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Abstract

Normalization techniques that capture image style by statistical representation have
become a popular component in deep neural networks. Although image enhance-
ment can be considered as a form of style transformation, there has been little
exploration of how normalization affect the enhancement performance. To fully
leverage the potential of normalization, we present a novel Transition-Constant
Normalization (TCN) for various image enhancement tasks. Specifically, it consists
of two streams of normalization operations arranged under an invertible constraint,
along with a feature sub-sampling operation that satisfies the normalization con-
straint. TCN enjoys several merits, including being parameter-free, plug-and-play,
and incurring no additional computational costs. We provide various formats to uti-
lize TCN for image enhancement, including seamless integration with enhancement
networks, incorporation into encoder-decoder architectures for downsampling, and
implementation of efficient architectures. Through extensive experiments on mul-
tiple image enhancement tasks, like low-light enhancement, exposure correction,
SDR2HDR translation, and image dehazing, our TCN consistently demonstrates
performance improvements. Besides, it showcases extensive ability in other tasks
including pan-sharpening and medical segmentation. The code is available at
https://github.com/huangkevinj/TCNorm.

1 Introduction

Image enhancement is an important task in machine vision, which aims to improve the quality
of low-visibility images captured under unfavorable light conditions (i.e., low light) by adjusting
contrast and lightness. The last decades have witnessed quantities of approaches designed for image
enhancement based on various hand-crafted priors [1, 2, 3, 4, 5]. However, the complex and variant
adjustment procedures make it a challenging group of tasks. In addition to the common low-light
image enhancement, efforts have also been directed toward solving image enhancement-like tasks,
including exposure correction, image dehazing, and SDR2HDR translation.

Very recently, the deep-learning paradigm exhibits remarkable success in the image enhancement field
than traditional methods [6, 7, 8]. Despite the progress, most of them focus on roughly constructing
complex deep neural architectures and have not fully explored the intrinsic characterizes of lightness
in networks. In fact, the lightness variants could bring difficulties to their learning procedures. This
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Figure 1: In (a), the instance normalization (IN) captures lightness consistency representations across
exposures, thus bridging their distribution gaps as shown in t-SNE. In (b), normalization techniques
meet transition-inconstant problem, while proposed TCN exhibits differently with invertible ability.

motivates us to delve into the working mechanism of current neural networks that learn lightness
adjustment and prescribe the right medicine customized for image enhancement.

On the other hand, normalization family such as batch and instance normalization, is specially
designed for promoting the learning procedure for deep networks. It involves computing statistical
representation and normalizing the corresponding distribution, which has been shown to capture
image style through statistical representation [9]. Image enhancement, which aims to restore lightness-
corrupted images to their normal versions, can be viewed as a style transformation inherently linked
to normalization techniques (see Fig. 1 (a)). However, existing methods have rarely explored the
potential of the normalization technique. Inspired by the inborn connection, we thus focus on
developing the normalization technique tailored for image enhancement.

In this work, we propose a novel operation called transition-constant normalization (TCN) for image
enhancement tasks. The TCN operation aims to normalize partial representations to ensure consistent
learning while preserving constant information for image reconstruction. As illustrated in Fig. 1 (b),
we construct the TCN within an invertible format to enable seamless information transmission to
subsequent layers for reconstructing enhanced results. The TCN is designed with two key rules (see
Fig. 2): (1) We organize the operations in the normalization layer into two streams, following the
principle of invertible information transmission, thereby maintaining constant information transition.
(2) We incorporate a subsampling operation that divides the features into two streams with consistent
statistical properties. One stream provides the statistics for normalizing the other stream, satisfying
the normalization requirement. Notably, the TCN requires no parameters, making it a convenient and
orthogonal addition to existing enhancement architectures for improving their performance.

To facilitate its application, we present multiple usage formats for the TCN in image enhancement:
(1) Integration into existing enhancement networks, allowing for seamless incorporation and perfor-
mance improvement; (2) Plug-in capability in encoder-decoder architectures for downsampling and
recomposition of information; (3) Construction of a lightweight architecture based on TCN, striking a
balance between performance and computational cost. Through extensive experiments across various
image enhancement tasks, we consistently observe performance gains by integrating our TCN.

