
Proceedings of Machine Learning Research , 2022 ACML 2022

APP: Anytime Progressive Pruning

Diganta Misra diganta@landskape.ai
Landskape AI, Mila, UdeM, Morgan Stanley

Bharat Runwal bharat@landskape.ai
Landskape AI

Tianlong Chen tianlong.chen@utexas.edu
VITA, UT-Austin

Zhangyang Wang atlaswang@utexas.edu
VITA, UT-Austin

Irina Rish irina.rish@mila.quebec
Mila, UdeM

Editors: Emtiyaz Khan and Mehmet Gonen

Abstract
With the latest advances in deep learning, several methods have been investigated for optimal
learning settings in scenarios where the data stream is continuous over time. However,
training sparse networks in such settings has often been overlooked. In this paper, we explore
the problem of training a neural network with a target sparsity in a particular case of online
learning: the anytime learning at macroscale paradigm (ALMA). We propose a novel way
of progressive pruning, referred to as Anytime Progressive Pruning (APP); the proposed
approach significantly outperforms the baseline dense and Anytime OSP models across
multiple architectures and datasets under short, moderate, and long-sequence training. Our
method, for example, shows an improvement in accuracy of ≈ 7% and a reduction in the
generalization gap by ≈ 22%, while being ≈ 1/3 rd the size of the dense baseline model in
few-shot restricted imagenet training.
Keywords: Progressive Pruning; Anytime Learning; Replay; Phase Transition

1. Introduction

Supervised learning has been one of the most well-studied learning frameworks for deep neural
networks, where the learner is provided with a dataset Dx,y of samples(x) and corresponding
labels(y); and the learner is expected to predict the label y by learning on x usually by
estimating p(y|x). In an offline learning environment Ben-David et al. (1997), the learner has
access to the complete dataset Dx,y, while in a standard online learning setting Sahoo et al.
(2017); Bottou et al. (1998) the data arrive in a stream over time, assuming that the rate
at which samples arrive is the same as that of the learner’s processing time to learn from
them. In this work, we are interested in exploring the training of sparse neural networks
(pruned) in the ALMA setting Caccia et al. (2021). Pruning Blalock et al. (2020); Luo et al.
(2017); Wang et al. (2021) of over-parameterized deep neural networks has been studied
for a long time. Pruning deep neural networks leads to a reduction in inference time and
memory footprint. Although early pruning work focused exclusively on pruning weights

© 2022 D. Misra, B. Runwal, T. Chen, Z. Wang & I. Rish.

Misra Runwal Chen Wang Rish

SNIP SNIP

Figure 1: Overview of Anytime Progressive Pruning (APP) using full replay with a
given randomly initialized dense model fθ and |SB| total megabatches.

after pre-training the dense model for a certain number of iterations, extensive research has
recently been conducted on pruning the model at initialization, that is, finding the lottery
ticket Frankle and Carbin (2018); Frankle et al. (2019a,b); Malach et al. (2020) from a dense
model at the start without pre-training the dense model Lee et al. (2018); Wang et al. (2020).
However, few studies Chen et al. (2020) have investigated the training of sparse neural
networks (pruned) in online settings. Thus, our objective is to answer the following question:

“Given a dense neural network and a target sparsity, what should be the optimal way of
pruning the model in ALMA setting? ”

In summary, our contributions can be summarized by the following two points.

∗ We provide the first comprehensive study of deep neural network pruning in the ALMA
setting; henceforth, to this extent, we propose a novel approach of progressive pruning
that we term Anytime Progressive Pruning(APP).

∗ We further investigate the APP training dynamics compared to baselines in the ALMA
setting with a varied number of megabatches using C-10, C-1001, and Restricted
ImageNet datasets.

2. Anytime Progressive Pruning

In this section, we formally introduce our proposed method Anytime Progressive Prun-
ing(APP) as shown in the Fig. 1. For each megabatch Mt ∈ SB, we construct the replay
inclusive megabatch Mt by taking the union of all previous megabatches along with the
current megabatch and then create a small sample set πt of size 0.2 ∗ |Mt| 2 to be used to
prune the model to 0.8δt × 100% sparsity. Here, δt is obtained from a predetermined list δ
of uniformly spaced values that denote the target sparsity levels for each megabatch in the
stream SB. After pruning the model, we train it on the Mt megabatch and evaluate it on a
held-out test set.

To evaluate APP, we use primarily 2 baselines:

1. C-10 and C-100 denote CIFAR-10 and 100 respectively.
2. The | · | denotes the size of the set/stream.

APP

1. Baseline: This denotes the model at full parametric capacity trained and fine-tuned
on all megabatches in the stream SB using stochastic gradient descent in an ALMA
setting.

