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Abstract001

Despite their impressive generalization capabil-002
ities, instruction-tuned Large Language Mod-003
els often underperform on text classification004
benchmarks. We introduce SALSA, a coher-005
ent pipeline that combines structured prompt-006
ing, class-to-token mapping, and parameter-007
efficient fine-tuning, thereby avoiding cold-008
start training. Each class label is mapped to009
a distinct output token, and prompts are con-010
structed to elicit a single-token response. Dur-011
ing inference, the model’s output is projected012
only onto the logits of the relevant class tokens,013
enabling efficient and accurate classification in014
a single forward pass. SALSA achieves state-015
of-the-art results across diverse benchmarks,016
demonstrating its robustness and scalability for017
LLM-based classification applications.018

1 Introduction019

Text classification is fundamental in natural lan-020

guage processing (NLP), underpinning applications021

such as spam detection, sentiment analysis, dia-022

logue safety, and content moderation. Traditional023

methods involving handcrafted rules and features024

were limited by scalability and labor intensity. The025

emergence of deep learning transformed the field026

by enabling automated feature extraction through027

models such as word2vec (Mikolov et al., 2013),028

ELMo (Peters et al., 2018), and transformer-based029

architectures such as BERT (Devlin et al., 2019)030

and GPT (Brown et al., 2020), which deliver excep-031

tional performance.032

With the advent of Large Language Models033

(LLMs), particularly open-ended generative mod-034

els, the capabilities of NLP systems have expanded035

significantly. These models, pre-trained on exten-036

sive corpora, encapsulate a wealth of transferable037

knowledge that can be leveraged for diverse down-038

stream tasks, including text classification. Despite039

this, the effective adaptation of open-ended genera-040

tive LLMs for classification still poses challenges,041

requiring efficient input representation and fine- 042

tuning strategies. 043

Recent methods commonly utilize chain-of- 044

thought (CoT) prompting (Wei et al., 2022), effec- 045

tive for reasoning, but computationally inefficient 046

for classification. Such approaches also neglect 047

valuable information in output distribution. In con- 048

trast, discriminative approaches (e.g., Pawar et al., 049

2024) remain underexplored. 050

In this paper, we introduce SALSA (Single-pass 051

Autoregressive LLM Structured Classification), a 052

method that adapts instruction-tuned, decoder-only 053

LLMs for text classification. SALSA integrates 054

structured prompt construction, targeted logit anal- 055

ysis, and fine-tuning into a unified pipeline. Its 056

prompt-driven design enables strong zero-shot per- 057

formance, providing a favorable initialization for 058

subsequent tuning. Though built for generation, 059

decoder-only LLMs can act as effective classi- 060

fiers—matching or exceeding state-of-the-art re- 061

sults across benchmarks. By relying on a single 062

forward pass, SALSA also offers a more efficient 063

alternative to generation-based methods. 064

2 Background 065

Early NLP approaches used handcrafted features, 066

deep learning then introduced RNNs and CNNs, 067

improving classification (Kim, 2014). Transformer- 068

based models, introduced by Vaswani et al. 069

(Vaswani et al., 2017), revolutionized NLP by uti- 070

lizing self-attention mechanisms for contextualized 071

embeddings. Models like BERT represented a 072

major leap forward by introducing bidirectional 073

context understanding through unsupervised pre- 074

training on large-scale corpora. Autoregressive 075

transformer models like XLNet (Yang et al., 2019) 076

demonstrated the benefits of autoregressive pre- 077

training, outperforming traditional methods in clas- 078

sification tasks. 079

It has since been shown that large language mod- 080
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els implicitly encode world knowledge, which can081

