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Abstract

Typically, inversion algorithms assume that a forward model, which relates a
source to its resulting measurements, is known and fixed. Using collected indirect
measurements and the forward model, the goal becomes to recover the source.
When the forward model is unknown, or imperfect, artifacts due to model mis-
match occur in the recovery of the source. In this paper, we study the problem
of blind inversion: solving an inverse problem with unknown or imperfect knowl-
edge of the forward model parameters. We propose DeepGEM, a variational
Expectation-Maximization (EM) framework that can be used to solve for the un-
known parameters of the forward model in an unsupervised manner. DeepGEM
makes use of a normalizing flow generative network to efficiently capture complex
posterior distributions, which leads to more accurate evaluation of the source’s
posterior distribution used in EM. We showcase the effectiveness of our DeepGEM
approach by achieving strong performance on the challenging problem of blind
seismic tomography, where we significantly outperform the standard method used
in seismology. We also demonstrate the generality of DeepGEM by applying it to
a simple case of blind deconvolution.

1 Introduction

Physics-based inversion methods typically recover an unknown source from indirect measurements
by assuming that the source and measurements are related via a known forward model [15, 7, 30]. For
example, non-blind deconvolution algorithms often assume that a measured blurry image is related to
its true sharp image via a known spatially-invariant blur kernel [9]; and traditional seismic inversion
methods assume that the spatially-varying velocity of the Earth’s interior is known a priori when
solving for an earthquake’s hypocenter [30]. However, these “known” forward models are generally
idealized and ignore intricacies of the systems that are either hard to capture or simply unknown.
Inversion algorithms with forward model mismatch result in biased reconstructions. For instance, bias
is regularly seen in non-blind deconvolution results, where reconstruction artifacts are often present
due to the use of an incorrect blur kernel [9].

In order to reduce the effects of model mismatch, in this paper we tackle the problem of blind
inversion: solving an inverse problem without knowledge of the underlying forward model parameters.
When considering how learning can help, a natural first idea might be to learn a direct map from
measurements to the desired source via supervised learning. However, such a “model-free” approach
is generally not practical, due to the lack of available ground truth training data. For example,
the blur kernel caused by handheld camera shake cannot be reproduced to get a training set of
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sharp-blurry pairs to train a deconvolution approach. In seismic tomography, synthetic earthquakes
cannot be placed densely throughout the interior of the Earth to measure the ground response as a
function of hypocenter location. An alternative approach, which we adopt, is to develop unsupervised
methods that treat the true forward model as something that is unobserved and must be inferred.
An additional consideration is that we must solve for the true forward model from a single dataset,
without knowledge of the true source that produces the measurements

In this paper, we propose Deep Generalized Expectation-Maximization (DeepGEM) for solving
blind inverse problems. Using the indirect measurements as input, DeepGEM jointly estimates
the source and forward model that together produce the observed measurements. DeepGEM is a
variational inference based framework that makes use of deep learning machinery to easily capture and
optimize complex probabilistic distributions that cannot be easily integrated in analytic Expectation-
Maximization (EM) solutions. Our proposed framework is generic and can be applied to blind
inversion problems described by differentiable forward models. In Section 4 we showcase the
effectiveness of our DeepGEM approach on the challenging problem of blind seismic tomography,
where we significantly outperform methods used in seismology. We also demonstrate the generality
of DeepGEM by applying it to blind deconvolution in Section 5.
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Figure 1: DeepGEM applied to blind seismic tomography. (a) A simulated cross section of the
Earth’s interior (velocity structure), along with the locations of receivers on the surface (red triangles)
that collect measurements. (b) The time it takes for a wave traveling from a source below the surface
to reach the specified receiver is visualized for each location in the region of interest. The overlaid
dots represent the true locations of simulated earthquakes and indicate the measured travel times
that constrain optimization. (c) The subsurface velocity reconstruction obtained using a baseline
approach optimized with the help of a seismologist. Note that the bright anomaly is missing from this
reconstruction. Overlaid dots represent the inferred earthquake locations. (d) DeepGEM reconstructed
subsurface velocity and inferred earthquake locations. Note that DeepGEM is able to accurately
recover the gradient of the velocity field as well as partially recover the central anomaly.

