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Abstract

Exponential generalization bounds with near-optimal rates have recently been
established for uniformly stable algorithms (Feldman and Vondrak, 2019; Bousquet
et al., 2020). We seek to extend these best known high probability bounds from
deterministic learning algorithms to the regime of randomized learning. One simple
approach for achieving this goal is to define the stability for the expectation over
the algorithm’s randomness, which may result in sharper parameter but only leads
to guarantees regarding the on-average generalization error. Another natural option
is to consider the stability conditioned on the algorithm’s randomness, which is
way more stringent but may lead to generalization with high probability jointly
over the randomness of sample and algorithm. The present paper addresses such
a tension between these two alternatives and makes progress towards relaxing it
inside a classic framework of confidence-boosting. To this end, we first introduce a
novel concept of Ly-uniform stability that holds uniformly over data but in second-
moment over the algorithm’s randomness. Then as a core contribution of this work,
we prove a strong exponential bound on the first-moment of generalization error
under the notion of Lo-uniform stability. As an interesting consequence of the
bound, we show that a bagging-based meta algorithm leads to near-optimal gener-
alization with high probability jointly over the randomness of data and algorithm.
We further substantialize these generic results to stochastic gradient descent (SGD)
to derive sharper exponential bounds for convex or non-convex optimization with
natural time-decaying learning rates, which have not been possible to prove with
the existing stability-based generalization guarantees.

1 Introduction

In many statistical learning problems, we are interested in designing a randomized algorithm A :
ZN xR~ W that maps a training data sample S = {Z; };c|n] € Z¥ with an algorithm’s random
parameter £ € R to a model A(S,€&) € W. Here Z and R are some measurable sets, and W is a
closed subset of an Euclidean space. The ultimate goal is to find a suitable algorithm such that the
following population risk evaluated at the model should be as small as possible:

R(A(S,§)) == Ez[(A(S,£); Z)],

where Z € Zand £ : W x Z — R is a non-negative bounded loss function whose value £(w; )
measures the loss evaluated at z with parameter w. It is generally the case that the underlying data
distribution is unknown, and in this case the data points Z; are usually assumed to be independent.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).


www.vecml.com

Then, a natural alternative measurement that mimics the computationally intractable population risk
is the empirical risk given by

N
RS(A(S,€)) = Ezanie(s) (A(S,) 2)] = 1+ 3 HA(S,€:.20).

The bound on the difference between the population and empirical risks is of central interest in
understanding the generalization performance of a learning algorithm. In particular, we hope to derive
a suitable law of large numbers, i.e., a sample size vanishing rate by such that the generalization
bound |Rs(A(S,&)) — R(A(S,€))| < by holds with high probability over the randomness of
S and hopefully the randomness of £ as well. Let R* := min,eyy R(w) be the optimal value
of the population risk. Conditioned on S, suppose that A(S,&) is an almost minimizer of the
empirical risk Rg such that Rg(A(S,§)) — min,ew Rs(w) < e, then the generalization bound
immediately implies an excess risk bound R(A(S,€)) — R* S by + \/% -+ ¢ based on the standard

risk decomposition and Hoeffding’s inequality. Therefore, generalization guarantees also play a
crucial role in understanding the stochastic optimization performance of a learning algorithm.

A powerful proxy for analyzing the generalization bounds is the stability of learning algorithms to
changes in the training dataset. Since the seminal work of Bousquet and Elisseeff (2002), stability
has been extensively demonstrated to beget dimension-independent generalization bounds for deter-
ministic learning algorithms (Mukherjee et al., 2006; Shalev-Shwartz et al., 2010), as well as for
randomized learning algorithms such as bagging and SGD (Elisseeff et al., 2005; Hardt et al., 2016).
So far, the best known results about generalization bounds are offered by approaches based on the
notion of uniform stability (Feldman and Vondrdk, 2018, 2019; Bousquet et al., 2020; Klochkov and
Zhivotovskiy, 2021) which is independent to the underlying distribution of data. For randomized
algorithms, the definition of uniform stability can be extended in two natural ways by respectively
considering 1) the stability averaged over the algorithm’s randomness (Hardt et al., 2016) and 2)
the stability conditioned on the algorithm’s randomness (Feldman and Vondrak, 2019). The former
is simpler to show but typically leads to on-average generalization bounds, while the latter is rela-
tively more stringent but may yield deviation bounds given that the conditional stability holds with
high probability over the algorithm’s randomness. Between these two extreme cases, however, the
generalization behavior of randomized learning algorithm still remains largely under explored.