be extracted via their output logits (Petroni et al.,082

2019). Reformulating cloze-style tasks as multiple-083

choice classification has proven effective (Robin-084

son et al., 2022), but the reliability of such ap-085

proaches is highly sensitive to prompt structure086

(Cao et al., 2021).087

Instruction tuning was a key breakthrough in088

demonstrating that language models can general-089

ize across tasks when aligned with task-specific090

instructions (Wei et al., 2021). Building on this in-091

sight, decoder-only LLMs such as GPT (Brown092

et al., 2020), LLaMA (Touvron et al., 2023;093

Grattafiori et al., 2024), and Gemma (Team et al.,094

2024) have redefined the field, supporting zero-shot095

and in-context learning with strong generalization096

capabilities across a wide range of NLP tasks.097

Parameter-efficient methods like BitFit (Ben Za-098

ken et al., 2022) and Low-Rank Adaptation, LoRA099

(Hu et al., 2021), further limit overfitting by reduc-100

ing the number of trainable parameters, ensuring101

stable fine-tuning especially in low-data scenar-102

ios. They also enable cost-effective deployment103

across tasks, requiring only minimal parameter104

swaps while leaving the base model intact.105

When comparing results, fine-tuned encoder-106

based LLMs have achieved better performance in107

classification tasks, such as in the GLUE bench-108

mark (Wang et al., 2018). Surprisingly, the much109

larger instruction decoder-only LLMs, which often110

outperform encoder-based LLMs in several tasks,111

generally fail to achieve competitive classification112

results (Bucher and Martini, 2024).113

Our work aims to bridge the gap between the114

potential of instruction-decoder-only LLMs and the115

performance of classification tasks, both in terms116

of quality and efficiency.117

3 Method118

SALSA leverages the internal knowledge of LLMs119

by using their output estimated distribution to per-120

form classification in a single forward pass per121

query. Our method employs LoRA for efficient pa-122

rameter updates and knowledge exposure, allowing123

SALSA to deliver competitive performance.124

Prompt Construction. We design a structured125

instruction prompt that encapsulates the task. The126

prompt first provides a clear task description, then127

maps each class to a unique single-token represen-128

tation, and finally specifies the expected answer for-129

mat, including fixed prefix and suffix elements. A130

structured response containing a placeholder token 131

is appended to complete the prompt. This process 132

is illustrated in Figure 1. A detailed example is 133

provided in A.4 134

Forward Pass, Filtering, and Classification. 135

We perform a single forward pass through the 136

LLM to extract the logits for the placeholder token, 137

which represent the model’s predictions. These log- 138

its are then filtered based on the prompt’s mapping 139

and normalized via softmax to yield an estimated 140

probability distribution over the classes. The final 141

prediction corresponds to the class with the highest 142

probability. 143

Training. We optimize our model using a 144

backpropagation-based procedure (see A.2). In 145

particular, we employ LoRA in conjunction with a 146

cross-entropy loss function. The loss is defined as 147

follows: 148

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(P̂i,c) (1) 149

where N is the number of samples, C is the number 150

of classes, yi,c represents the ground truth labels, 151

and P̂i,c denotes the predicted probabilities. See 152

A.3 for more details. 153

Controlling the Precision–Recall Trade-off. 154

Adjusting decision threshold values offers precise 155

control over the trade-off between precision and re- 156

call. This flexibility allows the model to be tailored 157

to specific application needs, enabling tuning to op- 158

timize performance based on the desired balance. 159

Efficient Single-Pass Inference. SALSA elim- 160

inates autoregressive overhead by computing all 161

logits in a single forward pass, reducing latency, 162

resource use and cost. Mapping classification to a 163

single-token output ensures only valid class tokens 164

are considered, enhancing efficiency and correct- 165

ness. 166

4 Experiments and Results 167

4.1 Datasets 168

We evaluated SALSA on multiple text classification 169

datasets, including a subset of GLUE (Wang et al., 170

2018), covering SST-2 (Socher et al., 2013), MRPC 171

(Dolan and Brockett, 2005), QQP (Iyer et al., 2017), 172

MNLI (Bowman et al., 2015), QNLI (Rajpurkar 173

et al., 2016), and RTE (Dagan et al., 2005). Addi- 174

tional datasets included AG’s News (Zhang et al., 175

2015) for topic classification, IMDb (Maas et al., 176

2011) for binary sentiment analysis, and Yelp-5 177
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Figure 1: SALSA single-token classification pipeline: each category is mapped to a distinct token, and the LLM’s
logits determine the predicted label in one forward pass.