2 Background and related work
The joint optimization of a forward model with source recovery is a very challenging ill-posed
problem, leading to many possible solutions that are hard to disambiguate. For example, in blind
deconvolution the blurry image observed can be equivalently explained by a sharp source image
convolved with an extended kernel or a blurry source image convolved with a impulse kernel; to
prefer one solution over another, additional information, such as image priors, must be considered.
Previous work on inversion in poorly characterized systems focused on limited contexts, such as
spatially-invariant blind deconvolution [21, 22, 14, 10] and CT with a simple rotational error [35].
These methods tend to be highly specialized to each application domain, and cannot be easily
generalized. In contrast, we propose a flexible model-based Bayesian framework that can be applied
across multiple differentiable blind inversion problems.

2.1 Model-based Bayesian inversion

In model-based inversion, unobserved sources x and observed measurements y are related through
a forward model: y = f(x). When the parameters of the underlying model are unknown, one can
parameterize the forward model as fθ(x) and then solve for the true model parameters θ∗. A common
approach is to solve a maximum a posteriori (MAP) objective: either MAPθ,x or MAPθ.
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MAPθ,x solves for the optimal point estimate of the pair {θ̂, x̂} that maximizes a joint objective:

{θ̂, x̂} = arg max
θ,x

[log p(θ, x|y)] = arg max
θ,x

[log p(y|θ, x) + log p(θ) + log p(x)] . (1)

In practice, formal probabilistic definitions of p(θ) and p(x) are often unknown and replaced with
regularization terms (e.g., total variation, sparsity) [22, 21]. Although MAPθ,x provides a straightfor-
ward approach to solve for θ, the energy landscape of Eq. 1 is typically poorly behaved due to the
ill-posed nature of the problem [22]. As a result, optimization is likely to get stuck in a (bad) local
minimum.

MAPθ attempts to smooth the energy landscape by reducing the number of parameters that must be
optimized. This is done by solving for parameters of the forward model, θ, that perform best under
the full volume of possible x interpretations:

θ̂ = arg max
θ

[log p(θ|y)] = arg max
θ

[
log

(∫
x

p(y|θ, x)p(x)dx

)
+ log p(θ)

]
. (2)

Since this marginalization integral is often intractable, Expectation-Maximization (EM) algorithms
have long been used for solving MAPθ efficiently [11]. EM is an iterative algorithm that alternates
between: “E”-Step) calculating the posterior of x conditioned on the current estimated forward model
parameters θ(t−1); and M-Step) updating θ to maximize the expected value of the log likelihood:

θ(t) = arg max
θ

[
Ex∼p(x|y,θ(t−1)) [log p(y|θ, x)] + log p(θ)

]
. (3)

The advantage of MAPθ over MAPθ,x optimization for the blind deconvolution problem was de-
scribed in [22] and its success demonstrated via EM optimization in [21]. However, it is important
to note that evaluating the expectation in of Eq. (3) over complex distributions is often intractable.
For instance, the authors of [21] were forced to restrict the posterior distribution to a Gaussian distri-
bution. Alternatively, stochastic EM methods [5, 8] bypasses the need to evaluate the expectation
directly, approximating it by sampling the distribution. In this paper, we solve MAPθ using complex
distributions parameterized by deep neural networks.

Forward model parameterization Model-based inversion requires that the parametric form of
fθ(x) is well matched with the true forward model, which is not always known. Alternatively, neural
networks can be used to approximate the forward model, where θ represents the network weights.
This setup is flexible, in that it can be used to approximate arbitrarily complex forward models, with
the downside that it is often not interpretable when the parameters have no physical meaning. In
this work, we develop and make use of interpretable, physically-motivated deep neural networks to
parameterize fθ(·) for the problems of blind seismic tomography and blind deconvolution.