The contributions of this work are summarized as follows: 1) We present a novel perspective
on image enhancement using a dedicated normalization technique. This technique enhances the
learning of lightness adjustments by modeling consistent normalized features, while ensuring their
complementarity for reconstructing the results. 2) We construct the Transition-constant Normalization
(TCN) by organizing normalization operations to satisfy the invertible mechanism, ensuring constant
feature normalization and information transition. 3) Our proposed TCN is compatible with existing
enhancement architectures, allowing for convenient integration and performance improvement.
Furthermore, we can derive multiple implementation formats for TCN and explore its applicability in
various tasks, highlighting its potential for wide-ranging applications.

2 Related Work

Image enhancement tasks. Image enhancement tasks aim to improve the quality of low-visibility
images by adjusting lightness and contrast components (e.g., illumination, color, and dynamic range).
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Recent years have witnessed rapid development in the related areas [10, 11, 12, 13]. For low-light
image enhancement, algorithms are designed to enhance the visibility of images captured under low-
light conditions [14, 15, 16, 17, 18, 19, 7, 20, 21, 22, 23]. In the exposure correction task, methods are
focused on correcting both underexposure and overexposure to normal exposure [15, 24, 25, 26, 27].
For SDR2HDR translation, this task aims to design methods to convert images from a low-dynamic
range to a high-dynamic range [28, 29, 30, 31, 32]. While in image dehazing, this task requires
methods to enhance the contrast and recover the color shift problems [33, 34, 35, 36, 37]. To this end,
image enhancement tasks cover variant scenes and remain challenges to be solved.

Normalization techniques. Normalization techniques have been studied for a long time [38, 39, 40,
41]. Batch Normalization (BN) [38] normalizes the features along the batch dimension that stabilizes
the optimization procedure. Instance Normalization (IN) [9] focuses on normalizing the instance-level
statistics of features, which has been widely employed in style transfer tasks [42, 43]. Some other
variants of normalization, including Layer Normalization (LN) [39], Group Normalization (GN) [44],
and Position Normalization (PN) [45] have been proposed for facilitating the application of networks.

3 Method

In this section, we first briefly revisit the normalization techniques and then detail the design and
mechanism of the proposed TCN. Finally, we present the variants of the TCN as implementation.

3.1 Preliminaries

Given a batch of features x ∈ RN×C×H×W, where N, C, H and W represent batch size, channel
numbers, the spatial height and width, respectively. Let xncij and x̂ncij denote a pixel before and
after normalization, where n ∈ [1,N], c ∈ [1,C], i ∈ [1,H], i ∈ [1,W]. Without taking considering
into affined parameters, we can express normalization operation as:

x̂ncij = Norm(xncij) =
xncij − µk√

σ2
k + ϵ

, (1)

where µk and σk denote the feature mean and standard deviation, ϵ is a small constant to preserve
numerical stability. k ∈ {IN, BN, LN, GN} is to distinguish different normalization formats. Within
the above normalization family, the calculation of µk and σk is different and are expressed as:

µk =
1

|Ik|
∑

n,c,i,j∈Ik

xncij , σk =

√
1

|Ik|
∑

n,c,i,j∈Ik

(xncij − µk)2, (2)

1) IN: Ik : IIN = {(i, j)|i ∈ [1,H], j ∈ [1,W]};
2) BN: Ik : IBN = {(n, i, j)|n ∈ [1,N], i ∈ [1,H], j ∈ [1,W]};
3) LN: Ik : ILN = {(c, i, j)|c ∈ [1,C], i ∈ [1,H], j ∈ [1,W]};
4) GN: Ik : IGN = {(c, i, j)|c ∈ [g, g + C/G], i ∈ [1,H], j ∈ [1,W]|g ∈ [1,G]}.

where Ik is a set of pixels, |Ik| denotes the number of pixels and G is the group division.

Within deep neural networks, Eq. 1 is often affined with scaling and shifting parameters α and β:

x̂ncij = α ·Norm(xncij) + β = α
xncij − µk√

σ2
k + ϵ

+ β. (3)

It is well-known that lightness can be considered as a kind of style and Instance normalization
can facilitate consistent style information [9] and image enhancement network optimization due to
bridging the gap of different lightness representations.