To address the above mentioned theoretical gap between the current lines of results, we explore the
opportunities of deriving exponential generalization bounds for randomized learning algorithms
beyond the notions of on-average stability and conditional stability. A concrete working example
of our study is the widely used stochastic gradient descent (SGD) algorithm that carries out the
following recursion for all ¢ > 1 with learning rate n; > 0:

wy = My (w1 =V l(wi-15Z;,)) (H
where i; € [N] is a random index of data under with or without replacement sampling, and IIy, is
the Euclidean projection operator associated with V. The in-expectation generalization of SGD has
been studied under on-average stability (Hardt et al., 2016; Zhou et al., 2022; Lei and Ying, 2020),
while the exponential bounds have recently been established given that the stability holds with high
probability over the sampling path of SGD (Feldman and Vondrak, 2019; Bassily et al., 2020).

1.1 Prior results

Let us start by briefly reviewing some state-of-the-art exponential generalization bounds under the
notion of uniform stability and its randomized variants. We denote by .S = Sifa pair of data sets
S and S differ in a single element. A randomized learning algorithm A is said to have on-average
v -uniform stability (Elisseeff et al., 2005) if it satisfies the following uniform bound:

sup  [Ee [£(A(S,€):2) — ((A(S,€): 2)] | < . @

s=5,z€2
This definition is equivalent to the concept of uniform stability defined for the expectation of loss
E¢[¢(A(S,€); Z)]. Suppose that the loss function is bounded in the interval [0, M]. Then essentially
it has been shown in Feldman and Vondrék (2019) that for any 6 € (0, 1), with probability at least
1 — 6 over .S, the on-average generalization error is upper bounded by
log (1/9)

B¢ [R(A(S. ) ~ Rs(AS, ]| S Tox(N)tog (5 ) + 2y EGLL



Bousquet et al. (2020) later derived a slightly improved exponential bound that implies

1 log (1/6
B¢ [ROAGS, ) ~ Rs(AS, ]| S 2w Toa(N) tog (3 ) + 0BG
These bounds are near-tight (up to logarithmic factors) in the sense of an O (yx log (5) + W)

lower deviation bound on sum of random functions with v -uniform stability (Bousquet et al., 2020,
Proposition 9). Concerning the excess risk bound, Klochkov and Zhivotovskiy (2021) essentially
derived the following result using the sample-splitting techniques of Bousquet et al. (2020):

(M + B)log(1/9)
N )

E¢ [R(A(S,€))] — R* < Aopt + E[Aopt] + v log(N) log (1> + 5)

0
where Aoy = E¢ [Rs(A(S,€))] — ming,ew Rg(w) represents the in-expectation empirical risk sub-
optimality, and B is the constant of the generalized Bernstein condition (Koltchinskii, 2006). While
sharp in the dependence on sample size, one common limitation of the above uniform stability implied
generalization and risk bounds lies in that these high-probability results only hold in expectation with
respect to &, the internal randomness of algorithm.

Alternatively, consider that A has ~-uniform stability with probability at least 1 — ¢’ for some
0" € (0, 1) over the random draw of &, i.e.,

P{ sup  |L(A(S,€); Z) — L(A(S,€); Z)| < ’YN} >1-4. (©6)
5=8,7e2

Suppose that the randomness of A is independent of the training set S. Then the bound of Bousquet
et al. (2020) naturally implies that with probability at least 1 — § — ¢ over S and &,

IR(AGS,€)) ~ Rs(A(5, )] S 2w lou(V) o 5 ) + My £, )
This is by far the best known generalization bound of randomized stable algorithms that hold with
high probability jointly over the randomness of data and algorithm. The result, however, relies
heavily on the high-probability uniform stability as expressed in (6). For the SGD recursion (1)
with fixed learning rate 7, = 7, it is possible to show that vx < 7v/T + % andd’ = N exp(—%)
in (6) (Bassily et al., 2020). For SGD with time decaying learning rates, which has been widely
studied in theory (Harvey et al., 2019; Rakhlin et al., 2012) and applied in practice for training popular
deep nets such as ResNet and DenseNet (Bengio et al., 2017), it is not clear if the condition in (6) is
still valid for v and ¢’ of interest. Madden et al. (2020) indeed have established a high-probability
uniform stability bound for minibatch SGD with learning rates 7; < ﬁ However, such a fairly
conservative choice of learning rates tends to impair the empirical minimization performance of SGD
and thus is of limited interest from the perspective of risk minimization.