2.2 Deep variational distributions

We are interested in solving blind inverse problems using the EM algorithm to optimize the MAPθ
objective. Optimizing in this fashion requires the use of the posterior distribution p(x|y, θ(t−1)) in
evaluating Eq. 3. As inverse problems are often ill-posed, we expect that the posterior distribution of
source x conditioned on the forward model parameters θ is likely to be complex and perhaps even
multi-modal. Therefore, it is important to be able to parameterize a flexible family of distributions to
best estimate this conditional posterior.

Deep Probabilistic Imaging (DPI) [32] uses a normalizing flow-based generative model, Gφ(·), to
solve for the uncertainty of an unknown source x given a fixed forward model f(x) and measurements
y. DPI solves the variational objective:

φ̂ = argmin
φ

KL(qφ(x)||p(x|y)) = argmin
φ
Ex∼qφ(x) [− log p(y|x)− log p(x) + log qφ(x)] , (4)

where qφ(x) is the implicit distribution defined by Gφ(z) for z ∈ R|x| ∼ N (0, 1)1, and log p(y|x) ∝
||y − f(x)||2 + c when there exists i.i.d. Gaussian noise on the measurements, y. After inference,
qφ(x) can be efficiently sampled by evaluating Gφ(z) for a Gaussian sample z.

The DPI variational objective is equivalent to the Variational Autoencoder [17, 28] objective, except
with a fixed decoder, f(x). In practice, vanilla VAEs constrain the posterior to be a Gaussian

1|x| is the dimension of x
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distribution, relying on the reparameterization trick for tractable optimization. Alternatively, DPI
uses flow-based networks to efficiently sample and directly compute qφ(x) [12, 13, 18]. DPI’s use
of a flow-based network allows for complicated and multi-modal posterior distributions constrained
only by the space of possible invertible network architectures. Our proposed DeepGEM approach
utilizes similar tools to model flexible distributions over x, while simultaneously learning the forward
model parameters θ.

3 Methods

We propose a deep variational EM approach (DeepGEM) that optimizes the MAPθ objective in Eq. 2
to recover the parameters of a forward model fθ(x) using only a single static set of measurements y.
Once learned, the updated forward model can then be used to estimate the posterior distribution of
the unknown source, x. DeepGEM iterates between two stages that are inspired by the standard EM
algorithm: (1) an “E”-step that learns a variational distribution, qφ(t)(x), to approximate the posterior
distribution of x given the current forward model parameters θ(t−1), and (2) an M-step (refer to
Eq. 3) that solves for θ(t) that maximizes the expected value of the log likelihood function of θ, with
respect to the posterior distribution qφ(t)(x) estimated in the prior “E”-step. Each step is alternated
and solved to convergence. Since this is an EM algorithm (up to the variational approximation), our
method inherits properties of EM, including convergence to a local minimum of Eq. 2.

3.1 “Expectation” step (“E”-step)

The goal of DeepGEM’s “E”-step is to solve for the posterior distribution p(x|y, θ(t−1)) that facilitates
optimizing Eq. 3. Because this posterior distribution can be very complex, and even multi-modal, we
propose to use a flexible variational approach to learn the parameters φ of an approximate posterior
distribution qφ(x). The variational distribution qφ(x) can then be used to evaluate Eq. 3 via efficient
sampling.