(Zhang et al., 2015) for multi-class sentiment anal-178

ysis. We further included MedNLI (Romanov and179

Shivade, 2018) for clinical natural language infer-180

ence, MedMCQA (Pal et al., 2022) for multiple-181

choice medical question answering, and HateX-182

plain (Mathew et al., 2020) for hate speech and183

offensive language detection. For more details see184

section A.1.185

4.2 Analysis186

In this section, we delve into a comprehensive anal-187

ysis of SALSA by examining performance met-188

rics, convergence efficiency, and other key aspects189

across various benchmarks.190

State-of-the-Art Results. SALSA demonstrates191

state-of-the-art performance across multiple text192

classification benchmarks, as outlined in Table 4.2193

(and Table 2).194

The method consistently outperforms existing195

models, including T5-11B (Raffel et al., 2020), XL-196

Net (Yang et al., 2019), RoBERTaLARGE (Liu et al.,197

2019), and ALBERT (Lan et al., 2019). Further-198

more, we compared SALSA against the top three199

performers on the GLUE benchmark, Turing ULR200

v6 (Team, 2022), Vega v1 (Zhong et al., 2023),201

and Turing ULR v5 (Tiwary and Zhou, 2021), and202

SALSA outperforms them all in 3 of 7 tasks.203

Furthermore, we evaluated SALSA on three204

domain-specific benchmarks: MedNLI, MedM-205

CQA, and HateXplain. As shown in Table 3,206

SALSA outperforms previous SOTA, demonstrat-207

ing strong generalization in diverse NLP tasks.208

For each validation set experiment, we train209

the model five times with different random seeds210

and report the average performance on the valida-211

tion set. For test set experiments, we evaluate the212

model that achieves the highest results on the vali-213

dation set using the GLUE test set evaluation server. 214

These findings validate the efficiency and robust- 215

ness of SALSA in leveraging generative LLMs for 216

classification tasks. 217

Zero-Shot and Few-Shot Classification. To fur- 218

ther evaluate SALSA, we conducted zero-shot and 219

few-shot classification experiments using Meta’s 220

Instruct LLaMA 3.3 70B model. 221

In the zero-shot setting, the model received struc- 222

tured prompts containing task instructions and class 223

options, without labeled examples. For few-shot 224

classification, we added ten balanced random ex- 225

amples as in-context demonstrations. In both cases, 226

the model generated open-ended responses that we 227

parsed to extract the predicted classes. 228

We also applied SALSA in both settings, without 229

fine-tuning. The zero-shot variant included only 230

task instructions and class labels; the few-shot vari- 231

ant appended a few formatted examples. As shown 232

in Table 4.2, SALSA clearly outperforms standard 233

prompting approaches. 234

Efficient Optimization and Convergence. To 235

evaluate optimization efficiency, we compared 236

SALSA to standard fine-tuning, where a linear clas- 237

sification head is added atop the base LLM’s final 238

token output. Both methods were trained with iden- 239

tical hyperparameters to minimize cross-entropy 240

loss. As shown in Figure 2, SALSA achieves faster 241

convergence and consistently higher training and 242

validation accuracy across steps. These results un- 243

derscore its ability to reduce training time while 244

improving generalization, making it well-suited for 245

resource-constrained settings. 246

5 Conclusion 247

SALSA exhibits consistent performance across its 248

pipeline. As shown in Tables 4.2, it achieves strong 249
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QQP SST-2 RTE MRPC QNLI MNLIM MNLIMM

(V) Zero Shot 81.4 94.9 86.3 77.0 90.7 81.9 80.9
(V) Few Shot 81.5 96.1 85.2 77.2 91.4 80.1 80.2
(V) RoBERTaLARGE 92.2 96.4 86.6 90.9 94.7 90.2 90.2
(V) ALBERT 92.2 96.9 89.2 90.9 95.3 90.8 90.8
(V) XLNet 92.3 97.0 85.9 90.8 94.9 90.8 90.8
(V) SALSA Zero Shot † 82.1 95.0 90.6 76.4 92.7 84.1 83.1
(V) SALSA Few Shot † 83.3 95.4 92.0 80.1 92.9 86.7 86.3
(V) SALSA 92.4±0.2 97.1±0.2 94.2±0.4 91.7±0.5 96.7±0.2 92.8±0.3 92.6±0.2
(T) BERTLARGE 89.3 94.9 70.1 85.4 92.7 86.7 85.9
(T) T5-11B 90.6 97.5 92.8 90.4 96.9 92.2 91.9
(T) Turing ULR v6 90.9 97.5 93.6 92.3 96.7 92.5 92.1
(T) Vega v1 91.1 97.9 92.4 92.6 96.7 92.2 91.9
(T) Turing ULR v5 91.1 97.6 94.1 91.7 97.9 92.6 92.4
(T) SALSA 90.9 97.9 94.8 91.1 97.1 92.7 92.0