More specially for randomized learning methods such as bagging (Breiman, 1996) and SGD, the
randomness of algorithm can be precisely characterized by a vector of i.i.d. parameters & = {1, ..., %+ }
which are independent on data S. In such cases, assume additionally that A(S, £) has uniform stability

with respect to £ conditioned on S, i.e., sup,-¢ [((A(S, §)) — £(A(S, €))| < pr. Then the following
exponential bound has been derived by Elisseeff et al. (2005):

14+ Nvn 1
R(A(S)) — Rs(A(9))] < —_— T 1 - . 8
RIA) = Rs(AS)] S 2 + (FA2% 4 VTor ) o 5 ®
Provided that vy < % and pr < %, the above bound shows that the generalization bound scales as
O(\/—lﬁ + %) with high probability. However, the rate of the above bound is sub-optimal and will

show no guarantee on convergence if vy > Tlﬁ and/or pp > ﬁ As an example, for non-convex

SGD with learning rate 1, = O(%) , it can be shown that Yy < % and pr scales as large as O(1).

Open problem. So far, it still remains open if the exponential generalization bounds for deterministic
uniformly stable algorithms might be extended to randomized learning algorithms under the variants
of uniform stability tighter than the on-average version (2) but less restrictive than the high-probability



version (6). Particularly, we are interested in the following notion of Lo-uniform stability (as formally
introduced in Definition 1) with parameter ., n:

- 2
sup e |(104(5.90:2) ~ €045 2))’| <2, ©
5=8,z¢z

which represents a second-moment variant of the uniform stability for randomized learning algorithms.
For example, as we will shortly show in Section 4 that SGD with practical time-decaying learning
rates has Lo-uniform stability with favorable parameters. The main goal of the present work is to
derive sharper exponential generalization bounds for randomized learning algorithms under the notion
of Ly-uniform stability.

1.2 Overview of our contribution

The fundamental contribution of this work is a near-optimal first-moment generalization error bound
for Lo-uniformly stable algorithms, which is summarized in Theorem 1 and highlighted below:
log (1/5)

Be [R(A(S, ) ~ Rs(AS, 1] S v Tou(N) log ( 3 ) + 0y 2ELE.

While our first-moment bound above has an identical convergence rate to that of the on-average bound
in (4), the former is stronger in the sense that the expectation is taken outside the generalization gap
and thus implies the latter where the expectation is taken inside. The key ingredients of our analysis
are a set of fine-grained concentration inequalities for randomized functions (Proposition 1) and sums
of randomized functions (Proposition 2), which respectively generalize the classic bounded-difference
inequalities and a prior result of Bousquet et al. (2020) under the considered Ly-uniform bounded
difference conditions. These generalized concentration inequalities and their proof arguments are
novel to our knowledge and should be of independent interests in analyzing randomized functions.

As an important consequence of our main result, we reveal that a bagging-based meta procedure (see
Algorithm 1) can be used to boost the confidence of generalization for Lo-uniformly stable algorithms.
More specifically, in the presented bagging procedure we independently run a randomized algorithm
A multiple K times over a fraction of the training set to obtain K solutions. Then we evaluate the
validation error of these candidate solutions over a holdout training subset, and output the solution
that has the smallest training-validation gap. Our result in Theorem 2 shows that for any confidence
level € (0,1), setting K =< log(3) yields a near-optimal generalization bound for the selected
solution that holds with high probability jointly over the randomness of data and algorithm.

We have substantialized our results to SGD with smooth (Corollary 1) or non-smooth (Corollary 2)
convex losses, and smooth non-convex losses (Corollary 3) as well. For an instance, our result in

Corollary 1 shows that when invoked to SGD with smooth convex loss and learning rates 7, = O(%),

the generalization bound of the output of Algorithm 1 may scale as O (log(NN) log (§) 1/ %—&—%) .
To compare with the O (%) in-expectation bound of smooth convex SGD (Hardt et al., 2016), our
bound above for the boosted SGD is comparable in convergence rate while it holds with high

probability jointly over the randomness of data and sampling path.

