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Abstract

Recent progress in Neural Causal Models (NCMs) showcased how identification
and partial identification of causal effects can be automatically carried out via
training of neural generative models that respect the constraints encoded in a given
causal graph [52, 3]. However, formal consistency of these methods has only been
proven for the case of discrete variables or only for linear causal models. In this
work, we prove the consistency of partial identification via NCMs in a general
setting with both continuous and categorical variables. Further, our results highlight
the impact of the design of the underlying neural network architecture in terms of
depth and connectivity as well as the importance of applying Lipschitz regulariza-
tion in the training phase. In particular, we provide a counterexample showing that
without Lipschitz regularization this method may not be asymptotically consistent.
Our results are enabled by new results on the approximability of Structural Causal
Models (SCMs) via neural generative models, together with an analysis of the
sample complexity of the resulting architectures and how that translates into an
error in the constrained optimization problem that defines the partial identification
bounds.

1 Introduction

Identifying causal quantities from observational data is an important problem in causal inference
which has wide applications in economics [1], social science [20], health care [34, 18], and rec-
ommendation systems [9]. One common approach is to transform causal quantities into statistical
quantities using the ID algorithm [49] and deploy general purpose methods to estimate the statistical
quantity. However, in the presence of unobserved confounding, typically the causal quantity of
interest will not be point-identified by observational data, unless special mechanisms are present
in the data generating process (e.g. instruments, unconfounded mediators, proxy controls). In the
presence of unobserved confounding, the ID algorithm will typically fail to return a statistical quantity
and declare the causal quantity as non-identifiable.

One remedy to this problem, which we focus on in this paper, is partial identification, which aims
to give informative bounds for causal quantities based on the available data. At a high level, partial
identification bounds can be defined as follows: find the maximum and the minimum value that a
target causal quantity can take, among all Structural Causal Models (SCMs) that give rise to the
same observed data distribution and respect the given causal graph (as well as any other structural
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constraints that one is willing to impose). Note that in the presence of unobserved confounding,
there will typically exist many structural mechanisms that could give rise to the same observational
distribution but have vastly different counterfactual distributions. Hence, partial identification can be
formulated as solving a max and a min optimization problem [3]

max
M∈C

\ min
M∈C

θ(M), (1)

subject to PM(V ) = PM∗
(V ), and GM = GM∗ ,

where θ(M) is the causal quantity of interest, M∗ is the true model, V is the set of observed nodes,
PM(V ) is the distribution of V in SCM M, C is a collection of causal models and GM is the
causal graph of M (see Section 2 for formal definitions). Two recent lines of work explore the
optimization approach to partial identification. The first line deals with discrete Structure Causal
Models (SCMs), where all observed variables are finitely supported. In this case, (1) becomes a
Linear Programming (LP) or polynomial programming problem and tight bounds can be obtained
[37, 4, 5, 27, 44, 45, 40, 8, 54, 56, 14]. The second line of work focuses on continuous models and
explores ways of solving (1) in continuous settings using various techniques [24, 32, 29, 38, 3, 41].

Recently, Xia et al. [51] formalized the connection between SCMs and generative models (see
also [33] for an earlier version of a special case of this connection). This work showcased that
SCMs can be interpreted as neural generative models, namely Neural Causal Models (NCMs), that
follow a particular architecture that respects the constraints encoded in a given causal graph. Hence,
counterfactual quantities of SCMs can be learned by optimizing over the parameters of the underlying
generative models. However, there could be multiple models that lead to the same observed data
distribution, albeit have different counterfactual distributions. Xia et al. [51] first analyze the
approximation power of NCMs for discrete SCMs and employ the max/min approach to verify the
identifiability of causal quantities, without the need to employ the ID algorithm. Balazadeh et al. [3]
and Hui et al. [30], extend the method in [51] and re-purpose it to perform partial identification by
solving the min and max problem in the partial identification formulation over neural causal models.

However, for SCMs with general random variables and functional relationships, the approximation
error and consistency of this optimization-based approach to partial identification via NCMs has
not been established. In particular, two problems remain open. First, given an arbitrary SCM,
it is not yet known if we can find an NCM that produces approximately the same intervention
distribution as the original one. Although Xia et al.[51] show it is possible to represent any discrete
SCM by an NCM, their construction highly relies on the discrete assumption and cannot be directly
generalized to the general case. Moreover, Xia et al. [51] use step functions as the activation function
in their construction, which may create difficulties in the training process since step functions are
discontinuous with a zero gradient almost everywhere.

Second, since we only have access to n samples from the true distribution, PM(V ), we need
to replace the constraints in (1) with their empirical version that uses the empirical distribution
of samples PM∗

n (V ) in place of the population distribution and looks for NCMs, whose implied
distribution lies within a small distance from the empirical distribution. Moreover, even the NCM
distribution is typically only accessible through sampling, hence we will need to generate mn samples
from the NCM and use the empirical distribution of the mn samples from the NCM in place of
the true distribution implied by the NCM. Thus, in practice, we will use a constraint of the form
d(PM∗

n (V ), PM
mn

(V )) ⩽ αn, where d is some notion of distribution distance and αn accounts for
the sampling error. It is not clear that this approach is consistent, converges to the correct partial
identification bounds, when the sample size n grows to infinity. Balazadeh et al. [3] only show the
consistency of this approach for linear SCMs. Consistency results concerning more general SCMs is
still lacking in the neural causal literature.

In this paper, we establish representation and consistency results for general SCMs. Our contributions
are summarized as follows.

• We show that under suitable regularity assumptions, given any Lipschitz SCM, we can
approximate it using an NCM such that the Wasserstein distance between any interventional
distribution of the NCM and the original SCM is small. Each random variable of the SCM
is allowed to be continuous or categorical. We specify two architectures of the Neural
Networks (NNs) that can be trained using common gradient-based optimization algorithms
(Theorem 2, Theorem 3 and Corollary 1).
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• To construct the NCM approximation, we develop a novel representation theorem of proba-
bility measures (Proposition 1) that may be of independent interest. Proposition 1 implies
that under certain assumptions, probability distributions supported on the unit cube can be
simulated by pushing forward a multivariate uniform distribution.

• We discover the importance of Lipschitz regularization by constructing a counterexample
where the neural causal approach is not consistent without regularization (Proposition 2).

• Using Lipschitz regularization, we prove the consistency of the neural causal approach
(Theorem 4).

Related Work There exists a rich literature on partial identification of average treatment effects
(ATE) [37, 4, 5, 27, 44, 45, 40, 8, 54, 56, 14, 7, 39, 26]. Balke and Pearl [4, 5] first give an algorithm
to calculate bounds on the ATE in the Instrumental Variable (IV) setting. They show that regardless of
the exact distribution of the latent variables, it is sufficient to consider discrete latent variables as long
as all endogenous variables are finitely supported. Moreover, they discover that (1) is an LP problem
with a closed-form solution. This LP-based technique was generalized to several special classes of
SCMs [44, 8, 27, 46]. For general discrete SCMs, [14, 56, 55] consider transforming the problem (1)
into a polynomial programming problem. Xia et al. [51] discover the connection between generative
models and SCMs. They show that NCMs are expressive enough to approximate discrete SCMs.
By setting C in problem (1) to be the collection of NCMs, they apply NCMs for identification and
estimation.