Verifying normalization effect for lightness. Given an image xa and its lightness-adjusted version
xb, the relationship between xa and xb can be expressed in correction procedure [46, 47, 48] as:

xb = Λxγ
a, (4)

where Λ is a linear transformation and γ is for global non-linear adaption and is close to 1 when
content is not severely changed. Therefore, the p-norm distance between their normalized versions is:

||f(xa)− f(xb)∥p = |xa − µa

σa
− Λxγ

a − µb

σb
∥p ≈ |xa − µa

σa
− Λxa − Λµa

Λσa
∥p ≪ ∥xa−Λxγ

a∥p. (5)
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Therefore, normalization reduces the distance of different lightness, which is also validated in
Fig. 1(a). However, normalizing the statistics itself often blocks the information flow, which hinders
the network from reconstructing the final results [49] and we describe it as follows.

Transition-inconstant of Normalization. Referring to Norm(·) in the Eq. 1 as f , its Jacobian matrix
is expressed as:

Jf (x) =


∂x̂0

x0
. . . ∂x̂0

x0

. . .
...

∂x̂0

x0

∂x̂0

x0


m×m

=


1
σk

. . . 1
σk

. . .
...

1
σk

1
σk


m×m

(6)

Therefore, the calculation of the above Jacobian matrix is det (Jf (x)) = 0, denoting the normalization
operation is not invertible and resulting in transition-inconstant. Meanwhile, in practice, previous
works have demonstrated that IN would lead to severe information loss [42] and huge represen-
tation ability changes [50, 51], while LN and BN can keep almost all of the original information
representation ability. However, IN is more suitable than BN and LN for image enhancement tasks
due to its strong capability of capturing and affecting style information, which is crucial for image
enhancement. To this end, the main goal of this paper is to introduce a new mechanism that enables
the IN can keep the information representation ability for image enhancement.

3.2 Transition-constant Normalization (TCN)

Based on the above analysis, we aim to refresh the normalization technique to enable it to transmit
information constantly while normalizing the features. To this end, we introduce the TCN as shown in
Fig. 2, which is free of parameters and is convenient to implement. Since IN can normalize different
lightness effectively and thus is useful for image enhancement, we design the TCN based on the IN
as its default implementation format in this paper.

Operation description. We construct the TCN by applying the normalization operations with a two
streams flow design with subsampled features, where one stream provides the statistical information
for normalizing another stream. Specifically, the feature F ∈ RB×C×H×W is firstly subsampled to
Fs ∈ RB×4C×H

2 ×W
2 according to the unshuffle operation [52] as shown in Fig. 2 (a), which is:

F ab
s = F [:, :, a ::, b ::], a, b ∈ {0, 1}, (7)

where a and b denote the subsampling index. We divide Fs into two features F1 and F2 with two
groups according to the sampling index (i, j) as:

F1 = Concat(F 01
s , F 10

s ), F2 = Concat(F 00
s , F 11

s ) (8)

where Concat(·, ·) denotes the concatenate operation along the channel dimension.

Then, we calculate the mean µ2 and standard deviation σ2 of one stream feature F2 in IN format,
which are derived by setting Ik in Eq. 2 as IIN :

µ2 =
1

HW

∑
i∈[1,H],j∈[1,W]

Fij , σ2 =

√√√√ 1

HW

∑
i∈[1,H],j∈[1,W]

(Fij − µ2)2. (9)

These statistics are utilized to normalize the feature F1 as the output in this stream:

F̂1 =
F1 − µ2√
σ2
2 + ϵ

. (10)

Next, we subtract the feature F2 and F̂1 and obtain the output of another stream:

F̂2 = F2 − F̂1 = F2 −
F1 − µ2√
σ2
2 + ϵ

. (11)

Finally, the two stream features are sampled with pixel shuffle operation to the original resolution
with the shape of [N, C

2 ,H,W]. They are further concatenated in the channel dimension as F̂ ∈
RB×C×H×W, which is the output of the TCN. This procedure is expressed as:

F̂ = Pixshuffle(Concat(F̂1, F̂2)), (12)
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where Pixshuffle(·) denotes the pixel shuffle operation [53]. We verify the above procedures satisfy
the transition-constant and normalization ability as below, respectively.

1) Verify the transition-constant ability. We validate the above two-stream design satisfies the
invertible procedure and thus is transition-constant. To this end, Eq. 10 and Eq. 11 are re-written as:

F̂1 = (F1 −M(F2))⊘ S(F2),

F̂2 = F2 − F̂1,
(13)

where S(·) and M(·) denote standard deviation and mean functions, ⊘ denotes element division.

