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Abstract
Graph neural networks (GNNs) learn the repre-
sentation of graph-structured data, and their ex-
pressiveness can be further enhanced by inferring
node relations for propagation. Attention-based
GNNs infer neighbor importance to manipulate
the weight of its propagation. Despite their pop-
ularity, the discussion on deep graph attention
and its unique challenges has been limited. In
this work, we investigate some problematic phe-
nomena related to deep graph attention, includ-
ing vulnerability to over-smoothed features and
smooth cumulative attention. Through theoreti-
cal and empirical analyses, we show that various
attention-based GNNs suffer from these problems.
Motivated by our findings, we propose AERO-
GNN, a novel GNN architecture designed for
deep graph attention. AERO-GNN provably miti-
gates the proposed problems of deep graph atten-
tion, which is further empirically demonstrated
with (a) its adaptive and less smooth attention
functions and (b) higher performance at deep lay-
ers (up to 64). On 9 out of 12 node classification
benchmarks, AERO-GNN outperforms the base-
line GNNs, highlighting the advantages of deep
graph attention. Our code is available at https:
//github.com/syleeheal/AERO-GNN.

1. Introduction
Graph neural networks (GNNs) are a class of neural net-
works for representation learning on graph-structured data.
Recently, GNNs have been successfully applied to a wide
range of graph-related tasks, including social influence pre-
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diction (Qiu et al., 2018), traffic forecast (Derrow-Pinion
et al., 2021), physical system modeling (Sanchez-Gonzalez
et al., 2020), product recommendation (Wu et al., 2022),
and drug discovery (Stokes et al., 2020).

GNNs widely adopt message-passing frameworks, com-
posed of two main pillars: feature transformation and prop-
agation (a.k.a. neighborhood aggregation) (Wu et al., 2019;
Gilmer et al., 2017). Feature transformation updates node
features from previous layers’ features. Propagation in-
volves each node passing its own features to its neighbors,
and for each node, the passed-down neighbor features are ag-
gregated to update its own node features. In this framework,
a propagation layer determines the propagation weight for
each adjacent node pair, and each additional layer allows
nodes to propagate to one more hop of neighbors.

Attention-based GNNs aim to learn to propagate by infer-
ring the relational importance between node pairs. Graph
attention infers relational importance for node pairs. Among
many, GAT and its variants (Veličković et al., 2018; Wang
et al., 2019; Brody et al., 2021; Shi et al., 2021; Kim & Oh,
2021; Bo et al., 2021; Wang et al., 2021a; Yang et al., 2021;
He et al., 2021) learn edge attention. The edge-attention
models infer the importance, or weight, of each neighbor
w.r.t. each source node by applying an attention mechanism
between adjacent node pairs. During propagation, each
source node aggregates features from its neighbors based
on the inferred importance.

Another class of GNNs, which we call hop-attention (or
layer-attention) models, learns the relative importance of
each hop (Liu et al., 2020; Chien et al., 2021; Zhang et al.,
2022; Chanpuriya & Musco, 2022). Hop-attention models
apply attention coefficients at every propagation layer to
express the relative importance of a given hop in determin-
ing the final node features. Thereby, hop-attention models
learn which hops, among multi-hop neighbors, each source
node should attend to during propagation. Intuitively, edge-
attention models learn importance within each hop, and
hop-attention models learn importance of each hop.

Can the existing attention-based GNNs learn expressive at-
tention over deep layers? Prior research does not provide a
clear answer. While many studies report the over-smoothing
problem of node features at deep layers (Li et al., 2018;
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Chen et al., 2020a;b; Liu et al., 2020), they do not address
how it may relate to graph attention. Some works focus on
designing expressive graph attention layers (Brody et al.,
2021; Shi et al., 2021; Kim & Oh, 2021; Bo et al., 2021;
Yang et al., 2021; He et al., 2021), but their scope is limited
to shallow model depth. Even for attention-based GNNs
that generalize their performance over deep layers (Liu et al.,
2020; Wang et al., 2021a; Chien et al., 2021; Zhang et al.,
2022), they do not explicitly discuss properties related to
deep attention. Very recently, Zhao et al. (2023) explored the
relationship between model depth and attention function for
graph transformers. Their analysis, however, was confined
to the relationship between model depth and transformer-
style attention to substructures. In short, the theoretical
underpinnings to understand deep graph attention are under-
explored.

In this work, we investigate some problematic phenomena
related to deep graph attention. Through both theoretical and
empirical analyses, we show that the vulnerability to over-
smoothed features and smooth cumulative attention limit the
graph attention from becoming expressive over deep layers.
Specifically, several representative attention-based GNNs,
including GATv2 (Brody et al., 2021), FAGCN (Bo et al.,
2021), GPRGNN (Chien et al., 2021), and DAGNN (Liu
et al., 2020), suffer from these problems.

Motivated by our analyses, we propose a novel graph at-
tention architecture, Attentive dEep pROpagation-GNN
(AERO-GNN). We theoretically demonstrate that AERO-
GNN can mitigate the stated problems, which is further
elaborated empirically by AERO-GNN’s (a) adaptive and
less smooth attention functions and (b) higher performance
at deep layers (up to 64). On 9 out of 12 node classification
benchmarks, including both homophilic and heterophilic
graphs, AERO-GNN outperforms all the baselines, high-
lighting the advantages of deep graph attention.

In summary, our central contributions are two-fold:

1. Theoretical Findings. We formulate two theoretical
limitations of deep graph attention. AERO-GNN prov-
ably mitigates the problems, whereas the representative
attention-based GNNs inevitably suffer from them.

2. Empirical Findings. AERO-GNN shows superior
performance in node classification benchmarks. Also,
compared to the representative attention-based GNNs,
AERO-GNN learns more adaptive and less smooth
attention functions at deep layers.

2. Preliminaries

Graphs. Let G = (V,E) be a graph with node set V and
edge set E ⊆ (V

2
).1 Let n = ∣V ∣ and m = ∣E∣ denote the

1We assume undirected, unweighted graphs, but our theoretical

number of nodes and edges, resp. WLOG, we assume V =
[n] = {1,2, . . . , n}. Let A = A(G) ∈ {0,1}n×n denote the
adjacency matrix of G, where Aij = 1 iff (i, j) ∈ E, and we
use D = diag(d1, d2, . . . , dn) to denote the degree matrix of
G, where di is the degree of node i. Let X ∈ Rn×dx denote
the initial node feature matrix, where each node i ∈ V has
node feature Xi of dimension dx.

Message-Passing GNNs. Feature transformation and prop-
agation are the two main building blocks of message-passing
GNNs (Wu et al., 2019; Gilmer et al., 2017). Feature trans-
formation updates the features of each node based on the
node’s features of previous layers. A feature transformation
layer can be expressed as: H(k) = σ(H(k−1)W (k)),∀1 ≤
k ≤ kmax,2 where k denotes the index of each layer with
kmax being the total number of layers, H(k) ∈ Rn×dH is the
hidden node feature matrix at layer k, W (k) is the weight
matrix at layer k, and σ is an activation function.

On the other hand, a propagation layer passes node features
to its neighbors, and each node’s features are updated as
an aggregation of the features. Specifically, a propagation
layer can be expressed as follows: H(k) = ÃH(k−1),∀1 ≤
k ≤ kmax, where Ã = (D + I)−1/2(A + I)(D + I)−1/2 is the
symmetrically normalized adjacency matrix with self-loops.

Many GNNs fuse the two operations in one layer, such
that H(k) = σ(ÃH(k−1)W (k)) (Welling & Kipf, 2016;
Veličković et al., 2018; Chen et al., 2020b). Some others
use only propagation layers to update H(k), after obtaining
H(0) with feature transformation (Gasteiger et al., 2018; Liu
et al., 2020; Chien et al., 2021). Note that Ã determines the
magnitude in which each node’s features propagate to its
neighbors, and the number of propagation layers determines
the number of hops to propagate to.

Edge Attention. Edge-attention GNNs (e.g., GAT and its
variants) learn an edge-attention matrix A(k) = (α(k)ij ) ∈

Rn×n at each propagation layer (i.e., hop) k,3 where each
edge attention coefficient α(k)ij can be seen as the importance
of node j w.r.t node i at layer k. At each propagation layer,
the edge attention coefficients are used to weigh propagation
between each adjacent node pair.

Hop Attention. Hop-attention GNNs learn a hop-attention
matrix Γ(k) = diag(γ(k)1 , γ(k)2 , . . . , γ(k)n ) ∈ Rn×n at each
propagation layer k. With hop attention, different impor-
tance γ(k)i can be assigned at different layers k for every
node i. Typically,

Z(k) = ∑
k

ℓ=0 Γ
(ℓ)H(ℓ),∀1 ≤ k ≤ kmax, (1)

= ∑
k

ℓ=0 Γ
(ℓ)ÃℓH(0),∀1 ≤ k ≤ kmax, (2)

results can be easily extended to directed and/or weighted graphs.
2Usually, H(0) is a function on the initial features, i.e., X .
3Single-head attention is assumed for simplicity.
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Table 1: Attention Functions of the Attention-Based GNNs

Model Pre-normalized Edge Attention Normalized Edge Attention Hop Attention

GATv2 α̌(k)ij = exp((W
(k)
edge)

⊺σ(H(k−1)
i ∥H(k−1)

j )) α(k)ij = α̌
(k)
ij /∑j′∈N(i) α̌

(k)
ij′ γ(k)i = 1

FAGCN α̌(k)ij = tanh((W
(k)
edge)

⊺(Z(k−1)i ∥Z(k−1)j )) α(k)ij = α̌
(k)
ij /
√
didj γ(k)i = cγ ,∀k, i (*)

GPRGNN α̌(k)ij = 1 α(k)ij = 1/
√
didj γ(k)i = γ(k)j = ck;γ ,∀k (**)

DAGNN α̌(k)ij = 1 α(k)ij = 1/
√
didj γ(k)i = sigmoid(Whop

⊺H(k)
i ) (***)

(*) for FAGCN, cγ is a hyperparameter fixed before training and is identical for all k and i
(**) for GPRGNN, ck;γ is a learnable variable that can be different for different k, but is identical for all i given any fixed k
(***) for DAGNN, the same Whop is used for each layer

Table 2: Propagation of the Attention-Based GNNs

Model k-Layer Propagation Rephrased Propagation w.r.t T (k)’s

GATv2 H(k) = (∏
1
ℓ=kA

(ℓ))X(∏
k
ℓ′=1W

(ℓ′)) H(k) = T (k)X∏
k
ℓ=1W

(ℓ)

FAGCN Z(k) = (Γ + ΓA(k) + ΓA(k)A(k−1) +⋯ + Γ∏
1
ℓ=kA

(ℓ))H(0) (*) Z(k) = ∑
k
ℓ=0 T

(ℓ)H(0)

GPRGNN/DAGNN Z(k) = (Γ(0) + Γ(1)A+ Γ(2)A2 +⋯ + Γ(k)Ak)H(0) (**) Z(k) = ∑
k
ℓ=0 T

(ℓ)H(0)

(*) recall that for FAGCN, Γ(k) is identical for all k, and we use a simplified notation Γ to denote all Γ(k)’s
(**) recall that for GPRGNN and DAGNN, A(k) is identical for all k, and we use A to denote all A(k)’s (here, Ak is the k-th power of A)

where the sum of hidden feature matrix H(ℓ)’s up to layer k,
each weighted by the hop attention matrix Γ(ℓ), expresses
the layer-aggregated node feature matrix Z(k). Equation
(2) highlights that the hop attention matrix Γ(ℓ) can be seen
as learning weights of ℓ hop neighbors expressed in Ãℓ (A
similar analysis can be found in Dong et al. (2021a)).