2 Lo-Uniform Stability and Generalization

2.1 Notation and definitions

Let us introduce some notation to be used in our analysis. We abbreviate [N] := {1, ..., N }. Recall
that S = {Z;},c[n is a set of i.i.d. training data. Denote by S" = {Z;},c|n] an independent copy

of S and we write S = {Z,,..., Z;_1,Z!, Zi11, ..., Zn'}. For a real-valued random variable Y, its
Lg-norm for ¢ > 1is given by [|Y||, = (E[|Y|q])1/q. By definition it can be verified that Vg > 2,

2/
IVI2 = @Iy = (Bv2p2) " = v (10)

a/2’
Let h : Z¥ + R be some measurable function and consider the random variable h(S) =
hZ1, ..., ZN). For h(S) and any index set I C [N], we define the following abbreviations:

h(S1) ==E[R(S) | Sil. [Ihll4(Sr) := E[R(S)I? | 1))



We say a function f to be G-Lipschitz continuous over W if | f(w) — f(w)| < G||jw — || for all
w, W € W, and itis L-smooth if ||V f (w) — V f ()| < L|jw — w||. For a pair of functions f, f' > 0,
weuse [ < f/ (or f' = f)todenote f < c¢f’ for some universal constant ¢ > 0.

In the following definition, we formally introduce the concept of Lo-uniform stability for randomized
learning algorithms to be investigated in this work.

Definition 1 (Ls-Uniform stability of randomized learning algorithms). We say a randomized
learning algorithm A : ZN x R+ W to have Lo-uniform stability with parameter Yio,N 2= 0if

, 2
sup B |(HA(5.9):2) ~ (A, :2)) | < 22
8,71,2

Remark 1. By definition the Lo-uniform stability has a second-moment dependence on the internal
randomness of algorithm conditioned on data, while it is invariant to the data distribution. This
Jjustifies the name of such a notion of mixed algorithmic stability.

Remark 2. On one hand, by Jensen’s inequality the Lo-uniform stability implies the on-average
uniform stability defined in (2). On the other hand, the second-order form of Ly-uniform stability is
by definition weaker than the high-probability uniform stability in (6). If the algorithm’s randomness
& can be expressed as a set of i.i.d. random bits, then the Lo-uniform stability is also weaker than the
conditional uniform stability conditioned on data S (Elisseeff et al., 2005).

Throughout this paper, we assume for simplicity that the output models A(S(?, &) and A(S, £) share
the same internal random bit £ which is invariant to data. With similar analysis techniques, it is indeed
possible to extend Definition 1 and our main results to the general setting where the randomness of
algorithm is allowed to be dependent on data, such as in posterior sampling for Bayesian learning.

2.2 Concentration inequalities for randomized functions

We begin by establishing in the following result a group of first- and second-order concentration
inequalities (in moments) for randomized functions of independent random variables.

Proposition 1. Let S = {Z1, Z, ..., Zn} be a set of independent random variables valued in Z and
€ be a random variable valued in R. Let g : ZY x R + R be a measurable function that satisfies
the following Lo-bounded-difference condition:

sup B |(4(5.9) - (59, 0)) | <
S.2!

Then for any q > 2,
[Ee [19(S,€) — Es [9(S, I, <38V Ng, (1D

and
| [ta(5.6) ~ Bs [o(s.0017] | < 68N8%. (12)

Proof in sketch. Let us consider h(S) = E¢[|g(S,¢) —Eglg(S,¢)]|]. The given Lo-bounded-
difference condition implies that ~(S) has bounded-difference property. Then the desired first-order
bound in (11) can be obtained by respectively invoking a moment Efron-Stein inequality (Boucheron
et al., 2005, Theorem 2) to upper bound ||(S) — E[h(S)][|, and a slightly modified Efron-Stein in-

equality to bound the mean E[A(.S)]. To prove the second-order concentration bound, we consider the
function 1/(S) := E; [(g(S, &) —Eglg(S, E)])Q} , which can be shown to be weakly self-bounding

(see Definition 2) under the Ly-bounded-difference condition. Then the desired bound (12) can be
derived by applying the upper tail bound of Boucheron et al. (2005, Theorem 6.19) and lower tail
bound of Klochkov and Zhivotovskiy (2021, Proposition 3.1) for weakly self-bounding functions.
See Appendix A.2 for a detailed proof of this result. O

The moment bound in (11) extends the McDiarmid’s (bounded difference) inequality (McDiarmid
et al., 1989) to randomized functions with the Lo-bounded-difference property. The second-order
concentration bound in (12) is crucial for proving the moment bound of sums in Proposition 2, as it can
be used to sharply control some second-order components involved in the arguments. These generic
inequalities are expected to be of independent interests for understanding the first-/second-order
concentration behavior of randomized functions.