Table 1: Performance metrics of SALSA compared to baseline models across multiple GLUE Benchmark datasets.
Results are reported separately for the validation (V) and test (T) sets, with accuracy as the key evaluation metric.
SALSA achieves state-of-the-art performance on all validation tasks and outperforms competitors on 3 out of 7 test
tasks. Test set results are benchmarked against the top 3 GLUE leaderboard models as of January 27, 2025. †No
fine-tuning applied.

AG News IMDb Yelp-5
Zero Shot 88.8 95.2 62.7
XLNet 95.5 96.8 72.9
SALSA 95.9±0.1 97.6±0.1 74.2 ±0.2

Table 2: Accuracy on AGNews, IMDb, and Yelp-5 test
datasets.

MedNLI MedMCQA HateXplain
Zero-Shot 83.4 70.3 51.5
SOTA 90.2† 73.6† 70.4†

SALSA 91.3±0.4 74.1±0.3 71.8±0.4

Table 3: Accuracy on MedNLI, MedMCQA, and Hat-
eXplain test datasets. †SOTA sources: GatorTron-large
for MedNLI (Yang et al., 2022), GPT-4 for MedM-
CQA (Nori et al., 2023), and BERT-MRP for HateX-
plain (Kim et al., 2022).

zero-shot results even without tuning. With fine-250

tuning, SALSA improves further without the insta-251

bility often seen in cold-start training (Figure 2).252

It also reaches state-of-the-art accuracy across di-253

verse tasks—sentiment analysis, medical QA, and254

hate speech detection—demonstrating broad appli-255

cability and strong generalization (Tables 2).256

By reducing classification to a single forward257

pass, SALSA enables high-throughput use of large258

models, offering a more efficient alternative to259

generation-based approaches. Its use of LoRA260

adapters also preserves the base model’s capabili-261

Figure 2: Convergence comparison between SALSA
and Vanilla fine-tuning on RTE (Dagan et al., 2005).
SALSA achieves faster convergence with higher accu-
racy on both training and validation sets, indicating
better generalization and training efficiency.

ties for other LLM tasks. 262

While prompt design remains partly empirical, 263

our ablation study (Section A.5) shows that fine- 264

tuning mitigates label-token sensitivity. SALSA 265

further supports regression tasks via discrete class 266

ensembles (Section A.6), extending its scope. 267

Future directions include systematic prompt opti- 268

mization, adaptive thresholding, and unified exten- 269

sions for multi-label and multi-task settings (Sec- 270

tion A.7). Overall, SALSA offers a flexible and ef- 271

ficient framework for robust, general-purpose clas- 272

sification with generative LLMs. 273
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6 Limitations274

One key limitation of SALSA is its reliance on275

accessing the internal logit distribution of large276

language models (LLMs), which restricts its use277

to models or third-party services that expose such278

information. Additionally, the structured prompt279

design used to map classes to single tokens may280

not be applicable in all scenarios, particularly in281

tasks with more complex or nuanced label represen-282

tations. Another concern is model contamination.283

Since we have no control over the data used to train284

the underlying LLM there is the possibility that285

some test examples may have been inadvertently286

incorporated during unsupervised training. Finally,287

SALSA inherits the biases and ethical concerns of288

its underlying LLM. As these models are trained289

on large-scale web corpora, they may encode and290

propagate societal biases, necessitating responsible291

use in real-world applications.292
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A Appendices741