Inspired by the proof in RealNVP’s [54] transformation, we need to calculate the Jacobian matrix of
Eq. 13 (denote it as g), which is more intuitively written as:

F̂1 = (F1 −M(F2))⊘ S(F2),

F̂2 = F2 − F1 ⊘ S(F2) +M(F2)⊘ S(F2),
(14)

We derive its Jacobian matrix (detailed in the supplementary) as:

Jg =

∂F̂1

∂F1

∂F̂1

∂F2

∂F̂2

∂F1

∂F̂2

∂F2

 =

 1
∂S(F2)

0

−1 1

 (15)

Here, the above Jacobian matrix is further calculated as:

det(Jg) =
1

∂S(F2)
̸= 0 (16)

Upon the det(Jg) ̸= 0, it indicates that Jg is full rank, verifying the invertible property of TCN and
further the transition-constant ability. To highlight, the TCN is an invertible function and would not
block information flow, leading to the information transition constant for image reconstruction. We
further present the relation of the TCN and the invertible operation more directly in the supplementary.

Formats Redefine Ik to Eq. 9 as
TCN (IN) IIN (default Ik of Eq. 9)
TCN (BN) IBN = {(n, i, j)|n ∈ [1, N ],

i ∈ [1, H], j ∈ [1,W ]}
TCN (LN) ILN = {(c, i, j)|c ∈ [1,C],

i ∈ [1,H], j ∈ [1,W]}
TCN (GN) IGN = {(c, i, j)|

c ∈ [g, g + C/G], i ∈ [1,H],
j ∈ [1,W]|g ∈ [1,G]}

Table 1: The TCN family with different µ2,σ2

calculation in Eq. 9.

2) Verify the normalization ability. The normal-
ization ability of the TCN is guaranteed by the
pixel unshuffle operation in Eq. 7, leading to the
same statistics of F ab

s [55, 56]. Therefore, we have
µ2 ≈ µ1, σ2 ≈ σ1, and the Eq. 10 is thus converted
to:

F̂1 =
F1 − µ2√
σ2
2 + ϵ

≈ F1 − µ1√
σ2
1 + ϵ

. (17)

Therefore, it has the same format as Eq. 1, demon-
strating that the operation in Eq. 10 has the normal-
ization ability as the IN. Further, we verify the above
rules by the toy experiment (see Sec. 4.1) in Fig. 4
and Fig. 5.

Discussion. The core of the TCN is the statistic calculation manner of µ2 and σ2 in Eq. 9 which
can be generalized in a unified calculation manner in Eq. 2 and derive from other normalization
formats of TCN, shown in Table 1. Note that, although GN and LN would less affect information
representation ability [50], we experimentally find introducing the transition-constant design would
improve their performance in the supplementary. We provide more discussions in the supplementary.

3.3 Variants of TCN for Image Enhancement

Upon the above principles of TCN, we provide the following implementation variants within image
enhancement task.

The original TCN. We construct the original TCN (see Fig. 2 (a)) for image enhancement based on
calculating statistics in Eq. 9 of IN format, which is plug-and-play for networks.

The affined TCN. We extend the original TCN by introducing affined parameters α and β to the
normalization procedure, resulting in the affined TCN (Fig. 2 (b)). We incorporate learnable shifting
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Figure 2: The illustration of the TCN operation and other TCN variants for image enhancement.

parameter β and scaling parameter γ into µ2 and σ2 in Eq. 9:

µ′
2 = µ2 + β, σ′

2 =
σ2

γ
(18)

where µ′
2 and σ′

2 represent the affined statistics. Then, we substitute Eq. 18 to Eq. 1:

F̂ ′
1 =

F1 − µ′
2√

σ′2
2 + ϵ

=
F1 − µ2 − β√

σ2
2

γ2 + ϵ
(19)

Since ϵ is a small constant near to 0, the Eq. 19 can be approximated as:

F̂ ′
1 ≈ γ

F1 − µ′
2 − β√

σ′2
2 + ϵ

= γ
F1 − µ′

2√
σ′2

2 + ϵ
+ β′, β′ =

−γβ√
σ′2

2 + ϵ
. (20)

Eq.20 shares a format similar to the affined normalization, with γ and β′ as the learnable scaling
and shifting parameters in Eq. 3. The affined TCN seamlessly integrates into image enhancement
networks, serving as a plug-and-play solution. Notably, it maintains the information transition-
constant property, as discussed in detail in the supplementary material.