For causal models with continuous random variables, the constraints in (1) become integral equations,
which makes the problem more difficult. One approach is to discretize the constraints. [24] uses
stochastic process representation of the causal model in the continuous IV setting and transforms
the problem into a semi-infinite program. [32] relaxes the constraints to finite moment equations
and solves the problem by the Augmented Lagrangian Method (ALM). The other approach is to use
generative models to approximate the observational distribution and use some metric to measure the
distance between distributions. [33] first propose to use GAN to generate images. Later, [29] uses
Wasserstein distance in the constraint and transforms the optimization problem into a min and max
problem. Similarly, [3] solves the optimization problem using Sinkhorn distance to avoid instability
during training. They propose to estimate the Average Treatment Derivative (ATD) and use ATD
to obtain a bound on the ATE. They also prove the consistency of the proposed estimator for linear
SCMs. [41] uses a linear combination of basis functions to approximate response functions. [26] uses
sieve to solve the resulting optimization problem in the IV setting. [19] proposes a neural network
framework for sensitivity analysis under unobserved confounding.

Organization of this paper In Section 2, we introduce the notations and some basic concepts used
throughout the paper. Next, in Section 3, we demonstrate how to construct an NCM so that they
can approximate a given SCM arbitrarily well. Two kinds of architecture are given along with an
approximation error analysis. In Section 4, we highlight the importance of Lipschitz regularization by
giving a counterexample that is not consistent. Then, leveraging the previous approximation results,
we are able to prove the consistency of this approach under regularization. Finally, we compare our
method with the traditional polynomial programming method empirically in Section 4.1.

2 Preliminary

First, we introduce the definition of an SCM. Throughout the paper, we use bold symbols to represent
sets of random variables.
Definition 1. (Structural Causal Model) A Structural Causal Model (SCM) is a tuple M =
(V ,U , F, P (U),G0), where V = {Vi}nV

i=1 is the set of observed variables; U = {Uj}nU
j=1 is

the set of latent variables; P (U) is the distribution of latent variables; G0 is an acyclic directed
graph whose nodes are V . The values of each observed variable Vi are generated by

Vi = fi (Pa(Vi),UVi
) , where Vi /∈ Pa(Vi) and UVi

⊂ U , (2)

where F = (f1, · · · , fnV
), Pa(V ) is the set of parents of V in graph G0 and UVi

is the set of latent
variables that affect Vi. Vi takes either continuous values Rdi or categorical in [ni]. We extend graph
G0 by adding bi-directed arrows between any Vi, Vj ∈ G0 if there exists a correlated latent variable
pair (Uk, Ul), Uk ∈ UVi

, Ul ∈ UVj
. We call the extended graph GM the causal graph of M.
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When we write Pa(Vi), we refer to the parents of Vi in the G0. To connect with the literature, the
causal graph we define is a kind of Acyclic Directed Mixed Graph (ADMG), which is often used
to represent SCMs with unobserved variables [49]. Note that we allow one latent variable to enter
several nodes, which differs from the common definition. We use nU and nV to denote the number
of latent variables and observable variables. Let T ⊂ V be a set of treatment variables. The goal is
to estimate causal quantities under a given intervention T = t. Formally, the structural equations of
the intervened model are

Ti = ti, ∀Ti ∈ T ,

Vi(t) = fi (Pa(Vi),UVi
) , ∀Vi /∈ T .

We denote Vi(t) to be the value of Vi under the intervention T = t and PM(V (t)) to be the
distribution of V (t) in M. The notion of a C2 component [51] is defined as follows.
Definition 2 (C2-Component). For a causal graph G, a subset C ⊂ V is C2-component if each pair
Vi, Vj ∈ C is connected by a bi-directed arrow in G and C is maximal.

We provide a concrete example in Appendix A to explain all these notions. We will make the
following standard assumption about the independence of latent variables. Note that since we allow
latent variables to enter in multiple structural equations, this is more a notational convention and not
an actual assumption. Also note that under this convention a bi-directed arrow essentially represents
the existence of a common latent parental variable.
Assumption 1. All the latent variables in U are independent.

To deal with categorical variables, we assume that latent variables that influence categorical variables
contain two parts: the shared confounding that influences the propensity functions and the independent
noise that generates categorical distributions.
Assumption 2. The set of latent variables consists of two parts U = {U1, · · · , UnU

} ∪
{GVi

: Vi is categorical}. Precisely, if Vi ∈ V is a categorical variable, the data generation pro-

cess of Vi satisfies Vi = argmaxk∈[ni]

{
gVi

k + log (fi (Pa(Vi),UVi
))k

}
∼ Categorical(fi/∥fi∥1),

where GVi = (gVi
1 , · · · , gVi

ni
) are i.i.d. standard Gumbel variables, UVi ⊂ {U1, · · · , UnU

}.

This convention is without loss of generality at this point, but will be useful when introducing
Lispchitz restrictions on the structural equation functions. The Gumbel variables in the assumption
can be replaced by any random variables that can generate categorical variables. It can be proven
that all discrete SCMs satisfy this assumption. Note that we implicitly assume that all categorical
variables Vi are supported on [ni] for some ni. It is straightforward to generalize all results to any
finite support. Next, we introduce Neural Causal Models (NCMs).
Definition 3. (Neural Causal Model) A Neural Causal Model (NCM) is a special kind of SCM where
U = {U1, · · · , UnU

} ∪ {GVi
: Vi categorical}, all Ui are i.i.d. multivariate uniform variables, GVi

are i.i.d Gumblel variables and functions in (2) are Neural Networks (NNs).

The definition of NCMs we use is slightly different from that in [52] because we need to deal with
mixed variables in our models. In (1), we usually take C to be the set of all SCMs. However, it is
difficult to search over all SCMs since (1) becomes an infinite-dimensional polynomial programming
problem. As an alternative, we can search over all NCMs. One quantity of common interest in causal
inference is the Average Treatment Effect (ATE).
Definition 4. (Average Treatment Effect). For SCM M, the ATE at T = t with respect to T = t0 is
given by ATEM(t) = Eu∼P (U)[Y (t)− Y (t0)].

Partial identification can be formulated as estimating the solution to the optimization problems (1)
[3]. The max and min values F and F define the interval [F , F ] which is the smallest interval we
can derive from the observed data without additional assumptions. In particular, if F = F , then the
causal quantity is point-identified.

Notations. We use ∥· ∥, ∥ · ∥∞ for the 1-norm and ∞-norm and [n] for {1, · · · , n}. Bold letters
represent sets of random variables. We let FL(K1,K2) be the class of Lipschitz L-continuous
functions f : K1 → K2. We may omit the domain and use FL when the domain is clear from
context. Let H(K1,K2) be the set of homeomorphisms from K1 to K2, i.e., injective and continuous
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maps in both directions. We define ϵ(F1,F2) = supf2∈F2
inff1∈F1 ∥f2 − f1∥ for function classes

F1,F2. We use standard asymptotic notation O(·),Ω(·). Given a measure µ on Rd1 and a measurable
function f : Rd1 → Rd2 , the push-forward measure f#µ is defined as f#µ(B) = µ

(
f−1(B)

)
for

all measurable sets B. We use P (X) to represent the distribution of random variable X . Let ∆n =
{(p1, · · · , pn) :

∑n
i=1 pi = 1, pi ⩾ 0} be the probability simplex. We use Categorical(p),p ∈ ∆n

to represent categorical distribution with event probability p. We let W (·, ·) be the Wasserstein-1
distance and Sλ(µ, ν) be the Sinkhorn distance [12] with regularization parameter λ > 0.

3 Approximation Error of Neural Causal Models

In this section, we study the expressive power of NCMs, which serves as a key ingredient in proving
the consistency result. In particular, given an SCM M∗, we want to construct an NCM M̂ such
that the two causal models produce similar interventional results. Unlike in the discrete case [4, 51],
latent distributions can be extremely complicated in general cases. The main challenge is how to
design the structure of NCMs to ensure strong approximation power.

