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ABSTRACT

Graph classification, which is significant in various fields, often faces the chal-
lenge of label scarcity. Under such a scenario, supervised methods based on graph
neural networks do not perform well because they only utilize information from
labeled data. Meanwhile, semi-supervised methods based on graph contrastive
learning often yield complex models as well as elaborate hyperparameter-tuning.
In this work, we present a novel semi-supervised graph classification method,
which combines GCN modules with graph kernels such as Weisfeiler-Lehman
subtree kernel. First, we use a GCN module as well as a readout operation to attain
a graph feature vector for each graph in the dataset. Then, we view the graphs as
meta-nodes of a supergraph constructed by a graph kernel among graphs. Finally,
we use another GCN module, whose inputs are the graph feature vectors, to learn
meta-node representations over the supergraph in a semi-supervised manner. Note
that the two GCN modules are optimized jointly. Compared to contrastive learning
based semi-supervised graph classification methods, our method has fewer hyper-
parameters and is easier to implement. Experiments on seven benchmark datasets
demonstrate the effectiveness of our method in comparison to many baselines in-
cluding supervised GCNs, label propagation, graph contrastive learning, etc.

1 INTRODUCTION

Graph classification aims to classify a number of graphs into different classes. It has numerous
applications such as judging whether two chemicals belong to the same class or two social rela-
tionship patterns are similar. Classical methods for graph classification are usually based on graph
kernels (Kriege et al., 2019; Borgwardt & Kriegel, 2005; Vishwanathan et al., 2010; Shervashidze
et al., 2011) that are useful tools to quantify the similarity or dissimilarity between graphs. For in-
stance, based on similarity computed by a graph kernel, one can use the k-nearest neighbor method
or support vector machines (Cortes & Vapnik, 1995) to classify graphs.

In recent years, Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2018;
Hamilton et al., 2017) have shown promising performance in not only node classification but also
graph classification (Gilmer et al., 2017; Errica et al., 2020). They iteratively aggregate neighbor-
hood node information and perform graph pooling to attain the classification results. However, GNN
strongly relies on neighborhood information and lacks global-level information, since graph pooling
strategies are relatively simple and may lead to the over-smooth of the nodes in a certain neighbor-
hood. Moreover, in real graph classification tasks, node labels and graph labels are scarce, resulting
in heavy accuracy loss when conducting supervised GNN-based methods since such methods can
only utilize information from the labeled data. In contrast, semi-supervised graph classification
methods can utilize structural information from the unlabeled data, being consistent with the fact
that a graph has abundant structural information such as neighborhood connections and node tags.
Differently, some methods apply graph contrastive learning together with label augmentation strate-
gies (You et al., 2020; 2021; Yue et al., 2022). However, graph contrastive learning needs to build
up a heuristic feature space where positive samples and negative samples are compared to learn rep-
resentations, yielding complex models and elaborative hyperparameter-tuning in most of the time;
label augmentation may not generate proper labels because it may not learn useful information from
a small ratio of labeled data.
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In this work, we propose a semi-supervised graph classification method that effectively integrates
node-level information and graph-level correlation information via GCN modules (Kipf & Welling,
2017) and graph kernels. The model in our method is composed of two GCN modules. The first one
is conducted on each graph of the dataset and provides node-level representations for the graphs and
further generates graph-level representations via a readout operation. The second GCN module is
conducted on a supergraph constructed by a graph kernel over the graphs and improves the graph-
level representations. The two GCNs are optimized jointly, in an semi-supervised manner.

We compare our method with classical and recent graph classification methods on seven datasets
when the label rates are 1%, 2%, 10%, and 20%, respectively. The results show that our method has
a strong performance on at least six datasets and outperforms other methods on three datasets by a
large margin. Moreover, our method reaches high accuracies when the label rates are 1% and 2%,
indicating that our method can be applied to real tasks when the labels are scarce.

2 RELATED WORK

In this section, we introduce basic concepts of semi-supervised learning as well as three kinds of
graph classification methods that are related to our work, including graph kernel, graph neural net-
work, and graph contrastive learning.

2.1 SEMI-SUPERVISED LEARNING METHODS

Different from traditional pairwise feature-label training, semi-supervised learning aims to extract
information from both labeled and unlabeled data because labels are usually difficult or time-
consuming to obtain, as Zhu (2008) illustrated. Semi-supervised learning can be derived in a trans-
ductive or inductive way. Transductive methods train models from both the training set and testing
set, and infer the labels of the testing set directly. Typical methods include TSVM (Joachims, 2006),
GCN (Kipf & Welling, 2017), label propagation algorithms (Raghavan et al., 2007; Yamaguchi
et al., 2016; Liu et al., 2019), matrix completion based algorithms (Goldberg et al., 2010; Fan &
Chow, 2018), and sparse graph learning (Wang et al., 2022). Meanwhile, inductive methods train
models from only the training set and generalize to unseen testing data. Typical methods include
harmonic mixture method (Zhu & Lafferty, 2005), graph regularized algorithms (Ando & Zhang,
2006; Belkin et al., 2006) (can also be transductive), GraphSAGE (Hamilton et al., 2017), and graph
attention networks (Velickovic et al., 2018; Wang et al., 2019; Zhang et al., 2022).

2.2 GRAPH KERNELS

Graph kernel often decomposes a graph into several sub-structures and calculates the kernel value
between two graphs based on the inner product of their corresponding sub-structures. After nec-
essary normalization, it can generate a kernel matrix upon N graphs. Then, it can be fed into
classifiers such as support vector machines (Cortes & Vapnik, 1995) or semi-supervised label prop-
agation methods (Raghavan et al., 2007; Yamaguchi et al., 2016; Liu et al., 2019) to attain the final
classification result. In the following paragraph, we briefly introduce a few typical graph kernels.

Shortest path kernel (Borgwardt & Kriegel, 2005) counts the number of shortest paths that share the
same length, starting vertex, and aggregated label for a pair of graphs. Random walk kernel (Vish-
wanathan et al., 2010) utilizes the Kronecker product to compute a public graph for a pair of graphs
and counts the number of random paths. To simplify the computation, Weisfeiler-Lehman (WL)
subtree kernel (Shervashidze et al., 2011) iteratively generates multisets based on subtree structure
and compresses them into new labels. Then, it outputs the dot product of a pair of graphs based
on the count of previous labels and new labels. Moreover, persistent Weisfeiler-Lehman (PWL)
kernel (Rieck et al., 2019) fully extracts topology information and generalizes WL subtree kernel.
Wasserstein Weisfeiler-Lehman (WWL) kernel (Togninalli et al., 2019) further embeds graphs into
continuous distributions and applies Wasserstein distance as the metrics. Differently, isolation graph
kernel (Xu et al., 2021) models the distributions of attributed graphs in mean embeddings.
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2.3 GRAPH NEURAL NETWORKS

Graph Neural Network (GNN) can learn the pattern of a whole graph by iterative aggregation, which
integrates neighborhood features for a node and obtains its representation. GCN (Kipf & Welling,
2017) and its variants (Gao et al., 2018; Wu et al., 2019; Abu-El-Haija et al., 2019) pioneerly prop-
agate node embeddings by adjacency matrix and feature matrix in the spectral domain on the whole
graph, achieving promising performance in node classification. GraphSAGE (Hamilton et al., 2017)
applies inductive learning, which only requires information from k-stage neighbors upon the current
node. Later, Zhang et al. (2018) proposed an end-to-end framework that directly classifies graphs.
Graph Isomorphism Network (GIN) (Xu et al., 2019) theoretically decomposes GNN (e.g. GCN
and GraphSAGE) into three steps, including aggregation, combination, and readout. Also, it adapts
GCN and GraphSAGE for graph classification and proposes another classification method based on
sum strategy. Based on GCN, graph attention networks (Velickovic et al., 2018; Wang et al., 2019;
Zhang et al., 2022) sort important nodes via the attention mechanism and avoid the over-smooth phe-
nomenon in some cases of GCN. Differently, methods based on graph autoencoder (Pan et al., 2018;
Tang et al., 2022; Hou et al., 2022) embed vertices into low-dimensional vectors and reconstruct sta-
tistical neighborhood information. Recently, DropGNN (Papp et al., 2021) aggregates results from
different GNNs where different nodes will be deleted by a marginal probability. It successfully en-
hances the robustness of GNN in graph classification. Chauhan et al. (2020) and Huang et al. (2023)
constructed context-based supergraphs under few-shot learning and GNN framework.