The skip TCN. From Eq.10 and 11, the TCN generates two types of features: a domain-invariant
lightness consistent feature F̂1 and a domain-variant lightness inconsistent feature F̂2. Previous
studies [57, 58] have demonstrated the effectiveness of incorporating the domain-variant component
into deep encoder-decoder networks while skipping the domain-invariant component to the decoder
layer. In this work, we propose the skip TCN architecture, illustrated in Fig. 2 (c).

Given a feature F in an encoder layer, we convey its lightness inconsistent feature F̂2, obtained from
Eq. 10, to the downsampled deeper layer that derives Fd using the following expression:

Fd = Down2(F) + F̂2, (21)

where Down2 means downsampling with a factor of 2. While for the lightness consistent feature F̂1

derived in Eq. 11, we skip it to the corresponding decoder layer feature Fu with the statistic µ2 and
σ2 derived in Eq. 9. We integrate them by inverting the operation of Eq. 10 and Eq. 11:

Fu1 =F̂1 · σ2 + µ2, Fu2 = F̂1 + Fu,

Fuo =Up2(Fu) + Pixshuff(Concat(Fu1,Fu2)),
(22)
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Figure 3: The overview of the TCN-Net.

Here, the upsampling operation with a factor of 2 is de-
noted as Up2, and Fuo represents the skip TCN result.
The skip TCN prioritizes the processing of the lightness
component while preserving lightness invariant features,
mitigating learning difficulties. Further discussion is pro-
vided in the supplementary material.

Construct a very efficient TCN-based Network. We
introduce TCN-Net, an efficient network architecture de-
picted in Fig. 3, which combines affined TCN and skip
TCN. This framework adopts an encoder-decoder-based
architecture with vanilla convolution blocks to depict the

effectiveness of the TCN. Further details and discussions are available in the supplementary material.

4 Experiments

In this section, we validate the effectiveness and scalability of our proposed TCN on various image
enhancement tasks. We provide more experimental results in the supplementary material.

Decoder

𝐼𝑁

Loss

Encoder

Features

𝑁𝑜𝑛𝑒 𝑇𝐶𝑁 Respectively Select

Optimization

Insert

Figure 4: Toy experiment of self-reconstruction. The left is the setting of toy experiments with
inserting different operations, and the right presents the self-reconstruction PSNR of testing images.
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Figure 5: Feature visualization of toy experiment. In left and right parts, we show the feature in the
TCN of underexposure and overexposure samples when testing them with inserting TCN in Fig. 4.

4.1 Toy Experiment

To illustrate the proposed TCN has the ability to normalize the features while transition-constant, we
introduce a toy experiment as shown in Fig. 4 : we construct an encoder-decoder-based architecture for
reconstructing the input image, where the TCN and other normalization formats are inserted between
the encoder and decoder as different versions. Then we train this self-reconstruction architecture
on 1000 samples from MIT-FiveK dataset [59] until its convergence and test the self-reconstruction
effect on another 100 samples from the same dataset. The quantitative results in the right of Fig. 4
indicate that our TCN reconstructs the input image better than directly inserting IN, demonstrating
the information transition-constant property. Furthermore, we test 100 underexposure samples and
100 overexposure samples from the SICE dataset, and we provide the feature distribution of F
and F̂1 (input and normalized output of the TCN) in the left part of Fig. 5 , as well as feature
maps in the right part of Fig. 5. The different exposure features processed by the TCN get to be
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Settings #Param Flops (G) LOL Huawei FiveK
DRBN (Baseline) [15] 0.53M 39.71 19.95/0.7712 20.64/0.6136 22.11/0.8684

+IN 0.53M 39.71 20.73/0.7986 21.01/0.6200 22.93/0.8727
+Original TCN 0.53M (+0) 39.71 (+0) 21.15/0.8190 21.12/0.6242 23.98/0.8851
+Affined TCN 0.53M (+0) 39.71 (+0) 21.29/0.8167 21.04/0.6231 23.92/0.8858

+Skip TCN 0.53M (+0) 39.77 (+0.07) 21.52/0.8271 21.15/0.6195 23.82/0.8832

SID (Baseline) [14] 7.40M 51.06 20.85/0.7845 19.68/0.6050 21.49/0.8425
+IN 7.40M 51.06 20.51/0.7858 20.09/0.6034 21.75/0.8453