3. Theoretical Analysis on Deep Attention
Can attention functions of the representative attention-based
GNNs remain expressive over deeper layers? Prior research
has suggested possible reasons for the performance degrada-
tion of deep GNNs, including the over-smoothing of node
features, over-squashing (Alon & Yahav, 2021), and over-
correlation (Jin et al., 2022). However, discussion dedicated
to theoretical limitations of deep graph attention has been
little. In this section, we formulate two theoretical limita-
tions of the representative attention-based GNNs concerning
their ability to remain expressive over deeper layers.

3.1. A Systematic Understanding of Graph Attention

A systematic understanding of graph attention, integrating
edge and hop attention, would allow us to discuss vari-
ous attention-based GNNs and their theoretical limitations
within the same framework.

Cumulative Attention. We have observed that edge and
hop attention achieve the same goal (i.e., inferring the rela-
tional importance between node pairs), but from two differ-
ent perspectives. Consequently, they both learn weights in
which each node’s features propagate to its neighbors. This
observation motivates us to integrate edge and hop attention
under the same umbrella. To this end, we propose a concept
of cumulative attention matrix, denoted by T (k), which in-
tuitively represents attention between all node pairs within

k hops (or equivalently, at layer k) that considers both edge
and hop attentions.

Formally, given any kmax, for each 0 ≤ k ≤ kmax,

T (k) = Γ(k)∏
1

ℓ=kA
(ℓ), (3)

where T (0) = Γ(0).4

Rephrased Propagation w.r.t T (k)’s. Here, we discuss
various representative attention-based GNNs (spec., GATv2,
FAGCN, GPRGNN, and DAGNN). We detail their attention
functions in Table 1. Those models are used throughout our
theoretical analyses and empirical evaluation.

GATv2 and FAGCN learn edge attention α(k)ij . GATv2 uses
hidden features (Hi∥Hj), whereas FAGCN layer-aggregated
features (Zi∥Zj), in computing each edge attention coeffi-
cient α(k)ij . Notably, their α(k)ij have different bounds, such
that GATv2’s α(k)ij ∈ (0,1) and FAGCN’s α(k)ij ∈ (−1,1).
They do not learn hop attention coefficients, which can be
expressed as a constant (1 for GATv2 and cγ for FAGCN).

On the other hand, GPRGNN and DAGNN learn hop
attention γ(k)i . GPRGNN’s hop attention is not explic-
itly bounded and, thus, can learn negative hop attention
γ(k)i . While γ(k)i ∈ (0,1) for DAGNN, it learns node-
adaptive hop attention. Neither GPRGNN nor DAGNN
learns nontrivial edge attention, and their edge attention
coefficients are equivalently degree-normalized constants,
i.e., α(k)ij = 1/

√
didj ,∀i, j, k.

The discussed GNNs consist of a representative and diverse
set of attention functions, yet we can succinctly rephrase
them w.r.t T (k) (see Table 2).5

4For FAGCN, T (k) = Γ(k)∏kmax−k+1
ℓ=kmax

A
(ℓ). However, in our

theoretical analyses, it is equivalent to Eq. (3) when kmax is fixed.
5FAGCN and GATv2’s propagation formulae are rewritten

from their original form. Refer to Appendix B for the details.
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3.2. Theoretical Problems of Deep Graph Attention

Two assumptions are used throughout our theoretical analy-
ses, and proper normalization and preprocessing may always
satisfy them in practice.

Assumption 1. The graph G is connected and non-bipartite,
and the initial node features in X are pairwise distinct (i.e.,
Xi ≠Xj ,∀i ≠ j ∈ V ) and finite (i.e., ∥Xi∥F < ∞,∀i ∈ V ).

Assumption 2. There exists a global constant Cparam > 0
such that, for each considered GNN model, each entry of
each parameter matrix or vector (e.g., W (k)’s) and each
entry of each intermediate variable (e.g., H(k)’s and Z(k)’s)
is bounded in [−Cparam,Cparam].

Problem 1: Vulnerability to Over-Smoothing. In the first
problem, we establish a connection between attention func-
tions6 and the node feature over-smoothing. Specifically,
we examine the vulnerability and resistance of attention
functions to over-smoothed node features. Informally, if
the pre-normalized edge attention coefficients α̌(k)ij ’s (resp.,
hop attention coefficients γ(k)i ’s) are always identical for
the node pairs (resp., nodes) with identical (over-smoothed)
hidden features, the attention function is vulnerable to over-
smoothing. 7 For simplicity, we use fatt = fatt(θ) to denote
(Ǎ,Γ), where θ denotes GNN parameters.

Definition 1. Given G = (V,E) and initial node features
X satisfying Assumption 1, suppose that H(k′)

i =H(k′)
i′ and

H(k′)
j = H(k′)

j′ holds (due to the over-smoothing of node
features) for some (i, j), (i′, j′) ∈ E and k′ ≥ 1. We say
that fatt is vulnerable to over-smoothing (V2OS), if ∀θ,
α̌(k

′+1)
ij = α̌(k

′+1)
i′j′ and γ(k

′)
i = γ(k

′)
i′ ; that fatt is weakly resis-

tant to over-smoothing (WR2OS), if ∃θ, α̌(k
′+1)

ij ≠ α̌(k
′+1)

i′j′

or γ(k
′)

i ≠ γ(k
′)

i′ ; and that fatt is strongly resistant to
over-smoothing (SR2OS), if ∃θ, α̌(k

′+1)
ij ≠ α̌(k

′+1)
i′j′ and

γ(k
′)

i ≠ γ(k
′)

i′ .

Remark 1. Definition 1 is practically significant. A GNN
with WR2OS/SR2OS fatt can possibly remain expressive,
even when some node features in intermediate layers begin
to over-smooth. An expressive fatt can mitigate widely
known problems of deep GNNs, including over-smoothing
and over-squashing.

Theorem 1. For GATv2, GPRGNN, and DAGNN, fatt is
V2OS; for FAGCN, fatt is WR2OS (but not SR2OS).

Proof. All the proofs are in Appendix A.

Problem 2: Smooth Cumulative Attention. If Problem 1
does not exist, such that the attention coefficients are non-

6We see attention matrices as functions here.
7We use such a definition using the equality of node features for

simplicity. See Appendix A.4 for a relaxed version of Definition 1.

trivial for any model depth, can the attention functions re-
main expressive over deeper layers? We argue not. For
the representative attention-based GNNs, we show that the
cumulative attention matrices T (k)’s become over-smoothed
over increasing layers, such that different nodes have atten-
tion close to each other, up to a positive scaling factor. This
is critically contrary to the goal of attention. Formally, we
define a smoothness score S ∶ Rn×n → R≥0 by

S(T ) = ∑(i,j)∈([n]
2
)

XXXXXXXXXXXX

T (k)i

∥T (k)i ∥ 1

−
T (k)j

∥T (k)j ∥1

XXXXXXXXXXXX1

/(
n

2
).8 (4)

S(⋅) is bounded, and a smaller S(T (k)) indicates that T (k)

is smoother. Specifically, when S(T (k)) = 0, all the rows of
T (k) become equivalent up to a positive scaling factor. See
Appendix A for more theoretical properties of S(⋅).

Theorem 2. Given G = (V,E) and X with Assump-
tions 1 and 2 satisfied, for GATv2, GPRGNN, and DAGNN,
limk→∞ S(T (k)) = 0; for FAGCN, limk→∞ T (k)ij = 0,∀i, j.

By Theorem 2, for the aforementioned attention-based
GNNs, S(T (k)) converges to 0 and loses expressiveness
as k goes to infinity. Importantly, in our proofs, we show
that problem 2 occurs without assuming problem 1.

Below, we provide some insights into the reason why the
GNNs without node-adaptive hop attention or negative at-
tention may suffer from the problem stated above.

Definition 2. Given G = (V,E), and i, j ∈ V , the set
of attention path between i and j at layer k, denoted as
P(k)(i, j), is defined as {(i = v0, v1, v2, . . . , vk−1, vk = j) ∶
(vl−1, vl) ∈ E,∀1 ≤ l ≤ k}, i.e., the set of all the paths
of length k from i to j in G.9 The degree of intersection
between two paths pv = (v0, v1, v2, . . . , vk−1, vk) and pu =

(u0, u1, u2, . . . , uk−1, uk), denoted by doi(v,u), is defined
as ∣{t ∶ 1 ≤ t ≤ k, vt−1 = ut−1, vt = ut}∣.

Remark 2. The intuition of Definition 2 is that we
can decompose each entry T (k)ij with respect to at-
tention paths from j to i. Specifically, T (k)ij =

γ(k)i ∑(j=v0,v1,...,vk=i)∈P(k)(j,i)∏
k
ℓ=1 α

(ℓ)
vℓ−1,vℓ

,∀i, j, k.

Lemma 1. Given G = (V,E) and initial node features
satisfying Assumption 1, i, j, x ∈ V , and any N1,N2 > 0,
there exists K such that ∣{(pi,pj) ∶ pi ∈ P

(k)(i, x),pj ∈

P(k)(j, x),doi(pi,pj) ≥ N1}∣ ≥ N2,∀k ≥K.

Proof. All the proofs are in Appendix A.

By Lemma 1 and Remark 2, the constituent terms of Tix

and Tjx increasingly intersect at deeper layers for any i, j, x.
8If Ti is a zero vector, we let Ti/ ∥Ti∥1 be a zero vector too.

The definition is similar to the smoothness metric defined in Liu
et al. (2020).

9Unlike simple paths, repeated nodes are allowed.
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In other words, bounds of fatt and growing degree of inter-
section in T (k) together can cause problem 2, irrespective of
fatt’s expressive power at each layer. This partially explains
why some GNNs without node-adaptive hop attention or
negative attention end up with a smooth cumulative attention
T (k). More details can be found in the proof of Theorem 2
in Appendix A.

While we focused on GATv2, which is a representative vari-
ant of GAT, in our theoretical analysis, our analysis can
be easily extended to other GAT variants, such as Super-
GAT (Kim & Oh, 2021) with a self-supervised loss term,
and CATs (He et al., 2021) further using structural features.
See Appendix A for more discussions on those variants.

4. Proposed Method: AERO-GNN
In this section, we introduce the proposed model, Attentive
dEep pROpagation-GNN (AERO-GNN). We present the
model overview and discuss its attention functions. Finally,
we show how AERO-GNN provably addresses the theo-
retical limitations, with a discussion on model complexity
(spec., number of parameters).

4.1. Model Overview

The feature transformation and propagation of AERO-GNN
consist of:

H(k)
=

⎧⎪⎪
⎨
⎪⎪⎩

MLP(X), if k = 0,
A(k)H(k−1), if 1 ≤ k ≤ kmax,

(5)

Z(k) = ∑
k

ℓ=0 Γ
(ℓ)H(ℓ),∀1 ≤ k ≤ kmax, (6)

Z∗ = σ(Z(kmax))W ∗, (7)

where MLP is a multi-layer perceptron for the feature trans-
formation, kmax is the total number of layers, W ∗ is a learn-
able weight matrix, Z∗ is the final output node features, and
σ = ELU (Clevert et al., 2016) is the activation function.

AERO-GNN computes the edge attention matrix A(k) and
the hop attention matrix Γ(k) with learnable parameters. The
propagation of AERO-GNN can also be written in terms of
the cumulative attention matrices T (k)’s in Eq. (3), like the
other attention-based GNNs (see Table 2). Specifically,

Z(k) = ∑
k

ℓ=0 T
(ℓ)H(0),∀1 ≤ k ≤ kmax. (8)

4.2. Using Layer-Aggregated Features

We design AERO-GNN to use the layer-aggregated features
Z(k) in computing both the edge attention A(k) and the hop
attention Γ(k) at each layer k to make it resistant to over-
smoothing. In Theorem 1, FAGCN is the only model that
is WR2OS (weakly resistant to over-smoothing), since it
uses Z(k)’s for computing its edge attention (see Table 1).