A.1 Datasets742

We used multiple datasets to evaluate SALSA,743

focusing on text classification tasks.744

745

GLUE Benchmark. We evaluated SALSA on a746

subset of tasks from the GLUE benchmark (Wang747

et al., 2018) and report both the task details and748

evaluation metrics. Specifically, we tested on the749

following tasks: the Stanford Sentiment Treebank750

(SST-2; Socher et al. (2013)), the Microsoft751

Research Paraphrase Corpus (MRPC; Dolan752

and Brockett (2005)), the Quora Question Pairs753

(QQP; Iyer et al. (2017)), the Multi-Genre Natural754

Language Inference Corpus (MNLI; Bowman et al.755

(2015)), the Stanford Question Answering Dataset756

(QNLI; Rajpurkar et al. (2016)), and Recognizing757

Textual Entailment (RTE; Dagan et al. (2005)).758

759

AG’s News. The AG’s News dataset (Zhang760

et al., 2015) includes 120,000+ news articles761

across four categories (World, Sports, Business,762

Science/Technology), testing LLM robustness with763

diverse topics and journalistic tones.764

765

IMDb. The IMDb data set (Maas et al., 2011)766

is a benchmark for binary sentiment analysis767

with positive or negative movie reviews, testing768

classification models on diverse styles of writing,769

topics, and sentiment intensities.770

771

Yelp-5. The Yelp-5 dataset (Zhang et al., 2015),772

used for multi-class sentiment analysis, contains773

customer reviews rated 1-5 stars, challenging774

models with varied review lengths, tones, and775

topics.776

777

HateXplain. HateXplain (Mathew et al., 2020) is778

a benchmark dataset for explainable hate speech de-779

tection, sourced from social media platforms. Each780

post in the dataset is annotated from three perspec-781

tives: a three-class classification (hate, offensive,782

or normal), the targeted community, and rationales783

highlighting the specific text spans that justify the784

annotations.785

MedNLI. MedNLI (Romanov and Shivade,786

2018) is a specialized natural language inference787

(NLI) dataset tailored for the clinical domain.788

It comprises sentence pairs extracted from the789

Past Medical History sections of MIMIC-III clin-790

ical notes, annotated by physicians to determine791

whether a given hypothesis can be inferred from a 792

premise. 793

MedMCQA. MedMCQA (Pal et al., 2022) is a 794

comprehensive multiple-choice question answer- 795

ing dataset designed to emulate real-world medical 796

entrance examinations. Each question is accom- 797

panied by multiple answer options and detailed 798

explanations. 799

For the train:validation:test size split and the num- 800

ber of samples in each dataset used for the evalua- 801

tion, see Table 4. 802

Dataset Train Size Val. Size Test Size
SST-2 67.3k 0.8k 1.8k
MRPC 3.6k 0.4k 1.7k
QQP 363.8k 40.4k 390.9k
MNLIm 392.7k 9.8k 9.8k
MNLImm 392.7k 9.8k 9.8k
QNLI 104.7k 5.4k 5.4k
RTE 2.4k 0.3k 3.0k
AG News 120.0k 7.6k –
IMDb 25.0k 25.0k –
Yelp-5 650.0k 50.0k –
MedNLI 11.2k 1.4k 1.4k
MedMCQA 182.8k 4.2k 6.2k
HateXplain 16.0k 2.0k 2.0k

Table 4: Dataset Sizes

A.2 Detailed Inference and Tuning Algorithm 803

The algorithm 1 outlines the explicit steps of 804

SALSA’s approach, covering both the training and 805

inference flows. While using LLMs for classifica- 806

tion at inference time is not a novel concept, steps 5 807

and 6 distinguish SALSA by showing how it lever- 808

ages LLMs not just for auto-generation, but also 809

for their underlying statistical properties - resulting 810

in a richer and more informative output representa- 811

tion, and consequently, better performance. During 812

training, SALSA goes beyond the generic objec- 813

tive of predicting the correct next token for every 814

position. Instead, it focuses specifically on the 815

task-related tokens and updates the model weights 816

based solely on the loss computed from these to- 817

kens, making the training process more efficient 818

and better aligned with the classification objectives. 819

820

A.3 Training Details 821

The base model was Meta’s Instruct LLama 3.3 822

70b (Meta’s license). It was tuned for a total of 823

6 epochs, and gradient accumulation steps set to 824

9

https://www.llama.com/llama3_3/use-policy


Algorithm 1 SALSA’s Training and Inference for Single-Task, Single-Label, Multi-Class Classification