2.3 A moment inequality for sums of randomized functions

As a key intermediate result, we further establish in the following proposition a moment concentration
inequality for sums of randomized functions that satisfy the Lo-bounded-difference condition. This
result extends the moment bound for sums of functions (Bousquet et al., 2020, Theorem 4) to sums
of randomized functions.

Proposition 2. Let S = {Z1, Z, ..., Zn} be a set of independent random variables valued in Z and
€ be a random variable valued in R. Let g1, ..., gn be a set of measurable functions g; : ZN¥ xR +— R
that satisfy the following conditions for any i € [N]:

* E[g:(S,€) | S\ Z;,&] = 0and |E[g;(S,€) | Z;,&]| < M, almost surely;
* (S, &) has the following Lo-bounded-difference property with respect to all variables in S
except Z;, i.e., Vj # 1,

sup [E¢
S,Z;

_ 4 ) )
(9:(5.8) = (59, 9)) } < B
Then for all ¢ > 2,

E, <3M+/3Nq+ 38N [log, N|3q.

Zgi(s7 5) ]

q

Proof in sketch. The main idea is inspired by the sample-splitting arguments of Feldman and Vondrak
(2019); Bousquet et al. (2020), with some new ingredients developed to handle the first-moment
operator taken over the internal randomness of functions. Here we just highlight a fundamental differ-
ence, which arises from using a newly developed moment inequality (Lemma 9) for bounding the
sums of conditionally independent randomized functions inside each individual data splits. Different
from the version of Marcinkiewicz-Zygmund’s inequality used in the original analysis of Bousquet
et al. (2020), our new bound in Lemma 9 relies on some second-order (over the function’s random-
ness) components which might be tightly bounded by the second-order concentration inequality in
Proposition 1. A full proof is provided in Appendix A.3.

Remark 3. For sums of deterministic functions, our result in Proposition 2 reduces to the existing
moment bound of Bousquet et al. (2020, Theorem 4) which is known to be near-tight up to logarithmic
factors. We comment in passing that the tightness analysis of Bousquet et al. (2020, Proposition 9)
for deterministic functions can be more or less straightforwardly extended to randomized functions.

Remark 4. The bound of Proposition 2 would still be valid when the bounded-loss condition
[Elg:(S, &) | Zi,&]| < M is relaxed to certain sub-Gaussian or sub-exponential stochastic versions.

2.4 Main result on generalization bound

Consequently from Proposition 2, we can now establish our main result on the generalization bound
of Lo-uniformly stable randomized learning algorithms.

Theorem 1. Let A : ZY x R +— W be a randomized learning algorithm that has Ly-uniform
stability with parameter vy, n. Assume that the loss function £ is valued in [0, M]. Then for any
d € (0, 1), the following bound holds with probability at least 1 — § over the draw of S:

log (1/9)

N

Ee [[R(A(S.€)) — Rs(A(S,))]] S s, log(N) log (;) M

Proof. See Appendix A.4 for a proof of this result. O

Remark 5. The first-moment bound in Theorem I naturally implies the on-average bound in (4)
with an identical rate of convergence, though the former is obtained under the relatively stronger
notion of Lo-uniform stability. As we will see shortly that the Lo-uniform stability can indeed be
fulfilled by the popularly applied SGD algorithm and thus Theorem 1 is of practical importance for
showcasing sharper generalization performance of SGD. When A is deterministic, our bound reduces
to the near-optimal (up to logarithmic factors on sample size and failure tail) generalization bound
for uniformly stable algorithms (Bousquet et al., 2020).