More recently, a few researchers proposed GNN-based methods for semi-supervised graph classifi-
cation (Ju et al., 2022c;b;a; 2023). Xie et al. (2022) and Ju et al. (2023) combined active learning
with semi-supervision on graph classification. Particularly, Ju et al. (2022c;b;a) integrated GNNs
with learnable graph kernel modules in parallel, which showed promising performance in semi-
supervised graph classification. Our method is a double-level GCN model and is able to take advan-
tage the hierarchical information of graphs of nodes and graphs of graphs, which is different from
(Ju et al., 2022c;b;a).

2.4 GRAPH CONTRASTIVE LEARNING

Graph contrastive learning is usually a kind of unsupervised representation learning method (Sun
et al., 2019) and can also be applied to semi-supervised learning. It generates positive and negative
samples and learns a projection space where similar samples are close to each other and dissimilar
samples are far from each other. The GraphCL proposed by (You et al., 2020) learns unsupervised
projection space with a combination of four kinds of augmentation strategies. You et al. (2021) fur-
ther proposed a framework that automatically selects augmentation strategies. Differently, Hassani
& Ahmadi (2020) proposed to utilize graph diffusion and maximize the mutual information between
different views of a graph, yielding satisfactory results in node-level and graph-level tasks. Later, the
SimGRACE proposed by Xia et al. (2022) utilizes perturbed GNN and adversarial training to learn
an invariant representation without manual augmentation. More recently, Yue et al. (2022) proposed
a method called GLA that utilized a label-invariant augmentation strategy in the projection space
and achieved high accuracy in semi-supervised learning when the labels are scarce. Meanwhile,
Luo et al. (2022) proposed DualGraph which enhances the consistency of graph contrastive model
on unlabeled data via a dual structure.

3 PROPOSED METHOD

In this section, we first illustrate the general formulation for our method. Then, we introduce the
procedures of our method, including how we determine our two-level models and how we construct
the supergraph. Finally, a complexity analysis of our method is carried out.

3.1 GENERAL FORMULATION

A graph is usually denoted as G = (V,E), where V denotes the set of vertices and E denotes the
set of edges. The corresponding adjacency matrix is denoted as A ∈ {0, 1}n×n, where n = |V |.
Sometimes each node of G has a feature vector. The matrix formed by the feature vectors of nodes
is denoted as X ∈ Rn×m, where m denotes the dimension of the feature. For convenience, we
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also denote G = (A,X) ∈ G. Given a set of partially labeled graphs G = Gl ∪ Gu, where
Gl = {G1, G2, . . . , Gl} are labeled as {y1, y2, . . . , yl}, yi ∈ [K], Gu = {Gl+1, Gl+2, . . . , Gl+u}
are unlabeled, and u + l = N , our goal is to predict the labels for Gu. The problem becomes more
challenging when l/u is smaller.

Let h : G → Rd be a function that represents a graph G as a d-dimensional vector. Denote h̄i =
h(Gi), i ∈ [N ] and let H̄ = [h̄⊤

1 ; h̄
⊤
2 ; . . . ; h̄

⊤
N ] ∈ RN×d. Let s : G × G → {0, 1} be a function to

determine whether two graphs are similar or dissimilar and denote S = [s(Gi, Gj)] ∈ {0, 1}N×N .
Thus we constructed a super graph Ḡ = (S, H̄) for G. In Ḡ, the nodes are the graphs in G and the
edges are given by S. The details about h and s will be introduced later.

Based on Ḡ, we reformulate the original graph classification problem as a semi-supervised node
classification problem. First, we predict the labels of G using the following model:

Ŷ = f(S, H̄) = f(S, h(G)), (1)

where Ŷ ∈ [0, 1]N×K , h(G) = [h(G1)
⊤;h(G2)

⊤; . . . ;h(GN )⊤], and f, h are learnable. The
objective function of the semi-supervised learning is as follows:

Lf,h = −
l∑
i=1

K∑
k=1

Yik log Ŷik, (2)

where Y = [Yik] ∈ {0, 1}l×K denotes the one-hot encoding matrix of {y1, y2, . . . , yl}.

3.2 DETERMINING THE TWO-LEVEL MODELS f AND h

In this work, we let f and h be GCNs (Kipf & Welling, 2017) parameterized by ϕ and ψ respectively.
Specifically, we let

fϕ(S, H̄) = Softmax
(
gφ

(
Ŝσ(ŜH̄Θ1)Θ2

))
, (3)

where ϕ = {Θ1,Θ2, φ}, σ is an activation function such as ReLU, the sizes of Θ1 and Θ2 are d×d′
and d′ × d′′, respectively, and gφ : Rd′′ → RK is a multilayer perception (MLP) parameterized by
φ. Note that Ŝ is the normalized self-looped adjacency matrix, i.e.,

Ŝ = diag(1⊤(S+ IN ))−1/2(S+ IN )diag(1⊤(S+ IN ))−1/2. (4)

The two-layer GCN module in equation 3 combines the feature of each graph Gi with its neighbors
and the MLP gϕ further enhances the representations of each graph for classification.

To obtain H̄, we apply hψ to each graph G in G, i.e.,

Hi = hψ(Xi, Âi) = Âiσ(ÂiXiW1)W2, (5)

where ψ = {W1,W2}, W1 ∈ Rm×d, W2 ∈ Rd×d, Xi is the ni×m node feature matrix of Gi.
Âi is the normalized self-looped adjacency matrix of Gi, i.e.,

Âi = diag(1⊤(Ai + Ini))
−1/2(A+ Ini)diag(1⊤(Ai + Ini))

−1/2. (6)

Finally, the i-th column of H̄ is obtained by using a readout function for Hi, e.g.,

h̄i = H⊤
i 1, i ∈ [N ]. (7)

GCN is simple in form and easy to transplant, and at the same time, it can still perform well when
features are scarce. Moreover, GCN can be combined with semi-supervised learning, which extracts
the structural information from both labeled and unlabeled data. Thus, GCN modules can be ap-
plied to different levels, being consistent with its formula and our motivation. Figure 1 shows the
overall structure of our method, where “READOUT” is described in Eq. 7 and MLP stands for the
multilayer perceptron described in Eq. 3. We will discuss how we construct the supergraph Ḡ and
the corresponding similarity matrix Ŝ in Section 3.3.

The advantages of our method over existing methods are as follows.
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• Compared to supervised graph classification methods, our method is able to utilize unla-
beled data effectively. This is very important when the labels are scarce.

• Compared to conventional semi-supervised methods such as label-propagation and Lapla-
cian regularization, our method extracts discriminative features via graph convolution and
neural networks.

• Compared to semi-supervised graph representation learning methods and graph contrastive
learning methods, our method has fewer hyperparameters and is convenient to implement.

Figure 1: Overall structure of our KDGCN.

3.3 CONSTRUCTING THE SUPERGRAPH Ḡ

We use graph kernel to construct the supergraph Ḡ. Firstly, we apply a graph kernel k(·, ·) to each
pair in G and form a kernel matrix K, where Kij = k(Gi, Gj), (i, j) ∈ [N ] × [N ]. In addition,
we let Kij ← Kij/(KiiKjj)1/2 and then we set diag(K) = 0. Since K is usually not sparse and a
sparse adjacency matrix often performs better than a dense adjacency matrix, we use the following
thresholding operation to obtain a binary adjacency matrix:

Si,j =

{
0, Kij ≤ τ
1, Kij > τ

(8)

where 0 < τ < 1 is a predefined hyperparameter. Rather than using a single threshold for the entire
matrix K, one can also consider setting the largest c (an integer) elements in each column of K to 1
and let the others be zero and obtain a sparse but asymmetric matrix K̄ and let S = max(K̄, K̄⊤

).
Intuitively, if τ is too large or c is too small in the thresholding operation, the supergraph will be too
sparse. However, if τ is too small or c is too large, the supergraph will be a very dense graph and
is not discriminative, which leads to low classification accuracy. We can tune this hyperparameter
using cross-validation.