Require: instructions, answer template, answer’s start ▷ Input parameters
1: Definition: Let N be the vocabulary size.
2: for each s in samples-to-classify do
3: x← wrap in the method’s notation and tokenize(s, input_parameters)
4: logits← model’s forward_pass(x) ▷ logits’ size = |input| ×N
5: yplaceholder ← logits[placeholder] ▷ yplaceholder’s size = N
6: yrelevant ← yplaceholder[categories] ▷ yrelevant’s size =|categories|
7: yprob ← softmax(yrelevant)
8: ytrue ← one_hot(true_label, |categories|)
9: loss← cross_entropy(yprob, ytrue)

10: model.backward_pass(loss)
11: update_parameters()
12: report argmax(yprob)
13: end for

Note: The blue-colored lines correspond to training-specific steps.

50 with batch size 1 to effectively handle large825

batch sizes in limited memory environment. To826

ensure reproducibility, a fixed random seed was827

used throughout the experiments.828

LoRA(Hu et al., 2021) was used for fine-tuning,829

the rank was set to 8, the alpha parameter to 16,830

and a dropout rate of 0.05. It is 103M trainable831

parameters.832

Optimization was carried out using the Adam833

optimizer (Kingma, 2014) with default parame-834

ter settings, where beta1=0.9, beta2=0.999, and835

epsilon=1E-8. A linear learning rate scheduler836

was employed, incorporating 100 warmup steps837

to progressively increase the learning rate at the838

beginning of training to 1E-4. After warmup the839

learning rate was reduced linearly to 0. For each840

experiment, the best-performing validation epoch841

was identified, and the experiment was repeated842

five times with different data shuffling seeds to843

ensure robustness of results.844

Empirical observations revealed that optimal val-845

idation performance was typically achieved within846

the first 2 to 3 epochs. Training beyond this point,847

particularly when each sample was seen more than848

three times, often resulted in overfitting for small849

size datasets. The hardware used for this work was850

the Nvidia DGX system with eight H100 80GB851

GPU blades, and each model training run lasted852

between 1 and 36 hours. In this work, no hyperpa-853

rameter optimization was conducted.854

A.4 Prompt Construction Example855

Figure 3 shows a sample prompt compiled from the856

RTE dataset. The prompt follows the default chat857

template of Instruct LLaMA 3.3, beginning with a 858

default system prompt, followed by a user prompt 859

containing task-specific instructions and data, and 860

ending with the assistant response template. The 861

compiled prompt is tokenized and processed in a 862

single forward pass through the LLM to produce a 863

classification output. 864

A.5 Ablation Study on Label Mapping 865

Strategies 866

We performed an ablation study on the RTE dataset 867

to evaluate how different label mapping schemes 868

affect classification performance. Specifically, we 869

tested six mappings: numerical (’0’, ’1’), reverse 870

numerical (’1’, ’0’), alphabetical (’A’, ’B’), reverse 871

alphabetical (’B’, ’A’), semantic (’Y’, ’N’), and 872

reverse semantic (’N’, ’Y’). 873

The inclusion of “Y” and “N” label tokens was 874

motivated by their implicit alignment with natu- 875

ral language concepts of affirmation and negation 876

(“Yes”/“No”). We hypothesized that when the to- 877

ken aligns semantically with the correct label—e.g., 878

“Y” for entailment—the model may perform better 879

in a zero-shot setting. Conversely, using mislead- 880

ing or contradictory mappings, such as assigning 881

“N” to entailment, could degrade performance due 882

to interference with prior token associations. 883

Table 5 summarizes the average accuracy (mean 884

± standard deviation over 5 runs) for each mapping 885

strategy, evaluated in both zero-shot and fine-tuned 886

conditions. 887

In the zero-shot setting, we observe substantial 888

variation in performance across mappings. Revers- 889

ing the labels (“N/Y”) led to the poorest perfor- 890
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<|begin_of_text|>