Algorithm 1: Confidence-Boosting for Randomized Learning Algorithms

Input :Randomized learning algorithm A, data set S = {Z;};cn}, 1 € (0,1) and K € Z*.
Output : A(S, &g+ ).
Uniformly divide .S into two disjoint subsets Sy and Sy with [S1]| = (1 — p)V, |Sa| = uN.
fork=1,2,..., K do

| Estimate A(S1, &) as an output of A over the subset S; with random bit .
end
Select the random bit £* according to k* = arg ming ¢k [Rs, (A(S1,8k)) — Rs, (A(S1,8k))|-

In view of the standard risk decomposition, the following excess risk tail bound can be readily
obtained via applying Theorem 1 and Hoeffding’s inequality:

Ee [RIA(S,£)) — R*] < Aop + 710, log(N) log ((15) vy 00
Here recall that Aqy = E¢ [Rg(A(S,§))] — ming,ew Rg(w) is the sub-optimality of empirical
risk minimization. Since the excess risk is by definition non-negative, the above bound can also be
obtained under the weaker notion of on-average uniform stability (2) via applying (4). In this sense,
the first-moment generalization error bound in Theorem 1 is substantially more challenging to derive
than the excess risk bound. Additionally, under the generalized Bernstein condition (Koltchinskii,
2006), the risk bound (13) can be readily improved to (5) by directly applying the corresponding
deviation optimal risk bound of Klochkov and Zhivotovskiy (2021) to the on-average loss function
E¢[¢(A(S,€); Z)] under on-average uniform stability condition.

3 Boosting the Confidence of Generalization

The confidence-boosting technique of Schapire (1990) is a classic meta approach that allows one to
boost the dependence of a learning algorithm on the failure probability § from 1/6 to log(1/6), at a
certain cost of computational complexity. In this section, we show an implication of our first-moment
bound in Theorem 1 for achieving high-probability generalization jointly over the randomness of
data and algorithm, inside a natural framework of confidence-boosting.

3.1 Confidence boosting via bagging

Given a randomized learning algorithm A, we propose to study a bagging based confidence-boosting
procedure as outlined in Algorithm 1. In this meta procedure, we independently run the algorithm
A for K times over Si, a fraction of the training set, to obtain K different candidate solutions
{A(S1,&k) rex)- Then we evaluate the validation error of these candidate solutions over the
holdout training subset So, and cherry pick A(S7, g+ ) that has the smallest gap between the training
error and validation error, i.e., k* = arg minc ) [Rs, (A(S1,&k)) — Rs, (A(S1,€x))]. Particularly,
consider that the internal randomness of A arises from random sampling with replacement of data
points, such as SGD under with-replacement sampling. Then in this setting, the procedure can be
regarded as a version of bagging (Breiman, 1996) with a greedy model ensemble scheme, which
is invoked to the deterministic counterpart of A with fixed random bits (e.g., SGD with identity
permutation) over the training subset S7.

3.2 Jointly exponential bounds

The following theorem is our main result about the generalization error bound of the output A(St, &x+)
that holds with high probability over the entire training set S and the random seeds {x } e[k

Theorem 2. Suppose that a randomized learning algorithm A : ZVN x R — W has Lo-uniform
stability with parameter vy, n. Assume that the loss function { is valued in [0, M]. Then for any

§ € (0,1) and K > 2log(2), with probability at least 1 — & over the randomness of S and {&,} we(x),
the output of Algorithm I satisfies

M log (K/9)

TV TN

RIAGS1 60) ~ Rs(A(S1 6D S 700 Tor(N) og



Algorithm 2: Aggp_,: SGD under With-Replacement Sampling

Input :Dataset S = {Z;};cn), step-sizes {7, }+>1, #iterations 7', initialization wy.
Output 17 = 7 3, i) Wi
fort=1,2,..., T do
Uniformly randomly sample an index i; € [N] with replacement;
Compute w; = Iy (wi—1 — Vi l(wi—1; Z3,))-
end

Proof in sketch. Based on Theorem 1, we first prove an intermediate result to show that the mini-
mal generalization error of the K outputs satisfies minj ¢z [R(A(S1,&r)) — Rs, (A(S1,6))] S

Vo, (1—pyn log(N) log (3) + 7 é\f )\/ 1°g5\1/6) provided that K 2 log(3). Next we show that the
p(l—p

used greedy model selection strategy guarantees that the selected A(S, £~ ) mimics the generalization
behavior of that best performer among the K candidates, with a slightly expanded log(K/¢) factor
representing the overhead of simultaneously bounding the generalization performance of K different
candidate solutions over the holdout validation set. Finally the desired bound follows from the union
probability argument. See Appendix B.1 for its full proof. O

Remark 6. The bound in Theorem 2 holds with high probability jointly over the randomness of
sample and algorithm. Different from the bound in (7) that requires high probability uniform stability,
Theorem 2 is valid under a substantially milder notion of Lo-uniform stability, though at the cost of
multiple running of algorithm for confidence boosting. Compared to the bound in (8) that requires
certain conditional uniform stability over the random bits of algorithm, our bound has sharper
dependence on the uniform stability parameter yet under a weaker notion of stability.