As introduced in Section 2.2, there have been many graph kernels. Particularly, the WL kernel family
has shown satisfactory performance in a few previous works. WL subtree kernel (Shervashidze et al.,
2011), which fully captures the subtree structures of a graph, is based on the Weisfeiler-Lehman test
of isomorphism on graphs and hence is a very effective metric of graph similarity. Moreover, the
computational cost of the WL subtree kernel is linear with the number of edges and hence is scalable
to large datasets (Shervashidze et al., 2011). Therefore, the WL subtree kernel is indeed a strong
complement to our two-level GCN model.

In Table 4, we compare the performance of many graph kernels. The results show that the WL
subtree kernel is indeed more effective than other graph kernels in many cases. At the same time,
we calculate the structural properties of our supergraphs of different datasets to further demonstrate
the effectiveness of our supergraph and the thresholding operation, as shown in Appendix D.

3.4 COMPLEXITY ANALYSIS

The computational complexity of our method is mainly from the following four parts: (a) the com-
putation of Ŝ; (b) obtaining H̄ according to equation 5 and equation 7; (c) obtaining Ŷ according to
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equation 1. For convenience, WLOG, we assume that all graphs in G have the same number (n) of
nodes and d′′ = d′ = d. Firstly, it has been shown by (Shervashidze et al., 2011) that the complexity
of (a) is O(Nτs̄ + N2κn), where κ is the iteration of WL subtree kernel, s̄ is the number of ele-
ments in the multisets of a graph and n is the number of nodes of a graph. The complexity of (b) is
O(N(n2d+nmd+nd2)). The complexity of (c) isO(Nd2+N2d+NLdK), where L ≥ 2 denotes
the number of layers in the MLP. Now suppose the total number of iterations in the optimization is
T , then the total time complexity of our method is O(N2κn + T (Nn2d + N2d)), where we have
assumed that n > max(m, d) and N > max(d, LK). This complexity can be further reduced if we
consider the sparsity of the adjacency matrices and compute the elements of K in parallel.

3.5 EXTENSIONS

Currently, our method KDGCN is based on GCN (Kipf & Welling, 2017) and is only used in trans-
ductive learning on graphs. KDGCN can also utilize other GNN modules such as GAT (Velickovic
et al., 2018) and GraphSAGE (Hamilton et al., 2017). For example, using the GraphSAGE module,
we are able to conduct inductive learning on graphs. The corresponding algorithm is presented in
Algorithm 1 of Appendix F.

4 EXPERIMENTS

In this section, we first describe seven public graph classification benchmark datasets from TU-
Dataset (Morris et al., 2020), evaluation metrics, and experiment settings. Then, we briefly describe
baseline algorithms for comparison and show accuracy and standard deviation results under four
label rates, including 1%, 2%, 10%, and 20%. Finally, we analyze these results and further demon-
strate the effectiveness of our method by exploring the influence of different graph kernels and
performing hyperparameter experiments.

4.1 DATASETS AND EXPERIMENTAL SETTINGS

Table 1 shows the statistics of these benchmark datasets. The number of graphs ranges from 188 to
5000. Meanwhile, the average number of nodes ranges from 13.00 to 284.32 and the average number
of edges ranges from 14.69 to 2457.78. Hence, these datasets can evaluate our method effectively
for their diversity. We perform 5-fold cross-validation for model evaluation to all methods and report

Table 1: Statistics of datasets for graph classification tasks.
Dataset Category #Class #Graph Average #Node Average #Edge
MUTAG Small Molecules 2 188 17.93 19.79
PTC-MR Small Molecules 2 344 14.29 14.69

PROTEINS Bioinformatics 2 1113 39.06 72.82
DD Bioinformatics 2 1178 284.32 715.66

COLLAB Social Networks 3 5000 74.49 2457.78
IMDB-M Social Networks 3 1500 13.00 65.94
IMDB-B Social Networks 2 1000 19.77 96.53

the average and standard deviation of accuracies which are from their best epochs of each fold. For a
fair comparison, we apply the same dataset split and the same 5-fold cross-validation strategy to all
the comparison methods and attain their results by using their given hyperparameter settings. The
settings are described in Appendix A.

4.2 ALGORITHMIC PERFORMANCE

We choose WL subtree kernel (Shervashidze et al., 2011), GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), DGCNN (Zhang et al., 2018), GIN (Xu et al., 2019), MVGRL (Has-
sani & Ahmadi, 2020), DropGNN (Papp et al., 2021), SimGRACE (Xia et al., 2022) and GLA
(Yue et al., 2022) as our comparison algorithms. In our method, We compare two different thresh-
olding operations as described in Section 3.3. Since WL subtree kernel and GCN modules are
important components of our method, we can perform an equivalent ablation study by comparing
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WL subtree kernel and GCN. Here, WL subtree kernel is combined with the supervised support
vector machines (Cortes & Vapnik, 1995) and the semi-supervised label propagation method (Ya-
maguchi et al., 2016). We denote them as WL+SVM and WL+LP, respectively. Meanwhile, GCN,
GraphSAGE, DGCNN, GIN and DropGNN are supervised graph classification methods. Finally,
MVGRL is self-supervised while SimGRACE and GLA are semi-supervised. Note that the GCN
and the GraphSAGE that we compare are derived from the GIN library because the original codes
are for node classification (See Section 2.3).

Table 2 shows the results of each method on the aforementioned datasets in the form of mean accu-
racy and the corresponding standard deviation when the label rates are 10% and 20%. The highest
accuracy is highlighted in red while the second highest accuracy and the third highest accuracy
are highlighted in blue. KDGCN-τ means that the thresholding operation is controlled by τ while
KDGCN-c means that the thresholding operation is controlled by c.

Table 2: Graph classification results in the form of Mean Accuracy (%) and Standard Deviation (%)
on seven benchmark datasets.

Label Methods MUTAG PTC-MR PROTEINS DD COLLAB IMDB-M IMDB-B

10%

WL+SVM 70.71±1.78 52.52±3.11 71.72±2.64 72.55±1.17 72.74±1.72 45.47±1.60 67.87±3.08
WL+LP 66.47±0.00 55.81±0.00 59.58±0.00 58.62±0.00 57.36±0.56 42.24±1.04 64.98±2.57

GCN 75.76±2.80 56.39±2.45 69.74±1.65 69.26±0.57 73.17±1.48 46.64±1.54 66.07±3.08
GraphSAGE 72.24±0.87 58.71±4.46 68.76±1.78 68.84±1.44 70.49±0.79 45.56±1.39 65.51±2.93

DGCNN 82.00±4.64 56.84±1.15 72.91±0.95 76.78±0.31 68.23±0.68 43.78±1.38 59.24±4.77
GIN 82.35±6.27 56.52±3.37 71.94±1.45 70.14±1.00 73.04±1.07 47.50±1.00 67.16±3.59

DropGNN 82.00±3.89 57.61±3.13 72.77±0.92 75.19±0.72 69.71±1.72 46.36±1.84 69.43±1.77
MVGRL 82.24±2.96 54.77±2.66 69.12±1.46 71.63±0.63 73.00±1.06 43.23±2.93 66.76±4.13

SimGRACE 83.20±3.79 58.32±3.10 72.61±1.51 74.19±1.29 73.87±0.84 46.12±1.07 68.78±1.04
GLA 84.31±3.17 56.00±1.49 75.04±1.17 77.55±1.00 74.84±1.16 48.15±0.87 68.82±3.30