Even if the node features become over-smoothed at deep
layers, a GNN using layer-aggregated features Z(k) can
adjust the edge (and hop) attention coefficients based on
the cumulative information over multiple layers to allow
attention functions to be non-trivial.

However, the magnitude of Z(k) may increase as k increases,
as shown in Eq. (6), which may cause instability. We, thus,
utilize weight-decay (Chen et al., 2020b) to re-scale Z. For-
mally, the re-scaling is done by

⎧⎪⎪
⎨
⎪⎪⎩

λk = log(λ
k
+ 1 + ϵ)

Z̃(k) = λkZ
(k)

where λ > 0 is a hyperparameter, and ϵ > 0 is a small number
(we use ϵ = 10−6) ensuring that λk does not converge to 0.
We use Z̃(k) in the computation of both attention functions.

4.3. Attention Functions

Edge Attention. At every layer 1 ≤ k ≤ kmax, we compute
the pre-normalized edge attention Ǎ(k) = (α̌(k)ij ) and the
(normalized) edge attention A(k) = (α(k)ij ) as follows:

⎧⎪⎪
⎨
⎪⎪⎩

α̌(k)ij = softplus((W (k)
edge)

⊺σ(Z̃(k−1)i ∥Z̃(k−1)j ))

α(k)ij = α̌(k)ij /

√

∑j′∈N(i) α̌
(k)
ij′ ∑i′∈N(j) α̌

(k)
ji′

where W (k)
edge is a learnable weight vector, Z̃(k−1)i is the i-th

row of Z̃(k−1), and A(k) is symmetrically normalized.

In AERO-GNN, we use the symmetric normalization, in-
stead of the row-wise normalization used in GATv2, due to
its theoretical and empirical superiority (Wang et al., 2018;
2021b; He et al., 2020), especially w.r.t. training stabil-
ity. Softplus (Zheng et al., 2015) is used to positively map
edge attention, with two primary advantages over two other
mapping functions, exp and tanh. Compared to exp used
in GATv2, softplus has the higher computational stability
(Kleshchevnikov, 2020; Nbro, 2020). Note that the bound of
tanh, in addition to degree normalization, essentially makes
limk→∞ T (k)ij = 0,∀i, j, for FAGCN (see Theorem 2).

Hop Attention. At each layer 0 ≤ k ≤ kmax, we use H(k)

and Z̃(k−1) (for k ≥ 1) to compute the hop attention Γ(k):
⎧⎪⎪
⎨
⎪⎪⎩

γ(0)i = (W (0)
hop)

⊺σ(H(0)
i ) + b

(0)
hop

γ(k)i = (W (k)
hop)

⊺σ(H(k)
i ∣∣Z̃

(k−1)
i ) + b(k)hop,∀1 ≤ k ≤ kmax

where W (k)
hop is a learnable weight vector and bhop is a learn-

able bias scalar.

Motivated by Theorem 2, we use node-adaptive hop atten-
tion to alleviate the problem of “intersecting attention paths”
stated in Lemma 1, and we allow both positive and negative
hop attention coefficients to prevent S(T (k)) from converg-
ing to zero as k goes to infinity (note that γ(k)i ’s of the same
sign within the same layer k cannot change S(T (k))).
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Table 3: Node Classification Performance on Real-World Graphs
Dataset Chameleon Squirrel Actor Texas Cornell Wisconsin Computer Photo Wiki-CS Pubmed Citeseer Cora A.R.

Homophily 0.04 0.03 0.01 0.00 0.02 0.05 0.70 0.77 0.57 0.66 0.63 0.77

GCN 67.97 ± 2.5 53.33 ± 1.3 30.57 ± 0.7 65.65 ± 4.8 58.41 ± 3.3 62.02 ± 5.9 81.27 ± 1.4 90.24 ± 1.3 79.08 ± 0.5 79.54 ± 0.4 72.50 ± 0.5 83.15 ± 0.5 9.1
APPNP 53.04 ± 2.2 40.37 ± 1.5 35.49 ± 1.0 79.89 ± 4.2 80.16 ± 5.9 84.24 ± 4.6 81.27 ± 1.4 91.12 ± 1.2 79.05 ± 0.5 79.90 ± 0.3 73.06 ± 0.3 83.60 ± 1.3 7.8

GCN-II 60.38 ± 1.9 48.76 ± 2.4 35.77 ± 1.0 78.59 ± 6.6 78.84 ± 6.6 83.20 ± 4.7 84.24 ± 1.2 91.81 ± 0.9 79.28 ± 0.6 80.14 ± 0.6 73.20 ± 0.8 85.33 ± 0.5 5.5
A-DGN 69.63 ± 2.0 57.77 ± 1.9 36.41 ± 1.0 82.22 ± 4.8 83.14 ± 6.7 85.84 ± 4.0 83.70 ± 1.5 90.53 ± 1.3 79.11 ± 0.6 78.68 ± 0.6 70.16 ± 0.9 79.84 ± 0.9 6.4

GAT 68.01 ± 2.5 54.49 ± 1.7 30.36 ± 0.9 60.46 ± 6.2 58.22 ± 3.7 63.59 ± 6.1 84.46 ± 1.3 89.88 ± 1.1 79.44 ± 0.5 78.94 ± 0.4 71.89 ± 0.6 83.78 ± 0.5 8.5
GATv2 69.06 ± 2.2 57.67 ± 2.4 30.27 ± 0.8 60.32 ± 7.0 58.35 ± 3.8 61.94 ± 4.7 84.19 ± 1.2 89.87 ± 1.2 79.64 ± 0.5 79.12 ± 0.3 71.15 ± 1.2 83.88 ± 0.6 8.9

GATv2R 70.88 ± 1.9 61.23 ± 1.5 33.73 ± 0.9 60.68 ± 6.6 57.32 ± 4.5 60.61 ± 5.1 81.73 ± 2.2 88.71 ± 1.7 79.75 ± 0.6 78.28 ± 0.4 71.00 ± 0.8 82.42 ± 0.6 9.3
GT 69.34 ± 1.2 55.04 ± 1.9 36.29 ± 1.0 84.08 ± 5.6 80.00 ± 4.9 84.80 ± 4.3 84.38 ± 1.3 91.28 ± 1.1 79.93 ± 0.5 79.04 ± 0.5 70.16 ± 0.8 82.09 ± 0.7 5.6

FAGCN 60.98 ± 2.3 42.20 ± 1.8 35.67 ± 0.9 77.00 ± 7.7 78.32 ± 6.3 82.41 ± 3.8 82.79 ± 2.7 91.99 ± 1.0 79.27 ± 0.6 79.19 ± 0.4 71.55 ± 0.8 83.88 ± 0.5 7.5
DMP 63.79 ± 4.1 34.19 ± 7.6 28.30 ± 2.7 66.08 ± 7.0 56.41 ± 5.5 62.73 ± 4.5 70.58 ± 11.3 82.63 ± 4.1 56.41 ± 7.8 70.07 ± 4.1 59.12 ± 4.4 75.05 ± 3.8 12.8

MixHop 60.30 ± 2.1 41.05 ± 2.0 36.48 ± 1.2 77.73 ± 7.3 75.95 ± 5.7 82.12 ± 4.5 79.52 ± 2.1 89.45 ± 1.5 78.59 ± 0.7 80.10 ± 0.4 71.42 ± 0.9 81.61 ± 0.8 9.3
GPRGNN 66.92 ± 1.7 46.32 ± 1.5 35.58 ± 0.9 81.51 ± 6.6 76.86 ± 7.1 84.06 ± 5.2 85.82 ± 0.9 92.41 ± 0.7 79.67 ± 0.5 80.28 ± 0.4 71.59 ± 0.8 84.20 ± 0.5 5.2
DAGNN 54.99 ± 2.0 40.03 ± 1.4 33.69 ± 1.0 61.35 ± 6.1 63.89 ± 7.0 62.27 ± 4.2 85.83 ± 0.8 92.30 ± 0.7 79.31 ± 0.6 80.44 ± 0.5 73.16 ± 0.6 84.43 ± 0.5 7.2

AERO-GNN 71.58 ± 2.4 61.76 ± 2.4 36.57 ± 1.1 84.35 ± 5.2 81.24 ± 6.8 84.80 ± 3.3 86.69 ± 1.4 92.50 ± 0.7 79.95 ± 0.5 80.59 ± 0.5 73.20 ± 0.6 83.90 ± 0.5 1.4

• In each column, ∎ indicates ranking the first, and ∎ indicates ranking the second. A.R. denotes average ranking.

Importantly, b(k)hop should be initialized as 1s. This con-
tributes significantly to model training stability by biasing
the hop attention γ(k)i ’s to be initialized positive.

4.4. Theoretical Merits

We summarize below the theoretical merits of AERO-GNN.
First, AERO-GNN provably mitigates the problems of deep
graph attention stated in Section 3 (Theorems 1 and 2).

Theorem 3. For AERO-GNN, fatt is SR2OS (see Def. 1).

Theorem 4. Given G = (V,E) and X with Assumptions 1
and 2 satisfied, for AERO-GNN, ∀T (k) (spec., even if
S(T (k)) = 0), ∃θ such that S(T (k+1)) > 0.10

The number of parameters used by AERO-GNN is compa-
rable to, or even smaller than, those of the edge-attention
GNNs. We ignore the parameters used in computing the first
hidden features (H(0)) and those in the output layer, since
they are used in all GNN models. Thus, we only consider
the number of additional parameters. Analysis for more
models can be found in Appendix E.

Theorem 5. Given the dimension dH of hidden node fea-
tures and the number of layers kmax, for AERO-GNN
and FAGCN, the number of additional parameters is
Θ(kmaxdH); for GATv2, the number is Θ(kmaxd

2
H).

Proof. All the proofs are in Appendix A.

5. Experiments
In this section, we conduct experiments to demonstrate the
empirical strengths of AERO-GNN and elaborate on the
theoretical analyses.

10Recall that θ represents all the parameters in the GNN model.

5.1. Experimental Settings

Datasets. We use 12 node classification benchmark
datasets, among which 6 are homophilic and 6 are het-
erophilic (McPherson et al., 2001; Pei et al., 2020; Lim
et al., 2021a). In all the experiments, we use the publicly
available train-validation-test splits, unless otherwise speci-
fied. We use sparse-labeled training for homophilic graphs
and dense-labeled training for heterophilic graphs (small
and large proportions of train labels, respectively; refer to
Appendix C for details).

Baseline Methods. The baseline methods consist of vari-
ous representative attention-based GNNs, including both
edge-attention GNNs (GAT, GATv2, GATv2R, GT (Shi
et al., 2021), FAGCN, DMP (Yang et al., 2021))11 and hop-
attention GNNs (GPRGNN, DAGNN, MixHop (Abu-El-
Haija et al., 2019)). In addition to some simple GNNs
(GCN (Welling & Kipf, 2016), APPNP (Gasteiger et al.,
2018)), deep GNNs without attention also serve as base-
lines (GCN-II (Chen et al., 2020b), A-DGN (Gravina et al.,
2023)). See Appendix E and F for their details.

Experiment Details. The Adam optimizer (Kingma & Ba,
2015) is used to train the models, and the best parameters
are selected based on early stopping. In measuring model
performance (Section 5.2), we use 100 predetermined ran-
dom seeds and report the mean ± standard deviation (SD)
of classification accuracy over 100 trials. When analyzing
attention coefficient distribution (Section 5.3), attention
coefficients are averaged over 10 trials.

5.2. Node-Classification Performance

We evaluate the performance of each model on 12 real-world
node classification benchmarks.