Remark 7. Regarding the scale of the factor 1/+/u(1 — p) in the bound of Theorem 2, if setting
w=0.01(i.e, 99% of S are used as Sy for training), then the factor is around 10.05.

Concerning the excess risk of Algorithm 1, we consider a slightly modified output A(S7, {x+) such
that k* = arg ming¢x) s, (A(S1, k). Then based on the in-expectation risk bound (13), we can
derive the following excess risk bound under the conditions of Theorem 2 using similar arguments:
M log (K/9)

BN A

Again, the above risk bound is still valid under the weaker notion of on-average uniform stability (2).

1
RIAGS16)) = 1 S Aap+ s 1o o)1 5 (1)

4 Implications for SGD

This section is devoted to demonstrating the implications of Theorem 1 and Theorem 2 for the widely
used SGD algorithm and its confidence-boosted versions as well. We focus on a variant of SGD
under with-replacement sampling as outlined in Algorithm 2, which we call Aggp_;. In what follows,
we substantialize £ = {i; }+c[r) the sample path of Agep_, over a given data set, and {{y }re(x) the
K independent copies of £ when implemented with bagging as shown in Algorithm 1. Our results
can also be extended to the without-replacement variant of SGD and the corresponding results are
provided in Appendix D for the sake of completeness.

4.1 Convex optimization with smooth loss

We first present the following lemma that establishes the Lo-uniform stability of Aggp_,, with convex
and smooth loss functions, such as logistic loss. See Appendix C.2 for its proof.

Lemma 1. Suppose that the loss function £(-; ) is convex, G-Lipschitz and L-smooth with respect to
its first argument. Assume that ny < 2/L for all t > 1. Then Aggp_, has Lo-uniform stability with
parameter

T T 2
1 1
_ 2 2
V., N = 2G* |10 N ;:1 g + N2 <t§=1 77t>



Given Lemma 1, we can apply Theorem 1 and Theorem 2 to immediately obtain the following
generalization result for Aggp_,, and its confidence-boosted version with smooth and convex losses.

Corollary 1. Suppose that the loss function {(-;-) € [0, M] is convex, G-Lipschitz and L-smooth
with respect to its first argument. Then for any § € (0, 1), it holds with probability at least 1 — 6 over
the randomness of S that E¢ [| R(Asep-u(S,§)) — Rs(Asen-u(S,€))|] S

T T 2
2 n1&, 1 log(1/9)
G log(N)log(5 N;nt+N2 ;nt + M N

Moreover, consider Algorithm 1 specified to Asgp_,, with learning rate ny < 2/L and K =< log( ).
Then with probability at least 1 — § over the randomness of S and {§k}k€ (K], it holds that

|R(Ascp w(Slvfk )) RS(ASGD w(5175k*))| S

9 1 M log(1/6
G2 log(N) log (5) sz 2N2 (Zm) . B(1/5)

Remark 8. For the conventional choice of n, = T\/Z’ the high-probability (w.r.t. data) general-
ization bounds in Corollary 1 for SGD and its confidence boosted version are roughly of scale
(9( log(N) log (%) 1°g( ) 4 ‘F) which matches the corresponding O(%) in-expectation bound
of SGD with smooth and convex losses (Hardt et al., 2016).

Combining with the standard in-expectation optimization error bound of convex SGD (see, e.g.,
Shamir and Zhang, 2013), we can show the following excess risk bound of (modified) Algorithm 1 as
a direct consequence of the generic bound (14) to Aggp_, With convex and smooth losses:

Rldsano(51,6)) ~ 1 562 1os() o (3 ) 3 Z "+ (Z m)

M log(l/é) D2(w0,W*) +G? thl n?

vV H (1 — 23121 n 7

where W* := Argmin, ¢, R(w) and D(w W*) = ming~ew~ ||w — w*||. With learning rate 7, =
7 \/, the right hand side of the above roughly scales as O \/ log(N) log ( ) log]\(, ) 4 f + lo\g/(z“ ))
which matches the prior high-probability excess risk bounds of SGD with convex losses (Harvey
etal., 2019, Remark 3.7).

4.2 Convex optimization with non-smooth loss

Now we turn to study the case where the loss is convex but not necessarily smooth, such as the
hinge loss and absolute loss. We first establish the following lemma about the Lo-uniform stability
parameter of Aggp_y in the considered setting. See Appendix C.3 for its proof.