<|start_header_id|>system <|end_header_id|>
Cutting Knowledge Date: December 2023 Today Date: 26 Jul 2024 <|eot_id|>
<|start_header_id|>user <|end_header_id|>
Given the premise:
<PREMISE> Mangla was summoned after Madhumita’s sister Nidhi Shukla,
who was the first witness in the case. </ PREMISE>
and hypothesis:
<HYPOTHESIS> Shukla is related to Mangla. </ HYPOTHESIS>
Is the hypothesis entailed by the premise?
Provide answer in format: <ANSWER>#Number</ANSWER>
where the number is one of the following:
0 - entailment
1 - not entailment
<|eot_id|>
<|start_header_id|>assistant <|end_header_id|>
<ANSWER>X </ANSWER>
<|eot_id|>

System prompt

Task + input

Class mapping

Answer format
with masked token

Figure 3: A compiled prompt from RTE dataset before applying a forward pass.

Mapping Strategy Zero-Shot(%) Finetuned (%)
Numerical (0/1) 90.6 95.1 ± 0.4
Reverse Numerical (1/0) 89.1 94.4 ± 0.2
Alphabetical (A/B) 91.3 94.5 ± 0.3
Reverse Alphabetical (B/A) 90.2 94.2 ± 0.3
Semantic (Y/N) 85.5 95.4 ± 0.7
Reverse Semantic (N/Y) 44.7 94.0 ± 0.2
Mean 81.9 ± 18 94.9 ± 0.5

Table 5: Ablation study on different label mapping
strategies for the RTE dataset. Accuracy is reported
as mean ± std over 5 runs.

mance, suggesting that mismatches between token891

semantics and label intent can confuse the model.892

After finetuning the differences between mappings893

diminish considerably, with all variants converging894

to similar accuracy levels. These findings confirm895

that the finetuning process effectively suppresses896

sensitivity to the mapping choices and enables the897

model to adapt even in the presence of initially898

misleading token associations.899

A.6 Discrete to Continuous Extension900

For tasks involving continuous value estimation,901

such as the STS-B benchmark (Cer et al., 2017)902

from the GLUE, we adapt our method to produce903

scalar outputs through a discretization-based ap-904

proach.905

We represent the predicted score as the expected906

value over a fixed set of discrete scalar values. Each907

value corresponds to a predefined class token and908

is associated with a probability derived from the909

model’s output distribution. Formally, let S =910

{s1, s2, . . . , sn} denote the set of discrete values911

(e.g., [0.0, 0.2, . . . , 5.0]), and let P (si | x) be the912

probability assigned to state si given input x. The 913

model prediction ŷ is computed as: 914

ŷ =

n∑
i=1

P (si | x) · si (2) 915

During training on STS-B, we perform the in- 916

verse operation. Given a scalar label y ∈ [0, 5], we 917

identify the two discrete values si and si+1 such 918

that si ≤ y ≤ si+1, and assign probabilities: 919

y = α · si + (1− α) · si+1, (3) 920

P (si | x) = α, (4) 921

P (si+1 | x) = 1− α (5) 922

This construction ensures that the expected value 923

of the predicted distribution matches the ground 924

truth during supervision, while keeping the label 925

space discrete and aligned with our logit-based 926

framework. 927

Our method achieves a Pearson/Spearman corre- 928

lation of 93.8/93.6 on the STS-B test set, compared 929

to Turing v5’s 93.7/93.3, representing a new state- 930

of-the-art result. 931

A.7 Possible extention 932

SALSA’s framework can be naturally extended to 933

more complex scenarios. For multi-label classifi- 934

cation, one can replace the softmax layer with a 935

sigmoid function and apply a probability threshold 936

to select all relevant classes. For multi-task classi- 937

fication, a prompt with placeholders for each task 938

enables the extraction of separate logits distribu- 939

tions, allowing simultaneous classification across 940

multiple tasks in a single forward pass (see Figure 941

4). 942
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Figure 4: SALSA two-token classification pipeline: the LLM’s logits are used in a single pass to predict both the
article’s topic (1–4) and its source (AI=1 or Human=2).
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