Using DPI we solve for a flexible variational distribution, qφ(x) that well approximates the posterior
distribution p(x|y, θ(t−1)). DPI uses a normalizing flow network, Gφ(z), with input z ∈ R|x|, where
x = Gφ(z) ∼ qφ(x) when z ∼ N (0,1). Normalizing flow networks allow for exact computation of
the log-likelihood log qφ(x) needed to solve

φ(t) = arg min
φ

KL(qφ(x)||p(x|y, θ(t−1)))

≈ arg min
φ

1

N

N∑
n=1

[− log p(y|θ(t−1), xn)− log p(xn) + log qφ(xn)]

for xn = Gφ(zn), zn ∼ N (0,1), (5)

(as derived from Eq. 4) for a batch size ofN where log p(x) is a prior on the source and log p(y|x, θ(t))
is the data likelihood. When assuming the measurements y experience i.i.d additive Gaussian noise
with standard deviation σy , log p(y|θ(t), xn) = 1

2σ2
y
‖y − fθ(t)(xn))‖2 + c.

3.2 Maximization step (M-step)

The goal of DeepGEM’s M-step is to use the parameterized approximate posterior distribution,
qφ(t)(x), from the prior “E”-step to update θ, the parameters of the unknown forward model fθ(·).
This is achieved by sampling from the learned normalizing flow network, Gφ(t)(·), to stochastically
solve Eq. 3 :

θ(t) ≈ arg max
θ

[
1

N

N∑
n=1

[log p(y|θ, xn)] + log p(θ)

]
for xn = Gφ(t)(zn), zn ∼ N (0,1), (6)

where p(θ) is a prior on the forward model. This prior can be used to encourage the forward model
parameters to remain close to an initial model θ̃ by defining log p(θ) ∝ ||θ − θ̃||2 + c.
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4 Case study: blind seismic tomography

Two fundamental seismic inverse problems are spatially localizing an earthquake’s hypocenter (also
referred to as source localization) and tomographic reconstruction of the Earth’s subsurface [30].
These problems are interconnected: source localization relies on knowing how fast waves propagate
through different regions of the Earth’s interior, referred to as the Earth’s velocity structure. However,
in standard seismological practice, due to difficulties in solving these problems jointly, they are
generally treated separately: source localization is performed initially using oversimplified velocity
models [30], and then the tomography problem is performed by taking those best-fitting hypocenters
as ground truth [26]. This approach typically results in the need to over-regularize the inverse
problem by smoothing out high-frequency information [2], and can only be improved by carefully
incorporating other forms of information such as waveform-derived quantities [16, 23, 4, 24] or
by performing costly experiments such as controlled explosions. In contrast, we demonstrate our
DeepGEM approach on blind seismic tomography, solving for the subsurface velocity (parameterized
by θ) when the source hypocenters, x, are unknown. Measurements, y, used to constrain the inverse
problem are the time it takes for the first wave to propagate from its source to a receiver on the Earth’s
surface, referred to as a travel time measurement (refer to Fig. 1).

4.1 Seismic tomography background

Physics of earthquake source localization: The earthquake source location, also called the hypocen-
ter, is the location where the earthquake nucleates [30]. The source location can be triangulated using
travel times from multiple receivers. However, when there are very few receivers (< 3 in 3D, < 2 in
2D), the source localization is ill-posed and there exists multiple equally optimal solutions.

Physics of travel time tomography: Travel time tomography is a method for reconstructing the
velocity structure using the absolute arrival times of earthquake waves from the earthquake to the
receiver [30]. Given perfect knowledge of the earthquake locations x and receivers r at every
position in the ground, the exact velocity can be computed by solving the Eikonal equation V (r) =

‖∇rT (x, r)‖−12 , where T (x, r) is the travel time from an earthquake to a receiver. There exists an
analytical solution to the Eikonal equation; however, seismologists often use simplifications, such as
straight ray tomography, for efficiency [2].

Deep Learning for travel time tomography: EikoNet [31] implicitly solves the Eikonal equation
[33] by learning a mapping from a source-receiver pair (x, r) to its associated travel time, learning θ
such that fθ(x, r) ≈ T (x, r) where T (x, r) is the true travel time. The velocity structure can then be
extracted from the learned EikoNet by solving the Eikonal equation through automatic differentiation.
In particular, the computed velocity V (s) at location s is ‖∇sfθ(x, s)‖−12 . Note that this computed
velocity depends on the source location x. Ideally, the velocity should be invariant to the source
location; however, in practice, this is only true when EikoNet is trained with densely-sampled (x, r)
pairs. Additionally, the travel time from a source to a receiver, T (x, r), should be identical to the
travel time from a receiver to a source, T (r, x), but remains unconstrained by EikoNet.