In the following, we first derive an upper bound on the Wasserstein distance between two causal
models sharing the same causal graph. Using this result, we decompose the approximation error into
two parts: the error caused by approximating structural functions via neural networks and the error of
approximating the latent distributions. Then, we design different architectures for these two parts.

Decomposing the Approximation Error First, we present a canonical representation of an SCM,
which essentially states that we only need to consider the case where each latent variable Ui corre-
sponds to a C2 component of G.

Definition 5 (Canonical representation). A SCM M with causal graph G has canonical form if

1. The set of latent variables consists of two sets,

U =
{
UC : C is a C2-component of G

}
∪
{
GVi = (gVi

1 , · · · , gVi
ni
) : Vi is categorical

}
,

where UC and gVi
j are independent and gVi

j are standard Gumbel variables.

2. The structure equations have the form

Vi =

{
fi (Pa(Vi),UVi) , Vi is continuous,

argmaxk∈[ni]

{
gVi

k + log (fi (Pa(Vi),UVi
))k

}
, Vi is categorical, ∥fi∥1 = 1,

(3)
where UVi = {UC : Vi ∈ C,C is a C2-component of G} and (x)k is the k-th coordinate
of the vector x. We further assume that fi are normalized for categorical variables.

Given a function class F , the SCM class M(G,F ,U) consists of all canonical SCM models with
causal graph G such that fi ∈ F , i ∈ [nV ].

Proposition 4 in the appendix shows that any SCM satisfying Assumption 1,2 can be represented
in this way and we provide an example in Appendix B.1 to illustrate how to obtain the canonical
representation for a given SCM. Therefore, we restrict our attention to the class M(G,F ,U). For two
SCM classes M(G,F ,U),M(G, F̂ , Û), we want to study how well we can represent the models in
the first class by the second class. The Wasserstein distance between the intervention distributions
is used to measure the quality of the approximation. To approximate the functions in the structural
equations, we need to make the following regularity assumptions on the functions.

Assumption 3. If Vi is continuous, fi in (3) are Lf -Lipschitz continuous. If Vi is categorical,
the propensity functions fi(Pa(Vi),UVi) ≜ P(Vi = j|Pa(Vi),UVi), j ∈ [ni] are Lf -Lipschitz
continuous. There exists a constant K > 0 such that maxi∈[nV ],j∈[nU ]{∥Vi∥∞, ∥Uj∥∞} ⩽ K.

The following theorem summarizes our approximation error decomposition.

Theorem 1. Given any SCM model M ∈ M(G,FL,U), let the treatment variable set be T =
{Tk}nt

k=1 and suppose that Assumption 1, 2 and 3 hold for M with Lipschitz constant L, constant K.
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NC= #Connected
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Width: W2 Depth L2
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Randomly output
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(a) Architecture of wide neural network for
4−dimensional output. The first (yellow) part
approximates the distribution on different connected
components of the support using the results from [43].
The width and depth of each block in this part are
W1 and L1. The second (blue) part transforms the
distributions on the unit cube to the distributions on
the support. The width and depth of each block in the
blue part are W2 and L2. The third (green) part is the
Gumbel-Softmax layer. It combines the distributions
on different connected components of the support
together and outputs the final distribution.

P(U)
Zi ∼ Unif(0,1)

NC= #Connected
components of

latent dist.

Z1

Z2

ZNC

... ...

(b) This figure demonstrates the first two parts of our
architecture. Each interval in the yellow box corre-
sponds to one coordinate of input in the left figure. We
first push forward uniform distributions to different
cubes. Then, using Assumption 4, we adapt the shape
of the support and push the measure from unit cubes
to the original support of P (U). In this way, we can
approximate complicated measures by pushing forward
uniform variables.

For any intervention T = t and M̂ ∈ M(G, F̂ , Û) , we have

W
(
PM(V (t)), PM̂(V̂ (t))

)
⩽ CG(L,K)

(
nV∑
i=1

∥fi − f̂i∥∞ +W
(
PM(U), PM̂(Û)

))
, (4)

where CG(L,K) is a constant that only depends on L,K and the causal graph G and fi, f̂i are
structural functions of M and M̂ respectively.

Theorem 1 separates the approximation error into two parts, which motivates us to construct the NCM
in the following way. First, we approximate the functions fi in (3) by NNs f̂i. Then, we approximate
the distribution of latent variables by pushing forward uniform and Gumbel variables using neural
networks, i.e., ÛCj

= ĝj(ZCj
), where {Cj} are C2 components and ZCj

are multi-variate uniform
and Gumbel random variables. The structural equations of the resulting approximated model M̂ are

V̂i =

f̂i

(
Pa(V̂i), (ĝj(ZCj ))UCj

∈UVi

)
, Vi is continuous,

argmaxk∈[ni]

{
gk + log

(
f̂i

(
Pa(V̂i), (ĝj(ZCj ))UCj

∈UVi

))
k

}
, Vi is categorical,

(5)

wheres NC,j are constants to be specified later.

For the first part, we need to approximate Lipschitz continuous functions. For simplicity, we assume
that the domain of the functions are uniform cubes. Similar arguments hold for any bounded cubes.
We denote NN k1,k2

(W,L) to be the set of ReLu NNs with input dimension k1, output dimension
k2, width W and depth L. It has been shown that ϵ(NN k1,1(2d1 + 10, L0),FL([0, 1]

d1 ,R)) ⩽

O(L
−2/k1

0 ) [53], where ϵ(·, ·) denotes the approximation error defined in Section 2. For a vector
valued function, we can use a wider NN to approximate each coordinate and get a similar rate.

For the second part, we approximate each Ui individually by pushing forward i.i.d. multivariate
uniform and Gumbel variables ÛCi

= ĝi(ZCi
) since the latent variables are independent by Assump-

tion 1. To do so, we examine under what assumptions on the measure P over Rn we can find a NN ĝ
such that W (ĝ#λ,P) is small, where λ(·) is some reference measure.

3.1 Approximating Mixed Distributions by Wide Neural Networks

In this subsection, we will extend the results in [43] to construct a wide neural network as the
push-forward map. It turns out that to get a good approximation of the targeted distribution, the shape
of the support is essential.
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Assumption 4 (Mixed Distribution). The support of measure P has finite connected components
C1, C2 · · ·CNC

, i.e., supp(P) =
⋃NC

i=1 Ci, and each component Ci satisfies H([0, 1]d
C
i , Ci) ∩

FL([0, 1]
dC
i , Ci) ̸= ∅ for some dCi ⩾ 0. Recall that H(K1,K2) is the set of homeomorphisms

from K1 to K2 defined at the end of Section 2.

Assumption 4 encompasses almost all natural distributions. For example, distributions supported
on [0, 1]d and closed balls, finitely supported distributions and mixtures of them all satisfy this
assumption. Assumption 4 allows us to transform the support of the targeted distribution into unit
cubes and the nice geometric properties of unit cubes facilitate our construction.

Now, we briefly explain the construction of the push-forward maps. An example is provided in
Appendix B.1 to illustrate the construction. The NN architecture consists of three parts (see Figure 1a).
The input dimension is the same as the number of connected components of the support NC . For
each component Ci, let Hi ∈ H([0, 1]d

C
i , Ci) ∩ FL([0, 1]

dC
i , Ci), where dCi is the dimension of

component Ci in Assumption 4. By P = (Hi)#(H
−1
i )#P on Ci, we can approximate (H−1

i )#P
first, which is supported on a unit cube. [43] constructs a wide NN ĝ of width W and constant depth
such that W (ĝ#λ, (Hi)

−1
# P) ⩽ O(W−1/dC

i ) where λ is the uniform measure on [0, 1]. Then, we
approximate the Lipschitz map Hi to Ci to pull the distribution back to Ci. These are the first two
parts (yellow and blue blocks in Figure 1a) of the architecture.

