϵ
k , for t = −1, 1, and for all j = 1, ..., k. That is,

each single perturbed sign achieves ϵ
k -DP. Since the k projections are independent, by Theorem 2.1,

we know that the output bit vector s̃ = [s̃1, ..., s̃k] is ϵ-DP as claimed.
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