KDGCN-τ (Ours) 87.29±2.96 61.29±1.56 73.85±1.20 76.42±0.23 74.61±1.18 46.27±0.43 68.31±2.46
KDGCN-c(Ours) 89.53±2.47 63.16±2.86 76.03±0.63 77.21±1.93 88.88±1.29 58.56±2.12 86.22±2.15

20%

WL+SVM 76.99±2.61 58.79±3.08 73.11±0.52 75.38±0.86 75.56±0.72 47.18±1.80 71.45±1.00
WL+LP 66.49±0.22 55.81±0.16 59.57±0.02 58.66±0.04 56.00±0.30 44.68±1.81 69.20±2.14

GCN 78.05±2.26 61.26±2.93 70.93±0.90 70.39±1.64 75.28±0.53 48.05±0.96 71.25±1.94
GraphSAGE 74.55±5.76 61.11±4.09 69.13±3.57 68.71±3.62 73.34±0.95 47.53±1.12 69.00±1.38

DGCNN 84.72±0.98 61.55±0.88 73.74±0.50 77.59±0.65 72.27±0.41 45.10±1.23 65.37±2.43
GIN 85.36±1.72 60.90±3.52 74.07±0.71 70.71±1.02 75.54±0.60 48.65±1.23 72.22±1.19

DropGNN 82.71±5.24 61.63±1.52 74.14±0.70 75.79±0.85 71.66±0.58 50.05±0.61 72.79±0.88
MVGRL 82.72±3.88 55.52±1.81 70.96±0.94 75.91±0.96 74.44±0.51 47.00±1.62 71.78±0.99

SimGRACE 86.27±2.91 60.58±2.95 74.56±0.97 76.18±1.60 77.57±0.64 48.72±1.03 71.85±1.53
GLA 85.11±3.78 58.43±3.04 75.34±0.97 77.80±0.47 77.84±0.27 49.08±0.71 72.88±0.57

KDGCN-τ (Ours) 87.64±0.97 62.06±3.62 75.18±1.41 76.59±0.29 77.61±0.67 49.60±1.08 73.88±1.04
KDGCN-c(Ours) 91.62±1.79 63.81±0.75 76.93±1.62 77.27±2.11 90.63±0.31 65.18±1.32 91.70±1.07

It can be seen from Table 2 that our method reaches the highest mean accuracy on MUTAG, PTC-
MR, PROTEINS, COLLAB, IMDB-M and IMDB-B under two label rates, indicating that it can be
generalized to different kinds of datasets. Specifically, our method exceeds other methods on social
networks datasets (i.e. COLLAB, IMDB-M and IMDB-B) by a large margin and exceeds other
methods on small molecules datasets by 2.18% to 5.35%. Moreover, our KDGCN always performs
better when utilizing thresholding operation controlled by c, especially on social networks datasets.
Furthermore, among all experiments, the standard deviations of our method are always under 3.00%
and are below 2.00% in most cases, showing that our method is stable and will not derive intense
oscillations in mean accuracy under different dataset partitions.

Here, we carry out an analysis on why c is better than τ and why our KDGCN exceeds a lot in
mean accuracy on social networks datasets when utilizing c. When constructing the supergraph of
our method (See Section 3.3), the thresholding operation regarding τ tends to build up a centralized
and sparse supergraph because τ is applied globally regardless of the degree or the intrinsic char-
acteristics of every graph (i.e. meta-node). Meanwhile, the operation regarding c sorts the closest
neighbors for every meta-node, generating a supergraph whose node degrees are roughly the same.
Since social networks datasets are inclined to be dense and decentralized referring to Table 4.1, the
thresholding operation regarding c is more consistent with these datasets. At the same time, the op-
eration regarding c can model the intrinsic relationship among meta-nodes better, resulting in higher
mean accuracies in all of the above experiments. Statistical analysis on supergraphs constructed via
τ and c is illustrated in Appendix D.

For the comparison with our baseline methods, our KDGCN exceeds the mean accuracy in every
experiment against our baseline methods WL+SVM, WL+LP and GCN. The reason for such a phe-
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nomenon can be illustrated as follows: (1) The original GCN is designed for node classification,
which is not fully compatible with graph classification since it has a weak ability to model the cor-
relation among graphs. (2) Although WL subtree kernel can model the correlation among graphs,
it still needs abundant graph labels because the output matrix has to be fed into a downstream clas-
sifier. However, datasets such as MUTAG, PTC-MR, and so on do not have enough labels when
the label rate is small. At the same time, the above experiments prove that our method successfully
utilizes GCN modules to fully extract both node-level information and graph-level information and
the WL subtree kernel to generate a similarity matrix between graphs.

4.3 PERFORMANCE UNDER EXTREMELY SCARCE LABELS

To further investigate the capability of our method to extract structural information from the datasets
where the graph labels are severely scarce, we conduct experiments with five methods that per-
form well when the label rates are 10% and 20%, including WL+SVM and WL+LP (Shervashidze
et al., 2011; Cortes & Vapnik, 1995; Yamaguchi et al., 2016) in Section 4.2, GIN (Xu et al., 2019),
DGCNN (Zhang et al., 2018), DropGNN (Papp et al., 2021), SimGRACE (Xia et al., 2022) and
GLA (Yue et al., 2022). Here, we set the label rates to be 1% and 2%, and we use the same datasets
as well as experiment settings as described in Section 4.1. The results are shown in Table 3, where
the highest accuracy is highlighted in red; the second and the third highest accuracy is highlighted in
blue. Meanwhile, Table 8 in Appendix C shows the average mean accuracy for the above methods
on all datasets when the label rates are 1%, 2%, 10% and 20%, respectively.

Table 3: Graph classification results in the form of Mean Accuracy (%) and Standard Deviation (%)
on seven benchmark datasets when the graph labels are extremely scarce.

Label Methods MUTAG PTC-MR PROTEINS DD COLLAB IMDB-M IMDB-B

1%

WL+SVM 60.75±14.14 51.14±3.09 63.09±4.76 65.19±2.05 61.48±2.64 38.03±3.40 56.32±4.49
WL+LP 61.08±14.22 55.72±0.00 59.53±0.00 58.69±0.00 55.66±2.06 38.03±2.54 53.21±6.38
DGCNN 80.75±4.98 56.72±0.68 59.53±0.00 73.42±3.52 62.88±3.71 37.74±1.70 52.61±2.08

GIN 73.39±3.28 51.50±4.01 63.10±1.90 64.30±3.00 66.17±2.24 40.30±2.59 58.85±5.90
DropGNN 60.86±14.42 49.68±5.10 63.61±4.10 62.21±2.47 60.96±1.33 43.13±2.82 63.08±3.60

SimGRACE 66.02±9.72 51.59±1.42 68.28±4.95 70.91±3.83 62.09±4.40 37.63±2.87 58.61±3.09
GLA 70.38±3.32 55.95±1.94 63.30±6.42 74.14±1.09 65.09±2.68 39.58±1.25 61.03±3.67

KDGCN-τ (Ours) 83.55±1.89 59.71±1.13 73.61±1.14 76.32±0.22 65.91±0.69 40.85±2.11 60.42±3.52
KDGCN-c(Ours) 87.42±2.10 60.76±1.62 70.68±3.31 76.30±1.60 82.19±1.24 44.78±1.08 74.44±4.68

2%

WL+SVM 67.46±1.05 50.65±1.99 66.23±3.65 69.30±0.71 64.33±1.43 38.68±3.22 62.76±2.90
WL+LP 66.49±0.00 52.60±4.15 59.58±0.00 58.70±0.00 55.52±1.77 37.90±1.90 60.29±3.04
DGCNN 75.78±4.73 58.64±1.50 63.89±3.10 75.84±0.56 65.33±2.32 39.39±1.28 56.98±2.70