Suppose that the output of i-th coordinate in the first two parts is v⃗i, the Gumbel-softmax layer in the
third part (green box) combines different components of the support. In particular, we want to output
v⃗i with probability pi = P(Ci). Let V = [v⃗1, · · · , v⃗i], this can be achieved by outputting V X , where
X = (X1, · · · , XNC

)T is a one-hot random vector with P(Xi = 1) = pi. To use backpropagation in
training, we use the Gumbel-Softmax trick [31] to (approximately) simulate such a random vector,
X̂τ

i = exp((log pi+Gi)/τ)∑NC
k=1 exp((log pk+Gk)/τ)

, where τ > 0 is the temperature parameter (a hyperparameter) and

Gi ∼ Gumbel(0, 1) are i.i.d. standard Gumbel variables. As τ → 0, the distribution of X̂τ converges
almost surely to the categorical distribution [36, Proposition 1]. In particular, when τ = 0, we denote
X̂0

i = Ii=argmaxj{log pi+Gi}. The output of the last layer is V X̂τ . Note that the Gumbel-softmax
function is differentiable with respect to parameter {log(pi)}i=1,··· ,NC

. Therefore, we can train the
network with common gradient-based algorithms. Putting things together, we obtain the following
theorem.
Theorem 2. Given any probability measure P on Rd that satisfies Assumption 4, let λ be the
Lebesgue measure on [0, 1]NC , where NC is defined in Assumption 4. There exists a neural network
ĝ = ĝτ3 ◦ ĝ2 ◦ ĝ1 with the above architectsure (Figure 1a) such that

W (ĝ#λ,P) ⩽ O
(
W

−1/maxi{dC
i }

1 + L
−2/maxi{dC

i }
2 + (τ − τ log τ)

)
.

Here, ĝi, i = 1, 2 has the separable form
(
ĝ1i (x1), · · · , ĝNC

i (xNC
)
)

and ĝj1 ∈ NN 1,dC
j
(W1,Θ(dCj )),

ĝj2 ∈ NN dC
j ,d(Θ(d · dCj ), L2), j ∈ [NC ]. {dCj } are the dimension of cubes in Assumption 4. ĝτ3 is

the Gumbel-Softmax layer with temperature parameter τ > 0.

Note that ĝτ3 (the Gumbel-softmax layer) is actually a random function since the coefficient vector
X̂τ is a random variable. In this sense, ĝ#λ can be viewed as pushing forward uniform and Gumbel
variables using a neural net.

3.2 Approximating Mixed Distributions by Deep Neural Networks

In this subsection, we will show that under one additional assumption on the distribution, deep ReLu
networks have a stronger approximation power in approximating distributions, which means we can
use fewer computational units to achieve the same worst-case theoretical approximation error.
Assumption 5 (Lower Bound). Suppose that P is supported on a compact set K ⊂ RD, there exists a
constant Cf > 0, f ∈ H([0, 1]d,K) ∩ FL([0, 1]

d,K), such that for any measurable set B ⊂ [0, 1]d,
P (f(B)) ⩾ Cfλ(B). Besides, if d > 0, f#P vanishes on the boundary ∂[0, 1]d.

Assumption 5 implies that dλ/d(f−1
# P) exists and is lowered bounded by a constant Cf . The next

proposition extends the Skorohod representation theorem [48]. It shows that under Assumption 5, it
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is possible to simulate any distribution on the unit cubes with Hölder continuous curves and uniform
distribution on [0, 1].
Proposition 1. Let λ be the Lebesgue measure on [0, 1]. Given any probability measure P that
satisfies Assumption 5, there exists a continuous curve γ : [0, 1] → supp(P) such that γ#λ = P.
Furthermore, if d ⩾ 1, γ is 1/d-Hölder continuous.

Results from [53] show that we can approximate any Hölder continuous d-dimensional function with
index α by a deep ReLu network with depth L and error O(L−2α/d). Leveraging this result, we can
replace the first part of the architecture in the previous subsection with deep ReLu networks (See
Figure 8 in the appendix). The remaining two parts are the same as the construction in Figure 1a.
The following theorem gives a sharper bound on the approximation error compared with Theorem 2.
Theorem 3. Under the Assumption 4, if in addition, P constrained to each component satisfies
Assumption 5, there exists a neural network ĝ = ĝτ3 ◦ ĝ2 ◦ ĝ1 with the above architecture such that

W (ĝ#λ,P) ⩽ O
(
L
−2/maxi{dC

i }
1 + L

−2/maxi{dC
i }

2 + (τ − τ log τ)
)
,

where dCi are the dimensions of the connected components in Assumption 4, ĝi, i = 1, 2 has the form(
ĝ1i (x1), · · · , ĝNC

i (xNC
)
)

and ĝj1 ∈ NN 1,dC
j
(Θ(dCj ), L1). ĝ

j
2, ĝ

τ
3 , τ are the same as in Theorem 2.

Let N be the number of nonzero weights in a neural network, Theorem 3 shows that a deep NN
can achieve O(N−2/d) error while by Theorem 2 a wide network can only achieve O(N−1/d)
error. Now, we can put things together to construct NCM approximations. For simplicity, we
omit the input and output dimensions of the neural network. As we mention in previous sections,
our construction (5) consists of two parts, f̂i approximating the structural functions fi in (3), and
ĝj(Zj) = ĝτ3,j ◦ ĝ2,j ◦ ĝ1,j(Zj) approximating the latent variables Uj . Let NCMG(F0,F1,F2, τ) be
a collection of NCMs with structural equation (5) and

f̂i ∈ F0, ĝ1,j = (ĝ11,j , · · · , ĝ
NC,j

1,j ), ĝi1,j ∈ F1, ĝ2,j = (ĝ12,j , · · · , ĝ
NC,j

2,j ), ĝi2,j ∈ F2,

where NC,j is the number of connected components for Uj and Fi are function classes.
Corollary 1. Given a causal model M∗ ∈ M(G,FL,U), suppose that Assumptions 1-3 hold and
the distributions of UC for all C2-component satisfy the assumptions of Theorem 3. Let din

max and
dout
max be the largest input and output dimension of fi in (3) and dUmax be the largest dimension of all

latent variables. There exists a neural causal model

M̂ ∈ NCMG(NN (Θ(din
maxd

out
max), L0),NN

(
Θ
(
dUmax

)
, L1

)
,NN

(
Θ
(
(dUmax)

2
)
, L2

)
, τ)

with structure equations (5). For any intervention T = t, M̂ satisfies

W
(
PM∗

(V (t)), PM̂(V (t))
)
⩽ O(L

−2/din
max

0 + L
−2/dU

max
1 + L

−2/dU
max

2 + (τ − τ log τ)).

Similar approximation results also hold for wide NN approximation, as presented in Section 3.1. The
proof can be easily adapted to the wide NNs architecture.

4 Consistency of Neural Causal Partial Identification

In this section, we prove the consistency of the max/min optimization approach to partial identification.
In the finite sample setting, we consider the following estimator Fn of the optimal values of (1).