Homogenous Gradient Layer

DeepGEM ℒϴ Prior Models 

Receiver(s)

True source

Prior mean of source

Posterior conditioned on ϴ 

Earthquake Source Localization Visualizations 

(a) (b)10 km

Figure 2: (Left) A visualization of the homogeneous, gradient, and layer models used in p(θ)’s Lθ
term. (Right) Visualizations used to describe source configurations and earthquake source posteriors.
(a) Visualizations of the true and initialized source locations are plotted as stars (true) connected to
circles, which indicate the expected source locations according to p(x). Note that the expected source
locations deviate significantly from the true locations. (b) Visualizations of the learned posterior
distribution, qφ(x|y, θ), for each source are plotted as colored histograms and overlaid with stars (of
the same color) indicating the true source location.
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Figure 3: DeepGEM reconstructions significantly outperform baselines, and improve with
more sources and better Lθ prior models. Each row corresponds to the reconstructions obtained
from a single noisy observation of travel times, where the true Earth velocity is shown in Fig. 1(a).
Results shown are simulated using 20 surface receivers and a varying number of sources (9, 25,
and 49) in a uniform grid. Columns 3-6 show DeepGEM results obtained using different Lθ priors.
Note that results improve as the Lθ prior becomes closer to the true velocity structure, and as the
number of sources increases. As a reference, column 2 shows the velocity reconstruction obtained
using DeepGEM under fixed, perfectly known source locations. Columns 7-8 show results obtained
by the baseline approaches. The velocity reconstruction MSE is included in the top right of each
reconstruction. DeepGEM substantially outperforms both straight ray and MAPθ,x baselines. Note
that DeepGEM also sometimes outperforms the second column, where the source locations are
known; this is due to the fact that DeepGEM is sometimes able to absorb measurement error due to
its overparameterization. See the supplemental material for more examples.

4.2 DeepGEM setup for blind seismic tomography
For blind seismic tomography, we parameterize the forward model using a modification of EikoNet,
fθ(x, r), with unknown source location x and known receiver location r as inputs and y ≈ T (x, r),
the absolute travel time between x and r, as output. In order to solve Eqs. 5 and 6 for an updated
forward model, we must define priors p(x) and p(θ). The prior over source locations, p(x), is often
well defined, typically a Gaussian distribution N (x̄, σx) with a standard deviation of σx ∼ 2 km and
mean x̄.

We construct a prior over the forward model, p(θ), that encourages EikoNet to learn a velocity close
to Ṽ (s). Additionally, as discussed above, there are constraints specific to seismic tomography that
are not explicitly enforced through EikoNet’s architecture: (1) velocity reconstruction invariance
with respect to the source location, and (2) travel time symmetry between sources and receivers. We
augment the prior p(θ) to include these constraints, implemented as soft constraints:

log p(θ) = λθ

Lθ︷ ︸︸ ︷∑
r∈R,
s∈S

||Ṽ (s)− Vr(s)||2 +λV

LV︷ ︸︸ ︷∑
ri,rj∈R,
s∈S

∥∥Vri(s)− Vrj (s)∥∥2 +λT

LT︷ ︸︸ ︷∑
r∈R,
s∈S

‖T (s, r)− T (r, s)‖2 .

(7)

The velocity constraint is represented through LV and travel time constraint through LT , with
corresponding hyperparameters λV and λT . S is a set of points sampled uniformly from the region
of interest,R is the set of all receiver locations, and Vr(s) = ||∇sfθ(r, s)||−12 .