11GATv2R is a GATv2 model with initial residual connection.
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Figure 1: Statistics of α(k)
ij

’s for each k, with kmax = 64.
Only AERO-GNN learns edge-, hop-, and graph-adaptive
edge attention over deep layers.

On Heterophilic Graphs. As described in Section 5.1,
dense-labeled training is used on heterophilic graphs, follow-
ing prior research. On heterophilic datasets, AERO-GNN
obtains significant and consistent performance gains com-
pared to the baseline models. Even in relatively small graphs
(e.g., texas, cornell, wisconsin), where three propagation
layers are enough to reach most nodes, AERO-GNN outper-
forms all the baseline attention-based GNNs. In other words,
even when the relative advantage of a deeper model is small,
AERO-GNN still maintains competitive performance. De-
spite being specifically designed to address the heterophily
problem, FAGCN, DMP, and GPRGNN are outperformed
by AERO-GNN.

On Homophilic Graphs. In line with the prior research,
sparse-labeled training is used for homophilic graphs. This
poses a distinct set of challenges from dense-labeled train-
ing in heterophilic graphs, especially for attention-based
GNNs. That is because, in homophilic graphs, the relative
importance of each neighbor may not vary as significantly
as it does in heterophilic graphs. Additionally, with a small
number of train labels, deep and complex models may prone
to overfitting. As a result, only a few models achieve strong
performance in both settings (GCN-II, GT, and GPRGNN
perform the best among the baselines). Despite such dif-
ficulties, AERO-GNN demonstrates strong performance,
ranking first in 5 out of the 6 homophilic datasets.

For further evaluation, we discuss AERO-GNN’s perfor-
mance with multi-head attention and with datasets proposed
by Platonov et al. (2023) in Appendix G, where AERO-GNN
still has the best average ranking among the competitors.
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Figure 2: Statistics of γ(k)
i

’s for each k, with kmax = 64.
Only AERO-GNN learns node-, hop-, and graph-adaptive
hop attention over deep layers.

5.3. Empirical Elaboration of the Theoretical Analysis

In this section, we empirically elaborate on the theoretical
limitations of the representative attention-based GNNs (The-
orems 1, 2) and show that AERO-GNN effectively mitigates
the problems (Theorems 3, 4). Specifically, compared to the
baselines, we show that AERO-GNN has

• edge/node-, hop-, and graph-adaptive attention function,

• less smooth and un-smoothing cumulative attention T (k),

• and higher performance at deep layers.

Here, we bring our focus back to GATv2, FAGCN,
GPRGNN, DAGNN, and AERO-GNN. 12

Statistics of the Attention Coefficients. According to The-
orems 1 and 3, only AERO-GNN would have both atten-
tion functions resistant to the over-smoothed node features.
While FAGCN would only have a resistant edge-attention
function, the attention coefficient distributions of the other
models are expected to shrink or remain stationary with the
increasing number of layers (when the over-smoothing of
node features is more likely to occur). To test the hypothe-
sis, we train 64 layers of each model and conduct post-hoc
analysis of their learned attention distributions.

First, we study the edge-attention coefficients α(k)ij ’s. For
each k, Figure 1 presents (a) the distribution of α(k)ij ’s
and (b) the Frobenius norm of the difference between
the attention coefficient at layer k and (k − 1), i.e.,

∥(α(k)ij − α
(k−1)
ij )ij∥F

=

√

∑i,j(α
(k)
ij − α

(k−1)
ij )2. 13 If the

12Training of vanilla GATv2 becomes unstable over deeper
layers. Thus, for a fair comparison, we use GATv2R instead in the
following sections.

13The layer index k (the x-axis) is reversed for GATv2R and
FAGCN. Refer to Appendix G.4. for rationales.
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distributions shrink or remain stationary over k for all
graphs, we have strong evidence that attention coefficients
are not working properly at deep layers.

For FAGCN, all the coefficients approach zero, and SDs
of GATv2’s attention coefficients remain stationary for all
graphs (see Figure 1(a)). Both FAGCN and GATv2’s at-
tention coefficients remain stationary at deep layers, with
near 0 difference between α(k)ij and α(k−1)ij at large k (see
Figure 1(b)).

Only AERO-GNN’s edge attention distributions do not
shrink or remain stationary over k. To elaborate, AERO-
GNN learns edge attention coefficients that are edge-
adaptive (high variances in Figure 1(a)), hop-adaptive (high
differences in Figure 1(b)), and graph-adaptive (diverse pat-
terns for different graphs in Figure 1(a)). The results for all
12 datasets are in Appendix G.

We now investigate hop-attention coefficients γ(k)i ’s. Fig-
ure 2(a) shows the mean value and (b) the SD of γ(k)i ’s,
for each layer k. Each figure respectively suggests how
hop-adaptive and node-adaptive γ(k)i ’s are.

Again, as expected, hop attention distributions of DAGNN
remain stationary over deep layers, and hence, they are less
adaptive to node, hop, or graph (see stationary values in
Figure 2(a) and the very small SD values in Figure 2(b)).
Since GPRGNN’s hop attention γ(k)i ’s are free parameters,
it learns hop-adaptive and graph-adaptive γ(k)i ’s regardless
of over-smoothing. However, they are not node-adaptive.

In stark contrast, hop attention coefficients of AERO-GNN
are node-adaptive (high SD in Figure 2(b)), hop-adaptive
(mean value changes over different layers in Figure 2(a)),
and graph-adaptive (diverse patterns for different graphs in
Figure 2(a) and (b)). The results for all 12 datasets are in
Appendix G.

Through this series of empirical analyses, we present
strong evidence that attention functions of the representative
attention-based GNNs, except for those of AERO-GNN,
are vulnerable to node feature over-smoothing and fail to
remain expressive over deep layers.

Cumulative Attention and Model Performance. Accord-
ing to Theorems 2 and 4, only AERO-GNN can avoid
completely-smoothed cumulative attention (i.e. S(T (k)) =
0) over deep layers, highlighting its capacity to learn mean-
ingful attention at any model depth. Here, we empirically
elaborate on the theoretical analysis.

Figure 3(a) shows the smoothness scores of cumulative
attention matrices S(T (k)). 14 AERO-GNN generally has
less smooth T (k) over deep layers. Notably, there often oc-

14Recall that a lower S(T (k)) indicates that the cumulative
attention T (k) is more smoothed
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Figure 3: The smoothness of T (k) and the model perfor-
mance. AERO-GNN has (a) less smoothed T (k) over deep
layers and (b) higher best performance achieved at a deeper
layer.

Table 4: Best Performing Layers Used in Table 3

Dataset CM SQ AT TX CN WC CP PT WK PM CS CR

GCN-II 8 4 4 4 4 4 4 32 4 16 32 64
A-DGN 16 32 32 2 32 2 8 8 16 8 16 4

GATv2R 16 16 16 8 2 2 4 4 2 4 2 2
FAGCN 2 2 6 7 2 7 7 8 3 8 4 4

GPRGNN 16 16 4 4 4 8 4 4 32 16 8 8
DAGNN 5 20 5 5 5 5 5 10 5 20 10 10

AERO-GNN 32 16 4 8 4 4 32 32 16 32 32 32

curs un-smoothing of T (k), such that S(T (k)) > S(T (k−1)),
only for AERO-GNN and FAGCN. 15 This phenomenon is
attributable to the use of negative attention in both mod-
els. However, S(T (k)) of FAGCN quickly converges to
0. These findings resonate with Theorem 4, showing that
AERO-GNN’s attention function does remain expressive
at deep layers. The results for all 12 datasets are in Ap-
pendix G.

Figure 3(b) illustrates the model performance at layer
k ∈ {2,4,8,16,32,64}. AERO-GNN generally achieves
better performance over deeper layers. Meanwhile, the per-
formance of the representative attention-based GNNs often
drops, even significantly, at deep layers. Table 4 further
shows that AERO-GNN generally achieves its best perfor-
mances at deeper layers than the attention-based GNNs.

In this section, we empirically evaluated the adaptiveness of
attention coefficients, smoothness of T (k), and performance
with depth for each model. This set of empirical observa-

15If S(T (k)) ≤ S(T (k−1)) always holds, then S(T (k)) is con-
vergent. See Corollary 1 in Appendix A.
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tions, in concert with the theoretical findings, indicate that
AERO-GNN indeed learns the most expressive deep graph
attention.

6. Discussion
Graph attention has had a significant impact on the research
and applications of GNNs. Many attention-based GNNs
have been designed, investigating how to better infer rela-
tions between node pairs. Some models introduced more
features or loss terms (Kim & Oh, 2021; Wang et al., 2019;
He et al., 2021), and some others relaxed their attentions to
include negative values (Bo et al., 2021; Chien et al., 2021;
Yang et al., 2021).

On the other hand, making GNNs deeper to enhance their
expressivity has been an important setback to GNN research.
A number of problems have been proposed to limit its ex-
pressiveness to increase over depth. Not to mention over-
smoothing, but also over-squashing and over-correlation
have been pointed out as possible problems in building deep
GNNs. As such, techniques that modulate propagation or
aggregation functions (Chamberlain et al., 2021; Gravina
et al., 2023; Li et al., 2020; Bodnar et al., 2022), residual
connection functions (Li et al., 2019; Chen et al., 2020b;
Li et al., 2021), hidden features (Zhou et al., 2020; Zhao &
Akoglu, 2020; Guo et al., 2023), or graph topology (Rong
et al., 2020; Chen et al., 2020a; Zeng et al., 2021; Topping
et al., 2022; Bodnar et al., 2022) have been applied to build
deeper GNNs.

In this work, we bridge the two research directions, address-
ing two underexplored questions: (a) what are the unique
challenges in deep graph attention, and (b) how can we
design provably more expressive deep graph attention? We
argue that the representative attention-based GNNs suffer
from the proposed set of problems, possibly on top of the
general problems in deep GNNs. Thus, we design AERO-
GNN to theoretically and empirically mitigate the problems.

Under a larger context, these findings extend prior literature
on limitations to deep attention in general. Specifically,
similar problems of deep attention smoothing have been
reported for transformers (Vaswani et al., 2017; Dong et al.,
2021b), in both natural language processing (Shi et al., 2022)
and computer vision (Gong et al., 2021; Zhou et al., 2021)
domains. We demonstrate that attention-based GNNs share
related, yet distinct, problems and propose a novel solution.
Hence, we expect this work will inspire future research on
deep attention and graph learning in various directions.

The generalizability of the present work is limited in that
linear propagation is assumed to define T (k) of GATs. Also,
we deliberately suppress non-linearity in the propagation
layers of AERO-GNN to focus on the ability to learn dy-
namic receptive fields, expressed in T (k). Still, it can be

a promising future work to add non-linear propagation to
AERO-GNN to address other challenges and applications to
more complex tasks.
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A. Proofs and Additional Theoretical Results
In this section, we provide proofs of the theoretical claims
in the main text and some additional theoretical results.

A.1. Regarding Problem 1

Proof of Theorem 1. We analyze Ã(k)’s and Γ(k)’s for each
considered GNN model.

GATv2. For GATv2, for all i, j, k,

α̃(k)ij = exp((W
(k)
edge)

⊺σ(H(k−1)
i ∣∣H(k−1)

j )),

and γ(k)i ≡ 1. It is easy to see that α̃(k)ij is totally determined
by H(k)

i and H(k)
j , and γ(k+1)i is constant, for all i, j. Thus,

if the conditions in Definition 1 hold, then for any fixed θ,
α̃(k)ij = α̃

(k)
i′j′ and γ(k+1)i = γ(k+1)i′ Hence, for GATv2, fatt is

V2OS.