Fn = argmin
M̂∈NCMG(F0,n,F1,n,F2,n,τn)

Et∼µT
EM̂[F (V1(t), · · · , VnV

(t))], (6)

s.t. Sλn(P
M̂
mn

(V ), PM∗

n (V )) ⩽ αn,

where PM∗

n , PM̂
mn

are the empirical distribution of PM∗
, PM̂ with sample size n,mn, µT is some

given measure and Fi,n will be specified later. For example, the counterfactual outcome E[Y (1)] is
a special case of the objective. Our results can be easily generalized to any linear combination of
objective functions of this form. We use the Sinkhorn distance because it can be computed efficiently
in practice [15]. We want to study if Fn gives a useful lower bound as n → ∞.
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To match the observational distribution, we need to increase the width or depth of the NNs we use. As
the sample size increases, the number of parameters also increases to infinity, which creates difficulty
in the analysis. To obtain consistency, we need to regularize the functions while preserving their
approximation power. Surprisingly, if we do not use any regularization, the following proposition
implies that consistency may not hold even if the SCM is identifiable.
Proposition 2 (Informal, see Proposition 5 for a formal version). There exists a constant c > 0 and
an identifiable SCM M∗ satisfying Assumptions 1-5 such that for any ϵ > 0, there exists an SCM
Mϵ satisfying W (PM∗

(V ), PMϵ(V )) ≤ ϵ and |ATEM∗ − ATEMϵ
| > c.

Here, M∗ is the ground-truth model and Mϵ are the models we use to approximate M∗. Proposition 2
implies that we need some regularization on Mϵ. Otherwise, even if the observation distributions are
close, their ATEs can be far away. In particular, we may want to regularize the Lipschitz constant of
the NN. Much work has been done to impose Lipschitz regularization during the training process
[13, 50, 22, 42, 10]. We denote Lip(f) to be the Lipschitz constant of a function f and define the
truncated Lipschitz NN class,

NNLf ,K
d1,d2

(W,L) = {max{−K,min{f,K}} : f ∈ NN d1,d2
(W,L) ,Lip(f) ⩽ Lf} .

For simplicity, we omit the dimensions and use shorthand NNLf ,K(W,L). The next theo-
rem gives the consistency result of the min estimator. To state the theorem, we define F∗ =
Et∼µT

EM∗ [F (V1(t), · · · , VnV
(t))] to be the true value and FL to be the optimal value of the

following optimization problem over SCMs with Lipschitz constant L.

FL = argmin
M̂∈M(G,FK

L ,U),P (U)

Et∼µT
EM̂[F (V1(t), · · · , VnV

(t))], (7)

s.t.W (PM̂(V ), PM∗
(V )) = 0,

where the minimum is taken over M
(
G,FK

L ,U
)

with FK
L = {f : ∥f∥ ⩽ K, f ∈ FL} and all

latent distributions P (U). Note that if L is the Lipschitz bound Lf that we assume on our structural
functions, then FL is the sharp lower bound.
Theorem 4. Let M∗ be any SCM satisfying the assumptions of Corollary 1. Suppose that the
Lipschitz constant of functions in M is Lf , F : RnV → R in (6) is Lipschitz continuous and τn > 0,
let K > 0 be the constant in Assumption 3, L̂f =

√
din
maxd

out
maxLf ,

F0,n =NN L̂f ,K
(
W0,n,Θ

(
log din

max

))
,F1,n = NN∞,∞(Θ(dUmax), Li,n),

F2,n =NN∞,K(Θ((dUmax)
2), Li,n),

where dUmax, d
in
max and dout

max are defined in Corollary 1, take the radius to be αn = ϵn + sn, ϵn =

O(W
−1/din

max
0,n +

∑2
i=1 L

−2/dU
max

i,n + τn log τn),

sn = O(m
−1/(dU

max+2)
n logmn + δn + log(nmn)λn), δn = O(n−1/max{2,dU

max} log2(n)).

If mn = Ω(n), Li,n = Θ(m
dU
max/(2d

U
max+4)

n ), i = 1, 2, limn→∞ min{τ−1
n ,W0,n, (log(nmn)λn)

−1} =

∞ , then with probability 1, [lim infn→∞ Fn, lim supn→∞ Fn] ⊂ [F L̂f , F∗].

Note that our theorem shows that the lower limit of the solution is large than the point F L̂f , where
L̂f is slightly larger than the original constraint Lf we impose on the structural functions. Hence,
this point can potentially be slightly smaller than the sharp bound FLf . This worsening is due to
the fact that we need to use NNs that satisfy a slightly worse Lipschitz property, to ensure that we
have sufficient approximation power. Although Theorem 4 does not guarantee {Fn} converges to a
point, it states that {Fn} may oscillate in the interval [F L̂f , F∗], which will still give a useful lower
bound to ground-truth value F∗. In particular, if the graph is identifiable, we have F ∗ = F L̂f and
{Fn} converges to F ∗. Also, note that in Theorem 4, we use wide NNs rather than deep NN for F0,n

because results in [53] show that wide NNs can approximate Lipschitz functions while controlling
their Lipschitz constants (a property that is not yet established for deep NNs). Similar results can be
obtained if wide neural nets are used for all components, invoking Theorem 2.

As a special case, we leverage Theorem 4 for a non-asymptotic rate for the ATE without confounding.
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Proposition 3 (Hölder continuity of ATE). Given two causal models M,M̂ ∈ M(G,FL,U)
satisfying Assumption 1 and Assumption 3, let their observational distributions be ν, µ. Suppose
the norms of all variables are bounded by K > 0. If (1) (Overlap) ν is absolutely continuous with
respect to one probability measure P and the density pν (t|Pa(T ) = x) ⩾ δ > 0 for x almost surely
and t ∈ [t1, t2] and (2) (No Confounding) there is no confounding in the causal graph G, we have∫ t2

t1

(EM[Y (t)]− EM̂[Ŷ (t)])2P (dt) ⩽
2CW

δ
W (µ, ν) + 2(L+ 1)nV W 2(µ, ν)(t2 − t1),

where CW = 4(L+ 1)nV K + 2Kmax {(L+ 1)nV , 1}.
Corollary 2. Let F, µT in Theorem 4 to be F (V ) = Y, µT ∼ Unif([t1, t2]), ϵ > 0. Suppose that the
assumptions in Proposition 3 and Theorem 4 hold, with probability at least 1− O(n−2), we have
|Fn − F∗| ⩽ O(

√
αn), where Fn, F∗, αn are defined in Theorem 4.

4.1 Experiments

In this section, we examine the performance of our algorithm in two settings. We compare our
algorithm with the Autobounds algorithm [14] in a binary IV example in [14] and in a continuous
IV model 1. Since Autobounds can only deal with discrete models, we discretize the continuous
model for comparison purposes. The implementation details are provided in the Appendix D. The
setting of the first experiment is taken from [14, Section D.1]. This is a binary IV problem and we
can calculate the optimal bound using LP [4]. We find that our bound is close to the optimal bound.
The second experiment is a general IV example where the treatment is binary but the rest of the
variables are continuous. The program that Autobounds solves after discretization contains ≈ 214

variables. Even with such a fine discretization, the bound obtained by Autobounds is not tighter than
our NCM approach. The details of the structural equations and analysis can be found in Appendix D.
We also provide an extra experiment on the counterexample of Proposition 5 in the appendix to show
the effect of Lipschitz regularization.

Setting Algorithm Average Bound Optimal Bound True Value

Binary IV NCM (Ours) [-0.49,0.05] [-0.45, -0.04] -0.31Autobounds [-0.45,-0.05] [-0.45, -0.04]

General IV NCM (Ours) [2.49,3.24] – 3Autobounds [1.40, 3.48] –
Table 1: Experiment results of 2 IV settings. The sample sizes are taken to be 5000 in each experiment.
STD is the standard derivation. The experiments are repeated 10 times for binary IV and 50 times for
continuous IV. In all experiments, the bounds given by both algorithms all cover the true values.