GIN 70.05±4.64 54.20±2.23 64.71±2.67 67.15±2.08 69.37±0.86 40.76±1.61 63.47±3.68
DropGNN 73.08±3.67 55.44±2.25 66.70±0.57 68.24±2.65 62.43±1.86 41.84±1.14 62.68±2.33

SimGRACE 80.54±3.51 53.23±0.61 69.58±2.75 72.63±2.36 65.93±3.25 39.85±1.43 61.71±3.02
GLA 73.11±3.43 55.98±1.93 67.92±3.85 74.44±0.67 69.33±0.77 39.70±1.82 65.67±3.49

KDGCN-τ (Ours) 83.78±2.51 61.78±1.56 73.22±0.46 76.24±0.18 67.24±1.21 41.70±2.60 65.04±3.16
KDGCN-c(Ours) 87.14±1.50 61.78±1.70 73.77±0.61 77.73±2.30 83.40±2.19 47.55±2.26 77.73±2.46

It can be inferred from Table 3 that our method surpasses other methods on all seven datasets in Sec-
tion 4.1, proving that our method is robust even when the labels are extremely scarce. Specifically,
our method exceeds other methods on COLLAB and IMDB-B by a large margin, being consistent
with the fact that the thresholding operation regarding c can construct better supergraphs for so-
cial networks datasets. Moreover, our KDGCN exceeds other methods on the rest five datasets by
1.65% to 6.67%. Furthermore, the thresholding operation regarding c still performs better than that
regarding τ generally. On the contrary, other methods do not perform well in such case. The reason
lies in two aspects: (1) Supervised methods including DGCNN, GIN and DropGNN rely on labeled
graphs and cannot utilize structural information from unlabeled graphs. However, labeled graphs are
extremely scarce. (2) Methods based on graph contrastive learning including SimGRACE and GLA
still need enough labels to generate a credible representation space. Otherwise, the representation
space may be biased. Finally, the standard deviations are mostly less than 3.00% among the above
experiments, fully demonstrating the robustness of our method in extreme cases.

4.4 INFLUENCE OF GRAPH KERNELS

To further investigate how different graph kernels influence our method, we replace WL subtree ker-
nel with shortest path kernel (Borgwardt & Kriegel, 2005), graphlet sampling kernel (Shervashidze
et al., 2009), propagation kernel (Neumann et al., 2016), pyramid match kernel (Nikolentzos et al.,
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2017), neighborhood hash kernel (Hido & Kashima, 2009) and WWL kernel Togninalli et al. (2019),
respectively on MUTAG, PROTEINS and IMDB-M datasets (Morris et al., 2020). These three
datasets belong to small molecules dataset, bioinformatics dataset and social network dataset, re-
spectively. For each dataset, the left column stands for the results where τ is applied to control the
thresholding operation while the right column stands for the results where c is applied, as described
in Section 3.3.We utilize the same methodology as Section 3 illustrates and the same evaluation
metrics as Section 4.1 illustrates. The results are shown in Table 4, where the label rates are 10%
and 20%, respectively. The highest and second-highest accuracies are highlighted in red and blue.

Table 4: Graph classification results in the form of Mean Accuracy (%) and Standard Deviation (%)
on MUTAG, PROTEINS and IMDB-M using different graph kernels.

Label Kernels MUTAG PROTEINS IMDB-M

10%

shortest path kernel 85.88±4.30 91.53±1.07 73.55±0.99 76.89±0.56 46.74±1.02 53.53±1.08
graphlet sampling kernel 67.06±0.72 82.47±2.80 69.26±0.81 86.85±6.92 39.67±1.15 60.31±1.53

propagation kernel 82.94±3.28 87.53±1.83 74.29±1.05 73.13±1.41 46.27±0.43 54.00±1.49
pyramid match kernel 85.65±1.07 94.00±2.29 74.27±0.95 76.95±1.02 42.80±1.71 53.26±0.95

neighborhood hash kernel 86.12±1.07 92.12±1.98 73.39±1.28 76.53±0.39 46.27±0.43 53.30±2.06
WWL kernel 86.82±3.18 84.59±2.89 71.30±1.10 75.93±0.64 45.10±0.94 57.39±1.99

WL subtree kernel 87.29±2.96 89.53±2.47 73.85±1.20 76.03±0.63 46.27±0.43 58.56±2.12

20%

shortest path kernel 86.04±1.94 93.75±1.19 75.00±0.70 77.11±1.05 48.38±0.83 57.52±1.50
graphlet sampling kernel 67.42±0.86 83.25±1.34 69.07±0.87 89.01±8.91 39.45±1.19 68.45±2.54

propagation kernel 84.18±0.76 88.96±1.56 74.82±1.73 75.22±1.98 49.60±1.08 59.57±0.80
pyramid match kernel 85.11±1.61 95.08±1.60 75.45±0.93 76.57±1.26 43.38±0.89 59.92±2.57

neighborhood hash kernel 85.24±2.02 94.15±0.05 75.25±1.48 76.80±0.38 49.60±1.08 57.32±2.96
WWL kernel 86.04±1.69 86.97±2.36 72.04±0.85 76.08±1.44 46.62±1.58 62.97±1.59

WL subtree kernel 87.64±0.97 91.62±1.79 75.18±1.41 76.93±1.62 49.60±1.08 65.18±1.32

Table 4 shows that when utilizing WL subtree kernel which is guided by the threshold τ , our
KDGCN performs the best on MUTAG under two label rates and performs the best on IMDB-M
when the label rate is 20%. Meanwhile, when the threshold switches to c, our KDGCN can also
perform well on IMDB-M as well as reach fair accuracies on MUTAG and PROTEINS when using
WL subtree kernel. Among all kernels, WL subtree kernel leads to the highest accuracy or the sec-
ond highest accuracy in most of the experiments. Although graphlet sampling kernel performs the
best on PROTEINS and IMDB-M when guided by c, it does not perform well in other experiments,
indicating that it is not as stable as WL subtree kernel. In general, Table 4 proves that WL subtree
kernel is solid in building up supergraphs on different kinds of datasets. At the same time, graphlet
sampling kernel, propagation kernel, pyramid match kernel and neighborhood hash kernel enjoy fair
performances, indicating that our method is compatible with different kernels.

Here, we carry out an analysis on why we choose WL subtree kernel. Firstly, graphlet sampling
kernel and WWL kernel are far more time-consuming than WL subtree kernel since enumerating
graphlets of different sizes and calculating Wasserstein distance in respective of these kernels take
up much time. The time cost for each graph kernel is listed in Appendix E. Secondly, WL subtree
kernel iteratively captures topologic structures of different depths from a graph, while GCN module
iteratively passes message to nodes of different hops, indicating that WL subtree kernel is consistent
with GCN module intrinsically (Xu et al., 2019).

4.5 HYPERPARAMETER EXPERIMENTS

We explore how the threshold τ and c in Section 3.3 influence the classification accuracy. We carry
out experiments for all datasets under several thresholds when the label rates are 10% and 20%,
respectively. The results and analysis regarding τ and c are illustrated in Appendix B.

5 CONCLUSION

This work has introduced a semi-supervised graph classification method called KDGCN, which
integrates GCN modules on different levels and WL subtree kernel to capture sufficient structural
information from labeled and unlabeled graphs. Extensive experiments showed that our method is
concise in form and competent against other methods when the graph labels are scarce. Moreover,
we carry out hyperparameter experiments, which further validate the effectiveness of GCN modules
and WL subtree kernel.
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Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt. Graph
kernels. Journal of Machine Learning Research (JMLR), 11:1201–1242, 2010.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. KGAT: knowledge graph
attention network for recommendation. In International Conference on Knowledge Discovery and
Data Mining (SIGKDD), pp. 950–958, 2019.

Zitong Wang, Li Wang, Raymond H. Chan, and Tieyong Zeng. Exploring latent sparse graph
for large-scale semi-supervised learning. In Machine Learning and Knowledge Discovery in
Databases - European Conference (ECML-PKDD), pp. 367–383, 2022.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In International Conference on Machine Learning
(ICML), pp. 6861–6871, 2019.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Confer-
ence (WWW), pp. 1070–1079, 2022.