Lemma 2. Suppose that the loss function ((-;-) is convex and G-Lipschitz with respect to its first
argument. Then Aggp., has Lo-uniform stability with parameter

T 39 (T 2
Yo = G2\ 40D 0P + =5 (Z”t> |
t=1 t=1

With Lemma 2 in place, we can readily apply Theorem 1 and Theorem 2 to establish the following
corollary about the generalization bounds of Aggp_,; and its confidence-boosted version with convex
and non-smooth loss functions.

Corollary 2. Suppose that the loss function £(-;-) € [0, M] is convex and G-Lipschitz with respect to
its first argument. Then for any § € (0, 1), it holds with probability at least 1 — § over the randomness

of S that B [|R(Agep-u(S,€)) — Rs(Asen-u(S, €))|] <

T T 2
) 1 , 1 log(1/9)
G*log(N) log <5 ;:1 n; + N2 t; n| +M N




Moreover, consider Algorithm 1 specified to Agsgp_, with K =< log(%) Then with probability at least
1 — 0 over S and {& } k(i) it holds that |R(Asep-u(S1,Ek)) — Rs(Asep-u(S1, &) S

T
1 M 1og(1 / 6)
raome ()| Eot+ =l ($0)
) — 2N 2 w(l —
Remark 9. For SGD with decayzng learmng rates Ny = \/ﬁ’ Corollary 2 admits high-probability
generalization bounds of scale (’)(log(N) log (%) \/% + % + \/M . With fixed rates

ne = n, Corollary 2 yields deviation bounds of scale O (nlog(N)log ( )(f + L)+ W)
which matches the near-optimal rate by Bassily et al. (2020, Theorem 3.3).

4.3 Non-convex optimization with smooth loss

We further study the performance of Algorithm 1 for Aggp_, with smooth but not necessarily convex
loss functions, such as normalized sigmoid loss (Mason et al., 1999). The following lemma estimates
the Lo-uniform stability of Asgp_; in the considered setting. See Appendix C.4 for its proof.
Lemma 3. Suppose that the loss function £(-; ) is G-Lipschitz and L-smooth with respect to its first
argument. Consider ny < 1/L. Then Aggp., has Lo-uniform stability with parameter

Vig, N = 2G? Zexp <3L Z 777) Ug,

T=t+1

where
t—1 t—1
2
wp =17 + 2 Y exp (L > m) e
=1 1=7+1
Based on Lemma 3, we can invoke Theorem 1 and Theorem 2 to show the following generalization
result for Agep_ and its confidence-boosted version with non-convex and smooth loss functions.

Corollary 3. Suppose that the loss function £(-;-) € [0, M| is G-Lipschitz and L-smooth with respect
to its first argument. Then for any 6 € (0,1), it holds with probability at least 1 — 0 over the
randomness of S that E¢ [|R(Asep-u(S,§)) — Rs(Asep-u(S,€))|] S

G*log(N)log (;) %Zexp <L Z 7%) u + M %,

T=t+1

where u; == n? + 2n; Z 1 eXp(L El +41Mi)nr for all t > 1. Moreover, consider Algorithm 1

specified to Aggp_, with ny < f and K = 1og( ). Then with probability at least 1 — § over S and
{&k tre(x), it holds that | R(Asep-u(S1, Ex+)) — RS(ASGD—w(Sl;Sk’*))‘ S

T T
G?log(N) log <§) m Zexp (L Z 777) U + \/];47_ log( 1/5)

T=t+1

Remark 10. For the decaying learning rates 1, = 1 ; with arbitrary v > 1, the generalization
bounds in Corollary 3 are of scale (9( log(N) log (3) \/Tl/u log(1) | \/10g(1/5 . For the constant

learning rates ny = % the bounds are of scale (9( log(N) log (%) W).

5 Conclusion

In this paper, we have introduced a novel concept of Ls-uniform stability for randomized learning
algorithms and proved a strong first-moment generalization bound that holds with high probability
over training sample. Equipped with this result, we have further developed a bagging based confidence-
boosting procedure and shown that it yields near-optimal generalization bounds with high confidence
jointly over the randomness of sample and algorithm. The power of our theory has been demonstrated
through an application to SGD with time-decaying learning rates, where sharper generalization
bounds have been obtained for both convex and non-convex loss functions.
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