2. Anytime OSP: This denotes one-shot pruning (OSP) to the target sparsity 0.8τ ×100%
at the initialization of fθ and then subsequently training on all mega-batches in the
stream SB in an ALMA setting. Thus, Anytime OSP models have the lowest parametric
complexity since the start of training on the first megabatch in the stream SB. We
use the same pruner of choice (SNIP) by default for both APP and Anytime OSP.
Similarly to APP, we prune the model at initialization using a small randomly selected
subset π1 of the first megabatch M1 of size 0.2 ∗ |M1|.

∗ Cumulative Error Rate (CER): Along with test accuracy, we use CER to evaluate
the methods described above, which can be defined by the following equation.

CER =

SB∑
t=1

|Tx,y |∑
j=1

1(Ft(xj) ̸= yj) (1)

Here, Tx,y represents the held-out test set used for evaluation, Ft represents the trained
model at the t -th megabatch, and Ft(xj) represents the prediction on the j-th index
sample of the test set Tx,y compared to the true label for that sample yj . CER provides
strong information on whether the learner is a good anytime learner, as it is expected
to minimize CER at each megabatch training in the stream SB.

In addition, we also note the generalization gap as the difference between the training and
the validation accuracy. This gives a notion of whether the model is over- or under-fitting.

3. Results

3.1. CIFAR-10/ 100 experiments (|SB| = 8)

We start by analyzing the results shown in Fig. 2. Each megabatch Mt consists of 6250
samples and the target sparsity was set to τ = 4.5.

For all models, we observed a strong performance improvement for APP compared to
baseline and Anytime OSP in all metrics: test accuracy, CER, and generalization gap. For
example, with ResNet-50 (R50) in C-100, APP improved the test accuracy by 17.97% and
11.12%, reduced the CER by 9927 and 5533 and decreased the generalization gap by 20.49%
and 14.79% compared to baseline and Anytime OSP. For C-10, we use a noncyclic step decay
learning rate policy which reduces the learning rate only for the first megabatch (M1) and
subsequently stays constant for all remaining megabatches. However, for C-100, we used
a cyclic step decay learning rate policy, where the learning rate resets to it’s initial value
when starting on a new megabatch. In Fig. 2, we show the results for using magnitude and
random pruning instead of SNIP for APP and, based on the observations, we make SNIP
the default pruner of choice due to its stability and strong performance.

Misra Runwal Chen Wang Rish

R18 R50 WRN VGG-16
55

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y

R18 R50 WRN VGG-16
12000

14000

16000

18000

20000

22000

24000

26000

CE
R

R18 R50 WRN VGG-16
7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ge
ne

ra
lis

at
io

n
Ga

p

R18 R50 WRN VGG-16
47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Te
st

 A
cc

ur
ac

y

R18 R50 WRN VGG-16

38000

40000

42000

44000

46000

48000

50000

CE
R

R18 R50 WRN VGG-16

30

35

40

45

50

55

Ge
ne

ra
lis

at
io

n
Ga

p

Figure 2: Top and Bottom Rows: L→R Test Accuracy(↑), CER(↓) and Generalization
Gap(↓) results for C-10 and C-100, respectively. ⋏, +, ×, × and × represent the baseline,
Anytime OSP, APP (Snip), APP (Magnitude), and APP (Random), respectively.

3.2. Few shot experiments on Restricted ImageNet

Table 1: Results on Few-shot Restricted ImageNet ALMA.

Method |Mt| |SB| α Test Accuracy(↑) CER(↓) Generalisation Gap(↓)

Baseline 756 10 540 43.36% 25328 17.39%
Anytime OSP - - - 47.25%(+3.89 %) 24978 (-350) 21.53%(+4.13%)

APP - - - 40.40%(-2.96%) 24712 (-616) 6.96%(-10.43 %)
Baseline 126 30 270 40.81% 75128 55.50%

Anytime OSP - - - 44.55%(+3.74 %) 76871 (+1743) 48.53%(-6.97%)
APP - - - 44.11%(+3.23%) 73206 (-1922) 34.42%(-21.08 %)

Baseline 252 30 540 48.03% 68832 48.73%
Anytime OSP - - - 50.23%(+2.2 %) 68765 (-67) 45.29%(-3.44%)

APP - - - 55.04%(+7.01 %) 66239 (-2593) 26.39%(-22.34 %)
Baseline 54 70 270 47.88% 159204 45.03%

Anytime OSP - - - 51.45%(+3.57 %) 158608 (-596) 45.36%(+0.33 %)
APP - - - 48.90%(+1.02 %) 162360 (+3156) 30.74%(-14.29 %)

Baseline 108 70 540 61.39% 140069 34.46%
Anytime OSP - - - 61.39%(0%) 139152 (-917) 32.98%(-1.48 %)

APP - - - 62.49%(+1.10 %) 139963 (-106) 17.59%(-16.87%)

In this section, we investigate the performance of APP compared to Anytime OSP and the
baseline models on Restricted Balanced ImageNet Engstrom et al. (2019); Tsipras et al.
(2018) using various few-shot learning settings. We primarily conduct experiments using the
following two few-shot settings.