Yu Xie, Shengze Lv, Yuhua Qian, Chao Wen, and Jiye Liang. Active and semi-supervised graph
neural networks for graph classification. IEEE Transaction on Big Data, 8(4):920–932, 2022.

Bi-Cun Xu, Kai Ming Ting, and Yuan Jiang. Isolation graph kernel. In Association for the Advance-
ment of Artificial Intelligence (AAAI), pp. 10487–10495, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Yuto Yamaguchi, Christos Faloutsos, and Hiroyuki Kitagawa. CAMLP: confidence-aware mod-
ulated label propagation. In International Conference on Data Mining (ICDM), pp. 513–521,
2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Neural Information Processing Systems (NeurIPS),
2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning (ICML), pp. 12121–12132, 2021.

Han Yue, Chunhui Zhang, Chuxu Zhang, and Hongfu Liu. Label-invariant augmentation for semi-
supervised graph classification. In Neural Information Processing Systems (NeurIPS), pp. 29350–
29361, 2022.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Association for the Advancement of Artificial Intelligence
(AAAI), pp. 4438–4445, 2018.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang,
and Bin Cui. Graph attention multi-layer perceptron. In International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 4560–4570, 2022.

12



Under review as a conference paper at ICLR 2024

Xiaojin Zhu. Semi-supervised learning literature survey. Computer Science, University of
Wisconsin-Madison, 2:1–60, 2008.

Xiaojin Zhu and John D. Lafferty. Harmonic mixtures: combining mixture models and graph-based
methods for inductive and scalable semi-supervised learning. In International Conference on
Machine Learning (ICML), pp. 1052–1059, 2005.

A EXPERIMENT SETTINGS

When conducting our KDGCN, the dropout rate is set to 0, the learning rate is set to 0.01 and the
weight decay is set to 0.05. We set d = d′ = d′′ = 64 for IMDB-B while we set d = d′ = 64 and
d′′ = 16 for the rest 6 datasets, as described in Section 3.2. Moreover, for PROTEINS, the node
feature matrix X in Section 3.2 is constructed by one-hot representations of the node labels; for the
rest 6 datasets, X is constructed by one-hot representations of the node degrees. The thresholds τ
and c of each dataset are illustrated in Table 5. The above hyperparameters are chosen by grid search
on small datasets derived from the original datasets.

Table 5: Thresholds τ and c for each dataset.

Dataset τ c

MUTAG 0.95 7
PTC-MR 0.95 2

PROTEINS 0.95 28
DD 0.95 19

COLLAB 0.98 42
IMDB-M 0.95 18
IMDB-B 0.95 30

B HYPERPARAMETER EXPERIMENTS

Figure 2 shows the influence of τ and c on the classification accuracy for small molecules datasets,
as mentioned in Section 4.1 and Section 4.5. Here, “MA” stands for mean accuracy, “Identity”
means that the matrix Ŝ in Section 3.2 is exactly an identity matrix, “tau” stands for τ , “c” stands
for c, “0.1” means the label rate is 10% and “0.2” means the label rate is 20%. Meanwhile, Figure 3
shows the influence of τ and c for bioinformatics datasets and Figure 4 shows the influence of τ and
c for social networks datasets. When conducting the above experiments, other settings are the same
as what Appendix A has illustrated.

As Figure 2, 3 and 4 show, the mean accuracy generally increases with the rise of τ and with the
fall of c. After reaching the turning point, the mean accuracy decreases in most cases. Also, the
thresholding operation regarding c performs a lot better than that regarding τ in Section 3.3.

Here, we carry out an analysis. Firstly, as τ increases and c decreases, the number of graphs that are
“adjacent” according to S in Section 3.2 and 3.3 decreases. That implies WL subtree kernel (Sher-
vashidze et al., 2011) has a high tolerance on graphs that are not homogeneous. In other words, if τ
is too low or c is too high, graphs that are not actually “adjacent” will be noisy information, which
impedes our model. However, if τ is too high or c is too low, there will be insufficient adjacency
information for our model to learn. Therefore, to better fulfill the ability of S, an appropriate τ or c
is needed. Moreover, as c dereases in Figure 4, the mean accuracies drastically decrease for social
networks datasets, indicating that the supergraphs for social networks datasets should not be sparse.
Furthermore, if Ŝ equals to an identity matrix, the mean accuracy is still relatively high, indicating
that the GCN modules (Kipf & Welling, 2017) that we apply have high potential in both node-level
information extraction and graph classification. To sum up, the above experiments further testify
that both the GCN module and WL subtree kernel contribute a lot to our method.

We also explore how d, d′ and d′′ influence the effectiveness of our method. We choose MUTAG,
PROTEINS and IMDB-M (Morris et al., 2020) as the comparative datasets where the label rates are
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(a) Impact of τ on MUTAG (b) Impact of c on MUTAG

(c) Impact of τ on PTC-MR (d) Impact of c on PTC-MR

Figure 2: Impact of τ and c on the mean accuracies of small molecules datasets under different label
rates.

set to 10% and 20%, respectively. Firstly, we let d′′ = 16 and choose different d and d′, where
d = d′ for convenience. Then, we let d = d′ = 64 and choose different d′′. Here, the thresholding
operation is the one regarding c and other settings are the same as Appendix A has illustrated. The
results are shown in Table 6 and 7, respectively, where the highest mean accuracy is highlighted in
red and the second highest mean accuracy is highlighted in blue.

The results indicate that when choosing d = d′ = 64 and d′′ = 16 on these datasets, our method has
a fair performance. Meanwhile, our method does not perform well on IMDB-M when d, d′ and d′′
are too small. However, d, d′ and d′′ that are too large will increase the computation burden as well
as lead to sub-optimal results. Thus, moderate d, d′ and d′′ fit for our method.

C AVERAGE MEAN ACCURACY FOR DIFFERENT METHODS

In order to quantify the average ability of each method in Table 3 on all datasets described in Section
4.1, we caluculate the average value of the mean accuracies of all datasets for each method under
different label rates, as shown in Table 8. The highest average value will be highlighted in red while
the second and the third highest average value will be highlighted in blue.

Table 8 shows that when utilizing thresholding operation regarding c, our method surpasses other
methods on the average value by 7.84% to 9.59%; when utilizing thresholding operation regarding
τ , our methods exceeds other methods by 0.48% to 4.42%. Specifically, our method performs the
best when the label rate is 1%, proving the robustness of our method under extreme label scarcity. In
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Table 6: Graph classification results in the form of Mean Accuracy (%) and Standard Deviation (%)
on MUTAG, PROTEINS and IMDB-M where d′′ is fixed and different d and d′ are chosen.

Label d = d′ MUTAG PROTEINS IMDB-M

10%

8 89.76±2.87 76.25±2.25 56.16±3.37
16 89.06±2.45 76.35±2.11 57.56±2.07
32 88.71±2.47 75.61±1.14 59.14±3.30
64 89.53±2.47 76.03±0.63 58.56±2.12

128 90.47±2.54 75.07±1.70 60.03±1.73
256 89.29±2.80 75.31±1.67 59.66±0.96

20%

8 91.89±2.44 76.03±0.88 60.97±3.63
16 90.69±3.11 76.41±1.34 63.97±2.92
32 91.49±2.74 76.75±2.26 66.53±2.01
64 91.62±1.79 76.93±1.62 65.18±1.32

128 91.49±1.59 75.25±1.19 66.57±1.95
256 92.16±2.07 76.57±1.45 64.67±2.91

Table 7: Graph classification results in the form of Mean Accuracy (%) and Standard Deviation (%)
on MUTAG, PROTEINS and IMDB-M where d and d′ are fixed and different d′′ is chosen.