Conclusion In this paper, we provide theoretical justification for using NCMs for partial identifica-
tion. We show that NCMs can be used to represent SCMs with complex unknown latent distributions
under mild assumptions and prove the asymptotic consistency of the max/min estimator for partial
identification of causal effects in general settings with both discrete and continuous variables. Our
results also provide guidelines on the practical implementation of this method and on what hyper-
parameters are important, as well as recommendations on values that these hyperparameters should
take for the consistency of the method. These practical guidelines were validated with a small set
of targeted experiments, which also showcase superior performance of the neural-causal approach
as compared to a prior main contender approach from econometrics and statistics, that involves
discretization and polynomial programming.

An obvious next step in the theoretical foundation of neural-causal models is providing finite sample
guarantees for this method, which requires substantial further theoretical developments in the under-
standing of the geometry of the optimization program that defines the bounds on the causal effect
of interest. We take a first step in that direction for the special case, when there are no unobserved
confounders and view the general case as an exciting avenue for future work.

Acknowledgement Vasilis Syrgkanis is supported by NSF Award IIS-2337916 and a 2022 Amazon
Research Award.

1The code can be found in https://github.com/Jiyuan-Tan/NeuralPartialID
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A Illustration of Notions in Section 2

V2

V1 V3 V4 V5

U1

U2

U3

U4

Figure 2: An SCM example.

V2

V1 V3 V4 V5

Figure 3: The causal graph of this SCM.

To further explain the notions in Section 2, we consider the following example. Let M be an SCM
with the following structure equations.

V1 = f1(V2, U1),

V2 = f2(U1, U2),

V3 = f3(V1, V2, U2, U4), (8)
V4 = f4(V3.U3, U4),

V5 = f5(V4, U3),

where U1 and U2 are correlated and U3, U4 and (U1, U2) are independent. The causal model is
shown in Figure 2 and its causal graph is shown in Figure 3. In this example, UV1 = {U1},UV2 =
{U1, U2},UV3

= {U2, U4},UV4
= {U3, U4},UV5

= {U3}. Since U1, U2 are correlated, C1 =
{V1, V2, V3} is one C2 component because all nodes in C1 are connected by bi-directed edges. Note
that {V1, V2, V3, V4} is not a C2 component because V4 and V2 is not connected by any bi-directive
edge. The rest of C2 components are C2 = {V4, V5}, C3 = {V3, V4}.

Now, we consider the intervention V1 = t. Under this intervention, the structure equations can be
obtained by setting V1 = t while keeping all other equations unchanged, i.e.,

V1(t) = t,

V2(t) = f2(U1, U2),

V3 = f3(V1, V2, U2, U4),

V4 = f4(V3.U3, U4),

V5(t) = f5(V4, U3).

The figure of this model under intervention is shown in Figure 4.

V2(t)

V1(t) V3(t) V4(t) V5(t)

U1

U2

U3

U4

Figure 4: The SCM after intervention V1 = t.
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B Proof of approximation Theorems

B.1 Illustration of how to construct canonical representations and neural architectures

In this section, we illustrate how to construct canonical representations and neural architectures given
a causal graph via a simple example. We consider the example in the previous section. The causal
graph is shown in Figure 3.

V2

V1 V3 V4 V5

E1 E2

E3

Figure 5: The canonical representation of Fig-
ure 3.

V2

V1 V3 V4 V5

Ê1 Ê2

Ê3

Z2Z1

Z3

Figure 6: The neural network architecture.

Following the construction in Proposition 4, we use one latent variable for each C2 component. As we
explain in Appendix A, this causal model has three C2 components, {V1, V2, V3}, {V3, V4}, {V4, V5}.
In the canonical representation, exactly the latent variables enter their corresponding C2 component.
The structure equation of this SCM is as follows.

V1 = f1(V2, E1),

V2 = f2(E1),

V3 = f3(V1, V2, E1, E2), (9)
V4 = f4(V3.E2),

V5 = f5(V4, E3),

If we set E1 = (U1, U2), E2 = U4, E3 = U3, (10) is equivalent to (8). Therefore, we can see from
this example that the canonical representation does not lose any information about the SCM.

Now, we show how to construct the NCM architecture from a canonical representation. As we
mentioned in Section 3, we approximate the latent distribution by pushing forward uniform and
Gumbel variables. The structure equation of the NCM is

V1 = fθ1
1 (V2, g

θ1
1 (Z1)),

V2 = fθ2
2 (gθ11 (Z1)),

V3 = fθ2
3 (V1, V2, g

θ1
1 (Z1), g

θ1
2 (Z2)), (10)

V4 = fθ4
4 (V3.g

θ1
2 (Z2)),

V5 = fθ5
5 (V4, g

θ3
2 (Z3)),

where fθi
i , g

θj
j are neural networks, Zi are join distribution of independent uniform and Gumbel

variables, and g
θj
j has the special architecture described in Section 3.1 and Section 3.2. Figure 6

shows the architecture of the NCM. Each in-edge represents an input of a neural net.

B.2 Proof of Theorem 1

The causal graph G does not specify how latent variables influence the observed variables. There
could be many ways of recovering the latent variables from a graph G. Figure 7 shows an example
where two different causal models have the same causal graph. The next proposition gives a canonical
representation of a causal model.
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V1 V2 V3

U1

V1 V2 V3

U2

U1

U3

Figure 7: Example: two different SCMs with the same causal graph.

Proposition 4. Suppose that Assumption 1 and Assumption 2 hold, given any SCM M with causal
graph G and latent variables U , we can construct a canonical SCM M̂ of the form (3) by merging the
latent variables in U such that M and M̂ produce the same intervention results. Besides, functions
in M̂ have the same smoothness as M.

Proof of Proposition 4. Let G = {GVi
: Vi is categorical} and the latent variables in the original

model M be U = {U1, · · · , UnU
} ∪G. By Assumption 1 and Assumption 2, U are independent

and the structure equations of M have the form

Vi =

{
fi (Pa(Vi),UVi

) , Vi is continuous,

argmaxk∈[ni]

{
gVi

k + log (fi (Pa(Vi),UVi
))k

}
, Vi is categorical,

where gVi

k are i.i.d. standard Gumbel variables and UVi ⊂ {U1, · · · , UnU
} contains the latent

variables that affect Vi. We regroup and merge the variables Ui to make the model have a canonical
form while not changing the functions in the structure equations. Let D1, · · · , DnC

⊂ V be the
C2-component of M. For each Ui, we define the vertices that are affected by Ui as

I(Ui) = {Vj : Ui ∈ UVj
}.

We partition {U1, · · · , UnU
} into nC sets Û1, · · · , ÛnC

in the following way. For each Uk, Uk is in
the set Û i if I(Uk) ⊂ Di. If there are two components Di, Dj satisfy the condition, we put Uk into
either of the sets Û i, Û j . Let Ûi have the same distribution as the joint distribution of the random
variables in set Û i. Let M̂ ∈ M(G,F , Û) the SCM with structure equations

V̂i =

fi

(
Pa(V̂i), Ûk1 , · · · , Ûkni

)
, Vi is continuous,

argmaxk∈[ni]

{
gVi

k + log
(
fi

(
Pa(V̂i), Ûk1 , · · · , Ûkni

))
k

}
, Vi is categorical,

, Ûki
∩UVi

̸= ∅, i ∈ [nV ].

Here, we slightly abuse the notation fi. fi ignores inputs from Ûk1
, · · · , Ûkni

that are not in UVi
.

Note that Û1, · · · , ÛnC
,G has the same distribution as U because we only merge some latent

variables. In addition, the functions in the new model M̂ has the same smoothness as the original
model.