As reported in Table 1, we observe that APP significantly reduces the generalization
gap for each model variant compared to the Anytime OSP and the baseline counterparts. α
represent the number of samples per class in the complete dataset. Excluding the experiment
of α = 270, |SB| = 70, we observed a decrease in CER compared to the baseline model. For

APP

0 100 200 300 400 500

5

0

5

10

15

20

25

Ge
ne

ra
lis

at
io

n
Ga

p |SB| = 10
= 540

0 250 500 750 1000 1250 1500
10

0

10

20

30

40

50 |SB| = 30
= 540

0 1000 2000 3000

20

10

0

10

20

30

40

50 |SB| = 70
= 540

0 250 500 750 1000 1250 1500
20

10

0

10

20

30

40

50

60

Ge
ne

ra
lis

at
io

n
Ga

p |SB| = 30
= 270

0 1000 2000 3000

20

0

20

40

60
|SB| = 70

= 270

0 250 500 750 1000 1250 1500
(224x224)

20

10

0

10

20

30

40

50 |SB| = 30
= 270

Baseline Anytime OSP APP

Figure 3: Generalization gap curves during training of APP, Anytime OSP and Baseline for
the results in Table 1.

all models, APP significantly reduces the generalization gap and also improves test accuracy,
except in the case of the experiment |SB| = 10. The target sparsity was kept fixed at τ = 4.5
and the backbone used throughout was R-50.

3.3. Transitions in generalization gap

We visualize the generalization gap as a function of training iterations across the megabatches
in the stream SB in Fig.3 for the experiments reported in Table 1. We observe non-monotonic
transition in the high number of megabatch |SB| = 30, 70 settings where the model initially
oscillates within the under-fitting phase and then continues into a critical over-fitting regime
before undergoing a smooth continuous transition where the generalization gap steadily
decreases.

In all subplots, it can be seen that APP consistently maintains a lower generalization
gap compared to its Anytime OSP and baseline counterparts.

4. Conclusion

In this work, we introduced Anytime Progressive Pruning (APP), a novel way to progressively
prune deep networks while training in an ALMA regime. We improvise on existing pruning
at initialization strategy to design APP and perform an extensive empirical evaluation to
validate performance improvement in various architectures and datasets. We found that
progressively pruning deep networks with APP while training in an ALMA setting causes a
significant drop in the generalization gap compared to one-shot pruning methods and the
dense baseline model.

Misra Runwal Chen Wang Rish

References

Shai Ben-David, Eyal Kushilevitz, and Yishay Mansour. Online learning versus offline
learning. Machine Learning, 29(1):45–63, 1997.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the
state of neural network pruning? Proceedings of machine learning and systems, 2:129–146,
2020.

Léon Bottou et al. Online learning and stochastic approximations. On-line learning in neural
networks, 17(9):142, 1998.

Lucas Caccia, Jing Xu, Myle Ott, Marc’Aurelio Ranzato, and Ludovic Denoyer. On anytime
learning at macroscale. arXiv preprint arXiv:2106.09563, 2021.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Long live the
lottery: The existence of winning tickets in lifelong learning. In International Conference
on Learning Representations, 2020.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras.
Robustness (python library), 2019. URL https://github.com/MadryLab/robustness.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, and M Daniel. Roy, and michael carbin. the
lottery ticket hypothesis at scale. arXiv preprint arXiv:1903.01611, 2(3), 2019a.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing
the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019b.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE international conference on
computer vision, pages 5058–5066, 2017.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery
ticket hypothesis: Pruning is all you need. In International Conference on Machine
Learning, pages 6682–6691. PMLR, 2020.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: Learning
deep neural networks on the fly. arXiv preprint arXiv:1711.03705, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Chaoqi Wang, ChaoQi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets
before training by preserving gradient flow. ArXiv, abs/2002.07376, 2020.

https://github.com/MadryLab/robustness

APP

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Emerging paradigms of neural network
pruning. arXiv preprint arXiv:2103.06460, 2021.

	Introduction
	Anytime Progressive Pruning
	Results
	CIFAR-10/ 100 experiments (|SB| = 8)
	Few shot experiments on Restricted ImageNet
	Transitions in generalization gap

	Conclusion