Label d′′ MUTAG PROTEINS IMDB-M

10%

4 89.65±1.35 76.37±1.96 58.55±2.74
8 89.53±2.92 75.63±0.92 57.99±1.20

16 89.53±2.47 76.03±0.63 58.56±2.12
32 90.24±2.81 75.85±0.92 57.76±1.78
64 90.59±1.86 75.57±1.85 59.10±2.01

128 89.29±2.29 74.73±1.24 57.73±3.71

20%

4 90.69±3.41 77.38±2.03 64.23±1.72
8 91.36±2.85 76.10±2.51 66.30±2.02

16 91.62±1.79 76.93±1.62 65.18±1.32
32 91.09±2.74 76.24±1.37 65.80±1.84
64 92.55±1.85 76.50±1.90 66.30±2.33

128 91.23±2.85 75.74±1.69 66.33±2.30

Table 8: Average mean accuracy (%) for different methods when the label rates are 1%, 2%, 10%
and 20%, respectively.

Methods 1% 2% 10% 20%
WL+SVM 56.57 59.92 64.80 68.35

WL+LP 54.56 55.87 57.87 58.63
DGCNN 60.52 62.26 65.68 68.62

GIN 59.66 61.39 66.95 69.64
DropGNN 57.65 61.49 67.58 69.82

SimGRACE 59.30 63.35 68.16 70.82
GLA 61.35 63.74 69.24 70.93

KDGCN-τ 65.77 67.00 69.72 71.79
KDGCN-c 70.94 72.73 77.08 79.59
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(a) Impact of τ on PROTEINS (b) Impact of c on PROTEINS

(c) Impact of τ on DD (d) Impact of c on DD

Figure 3: Impact of τ and c on the mean accuracies of bioinformatics datasets under different label
rates.

general, Table 8 further shows that our KDGCN can generalize to different kinds of datasets under
different label rates.

D STRUCTURAL PROPERTIES OF OUR SUPERGRAPHS

In this section, we first compare the structural properties of S in Section 3.3 for all datasets in
Section 4.1, where two different thresholding operations regarding τ and c are applied, respectively.
The values of τ and c for different datasets are the same as Table 5 illustrates. The results are
shown in Table 9, where average node degree, number of connected components, average clustering
coefficient, average degree centrality and average closeness centrality are the structural properties
that we compare. They are denoted as AND, CON, ACCO, ADC and ACCE, respectively.

Table 9 demonstrates that when utilizing τ , the supergraphs tend to be sparse and centralized since
the average node degree and the average closeness centrality for each dataset are generally small
while the average clustering coefficient and the average degree centrality are large. Here, the larger
the average closeness centrality, the easier a meta-node in the supergraph to reach other meta-nodes.
Meanwhile, when utilizing c, the supergraphs tend to be dense and decentralized. Moreover, when
utilizing τ , the supergraphs are inclined to be made up of cliques or isolated meta-nodes while the
supergraphs are inclined to be connected when utilizing c. This may be the reason why thresholding
operation regarding c is better than that regarding τ in most cases, since a connected supergraph can
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(a) Impact of τ on COLLAB (b) Impact of c on COLLAB

(c) Impact of τ on IMDB-M (d) Impact of c on IMDB-M

(e) Impact of τ on IMDB-B (f) Impact of c on IMDB-B

Figure 4: Impact of τ and c on the mean accuracies of social networks datasets under different label
rates.

provide more topological information. Meanwhile, a supergraph made up of several cliques cannot
fully propagate useful messages because the relationship among these cliques is still unknown, even
though such supergraph can strengthen the message passing of several central meta-nodes.

Then, we perform a case study on PROTEINS (Morris et al., 2020) to investigate how the above
structural properties change with the change of τ and c, as shown in Table 10 and Table 11, respec-
tively.
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Table 9: Structural properties of the supergraphs of different datasets under different thresholding
operations.

Thresholding Properties MUTAG PTC-MR PROTEINS DD COLLAB IMDB-M IMDB-B

τ

AND 1.43 0.09 0.25 0.005 5.67 95.79 6.71
CON 17 14 24 1 158 99 116

ACCO (%) 41.36 10.34 61.84 100.00 85.94 93.23 80.66
ADC (%) 4.35 3.94 4.81 100.00 2.39 9.79 2.01

ACCE (%) 9.50 3.94 4.82 100.00 2.39 9.79 2.01

c

AND 13.40 3.90 55.01 37.63 83.52 35.71 58.91
CON 1 1 1 1 1 1 1

ACCO (%) 29.15 19.57 36.49 39.94 39.65 29.15 46.10
ADC (%) 7.17 1.14 4.95 3.20 1.67 2.38 5.90

ACCE (%) 40.53 21.25 45.28 48.69 44.38 38.98 48.98

Table 10: Structural properties of the supergraph of PROTEINS when utilizing τ of different values.

Properties 0.90 0.92 0.94 0.95 0.96 0.98
AND 2.42 0.81 0.31 0.25 0.23 0.23
CON 23 25 27 24 19 19

ACCO (%) 59.94 51.57 52.67 61.84 68.75 68.75
ADC (%) 2.74 2.40 2.92 4.81 6.40 6.40

ACCE (%) 16.68 8.87 3.41 4.82 6.40 6.40

Table 11: Structural properties of the supergraph of PROTEINS when utilizing c of different values.

Properties 35 32 28 22 17 7
AND 68.51 62.76 55.01 43.35 33.58 13.91
CON 1 1 1 1 1 1

ACCO (%) 38.44 37.65 36.49 35.00 33.52 30.08
ADC (%) 6.16 5.64 4.95 3.90 3.02 1.25

ACCE (%) 47.31 46.50 45.28 43.08 40.97 33.65
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Table 10 shows that the supergraph is sparser and more centralized with the rise of τ , since the
average node degree and the average closeness centrality gradually decline and the average cluster-
ing coefficient and the average degree centrality gradually increase in such process. At the same
time, Table 11 shows that the supergraph is sparser and more decentralized with the fall of c, since
the average closeness centrality, the average node degree, the average clustering coefficient and the
average degree centrality gradually decline in such process. Besides, the supergraph generated ac-
cording to c has a relatively large centrality because its average clustering coefficient and average
degree centrality is relatively high. In consequence, if we choose an adequate c, we will attain a
supergraph which maintains fair connectivity and density as well as a certain centrality, although
not as centralized as that controlled by τ . As a result, such supergraph can not only build up solid
message passing but also emphasize important meta-nodes, further proving that the thresholding
operation regarding c is better than that regarding τ , especially on social networks datasets which
tend to be dense and contain several central nodes.

(a) Eigenvalues of Laplacian matrix conducted
via τ for MUTAG

(b) Eigenvalues of Laplacian matrix conducted
via c for MUTAG

(c) Eigenvalues of Laplacian matrix conducted
via τ for PTC-MR

(d) Eigenvalues of Laplacian matrix conducted
via c for PTC-MR

Figure 5: Top 30 smallest eigenvalues of Laplacian matrices for small molecules datasets under
different thresholding oeprations.

Finally, we calculate the Laplacian matrix L of the supergraph S for each dataset where τ and c of
each dataset are chosen according to Table 5, as shown in Eq. 9:

L = IN −D−1/2SD−1/2, (9)

where D is the degree matrix for S. We calculate the eigenvalues of L and sort them in ascending
order. Then, we select top z smallest eigenvalues for each dataset and plot the bar charts, where S
is conducted in τ and c, respectively. We let z = 140 for social networks datasets and z = 30 for
the rest datasets. The results are shown in Figure 5, 6 and 7, where in each sub-figure, the horizontal
axis is the sequence and the vertical axis denotes the top z smallest eigenvalues in ascending order.
Meanwhile, the sub-figures in the left column are derived from S conducted via τ while those in the
right column are derived from S conducted via c.
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Figure 5, 6 and 7 show that in all datasets, there are several eigenvalues that equal to 0 when S is
conducted by τ , meaning that such supergraph contains several disconnected cliques. Meanwhile,
the first non-zero eigenvalue for the Laplacian matrix conducted via τ is generally higher than that
conducted via c, indicating that S generated by τ is more centralized than that generated by c.