Implementation details: In our experiments we define a realistic prior over unknown source
locations as p(x) = N (x̄, σx), where x̄ ∼ N (x, σx) and σx = 2 km. We assume the measurements
y are sampled from a Gaussian distribution with mean ỹ – true travel times computed using the
package eikonalfm [29, 33] – and a realistic standard deviation of σy = 0.2 seconds. To simulate
real world passive tomography, we assume receivers are located only along the surface (the top edge
of the 2D image) of the region of interest, which is 20 km ×20 km, and sources can be anywhere
within the region of interest. Before DeepGEM optimization, we first initialize θ using maximum
likelihood estimation assuming x̄ is the true source location.
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9 0.52 ±
0.063

62.88 ±
21.77

25 0.42 ±
0.043

36.62 ±
4.93

49 0.44 ±
0.181

33.78 ±
4.56

100 0.27 ±
0.021

30.38 ±
1.43

Table 1: Velocity and source 
localization error on random 

source configurations

Figure 4: DeepGEM consistently recovers prominent features across various earthquake
source configurations. Row 2 shows DeepGEM results obtained using different random source
configurations, where the true Earth velocity is shown in Fig. 1(a). As a reference, row 1 shows the
velocity reconstruction obtained using DeepGEM under fixed, perfectly known source locations. As
can be seen by the table, both velocity and localization error decrease with an increasing number
of sources in the region of interest. Each mean and standard deviation is computed using 5 random
realizations of true source configurations.

The posterior distribution of the source locations, x, is estimated using a Real-NVP network Gφ(·)
with 16 affine coupling layers. An updated EikoNet (described in the supplemental material) has been
modified to parameterize fθ(x). This EikoNet is pretrained with samples from the prior p(x) as input
and the simulated travel time measurements as output. We use Adam as the optimizer [36] with a
batch size of 32 and an E-step learning rate of 1e-3 and M-step learning rate of 5e-5. Hyperparameters
(λT , λV , λθ) were empirically chosen by inspecting the loss on a grid search over hyperparameters.
Results presented have been run with 10 EM iterations, each with 800 “E”-step epochs and 2000
M-step epochs. Each DeepGEM model takes ∼6 hours on a NVIDIA Quatro RTX 5000.

4.3 Results

Comparison to Baseline Approaches: We compare results from DeepGEM to results obtained
using a baseline run by a seismologist. This iterative baseline alternates between source inversion
and straight ray tomography, and is the standard approach used for blind tomography. Further detail
on this baseline is provided in the supplemental material. The gradient model shown in Fig. 2 is used
to perform the initial source inversion for this baseline; nonetheless, we find that the solution quickly
diverges. Therefore, we rely on the expertise of the domain expert to decide when to terminate
the optimization. As seen in Fig. 3, DeepGEM consistently outperforms this human-in-the-loop
baseline across all source configurations. In Fig. 3 we also compare with a MAPθ,x solution. MAPθ,x
is consistently outperformed by the DeepGEM MAPθ approach across all source configurations.
Additional results highlighting the sensitivity of MAPθ,x to hyperparameters and initialization are
shown in the supplemental material.

Sensitivity to Lθ Prior Choice: We evaluate DeepGEM’s recovery of the true velocity structure
shown in Fig. 1 using one of three different Lθ priors shown in Fig. 2: homogeneous, gradient, and
layer, as well as Lθ = 0. The homogeneous model takes on value of 6.419 km/s, the average velocity
value of the true velocity structure. The gradient captures the increasing velocity as depth increases,
and the layer model represents the true model without the added anomaly. As shown in Fig. 3, the
mean squared error tends to decrease with the gradient and layer Lθ prior models, which are closer to
the true velocity structure.