+Original TCN 7.40M (+0) 51.06 (+0) 21.43/0.7913 20.53/0.6067 23.11/0.8581
+Affined TCN 7.40M (+0) 51.06 (+0) 21.35/0.7867 20.62/0.6077 23.20/0.8624

+Skip TCN 7.41M (+0.01) 51.42 (+0.36) 21.92/0.8056 20.76/0.6083 23.61/0.8704
TCN-Net 0.012M 0.97 22.08/0.7895 20.99/0.6121 23.47/0.8663

Table 2: Comparison over low-light image enhancement in terms of PSNR/MS-SSIM.

Settings MSEC SICE
DRBN (Baseline) [15] 19.52/0.8309 17.65/0.6798

+IN 21.98/0.8463 20.15/0.6947
+Original TCN 22.37/0.8533 20.74/0.7133
+Affined TCN 22.41/0.8504 20.85/0.7192

+Skip TCN 22.48/0.8572 20.65/0.7159
SID (Baseline) [14] 19.04/0.8074 18.15/0.6540

+IN 21.36/0.8373 19.81/0.6667
+Original TCN 22.31/0.8522 20.51/0.6745
+Affined TCN 22.43/0.8542 20.68/0.6757

+Skip TCN 22.36/0.8603 20.64/0.6852
TCN-Net 22.19/0.8480 20.72/0.7024

Table 3: Comparison over exposure correction. Figure 6: Training PSNR on exposure correction.

clustered, demonstrating the normalization ability of the TCN for extracting the lightness-consistence
representation of different samples. We provide more discussions in the supplementary material.

4.2 Experimental Settings

Low-light Image Enhancement. Following previous works [60, 61], we employ three widely used
datasets for evaluation, including LOL dataset [7], Huawei dataset [60] and MIT-FiveK dataset [59].
We employ two different image enhancement networks, DRBN [15] and SID [14] as baselines.

Exposure Correction. Following [62], we adopt MSEC dataset [24] and SICE dataset [63] for
evaluations. The above two architectures, i.e., DRBN [15] and SID [14] are regarded as baselines.

SDR2HDR Translation. Following [30], we choose the SRITM dataset [31] and HDRTV dataset [30]
for evaluation. We employ the structures of NAFNet [64] with its three basic units as the baseline in
the experiments.

Image Dehazing. Following [33], we employ the RESIDE dataset [65] consisting of Indoor and
Outdoor parts for evaluations. We adopt the network of PFFNet [66] as the baseline for validation.

4.3 Implementation Details

Since there exist three TCN formats in Sec. 3.3, we respectively integrate them into the baseline
to conduct experiments. For comparison, we perform the experiments of baseline networks and
the integration of the IN operation. Additionally, the TCN-Net in Sec. 3.3 is also performed in
experiments. We train all baselines and their integrated formats following the original settings, and
our TCN-Net until it converges. More implementation details are provided in the supplementary.
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Settings SRITM HDRTV
NAFNet (Baseline) [64] 33.44/0.9537 36.49/0.9706

+IN 33.62/0.9491 36.62/0.9683
+Original TCN 33.69/0.9505 36.94/0.9712
+Affined TCN 33.65/0.9495 36.55/0.9716

+Skip TCN 33.51/0.9513 36.64/0.9720
TCN-Net 32.48/0.9439 36.78/0.9744

Table 4: Comparison over SDR2HDR translation.

Settings Indoor Outdoor
PFFNet (Baseline) [66] 21.74/0.8452 24.47/0.9274

+IN 23.13/0.8583 25.61/0.9309
+TCN 23.57/0.8635 25.63/0.9311

+Affined TCN 23.71/0.8652 25.84/0.9312
+Skip TCN 23.21/0.8708 25.63/0.9315
TCN-Net 24.06/0.8645 23.72/0.8572

Table 5: Comparison over image dehazing.

Input DRBN DRBN+TCN Ground truth

Figure 7: The visual comparison of low-light image enhancement on the MIT-FiveK dataset.