(a) Eigenvalues of Laplacian matrix conducted
via τ for IMDB-M

(b) Eigenvalues of Laplacian matrix conducted
via c for IMDB-M

(c) Eigenvalues of Laplacian matrix conducted
via τ for IMDB-B

(d) Eigenvalues of Laplacian matrix conducted
via c for IMDB-B

(e) Eigenvalues of Laplacian matrix conducted
via τ for COLLAB

(f) Eigenvalues of Laplacian matrix conducted
via c for COLLAB

Figure 6: Top 140 smallest eigenvalues of Laplacian matrices for social networks datasets under
different thresholding oeprations.

E TIME COST COMPARISON

Firstly, we compare the time cost of different graph kernels in Section 4.4 which construct the super-
graphs of PROTEINS, IMDB-M and COLLAB (Morris et al., 2020). These datasets are relatively
large in scale and can fully test the capability of the above graph kernels. The results are shown
in Table 12, where the time cost is denoted in minute, “-” means that such kernel leads to memory
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(a) Eigenvalues of Laplacian matrix conducted via
τ for PROTEINS

(b) Eigenvalues of Laplacian matrix conducted via
c for PROTEINS

(c) Eigenvalues of Laplacian matrix conducted via
τ for DD

(d) Eigenvalues of Laplacian matrix conducted via
c for DD

Figure 7: Top 30 smallest eigenvalues of Laplacian matrices for bioinformatics datasets under dif-
ferent thresholding oeprations.

overflow, the lowest time cost is highlighted in red and the second lowest time cost is highlighted in
blue for each dataset.

Table 12 shows that WL subtree kernel has the least time cost on PROTEINS and COLLAB and
the second least time cost on IMDB-M, proving that WL subtree kernel is able to handle large-scale
datasets efficiently. Also, shortest path kernel performs rather fast on these datasets. Referring to
Table 4, it can be concluded that WL subtree kernel can reach the highest accuracy or the second
highest accuracy in most cases while consuming litte time. Although graphlet sampling kernel
gets the highest accuracy on PROTEINS and IMDB-M when utilizing the thresholding operation
regarding c, its time cost is huge and will trigger out-of-memory problem when handling large-scale
datasets. To sum up, Table 4 and 12 further proves that WL subtree kernel is better than other graph
kernels considering accuracy as well as time cost.

Moreover, we compare the average inference time of all epochs and the memory usage for DGCNN
(Zhang et al., 2018), GIN (Xu et al., 2019), DropGNN (Papp et al., 2021), GLA (Yue et al., 2022) and
our KDGCN-c on PROTEINS, IMDB-M and COLLAB. The label rate is set to 20%. We do not take
MVGRL (Hassani & Ahmadi, 2020) and SimGRACE (Xia et al., 2022) into comparison because
they are two-stage while our comparative methods are one-stage. The settings of our KDGCN-c are
consistent with what Appendix A has illustrated while the settings of other methods are their default
settings. The results are shown in Table 13, where the least average inference time and memory
usage will be highlighted in red.

We can infer from Table 13 that DGCNN consumes the least memory. However, it reaches the
highest average inference time. At the same time, GLA has the least average inference time as well
as a fairly low memory usage. As for our KDGCN-c, it surpasses other methods in mean accuracy by
a remarkable margin, while it is not time-consuming. Thus, our transductive KDGCN-c is applicable
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and effective on relatively large-scale datasets. We can further reduce our memory usage by utilizing
memory collection as well as reducing model parameters (e.g. reducing d and d′ in Section A).

Table 12: Time cost of different kernels on PROTEINS, IMDB-M and COLLAB, respectively.

Kernels PROTEINS IMDB-M COLLAB
shortest path kernel 0.50 0.05 7.42

graphlet sampling kernel 9.82 383.42 -
propagation kernel 1.35 0.52 41.23

pyramid match kernel 2.35 3.21 79.53
neighborhood hash kernel 1.63 0.90 58.90

WWL kernel 6.18 6.06 324.84
WL subtree kernel 0.24 0.28 4.60

Table 13: The average inference time and the memory usage for DGCNN, GIN, DropGNN, GLA
and our KDGCN-c on PROTEINS, IMDB-M and COLLAB.

Metrics Methods PROTEINS IMDB-M COLLAB

average inference time (second)

DGCNN 4.08 5.86 18.59
GIN 0.18 0.20 4.41

DropGNN 0.24 0.29 7.05
GLA 0.13 0.14 0.64

KDGCN-c(Ours) 1.39 2.14 6.98

memory usage (MB)

DGCNN 3544.63 3551.18 3693.49
GIN 3636.06 3626.18 11756.75

DropGNN 3851.81 3847.08 4224.29
GLA 3694.38 3625.78 12170.37

KDGCN-c(Ours) 4277.02 4831.28 25447.30

F KDGCN FOR INDUCTIVE LEARNING

Although transductive learning yields satisfactory results in our KDGCN, inductive learning can
generalize to unseen nodes and graphs, which broadens the application of our method. Referring to
GraphSAGE (Hamilton et al., 2017), we provide an inductive version of our KDGCN, as shown in
Algorithm 1, where t is the number of input graphs, nj is the number of nodes for graph Gj , Vnj

is
the vertex set for graphGj , Vt is the vertex set for supergraph S which consists of tmeta-nodes,N is
the neighborhood function related to the adjacency matrix for each graph and S is the neighborhood
function related to the supergraph S. Here, the multilayer perception gφ and the readout function
are the same as described in Section 3.2 while the WL subtree kernel and the thresholding operation
are the same as described in Section 3.3. For convenience, the dimensions of weight matrices Mk

and Wk are set to d×d and the dimensions of the initial node feature vectors are set to d×1, where
d = 64.

When training our KDGCN, graphs that are with or without labels are fed into Algorithm 1. Mean-
while, the weight matrices are learnable. When inferring our KDGCN, graphs that are unseen and
without labels are fed into Algorithm 1 and matrices that yield the highest validation accuracy are
applied. Note that the length of initial node feature vectors are the same for training and inference
stage. One can let the initial node feature vector represent the node degree or node label for each
node. Due to the time and space limitations, we haven’t conducted the corresponding experiments.
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Algorithm 1 Forward propagation of inductive KDGCN
Input: Graph list Gin = {G1, G2, . . . , Gt}; node feature vectors xvj ,∀j ∈ Vt,∀v ∈ Vnj

;
neighborhood depth K; weight matrices for neighborhood aggregation Mk and Wk,∀k ∈
{1, 2, . . . ,K}; non-linearity σ; mean aggregation function MEAN; readout function READOUT;
thresholding operation THR; WL subtree kernel WL; softmax function SOFTMAX; multilayer per-
ception gφ.

Output: Label prediction Ŷ of graph list Gin.
1: S← THR(WL(Gin))
2: for j ∈ Vt do
3: h0

v ← xvj ,∀v ∈ Vnj

4: for k = 1, 2, . . . ,K do
5: for v ∈ Vnj do
6: hkv ← σ(Mk · MEAN({hk−1

v )} ∪ {hk−1
w ,∀w ∈ N (v))})

7: end for
8: hkv ← hkv/∥hkv∥2,∀v ∈ Vnj

9: end for
10: Hj ← [(hK1 )⊤, (hK2 )⊤, . . . , (hKnj

)⊤]

11: (h̄0
j )

⊤ ← READOUT(Hj)
12: end for
13: for k = 1, 2, . . . ,K do
14: for j ∈ Vt do
15: h̄kj ← σ(Wk · MEAN({h̄k−1

j )} ∪ {h̄k−1
a ,∀a ∈ S(j))})

16: end for
17: h̄kj ← h̄kj /∥h̄kj ∥2,∀j ∈ Vt
18: end for
19: Ŷ ← SOFTMAX(gφ([(h̄

K
1 )⊤, (h̄K2 )⊤, . . . , (h̄Kt )⊤]))
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