GAT Variants. Several variants of GAT are worth mention-
ing. CATs (He et al., 2021) use structural features to com-
pute the attention coefficients at each layer. This enables
CATs to partially overcome the limitation of the original
GAT, and it is easy to see that fatt is WR2OS but not SR2OS
(since CATs only essentially use identical hop attention).
SuperGAT (Kim & Oh, 2021), another GAT variant, further
uses self-supervision for its attention function. However,
the attention function of SuperGAT is still completely de-
pendent on the node features in the current layer, and thus
for SuperGAT, fatt is V2OS as GATv2.

FAGCN. For FAGCN, for all i, j, k,

α̃(k)ij = tanh((W
(k)
edge)

⊺
(Z(k−1)i ∣∣Z(k−1)j )),

and γ(k)i ≡ γ0, for some constant γ0. If the conditions in
Definition 1 hold, then for any fixed θ, Since Xi ≠Xj ,∀i, j,
there exist W (1) (and W (2)) such that H(0)

i , H(0)
j , H(0)

i′ ,
H(0)

j′ are all distinct. H(0) is used to compute Z(k) for each
k, and Z(k) is used to compute A(k+1) for each k. Thus,
even if the conditions in Definition 1 hold, there still exists
θ such that α̃(k)ij ≠ α̃(k)i′j′ , but γ(k+1)i = γ(k+1)i′ . Hence, for
FAGCN, fatt is WR2OS.

GPRGNN. For GPRGNN, for all i, j, k, α̃(k)ij ≡ 1, and
γ(k)i ≡ γ0, for some learnable scalar γ0. Hence, it is easy to
see that for GPRGNN, fatt is V2OS.

DAGNN. For DAGNN, for all i, j, k, α̃(k)ij ≡ 1, and

γ(k)i = sigmoid((W (k)
hop)

⊺H(k)
i ).

With similar reasoning for GATv2, it is easy to see that for
DAGNN, fatt is also V2OS.

Proof of Theorem 3. We now prove how AERO-GNN miti-
gates problem 1.

AERO-GNN. For AERO-GNN, for all i, j and k > 0,

α̃(k)ij = softplus((W
(k)
edge)

⊺σ(Z̃(k−1)i ∣∣Z̃(k−1)j )),

and
γ(k)i = (W (k)

hop)
⊺σ(H(k)

i ∣∣Z̃
(k−1)
i ) + b(k)hop.

Since Xi ≠ Xj ,∀i, j, there exist W (1) (and W (2) when
W (2) is also used) such that H(0)

i , H(0)
j , H(0)

i′ , H(0)
j′ are

all distinct. H(0)
i is used to compute γ(0)i for each i. Γ(0)

is used to compute Z(k) for each k, and Z(k) is used to
compute Γ(k+1) for each k. Thus, even if the conditions in
Definition 1 hold, there still exists θ such that α̃(k)ij ≠ α̃

(k)
i′j′

and γ(k+1)i ≠ γ(k+1)i′ .

A.2. Regarding Problem 2

Lemma 2. S(T ) is bounded, ∀T ∈ Rn×n.

Proof. A lower bound 0 is straightforward. Regarding an
upper bound, for any T ,

S(T ) = ( ∑
i,j∈([n]

2
)

∥
Ti

∥Ti∥ 1
−

Tj

∥Tj∥1
∥

1

)/(
n

2
)

≤ ( ∑
i,j∈([n]

2
)

∥
Ti

∥Ti∥ 1
∥
1

+ ∥
Tj

∥Tj∥ 1
∥

1

)/(
n

2
)

≤ 2

Corollary 1. For an infinite series {Tk}
∞
k=0, if S(Tk+1) <

S(Tk),∀k, then S(Tk) is convergent, i.e., limk→∞ S(Tk)

exists and is finite.

Proof. It is straightforward by the monotone convergence
theorem.

Lemma 3. For a matrix T with at least one non-zero entry,
S(T ) = 0 if and only if rank(T ) ≤ 1.

Proof. It is easy to see that Ti/ ∥Ti∥1 are all identical for
all i, if rank(T ) ≤ 1; and ∃i ≠ j, Ti/ ∥Ti∥1 ≠ Tj/ ∥Tj∥1, if
rank(T ) ≥ 2.

Remark 3. Lemmas 2 and 3 also hold when we use other
norms in S(⋅).

Proof of Theorem 2. We analyze S(T (k)) as k → ∞ for
each model.

GATv2. For GATv2, for each k, Γ(k) = I and thus T (k) =

∏
k
ℓ=1A

(ℓ), where α(ℓ)ij =
ã
(ℓ)

ij

∑j′∈N(i) ã
(ℓ)

ij′

∈ (0,1),∀i, j (see Ta-

ble 1). Specifically, ∑j α
(ℓ)
ij = 1,∀i, ℓ, i.e., A(ℓ) is row-wise

stochastic, for each ℓ. Since the product of two row-wise
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stochastic matrices is again still row-wise stochastic, T (ℓ)

is also row-wise stochastic, for each ℓ. Fix any k, we have
T (k+1) = T (k)A(k+1), and

S(T (k+1)) = ∑
i,j

XXXXXXXXXXXX

T (k+1)i

∥T (k+1)i ∥
1

−
T (k+1)j

∥T (k+1)j ∥
1

XXXXXXXXXXXX1

= ∑
i,j

∥T (k+1)i − T (k+1)j ∥
1

= ∑
i,j

∑
x

∣T (k+1)ix − T (k+1)jx ∣

= ∑
i,j

∑
x

RRRRRRRRRRR

∑
y∈N(x)

T (k)iy A
(k+1)
yx − ∑

y∈N(x)
T (k)jy A

(k+1)
yx

RRRRRRRRRRR

= ∑
i,j

∑
x

RRRRRRRRRRR

∑
y∈N(x)

(T (k)iy − T
(k)
jy )A

(k+1)
yx

RRRRRRRRRRR

≤ ∑
i,j

∑
x

∑
y∈N(x)

∣T (k)iy − T
(k)
jy ∣ ∣A

(k+1)
yx ∣

= ∑
i,j

∑
x

∑
y∈N(x)

∣T (k)iy − T
(k)
jy ∣A

(k+1)
yx

= ∑
i,j

∑
y

∣T (k)iy − T
(k)
jy ∣ ∑

x∈N(y)
A
(k+1)
yx

= ∑
i,j

∑
y

∣T (k)iy − T
(k)
jy ∣ = S(T

(k)
),

where the inequality holds as equality if and only if T (k)i =

T (k)j ,∀i, j, which means S(T (k)) = 0 and thus S(T (k
′))

remains 0 for all k′ ≥ k. 16 Otherwise, the inequality holds
as a strict inequality, i.e., S(T (k+1)) < S(T (k)),∀k, which,
by Corollary 1, implies that S(T (k)) converges to a constant
as k goes to infinity. In conclusion, either S(T (k)),∀k ≥
k′ remains zero after some k′, or it strictly decreases and
converges and as k goes to infinity.

Moreover, by Theorem 3 in Chen et al. (2016), and As-
sumption 1 (specifically, G is connected and non-bipartite),
if there exists c′′ > 0 s.t. for all k, each nonzero en-
try of A(k) is at least c′′, then T (k) = ∏

k
ℓ=1A

(ℓ) con-
verges to a matrix with equal rows, which implies that
S(T (k)) converges to 0. Indeed, by Assumption 2, for
all i, j, k, α̃(k)ij = exp((W

(k)
edge)

⊺σ(H(k−1)
i ∣∣H(k−1)

j )), where
(W (k)

edge)
⊺σ(H(k−1)

i ∣∣H(k−1)
j ) ∈ [−nc2param, nc2param], and

thus each nonzero α(k)ij satisfies that

α(k)ij ≥
exp(−nc2param)

exp(−nc2param) + (n − 1) exp(nc
2
param)

.

We complete the proof for GATv2 by letting

c′′ =
exp(−nc2param)

exp(−nc2param) + (n − 1) exp(nc
2
param)

.

GAT Variants. The proof for GATv2 is mainly based on (a)
16Here, we ignore (/(n

2
)) in computing S(T (k)) for simplicity.

trivial hop attention function and (b) the row-wise stochastic-
ity introduced by the softmax-based normalization. Trivial
hop attention and softmax normalization scheme are also
used in other variants, including SuperGAT (Kim & Oh,
2021) and CATs (He et al., 2021). Therefore, for SuperGAT
and CATs, the conclusion is the same as for GATv2, i.e.,
limk→∞ S(T (k)) = 0.

FAGCN. For FAGCN, we have ∀i, j, k, α(k)ij = α̃
(k)
ij /
√
didj ,

where α̃(k)ij ∈ (−1,1) due to the usage of tanh(⋅) (see
Table 1), and Γ(k) (γk

i ) is a constant, and we let Γ (γ)
denote it. Let ∥⋅∥2 and ∥⋅∥F denote the spectral norm
and the Frobenius norm, respectively. For any fixed k0,
∥Z(k0)∥

2
≤ ∥Z(k0)∥

F
≤ n
√
cparam, and thus

α̃(k0+1)
ij ≤ tanh((W (k0+1)

edge )
⊺
(Z(k0)

i ∣∣Z(k0)
j )

≤ tanh(2
√
ncparam ∥Z

(k0)∥
2
)

≤ tanh(2
√
ncparamncparam)

= tanh(2n1.5c2param).

Therefore, the spectral norm of A(k0) is smaller than that
of csnÃ (see the proof for GPRGNN and DAGNN), where
csn = tanh(2n

1.5c2param). Specifically,

∥A
(k)∥

2
< ∥csnÃ∥2 ≤ csn ∥Ã∥2 ≤ csn,

which, by the submultiplicity of the spectral norm, gives
∥∏

k
ℓ=1A

(ℓ)∥
2
≤ cksn, and thus limk→∞ ∥∏

k
ℓ=1A

(ℓ)∥
2
= 0.

Since Γ(k) is bounded, limk→∞ ∥T
(k)∥

2
= 0, by which we

conclude that limk→∞ T (k)ij = 0,∀i, j, completing the proof
of FAGCN.

GPRGNN and DAGNN. For GPRGNN and DAGNN,
A(k) = Ã,∀k, where Ã = (D + I)−1/2(A + I)(D + I)−1/2,
and thus

T (k) = Γ(k)
1

∏
ℓ=k
A

= Γ(k)
1

∏
ℓ=k

Ã

= Γ(k)Ãk

= Γ(k)(D + I)−1/2((A + I)(D + I)−1)−k+1(A + I)(D + I)−1/2.

Since G is connected and non-bipartite, by the Ergodic theo-
rem on Markov chains, (D + I)−1/2((A+ I)(D + I)−1)−k+1

converges to a rank-one matrix (let PT denote this rank-one
matrix) as k →∞. Furthermore, since (A + I)(D + I)−1/2

is bounded for any given G, formally, ∀ϵ < 0,∃K >

0, k ≥ K ⇒ ∥Ãk − PT (A + I)(D + I)
−1/2∥ ≤ ϵ, where

rank(PT (A + I)(D + I)−1/2) ≤ rank(PT ) = 1. Since
S is continuous, and S(PT (A + I)(D + I)

−1/2) = 0 (see
Lemma 3), S(Ãk) converges to 0 as k →∞. Since Γ(k) is
diagonal and the signs of all entries are identical for both
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DAGNN and GPRGNN, S(Γ(k)Ãk) = S(Ãk), completing
the proof for GPRGNN and DAGNN.

Proof of Theorem 4. We now prove how AERO-GNN miti-
gates problem 2.