4.4 Comparison and Analysis

Quantitative Comparison. The model comparisons are conducted over different configurations, as
illustrated in the implementation details. We present the quantitative results from Table 2 to Table 5,
where the best and second-best results are highlighted in bold and underlined. As can be seen, almost
all formats of the TCN that we incorporate have improved the performance across the datasets in
all tasks, validating the effectiveness of our method. Specifically, integrating variants of TCN helps
improve the training performance of baseline as shown in Fig. 6. In contrast, naively integrating the
IN could not always bring performance improvement (i.e., the results of SID in Table 2). All the
above results suggest the effectiveness of our proposed method without introducing any parameters.
Moreover, the proposed TCN-Net achieves effective performance with efficiency. All the above
evaluations prove the convenience of applying the TCN in image enhancement tasks.

Qualitative Comparison. We report the visual results of low-light image enhancement on the
MIT-FiveK dataset [59] due to the limited space. As shown in Fig. 7, the integration of the TCN
leads to a more visually pleasing effect with less lightness and color shift problems compared with
the original baseline. We provide more visual results in the supplementary material.

4.5 Extensive Applications

The TCN can also be applied to other machine vision tasks that demonstrate its extensibility. Since
TCN is proposed to extract lightness (a kind of style) invariant feature while keeping information
transition-constant, we introduce another two tasks that are also related to style information, including
pan-sharpening and medical segmentation. For pan-sharpening, it aims to fuse two style images,
and we hope TCN can extract their invariant information with information preserving; For medical
segmentation, there often exists a style domain gap between training and testing sets.

Extension on medical segmentation. We apply the TCN on the UNet [67] and AttUNet [68] in the
medical segmentation task. We train the baseline and its integrated version on the heart segmentation
task of Medical Segmentation Decathlon challenge dataset [69]. As shown in Table 6, our TCN
improves and keeps the performance of U-Net and Att-Unet, respectively, while IN brings a significant
performance drop. The results suggest the scalability of the TCN compared with the IN.

Extension on pan-sharpening. We apply the original TCN to the GPPNN [70] and PANNet [71]
baselines in the pan-sharpening task, which is a common task in guided image super-resolution. We
integrate it when extracting pan and multi-spectral features, and experimental results on WorldView
II dataset [72, 73] in Fig. 8 suggest the effectiveness of the TCN.
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Settings Dice ↑ HD95↓
UNet(baseline) 0.9162 3.9188

UNet(+IN) 0.9171 7.7305
UNet(+TCN) 0.9204 4.0171

AttUNet(baseline) 0.9182 3.5453
AttUNet(+IN) 0.9193 6.8549

AttUNet(+TCN) 0.9180 3.6241

Table 6: Comparison over medical seg-
mentation in terms of dice and HD95.

Figure 8: Comparison over pan-sharpening for
GPPNN and PANNet.

5 Limitation and Discussion

Firstly, we validate the effectiveness of TCN in image enhancement tasks, while the investigation
of applying TCN to other image restoration tasks will be explored in the future, such as the all-
in-one image restoration task that meets similar challenges like image enhancement tasks, which
has been pointed in some related works [74, 75]. Second, dedicated to image enhancement tasks,
we mainly discuss the IN format of the TCN. However, other normalization formats can be future
explored for other tasks. Moreover, the design formats of the TCN could inspire some areas that
also require transition-constant, such as image fusion tasks [76]. Finally, the TCN could introduce
very few computation burdens although it is free of parameters, which is negligible compared with
its bring performance improvement. Note that the focus of this work is beyond introducing a plug-
and-play operation to existing networks for performance gain. The introduced TCN can be a new
choice of normalization and feature disentanglement, which excavate consistent representations while
preserving information when developing a new model that requires this property.

6 Conclusion

In this paper, we introduce a new perspective that develops the normalization technique tailored for
image enhancement approaches. We propose the TCN that transits the information constantly with the
invertible constraint, meanwhile, it keeps the normalization ability for capturing lightness consistence
representations. The proposed TCN is a general operation that can be integrated into existing networks
without introducing parameters. Extensive experiments demonstrate the effectiveness and scalability
of applying the TCN and its variants in various image enhancement tasks.

Broader Impact

Image enhancement is an important task that improves the quality of these images, exhibiting a
high value of research and application. Our method introduces a normalization operation with
information transition-constant property, which shows promising results that improve the learning
ability of networks for image enhancement tasks conveniently. However, there could be negative
effects brought by the proposed methodology. For example, some people may prefer the image with
a dim light effect, which would be eliminated by the image enhancement algorithm. In these cases, it
is suggested to combine the users’ preferences to achieve customized image enhancement effects.
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