Sensitivity to Source Configuration: We evaluate results with sources that are both uniformly
and randomly spaced throughout the region of interest. Improved performance is expected when
the number of sources is increased and/or when sources are well distributed. To better understand
DeepGEM’s performance we introduce an ablation, where the velocity structure is learned by training
fθ(·) with access to perfect source locations x (i.e., p(x) is a delta function). As is shown in Fig 3,
even when training with true source locations, the anomaly is not well resolved until ∼49 sources.
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100 Sources 961 Sources
source posterior

Meas. Noise:    No Yes Yes Yes
Yes No NoKnown Sources:    Yes

Figure 5: DeepGEM recovery with a single receiver. Velocity reconstructions shown in columns 3
and 5 demonstrate that DeepGEM is able to learn some of the true velocity features (see Fig. 1(a)),
even when limited to measurements from a single receiver. However, these reconstructions show clear
signs of overfitting to the measurement data. This is demonstrated by observing that the DeepGEM
reconstruction with perfectly known source locations is significantly better with a single receiver
when no measurement error is included on the measurements (comparing columns 1 and 2). Note
that the learned posterior in column 4 appears to be non-Gaussian, but not multimodal.
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Table 2: Velocity and source 
localization error on random 

velocity fields

Figure 6: Performance of DeepGEM recovery on random velocity fields. Ten random velocity
fields were drawn from a GRF-based distribution and used to simulate travel time measurements
with 20 receivers and 100 randomly placed sources. (left) Reconstructions obtained for 3 of these
configurations are shown. (right) A table lists the mean and standard deviation of velocity and source
error obtained across the ten models, each recovered using different Lθ priors.

Fig. 3 shows one realization of DeepGEM results obtained from different counts of uniformly spaced
sources. As expected, the MSE between the reconstructed and true velocity structure tends to
decrease as the number of sources increases. Fig. 4 shows results obtained using five randomly
generated source configurations, with 49 sources each. These results demonstrate that, although
the reconstructed velocity structure is somewhat sensitive to the underlying source configuration,
the primary features of the true velocity can still be recovered in all cases. Velocity and source
localization error obtained for different random configurations are shown in the accompanying table.

Sensitivity to Number of Receivers: In the case of a single receiver, there exists an entire ring of
source locations that result in the same travel time measurement. Fig. 5 contains results from this
challenging one-receiver setting using DeepGEM with/without measurement noise and with/without
known source locations. Since there is only one receiver, the velocity model is able to easily
overfit. However, perhaps surprisingly, artifacts are more severe when source locations are perfectly
constrained. These artifacts are caused by the velocity model overfitting to noise in the travel time
measurements, and are substantially reduced when noise-free travel time measurements are used.
Note that the recovered source location posterior qφ(x) obtained by the “E”-step is non-Gaussian.

Sensitivity to Velocity Structure: In Fig. 6, DeepGEM is tested on randomly generated velocity
fields, each generated from a Gaussian random field (GRF) described in the supplemental material.
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These results show that DeepGEM works well at recovering the primary features across a variety
of different velocity structures. As compared to when Lθ = 0, the Lθ gradient prior biases the
reconstruction towards smoother velocity structures. The accompanying table contains error statistics
for ten different randomly generated velocity fields.

5 Case study: blind deconvolution
We apply DeepGEM to the problem of blind deconvolution to further demonstrate the generality of
our approach. Blind deconvolution is a classic ill-posed imaging problem that aims to reconstruct
a sharp image from a blurry image with an unknown PSF [19, 14, 25, 21, 22, 20, 6, 1, 27]. Blurry
images, caused by handheld camera shake, can be modeled using a single spatially-invariant blur
kernel:

y = x ∗ kθ + ε for ε ∼ N (0, σ), (8)
where y is the blurry image, ∗ represents a 2D convolution, x is the true sharp image, kθ is the
spatially invariant blur kernel, and ε is additive Gaussian noise.