AERO-GNN. For AERO-GNN, fix any k, consider first
S(T̄ (k)), where T̄ (k) = ∏

k
ℓ=1A

(ℓ). If S(T̄ (k)) > 0, then
simply letting W (k)

hop be a zero vector and letting b(k)hop = 1

suffices, since in that case Γ(k) = I , and S(T (k)) =
S(∏

k
ℓ=1A

(ℓ)) > 0. Otherwise, if S(∏
k
ℓ=1A

(ℓ)) = 0, i.e.,
Ti/ ∥Ti∥1 = Tj/ ∥Tj∥1 ,∀i, j, by the formulae of Γ, we claim
that ∃θ s.t. γ(k)i γ(k)i′ < 0, for at least one pair i, j. This is true
since as shown in the proof of Theorem 4, we can find a pair
i, j such that σ(H(k)

i ∣∣Z̃
(k−1)
i ) ≠ σ(H(k)

j ∣∣Z̃
(k−1)
j ), and thus

we can find W (k)
hop and b(k)hop such that γ(k)i γ(k)i′ < 0. Specifi-

cally, WLOG, suppose that the t-th entry of σ(H(k)
i ∣∣Z̃

(k−1)
i )

and σ(H(k)
j ∣∣Z̃

(k−1)
j ) are different, then we can let W (k)

hop

be the unit vector with (W (k)
hop)t = 1 and all the other en-

tries being zero, and let b(k)hop = −((σ(H
(k)
i ∣∣Z̃

(k−1)
i ))t +

(σ(H(k)
j ∣∣Z̃

(k−1)
j ))t)/2. Thus,

S(T (k)) ≥

XXXXXXXXXXXX

γ(k)i Ti

∥γ(k)i Ti∥1

−
γ(k)i′ Tj

∥γ(k)i′ Tj∥1

XXXXXXXXXXXX

= 2∥
Ti

∥Ti∥1
∥ > 0,

completing the proof.17

Proof of Lemma 1. Since G is non-bipartite, it contains a
cycle of odd length. WLOG, suppose such a cycle c includes
a node y ∈ V (possibly, y ∈ {i, j, x}) and is of length 2s + 1
for some s ∈ N. Since G is connected, there exists a path
from i to y, one from j to y, and one from y to x. Let diy,
djy, and dyx be the length of the shortest path from i to y,
from j to y, and from y to x, respectively. WLOG, suppose
diy ≤ djy. Now, set K = N1 + 2sN2 + djy + dyx, and fix any
k ≥ K, since a length-s cycle includes y, there exists q ≤
djy + s such that there exist length-q walks wiy;q and wjy;q

from i to y and from j to y, respectively, and q + dyx ≡ k
(mod 2) (an additional cycle from y back to y via c can be
added to ensure this). Now, fix any neighbor z of x, for each
0 ≤ r ≤ N2−1, we can construct a pair of walks: it goes first
from i (resp., j) to y via wiy;q (resp., wjy;q), and then goes
via c for 2r rounds (2rs steps) back to y, and then goes to x
in dyx via the shortest path, and finally goes back and forth
between x and z until the length of the walk reaches k. The
degree of intersection between such a pair of walks is at
least k− q ≥K −djy − s ≥ (2s−1)N2 +dyx +N1 ≥ N1, and

17Moreover, since we use edge attention (compared to GPRGNN
and DAGNN), and we have control over the magnitude of Γ(k)

(compared to all the others), we can make sure that T (k) does not
converge to an all-zero matrix.

the number of such pairs is at least the number of r values,
which is N2, completing the proof.

A.3. Regarding the Number of Parameters

Proof of Theorem 5. For AERO-GNN, the additional pa-
rameters include W (k)

edge’s, W (k)
hop’s, and b(k)hop’s, where for

each k, W (k)
edge ∈ R2dH , W (k)

hop ∈ R2dH , and b(k)hop ∈ R. There-
fore, the number of additional parameters is kmax(4dH +

1) = Θ(kmaxdH).

For FAGCN, the additional parameters include W (k)
edge’s,

where for each k, W (k)
edge ∈ R2dH . Therefore, the number

of additional parameters is kmax(2dH) = Θ(kmaxdH).

For GATv2, the additional parameters include W (k)’s and
W (k)

edge’s, where for each k, W (k) ∈ RdH×dH and W (k)
edge ∈

R2dH . Therefore, the number of additional parameters is
kmax(d

2
H + 2dH) = Θ(kmaxd

2
H).

Discussions on the complexity of other baselines can be
found in Appendix E.

A.4. A Relaxed yet Equivalent Variant of Definition 1

In Definition 1 in the main text, we have used the condi-
tion on the identity of the features of several nodes. Such
a condition has been used for the ease and simplicity of
presentation. However, we acknowledge that exactly equal
node features are not common in practice, and thus, we
provide here a relaxed yet equivalent variant of Definition 1.

Definition 3 (A relaxed yet equivalent variant of Defi-
nition 1). Given G = (V,E) and initial node features
X satisfying Assumption 1, we say that fatt is vulnera-
ble to over-smoothing (V2OS), if given any ϵ > 0, there
exists ξ > 0, such that ∀θ, ∥α̌(k

′+1)
ij − α̌(k

′+1)
i′j′ ∥ ≤ ϵ and

∥γ(k
′)

i − γ(k
′)

i′ ∥ ≤ ϵ, for any (i, j), (i′, j′) ∈ E and k′ ≥ 1

with ∥H(k′)
x −H(k′)

y ∥ ≤ α, for each {x, y} ∈ ({i,j,i
′,j′}

2
);

we say that fatt is weakly resistant to over-smoothing
(WR2OS), if given any ϵ, ξ > 0 and any (i, j), (i′, j′) ∈ E
and k′ ≥ 1 with ∥H(k′)

x −H(k′)
y ∥ ≤ ξ, for each {x, y} ∈

(
{i,j,i′,j′}

2
), there exists θ, such that ∥α̌(k

′+1)
ij − α̌(k

′+1)
i′j′ ∥ > ϵ

or ∥γ(k
′)

i − γ(k
′)

i′ ∥ > ϵ; and we say that fatt is strongly resis-
tant to over-smoothing (SR2OS), if given any ϵ, ξ > 0 and
any (i, j), (i′, j′) ∈ E and k′ ≥ 1 with ∥H(k′)

x −H(k′)
y ∥ ≤ ξ,

for each {x, y} ∈ ({i,j,i
′,j′}

2
), there exists θ, such that

∥α̌(k
′+1)

ij − α̌(k
′+1)

i′j′ ∥ > ϵ and ∥γ(k
′)

i − γ(k
′)

i′ ∥ > ϵ.

Remark 4. With the above variant of Definition 1, Theo-
rems 1 and 3 still hold. We use Definition 1 in the main text
for ease and simplicity of presentation.
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Table 5: Node Classification Performance of GATs with and without Non-Linear Propagation
Dataset Chameleon Squirrel Actor Texas Cornell Wisconsin Computer Photo Wiki-CS Pubmed Citeseer Cora

Homophily 0.04 0.03 0.01 0.00 0.02 0.05 0.70 0.77 0.57 0.66 0.63 0.77

GATv2 69.06 ± 2.2 57.67 ± 2.4 30.27 ± 0.8 60.32 ± 7.0 58.35 ± 3.8 61.94 ± 4.7 84.19 ± 1.2 89.87 ± 1.2 79.64 ± 0.5 79.12 ± 0.3 71.15 ± 1.2 83.88 ± 0.6
GATv2 (Lin) 68.73 ± 2.0 57.54 ± 1.8 30.45 ± 1.0 60.81 ± 6.1 58.65 ± 4.8 60.20 ± 5.8 85.01 ± 0.8 90.02 ± 0.8 79.53 ± 0.5 79.19 ± 0.4 71.40 ± 1.0 83.87 ± 0.5

GATv2R 70.88 ± 1.9 61.23 ± 1.5 33.73 ± 0.9 60.68 ± 6.6 57.32 ± 4.5 60.61 ± 5.1 81.73 ± 2.2 88.71 ± 1.7 79.75 ± 0.6 78.28 ± 0.4 71.00 ± 0.8 82.42 ± 0.6
GATv2R (Lin) 70.92 ± 1.7 60.40 ± 1.6 33.67 ± 0.7 61.35 ± 7.2 58.92 ± 3.6 56.08 ± 5.8 83.13 ± 1.5 89.42 ± 1.1 79.68 ± 0.8 78.44 ± 0.4 71.36 ± 0.7 82.42 ± 0.5

GT 69.34 ± 1.2 55.04 ± 1.9 36.29 ± 1.0 84.08 ± 5.6 80.00 ± 4.9 84.80 ± 4.3 84.38 ± 1.3 91.28 ± 1.1 79.93 ± 0.5 79.04 ± 0.5 70.16 ± 0.8 82.09 ± 0.7
GT (Lin) 66.75 ± 1.4 49.46 ± 2.0 36.24 ± 0.9 84.59 ± 5.4 79.73 ± 4.9 83.33 ± 5.3 85.29 ± 1.2 90.58 ± 1.7 79.88 ± 0.5 78.93 ± 0.5 70.35 ± 0.6 81.97 ± 0.6

• (Lin) denotes the linear propagation version of the model.
• In each column, bold indicates higher performance between the two versions of the GATs.

B. Rephrased Propagation
In this section, we explain how we rephrase the propagation
formulae for GATv2 and FAGCN and obtain the formulae
in Table 2.

GATv2. Many prior studies on GNNs have dropped non-
linearity for their theoretical analyses (Wang et al., 2019; Li
et al., 2018; Ma et al., 2021; Baranwal et al., 2021; Liu et al.,
2020; Chien et al., 2021). In defining cumulative attention
T (k), we also remove GATv2’s non-linearity in the prop-
agation layers, while the non-linearity in computing edge
attention coefficients a(k)ij ’s is kept. The detailed rephrasing
is

H(k)
= σ(A(k)H(k−1)W (k)

) → A
(k)H(k−1)W (k)

We define GATv2’s T (k) from this rephrase, such that T (k) =
∏

1
ℓ=kA

(ℓ). 18

We claim that removing non-linearity in the propagation
layers may not significantly affect the performance and
expressive power of GATv2, especially in the context of
node classification. In fact, two theoretical works have
argued that non-linear propagation is not always beneficial
in the context of node classification:

• Wei et al. (2022) use the Contextual Stochastic Block
Model (CSBM) to show that non-linear propagation
and linear propagation return similar performance, ex-
cept when the node features are extremely informative.

• Wu et al. (2023) also use CSBM, and they show that
adding non-linearity after propagation does not im-
prove model performance.

One theoretical work has argued for the universality of linear
GNNs.

18Γ(k) is removed because it is the identity matrix for GATv2.
Recall that T (k) intuitively expresses attention between all node
pairs at layer k. Thus, the definition of cumulative attention T (k)

after rephrase assumes linear propagation, such that the attention
GATv2 expresses for k hop neighbors is equal to∏1

l=kA
(l)

• Wang & Zhang (2022) show that GNNs without non-
linearity are universal w.r.t. one-dimensional predic-
tion, if there are no multiple eigenvalues of graph
Laplacian or missing frequency components in node
features.

Some empirical evidence also exists in line with the theoret-
ical findings:

• Liu et al. (2020) report that the hidden node features
become smooth at a quicker rate for GCN (a non-linear
propagation model) than for DAGNN (a linear propa-
gation model).

• Zhang et al. (2022) argues with empirical evidence
that stacked non-linearity may relate to performance
degradation in deep GNNs.

• Moreover, many GNNs achieve their state-of-the-
art performance in node classification without non-
linearity in their propagation layers, such as APPNP,
GPRGNN, DAGNN, FAGCN, ASGC (Chanpuriya &
Musco, 2022), JacobiConv (Wang & Zhang, 2022),
and SlenderGNN (Yoo et al., 2022).