We first verify that the causal graph of M̂ is G. If there is a bi-directed arrow between nodes Vi, Vj in
G, by the independence assumption, there must be one latent variable Uk ∈ UVi

∩UVj
. There exist

one Dl such that I(Uk) ⊂ Dl and Û l ∩UVi
̸= ∅, Û l ∩UVj

̸= ∅. Therefore, Ûl will affect both Vi

and Vj and there is a bi-directed arrow between node Vi, Vj in GM̂. Suppose that there is a bi-directed
arrow between node Vi, Vj in GM̂, it means there exist a Ûk such that Ûk ∩UVi

̸= ∅, Ûk ∩UVj
̸= ∅.

Let Ul1 ∈ Ûk ∩UVi
, Ul2 ∈ Ûk ∩UVj

, then

Vi ∈ I(Ul1) ⊂ Dk, Vj ∈ I(Ul2) ⊂ Dk.

Since Dk is a C2-component, there exist a bi-directed arrow between node Vi, Vj in G. Therefore,
G = GM̂.
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Finally, we verify that M and M̂ produce the same intervention results. The intervention distribution
can be viewed as the push-forward of the latent distribution, i.e., V = F (U), and the intervention
operation only changes the function F . In our construction, we only merge the latent variables
and leave the functions in structure equations being the same (except that they may ignore some
coordinates in input). For any intervention T = t, suppose in M we have V (t) = Ft(U). Then, in
M̂, we get V̂ (t) = Ft(Û). Since U and Û has the same distribution, the distribution of V (t), V̂ (t)
are the same.

Proof of Theorem 1. The structure equations of M have the form

Vi =

{
fi (Pa(Vi),UVi

) , Vi is continuous,

argmaxk∈[ni]

{
gVi

k + log (fi (Pa(Vi),UVi))k

}
, Vi is categorical, ∥fi∥1 = 1,

where gVi

k are i.i.d. standard Gumbel variables and M̂ ∈ M(G, F̂ , Û) has structure equations

V̂i =

f̂i

(
Pa(V̂i), ÛVi

)
, Vi is continuous,

argmaxk∈[ni]

{
ĝVi

k + log
(
f̂i

(
Pa(V̂i), ÛVi

))
k

}
, Vi is categorical, ∥f̂1∥1 = 1,

where ĝVi

k are i.i.d. standard Gumbel variables. Let the treatment variables set be T = {T1, · · · , TnT
}.

We may give all vertices and U0 = {U1, · · · , UnU
}, an topology ordering (rearrange the subscript if

necessary)
U1, · · · , UnU

, T1, · · · , TnT
, V1(t), · · · , VnV −nT

(t)

such that for each directed edge (Vi(t), Vj(t)), vertex Vi(t) lies before vertex Vj(t) in the ordering,
ensuring that all edges start from vertices that appear early in the order and end at vertices that appear
later in the order. We put U0 and T at the beginning because they are the root nodes of the intervened
model. We denote µT

U0,T ,1:k (resp. µ̂T
U0,T ,1:k) to be the distribution of U0,T , V1(t), · · · , Vk(t) (resp.

Û0,T , V̂1(t), · · · , V̂k(t)), µT
Vk|U0,T ,1:k−1 the distribution of Vk given U0,T , V1(t), · · · , Vk−1(t).

Let S =
∑nV

i=1 ∥fi − f̂i∥∞. Next, we prove that

W
(
µT
U0,T ,1:k, µ̂

T
Û0,T ,1:k

)
⩽ (L+ 1)W

(
µT
U0,T ,1:k−1, µ̂

T
Û0,T ,1:k−1

)
+ 2K2S. (11)

By definition of Wasserstein-1 distance,

W
(
µT
U0,T ,1:k, µ̂

T
Û0,T ,1:k

)
= sup

g∈Lip(1)

∫
g(u, t, v1, · · · , vk)d

(
µT
U0,T ,1:k − µ̂T

Û0,T ,1:k

)
= sup

g∈Lip(1)

∫
g(u, t, v1, · · · , vk) dµT

Vk|U0,T ,1:k−1 dµ
T
U0,T ,1:k−1

−
∫

g(u, t, v1, · · · , vk) dµ̂T
V̂k|Û0,T ,1:k−1

dµ̂T
Û0,T ,1:k−1

= sup
g∈Lip(1)

∫
g(u, t, v1, · · · , vk) d

(
µT
Vk|U0,T ,1:k−1 − µ̂T

V̂k|Û0,T ,1:k−1

)
dµ̂T

Û0,T ,1:k−1︸ ︷︷ ︸
(1)

+

∫
g(u, t, v1, · · · , vk) dµT

Vk|U0,T ,1:k−1 d
(
µT
U0,T ,1:k−1 − µ̂T

Û0,T ,1:k−1

)
︸ ︷︷ ︸

(2)

.

For (1), if Vk is a continuous variable, we have∫
g(u, t, v1, · · · , vk) d

(
µT
Vk|U0,T ,1:k−1 − µ̂T

V̂k|Û0,T ,1:k−1

)
= g (u, t, v1, · · · , vk−1, fk (pa(vk),uVk

))− g
(
u, t, v1, · · · , vk−1, f̂k (pa(vk),uVk

)
)

⩽
∥∥∥fk (pa(vk),uVk

)− f̂k (pa(vk),uVk
)
∥∥∥
∞

⩽ S, (12)
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where we have used the Lipschitz property of g in the first inequality. If Vk is categorical,
let p̂ (pa(vk),uVk

) = (p̂1, · · · , p̂ni
) = f̂ (pa(vk),uVk

) and p (pa(vk),uVk
) = (p1, · · · , pni

) =
f (pa(vk),uVk

) , we get∫
g(u, t, v1, · · · , vk) d

(
µT
Vk|U0,T ,1:k−1 − µ̂T

V̂k|Û0,T ,1:k−1

)
=

ni−1∑
k=1

(g(u, t, v1, · · · , k) − g(u, t, v1, · · · , ni))(pk − p̂k) ⩽ K

ni−1∑
k=1

|pk − p̂k| ⩽ K2S, (13)

where we use ∥Vk∥∞ ⩽ K,ni ⩽ K.

For (2), if Vi is continuous,∫
g(u, t, v1, · · · , vk) dµT

Vk|U0,T ,1:k−1 d
(
µT
U0,T ,1:k−1 − µ̂T

Û0,T ,1:k−1

)
=

∫
g (u, t, v1, · · · , vk−1, fk (pa(vk),uVk

)) d
(
µT
U0,T ,1:k−1 − µ̂T

Û0,T ,1:k−1

)
. (14)

Since g, fk are Lipschitz continuous functions, g (u, t, v1, · · · , vk−1, fk (pa(vk),uVk
)) is (L+ 1)-

Lipschitz continuous with respect to (u, t, v1, · · · , vk−1). We have∫
g (u, t, v1, · · · , vk−1, fk (pa(vk),uVk

))d
(
µT
U0,T ,1:k−1 − µ̂T

U0,T ,1:k−1

)
⩽ (L+ 1)W

(
µT
U0,T ,1:k−1, µ̂

T
Û0,T ,1:k−1

)
. (15)

If Vi is categorical,∫
g(u, t, x1, · · · , xk) dµ

T
Xk|U ,T ,1:k−1 d

(
µT
U ,T ,1:k−1 − µ̂T

Û ,T ,1:k−1

)
=

ni∑
k=1

pk

∫
g(u, t, x1, · · · , k) d

(
µT
U ,T ,1:k−1 − µ̂T

Û ,T ,1:k−1

)
.

Since g, fk are L-Lipschitz continuous functions, g(u, t, v1, · · · , vk−1, i) is L-Lipschitz continuous
with respect to (u, t, v1, · · · , vk−1). We have

ni∑
k=1

∫
pkg(u, t, x1, · · · , k) d

(
µT
U0,T ,1:k−1 − µ̂T

U0,T ,1:k−1

)
⩽ LW

(
µT
U0,T ,1:k−1, µ̂

T
Û0,T ,1:k−1

)
.