5.1 DeepGEM setup for blind deconvolution
For blind deconvolution, we parameterize the forward model fθ(·) using a deep network consisting of
multiple convolution layers without non-linear activation, as proposed in [3]. Multiple convolutional
layers without activation simply overparameterizes a linear blur kernel, which has been empirically
shown to produce multiple good minima that are easier to converge to. To ensure the blur kernel is
non-negative and volume preserving, we use a Softmax layer and normalize the kernel. For an n
layer network with weights θi for i = 1, ..., n, the resulting parameterized forward model is:

fθ(x) = x ∗ k̂θ = x ∗
[

Softmax(θ1 ∗ θ2 ∗ ...θn)

‖Softmax(θ1 ∗ θ2 ∗ ...θn)‖1

]
(9)

Measured Blurry Image True Sharp Image and
Measured Blur Kernel

Reconstructed Image
and Blur Kernel using 

DeepGEM

Reconstructed Image
using Measured Blur Kernel

Figure 7: DeepGEM results are comparable to inversion with known blur kernels for simple
Fashion MNIST images. Blurry measured images (column 1) are generated using the true sharp
image and blur kernel (shown in column 2). The deconvolved images obtained using the true blur
kernel are shown in column 3. Reconstructed deconvolved images and corresponding inferred blur
kernel from DeepGEM are shown in column 4.

Implementation details: We demonstrate DeepGEM using simple Total Variation (TV) regulariza-
tion in place of log p(x). We assume a Gaussian prior on the noise on the blurry measurements where
ε ∼ N (0, 0.01) as well as a sparsity prior on the reconstructed kernel through an `0.8 soft constraint.
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The posterior distribution of the sharp image, x, is estimated using a Real-NVP network Gφ(·) with
16 affine coupling layers. We use 5 convolution layers to parameterize kθ. We use Adam as the
optimizer [36] with a batch size of 64 and an E-step learning rate of 5e-4 and M-step learning rate of
1e-4. Hyperparameters, weights used for sparsity and TV priors, were empirically chosen by a grid
search over hyperparameters. Results presented have been run with 10 EM iterations, each with 400
“E”-step epochs and 400 M-step epochs, which takes ∼1 hour on a NVIDIA Tesla V100.

5.2 Results

In Fig. 7 we show results from DeepGEM on three different Fashion-MNIST [34] images. The
Fashion MNIST images are 64×64 pixels in size and each blur kernel is contained within 15×15
pixels. We choose to use images from Fashion-MNIST because they are compatible with the TV
prior used in place of log p(x). In contrast, other natural images such as images from [22] (which
were originally curated for deconvolution) are not compatible with this handcrafted prior. While this
highlights that handcrafted priors such as TV are often insufficient, we choose to leave this to future
work. Please refer to the supplemental material for more details about the performance of a TV prior
on different types of images.

The blurry images in the first column of Fig. 7 exhibit artifacts from the blur kernel in the form of
repeated features, caused by the bi-modal blur kernel. The images recovered via DeepGEM are much
sharper and are comparable to the images reconstructed with the known blur kernel. Additionally,
DeepGEM reconstructs blur kernels (i.e., kθ) that are similar to the true kernel shape, with two lobes
along the same diagonal. Note that even when there is perfect knowledge about the shape of the blur
kernel, detailed structures on the images are not recovered due to the TV prior.

6 Conclusions
In this paper we present DeepGEM, a deep probabilistic framework for tackling blind inverse
problems through estimation of the forward model. DeepGEM achieves strong performance in the
task of joint seismic tomography and earthquake source localization, substantially outperforming
standard approaches currently being used in seismology on synthetic data. The proposed framework
is flexible and can be applied to different applications that require estimation or fine tuning of forward
model parameters. We demonstrate this flexibility by also applying the approach to a simple, but
challenging, blind deconvolution problem. Future work includes applying this method to real seismic
data, extending to other applications, and incorporating data-driven priors. Our results highlight
the benefit of blending physically sound model-based techniques with learning machinery for blind
inverse problems.

Broader Impact

DeepGEM can be used to solve for a system’s model mismatch, which can then help improve
our understanding of complex physical systems. However, this tool is not trustworthy enough for
safety-critical systems. Nonetheless, this approach can benefit society through a better understanding
of fundamental science and advanced earthquake prediction models via seismic imaging.
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