This does not mean that using non-linear propagation is
futile. However, we argue that removing non-linearity from
GATv2’s propagation layer may not significantly compro-
mise its performance and expressive power, especially in
the context of node classification. Finally, in Table 5, we
empirically evidence our claim by comparing the perfor-
mance of original GATs to the rephrased, linear propagating
GATs. We observe that GATs with linear propagation have
competitive performance.

FAGCN. The original propagation equations of FAGCN are
as follows:

H(0)
= σ(W (1)X)

Z(k) = ΓZ(0) +A(k)Z(k−1)

Z∗ =W (2)Z(k)
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Table 6: Statistics of the Benchmark Datasets

Dataset Chameleon Squirrel Actor Texas Cornell Wisconsin Computer Photo Wiki-CS Pubmed Citeseer Cora

# Nodes 2,277 5,201 7,600 183 183 251 13,752 7,650 11,701 19,717 3,327 2,708
# Edges 31,371 198,353 26,659 279 277 450 245,861 119,081 215,603 44,324 4,552 5,278

# Features 2,325 2,089 932 1,703 1,703 1,703 767 745 300 500 3,703 1,433
# Labels 5 5 5 5 5 5 10 8 10 3 6 7

Homophily 0.04 0.03 0.01 0.00 0.02 0.05 0.70 0.77 0.57 0.66 0.63 0.77
Split Type Fixed Fixed Fixed Fixed Fixed Fixed Random Random Fixed Fixed Fixed Fixed

Data Split (%) 48/32/20 48/32/20 48/32/20 48/32/20 48/32/20 48/32/20 2.5/2.5/95 2.5/2.5/95 5.0/15/50 0.3/2.5/5.0 5.2/18/37 3.6/15/30

We rephrase the above equations by

Z(k)

= ΓH(0)
+A

(k)Z(k−1)

= ΓH(0)
+A

(k)
(ΓH(0)

+A
(k−1)Z(k−2))

= ΓH(0)
+ ΓA(k)H(0)

+A
(k)
A
(k−1)Z(k−2))

= ΓH(0)
+ ΓA(k)H(0)

+A
(k)
A
(k−1)
(ΓH(0)

+A
(k−2)Z(k−3)))

= ⋯

= (Γ + ΓA(k) + ΓA(k)A(k−ℓ) +⋯ + Γ∏
1

ℓ=kA
(ℓ)
)H(0).

C. Benchmark Datasets
C.1. Dataset Description

We use 12 node classification benchmark datasets in our
experiments:

• The chameleon and squirrel datasets are webpage net-
works of Wikipedia (Pei et al., 2020; Rozemberczki
et al., 2021), where each node represents a webpage on
Wikipedia, and two nodes are adjacent if mutual links
exist between the two corresponding web pages. For
each node, the node features are informative nouns on
the corresponding webpage, and the node label repre-
sents the category of the average monthly traffic of the
corresponding webpage.

• The actor dataset is the actor-only induced subgraph
of a film-director-actor-writer network obtained from
Wikipedia webpages (Pei et al., 2020; Tang et al.,
2009), where each node represents an actor, and two
nodes are adjacent if the two corresponding actors ap-
pear on the same Wikipedia webpage. For each node,
the node features are derived from the keywords on the
Wikipedia webpage of the corresponding actor, and the
node label is determined by the words on the webpage.

• The texas, cornell, and wisconsin datasets are extracted
from the WebKB dataset (Pei et al., 2020), where each
node represents a webpage, and two nodes are adjacent
if a hyperlink between the two corresponding web-
pages. For each node, the node features are the bag-of-
words features of the corresponding webpage, and the
node label is the category of the webpage.

• The computer and photo datasets are Amazon co-
purchase networks (Shchur et al., 2018), where each
node represents a product, and two nodes are adjacent
if the two corresponding products are frequently pur-
chased together. For each node, the node features are
the bag-of-words features of the customer reviews of
the corresponding product, and the node label is the
category of the product.

• The wiki-cs dataset is a webpage network of
Wikipedia (Mernyei & Cangea, 2020), where each
node represents a Wikipedia webpage related to com-
puter science, and two nodes are adjacent if a hyperlink
exists between the two corresponding webpages. For
each node, the node features are the GloVe word em-
beddings of the corresponding webpage, and the node
label represents the article category of the webpage.

• The pubmed, citeseer, and cora datasets are citation
networks (Yang et al., 2016), where each node repre-
sents a research article, and two nodes are adjacent if a
citation exists between the two corresponding articles.
For each node, the node features are the bag-of-words
features of the corresponding article, and the node label
is the category of the research domain of the article.

Following Chien et al. (2021), we preprocess the directed
graphs among the datasets to be undirected, which is com-
monly done for node classification. For measuring the de-
gree of homophily of each dataset, we use the homophily
metric suggested by Lim et al. (2021b). In Table 6, we
present the basic statistics of the benchmark datasets after
preprocessing.

C.2. Train/Val/Test Split

Experiments are generally conducted under the most com-
monly used settings. Two different training schemes are
used: sparse- and dense-labeled training. Sparse- and dense-
labeled training, respectively, refer to having small and large
proportions of train labels. In line with the prior works, we
conducted experiments with sparse-labeled training for the
homophilic graphs (Welling & Kipf, 2016; Veličković et al.,
2018; Gasteiger et al., 2018; Liu et al., 2020) and dense-
labeled training for the heterophilic graphs (Pei et al., 2020;
Chien et al., 2021; Bo et al., 2021).
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Overall, we used publicly available splits. The public splits
of cora, citeseer, and pubmed were given by (Yang et al.,
2016), and wiki-cs by (Mernyei & Cangea, 2020). Since
computer and photo datasets do not have publicly available
splits, we follow the methodology of prior works (Chien
et al., 2021) and use a random (2.5%, 2.5%, 95%) split for
each trial. For heterophilic graphs, the public splits were
provided by Pei et al. (2020).

D. Hyperparameters
In this section, we detail the hyperparameter search space
of the 14 GNN models used in the experiments. Overall,
for each baseline model, we try to maintain the experimen-
tal settings and hyperparameters search spaces used in the
original paper.

Learning Rate and Weight Decay. For all the methods,
we set the learning rate as 0.01 for sparse-labeled train-
ing and 0.005 for dense-labeled training. For models with
separate decay weights for parameters in propagation and
feature transformation layers, we use WDprop and WDft to
denote each.

Hidden Dimension dH . We generally maintain the same
hidden dimension sizes for all models. For GAT, GATv2,
GAT-Res, and GT, we use 8 attention heads and set the
hidden dimension as 8, so that the total hidden dimension =
64. For FAGCN, we follow the original paper, setting the
hidden dimension = 16 for homophilic graphs and setting
the hidden dimension = 32 for heterophilic graphs. For
others, the hidden dimension is set to 64.

Number of Layers kmax. For APPNP and GPRGNN, the
number of propagation layers is set as 10, as proposed in
the original papers. For GCN, we use two layers. Mixhop
uses two dense linear layers, and we search for the best
number of propagation layers per linear layer. For AERO-
GNN, we use a two-layer MLP to obtain H(0) for dense-
labeled training, while a one-layer MLP is used for the
sparse-labeled training. For others, we search their best-
performing layer.

Dropout. For AERO-GNN, an additional dropout layer is
optionally added before the last linear layer to obtain Z∗

from Z(kmax), when doing so is helpful for the performance
(specifically, in actor, texas, photo, wiki-cs, citeseer, and
cora datasets).

Search Space. For each model, we choose the hyperparame-
ters with which the model returns the best mean performance
across 5 fixed random seeds. For the search spaces with a
combinatorial size of below 300, we use grid search. For
the search spaces consisting of at least 300 different combi-
nations, (including GATv2R, FAGCN, GPRGNN, GCN-II,
A-DGN, and AERO-GNN), we run 300 search trials using

a Bayesian optimization algorithm.

Below, we list the hyperparameter search space for each
model:

1. GCN:

• WD ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}
• dropout ∈ {0.5,0.6,0.7,0.8}
• L2 ∈ {0.0,5e − 4}

2. GAT, GATv2, GT, DMP:

• WD ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}
• dropout ∈ {0.5,0.6,0.7,0.8}
• kmax ∈ {2,3}

• L2 ∈ {0.0,5e − 4}

3. GATv2R:

• WD ∈ {1e-2, 5e-3, 1e-3, 5e-4, 1e-4}
• dropout ∈ {0.5,0.6,0.7,0.8}
• kmax ∈ {2,4,8,16,32}

• residual connection weight α ∈ {0.1,0.2,0.3,0.4,0.5}
• L2 ∈ {0.0,5e − 4}

4. FAGCN:

• WD ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}
• dropout ∈ {0.4,0.5,0.6,0.7,0.8}
• kmax ∈ {1,2,3,4,5,6,7,8}

• residual connection weight ϵ ∈ {0.1,0.2, ...,0.9,1.0}
• L2 ∈ {0.0,5e − 4}

5. APPNP:

• WD ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}
• dropout ∈ {0.5,0.6,0.7,0.8}
• L2 ∈ {0.0,5e − 4}
• return probability α ∈ {0.1,0.3,0.5,0.9}

6. GPRGNN:

• WD ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}
• dropout ∈ {0.5,0.6,0.7,0.8}
• kmax ∈ {4,8,16,32}

• L2 ∈ {0.0,5e − 4}
• return probability α ∈ {0.1,0.3,0.5,0.9}

7. DAGNN:

• WD ∈ {0,2e−2,1e−2,5e−3,1e−3,5e−4,1e−4,5e−
5,1e − 5}

• dropout ∈ {0.5,0.6,0.7,0.8}
• kmax ∈ {5,10,20}

• L2 ∈ {0.0,5e − 4}
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8. MixHop:

• WD ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}
• dropout ∈ {0.5,0.6,0.7,0.8}
• kmax ∈ {6,10}

19

• L2 ∈ {0.0,5e − 4}

9. GCN-II:

• WDft ∈ {1e−3,5e−4,1e−4,5e−5,1e−5,5e−6,1e−6}

• WDprop ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}

• dropout ∈ {0.5,0.6,0.7,0.8}
• kmax ∈ {4,8,16,32,64}

• residual connection weight α ∈ {0.1,0.2,0.3,0.4,0.5}
• weight decay λ ∈ {0.5,1.0,1.5}

• L2 ∈ {0.0,5e − 4}

10. A-DGN:

• WDft ∈ {1e−3,5e−4,1e−4,5e−5,1e−5,5e−6,1e−6}

• WDprop ∈ {1e − 2,5e − 3,1e − 3,5e − 4,1e − 4}

• dropout ∈ {0.0,0.3,0.5,0.7}
• kmax ∈ {2,4,8,16,32}

• discretization step ϵ ∈ {1,0.1,0.01,0.001,0.0001}

• diffusion strength λ ∈ {1,0.1,0.01,0.001,0.0001}

• L2 ∈ {0.0,5e − 4}

11. AERO-GNN:

• WDft ∈ {4e−2,2e−2,1e−2,5e−3,1e−3,5e−4,1e−4}

• WDprop ∈ {2e− 2,1e− 2,5e− 3,1e− 3,5e− 4,1e− 4}

• dropout ∈ {0.5,0.6,0.7,0.8}
• kmax ∈ {4,8,16,32}

20

• weight decay λ ∈ {0.25,0.5,1.0}

E. Model Complexity Analysis
In Theorem 5, we have discussed the number of parameters
for AERO-GNN, FAGCN, and GATv2. Below, we analyze
the model complexity for all the baselines. Recall that we
ignore the parameters used in computing the first hidden
features (H(0)) and those in the output layer, since they are
used in all GNN models. That is, we only consider the num-
ber of additional parameters other than those parameters.

We observe the number of additional parameters used in
AERO-GNN is comparable to, or even smaller than, those
in the other representative GNNs.

19kmax of Mixhop is the number of fully-connected layers (2)
× the number of propagation layers (3 or 5)

20AERO-GNN’s performance sometimes marginally increase
when kmax = 64, but it often saturates between kmax of 16 and
32. For efficient search, we did not include kmax = 64.

GCN and GCN-II. The additional parameters include
W (k)’s, where for each k, W (k) ∈ RdH×dH . Therefore, the
number of additional parameters is kmaxd

2
H = Θ(kmaxd

2
H).

A-DGN. The additional parameters include 2W ’s, where
each W ∈ RdH×dH . Therefore, the number of additional
parameters is 2d2

H = Θ(d
2
H).

GAT, GATv2, and GATv2R. The additional parameters in-
clude W (k)’s and W (k)

edge’s, where for each k, W (k) ∈

RdH×dH and W (k)
edge ∈ R2dH . Therefore, the number of addi-

tional parameters is kmaxd
2
H + kmax(2dH) = Θ(kmaxd

2
H).

GT. The additional parameters include W (k)
1 ’s, W (k)

2 ’s,
W (k)

3 ’s, and W (k)
4 ’s, where for each k, W (k) ∈ RdH×dH .

Therefore, the number of additional parameters is
kmax(4d

2
H) = Θ(kmaxd

2
H).

DMP. The additional parameters include W (k)’s and
W (k)

edge’s, where for each k, W (k) ∈ RdH×dH and W (k)
edge ∈

RdH×dH . Therefore, the number of additional parameters is
kmax(2d

2
H) = Θ(kmaxd

2
H).

FAGCN. The additional parameters include W (k)
edge’s, where

for each k, W (k)
edge ∈ R2dH . Therefore, the number of addi-

tional parameters is kmax(2dH) = Θ(kmaxdH).

APPNP. APPNP does not require additional parameters
after obtaining H(0). Therefore, the number of additional
parameters is 0.

DAGNN. The additional parameters include a Whop ∈ RdC ,
where dC = the number of labels. Therefore, the number of
additional parameters is dC = Θ(dC).

GPRGNN The number of additional parameters is
Θ(kmax) since at each layer, a constant number of parame-
ters are used to compute the attention coefficients.

AERO-GNN. The additional parameters include W (k)
edge’s,

W (k)
hop’s, and b(k)hop’s, where for each k, W (k)

edge ∈ R2dH , W (k)
hop ∈

R2dH , and b(k)hop ∈ R. Therefore, the number of additional
parameters is kmax(4dH + 1) = Θ(kmaxdH).

We conclude again that the number of additional parameters
used in AERO-GNN is comparable to, or even smaller than,
those in the other attention-based GNNs that use nontriv-
ial edge attention. Most baseline models use Θ(kmaxd

2
H)

additional parameters, while AERO-GNN and FAGCN use
Θ(kmaxdH) additional parameters.

F. Implementation Details
Here, we provide details about how the GNN models are
implemented.
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Table 7: AERO-GNN Performance with Multi-Head Attention

Dataset Chameleon Squirrel Actor Texas Cornell Wisconsin Computer Photo Wiki-CS Pubmed Citeseer Cora

Homophily 0.04 0.03 0.01 0.00 0.02 0.05 0.70 0.77 0.57 0.66 0.63 0.77

AERO-GNN (1-head) 71.58 ± 2.4 61.76 ± 2.4 36.57 ± 1.1 84.35 ± 5.2 81.24 ± 6.8 84.80 ± 3.3 86.69 ± 1.4 92.50 ± 0.7 79.96 ± 0.5 80.65 ± 0.5 73.20 ± 0.6 84.02 ± 0.5
AERO-GNN (4-head) 72.15 ± 1.7 61.50 ± 2.0 36.00 ± 1.3 82.78 ± 5.7 81.30 ± 7.2 82.98 ± 4.9 85.67 ± 1.4 92.50 ± 0.8 79.40 ± 0.5 80.53 ± 0.5 72.01 ± 1.2 83.93 ± 0.6

GAT, GATv2, FAGCN. We use official implementations
from PyTorch Geometric (Fey & Lenssen, 2019). The
dropout layer is applied to edge attention coefficients. The
same weight matrix W (k) is applied to obtain both the
source node and destination node features H(k)

i ,H(k)
j .

GATv2R. Following GCN-II and APPNP, we added an ini-
tial residual connection to GATv2. After obtaining H(0)

from the initial feature matrix X , H(0) is added to hidden
features of the next layers by residual weight ϵ. Formally,
GATv2R layer is defined as Z(k) = σ(((1 − ϵ)A(k)H(k) +

ϵH(0))W (k)).

GT. GT computes edge attention coefficients with a
transformer-like function. We used official implementation
from PyTorch Geometric. The dropout layer is applied to
edge attention coefficients. We do not use the gated function
β or Layer Normalization (Ba et al., 2016).

DMP. DMP computes vector edge attention coefficients,
instead of a scalar attention coefficient, for each node pair.
Then, it uses tanh to bound the edge attention coefficients,
without further normalization. Since no official implementa-
tion is made public, we use our own implementation. Specif-
ically, we used the DMP-1-Sum variant, where the neighbor
information is sum-aggregated.

MixHop. MixHop concatenates the hidden feature H(k)’s
of different hops, which can be seen as a (simplified) form
of hop attention. Simply put, each feature transformation
layer comes after the concatenation of node features from
multiple propagation layers. We used the implementation
of MixHop from Lim et al. (2021a).

GPRGNN. PageRank initialization is used for the hop at-
tention coefficients γ(k)i ’s. As originally implemented, we
do not apply optimizer weight decay for the hop attention
γ(k)i ’s.

GCN-II. We use official implementations from PyTorch
Geometric. GCN-II version with the shared weight matrix
W (k) for initial and smoothed node feature (H(0) and H(k))
is chosen.

A-DGN. We use official implementations from PyTorch
Geometric. We used tanh activation and GCN layer as the
message passing function.

Table 8: Node Classification Performance on the Filtered Datasets

Dataset Chameleon(F) Squirrel(F)

Homophily 0.04 0.04

GCN 43.29 ± 3.8 41.30 ± 1.9
APPNP 40.45 ± 3.1 39.18 ± 1.9

GCN-II 43.01 ± 3.9 42.96 ± 2.6
A-DGN 46.60 ± 3.8 44.70 ± 2.1

GAT 41.06 ± 3.6 39.34 ± 1.9
GATv2 42.26 ± 2.9 37.93 ± 2.3

GATv2R 41.38 ± 3.1 39.57 ± 1.7
GT 40.94 ± 3.2 39.28 ± 1.9

FAGCN 46.14 ± 4.4 43.25 ± 2.2
DMP 41.45 ± 4.6 41.28 ± 2.2

MixHop 41.25 ± 4.2 39.44 ± 2.2
GPRGNN 40.60 ± 3.3 40.62 ± 2.1
DAGNN 40.30 ± 3.3 37.13 ± 2.0

AERO-GNN 43.30 ± 3.6 46.23 ± 2.2

G. Additional Experiments
G.1. Generalization of AERO-GNN to Multi-Heads.

We generalize AERO-GNN for multi-head attention by mod-
ifying the dimension of the attention functions. After ob-
taining H(0) ∈ Rn×η×dH with an MLP, where η denotes the
number of attention heads, dimension of attention weights
are modified to W (k)

edge ∈ Rη×2dH and W (k)
hop ∈ Rη×2dH . Sub-

sequently, α(k)ij , γ(k)i ∈ Rη and H(k), Z(k) ∈ Rn×η×dH . At
kmax, the multi-headed node features are concatenated to
obtain the final node feature Z(kmax) ∈ Rn×(η×dH).

We set the hidden dimension to be 16, with 4 attention heads.
Consistent with the reports from Brody et al. (2021), we do
not find multi-head attention to be always beneficial, while
it occasionally improves performance. Refer to Table 7 for
details about performance with multi-head attention.

G.2. Datasets Proposed in Platonov et al. (2023).

Recently, Platonov et al. (2023) argued that chameleon
and squirrel datasets may have duplicate nodes and, con-
sequently, train-test leakage problem. Therefore, they pro-
posed to filter their duplicates for node classification. For a
comprehensive evaluation, we conduct node classification
on the filtered datasets (Table 8). The same experimental
settings are maintained.

Consistent with the findings from Platonov et al. (2023),
model performance drops significantly in the filtered
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Figure 4: The smoothness of T (k) for each k with kmax =

64, for all 12 datasets.

datasets. Here, A-DGN performs the best, while AERO-
GNN ranks second. It is still worth noting that AERO-GNN
has the best average ranking among the attention-based
GNNs.

G.3. Empirical Evaluation of Cumulative Attention.

As an extension of section 5.3, analyses of cumulative
attention T (k) for all 12 datasets are provided in Figure
4. Overall, the results are consistent with what is shown
in Section 5.3, and hence, we draw the same conclusions.
AERO-GNN has consistently less smooth cumulative atten-
tion T (k) and often un-smoothes it.

G.4. Empirical Analysis of Attention Coefficients.

As an extension of section 5.3, analyses of attention co-
efficients for all 12 datasets are provided in Figure 5 and
6. Overall, the results are consistent with what is shown in
section 5.3, and hence, we draw the same conclusions.

Besides, for Figure 1 and 5, it is noteworthy that we reversed
layer index k (the x-axis) for GATv2R and FAGCN. Specifi-
cally, due to their initial residual connection, the two models
have T (k) = Γ(k)∏

kmax−k+1
ℓ=kmax

A(ℓ), while other models have
T (k) = Γ(k)∏

1
ℓ=kA

(ℓ). That is, for the two models, there is
an inverse relationship between the layer index k and the
corresponding hop that the attention coefficients learn to
propagate (recall that T (k) expresses attention between all
node pairs within k hops).

1. GATv2:

• Fig. 5 (a): Distributions of α(k)ij ’s remain stationary
across layers k’s and similar across different graphs
(not edge-, graph-adaptive).

• Fig. 5 (b): Differences between α(k)ij ’s and α(k−1)ij ’s
drop significantly to near 0 at large k for some datasets
(not hop-adaptive).

2. FAGCN:

• Fig. 5 (a): Distributions of α(k)ij ’s (Fig. 5 (a)) shrink
near 0 at large k for all but chameleon dataset (learning
failure).

• Fig. 5 (b): Differences between α(k)ij ’s and α(k−1)ij ’s
(Fig. 5 (b)) drop significantly to near 0 at large k for
some datasets (not hop-adaptive).

3. GRPGNN:

• Fig. 6 (a): Means of γ(k)i ’s are different for different
hops and graphs (hop-, graph-adaptive).

• Fig. 6 (b): Standard deviations of γ(k)i ’s are always 0
(not node-adaptive).

4. DAGNN:

• Fig. 6 (a): Means of γ(k)i ’s remain stationary across
layers k and graphs (not hop-, graph-adaptive).

• Fig. 6 (b): Standard deviations of γ(k)i ’s are always
very small (not node-adaptive).

5. AERO-GNN:

• Fig. 5 (a): Distributions of α(k)ij ’s change across lay-
ers k and are different across different graphs (edge-,
graph-adaptive).

• Fig. 5 (b): Differences between α(k)ij ’s and α(k−1)ij ’s
never drop significantly near 0. (hop-adaptive)

• Fig. 6 (a): Means of γ(k)i ’s are different for different
hops and graphs (hop-, graph-adaptive).

• Fig. 6 (b): Standard deviations of γ(k)i ’s are almost
always high and have different distributions across dif-
ferent graphs (node-, graph-adaptive).

Again, we claim that only the attention function of AERO-
GNN can remain adaptive to edge/node, hop, and graph at
deep layers.
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for all 12 datasets.
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