(16)

Combine (12)-(16), we prove Equation (11). By induction, one can easily get

W
(
µT
U0,T ,1:nV −nT

, µ̂T
Û0,T ,1:nV −nT

)
⩽ (L+ 1)nV −nT

(
W
(
µT
U0,T , µ̂

T
Û0,T

)
+ 2K2S/L

)
− 2K2S/L

=
(L+ 1)nV −nT − 1

L
2K2S + (L+ 1)nV −nTW

(
µT
U0,T , µ̂

T
Û0,T

)
Let CG(L,K) = 2K2 ·max{ (L+1)nV −nT −1

L , (L+1)nV −nT } and notice that W
(
µT
U0,T

, µ̂T
Û0,T

)
=

W
(
PM(U), PM̂(Û)

)
because interventions T = t are the same, we get

W
(
PM(V (t)), PM̂(V (t))

)
⩽ W

(
µT
U0,T ,1:nV −nT

, µ̂T
Û0,T ,1:nV −nT

)
⩽ CG(L,K)

(
S +W

(
PM(U), PM̂(Û)

))
. (17)
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B.3 Proof of results in Section 3.1

Proof of Theorem 2. Recall that the neural network consists of three parts ĝ = ĝτ3 ◦ ĝ2 ◦ ĝ1 and ĝ2, ĝ1
have a separable form, dealing with each coordinate of the input individually. As mentioned before,
each coordinate approximates the distribution of one connected component of the support. We first
construct ĝ1 and ĝ2, then use Gumbel-Softmax layer to combine each component together.

To construct the first two parts, we only need to consider each coordinate individually. For the i-th
component Ci, let µi = PCi/P(Ci), where PCi is measure P restricted to component Ci. Under
Assumption 4, there exists a Lipschitz map gi2 ∈ H([0, 1]d

C
i , Ci)∩FL([0, 1]

dC
i , Ci). By [43, Theorem

VIII.1], there exists quantized ReLu network ĝi1 of width W1 and depth Θ(dCi ) (let s = 1
⌈n(n−1)⌉ in

[43, Theorem VIII.1]), such that

W
((

(gi2)
−1
)
#
µi, P (ĝi1(Ui))

)
⩽ O

(
W

−1/dC
i

1

)
,

where Ui are i.i.d. uniform random variables on [0, 1]. By [53, Theorem 2], there exist a deep ReLu
network ĝi,j2 of width Θ

(
dCi
)

and depth L2 such that

∥
(
gi2
)
j
− ĝi,j2 ∥∞ ⩽ O

(
L
−2/dC

i
2

)
,

Let ĝi2(x) =
(
ĝi,12 (x), · · · , ĝi,d2 (x)

)
, we get

∥gi2 − ĝi2∥∞ ⩽ O
(
L
−2/dC

i
2

)
.

Thus, the width of ĝi2 is Θ
(
d· dCi

)
. Let

ĝi(x) =
(
ĝ1i (x1), · · · , ĝNC

i (xNC
)
)
, i = 1, 2, xk ∈ Rdi , d1 = 1, d2 = d, k = 1, · · · , NC ,

where NC is the number of connected components. By Lemma 3, we get

W
(
µi, P (ĝi2 ◦ ĝi1(Ui))

)
= W

((
gi2
)
#

(
gi2
)−1

#
µi,
(
ĝi2
)
#
P (ĝi1(Ui))

)
⩽ LW

((
gi2
)−1

#
µi, P (ĝi1(Ui))

)
+ ∥gi2 − ĝi2∥∞

= O
(
W

−1/dC
i

1 + L
−2/dC

i
2

)
.

Next, let pi = P(Ci) and the distribution of ĝk2 ◦ ĝk1 (Uk) be µ̂k, then we have P =
∑NC

k=1 pkµk. By
Lemma 4, we have

W

(
P,

NC∑
k=1

pkµ̂k

)
⩽

NC∑
k=1

pkW (µi, µ̂k) = O
(
W

−1/max{dC
i }

1 + L
−2/max{dC

i }
2

)
.

Finally, we analyze the error caused by the Gumbel-Softmax layer. Note that as temperature parameter
τ → 0,

wτ =

(
exp((log pi +Gi)/τ)∑NC

k=1 exp((log pk +Gk)/τ)

)
i=1,··· ,NC

a.s.−−→ One-hot(argmax
i

{Gi + log pi})

where One-hot(k) is NC-dimensional vector with the k-th coordinate equals to 1 and the remaining
coordinates are 0 and Gi ∼ Gumbel(0, 1) are i.i.d. Gumbel distribution. Let ντ be the distribution of
wτ . By Lemma 6, for 0 < τ < 1, we have

W
(
ντ , ν0

)
⩽ O(τ − τ log τ).

By Lemma 5,

W
((
ντ , P (

(
ĝi2 ◦ ĝi1

)
(Ui))

)
,
(
ν0, P (

(
ĝi2 ◦ ĝi1

)
(Ui))

))
⩽ O (τ − τ log τ) . (18)

Let

ĝτ3 (x1, · · · , xNC
) =

NC∑
k=1

wτ
k ·xk, xk ∈ Rd, wτ =

(
wτ

1 , · · · , wτ
NC

)
.
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We denote g03 = limτ→0 g
τ
3 . By Assumption 4, the support is bounded. Thus, gi2 and ĝi2 are bounded,

i.e., ∥ĝi2 (x)∥∞ ⩽ K. Since functions h(w,X) = wTX is Lipschitz continuous in the region
∥w∥1 = 1, ∥X∥∞ ⩽ K, we get

W
(
P (ĝ03 ◦ ĝ2 ◦ ĝ1(Uk)), P (ĝτ3 ◦ ĝ2 ◦ ĝ1(Uk))

)
⩽ O (τ − τ log τ) (19)

from (18). Putting things together, we get

W (P, P (ĝτ3 ◦ ĝ2 ◦ ĝ1(Uk))) ⩽ W

(
P,

NC∑
k=1

pkµ̂k

)
+W

(
NC∑
k=1

pkµ̂k, P (ĝτ3 ◦ ĝ2 ◦ ĝ1(Uk))

)

= W

(
P,

NC∑
k=1

pkµ̂k

)
+W

(
P (ĝ03 ◦ ĝ2 ◦ ĝ1(Uk)), P (ĝτ3 ◦ ĝ2 ◦ ĝ1(Uk))

)
⩽ O

(
τ − τ log τ +W

−1/max{dC
i }

1 + L
−2/max{dC

i }
2

)
,

where we use (19).

B.4 Proof of results in Section 3.2

Gumbel-SoftmaxSpace-filling Curve

...

Lipschitz Homeomorphism

...

Figure 8: Architecture of the deep neural network for 4−dimensional output. The first (yellow) part
approximates the distribution on different connected components using deep ReLu Networks. The
remaining two parts are similar to the wide neural network in Figure 1a.

Before we prove Proposition 1, we need to introduce some important notions. Let {Cn} be a sequence
of partitions of the unit cube [0, 1]d. We say {Cn} has property (*) if the following properties are
satisfied.

1. C0 = {C−1}, C−1 = [0, 1]d

2. Cn+1 = {Ci1,i2··· ,in+1
}ij=0,··· ,2d−1 is a refinement of Cn = {Ci1,i2··· ,in}ij=0,··· ,2d−1, i.e.,

Ci1,i2··· ,in =
⋃2d−1

in+1=0 Ci1,i2··· ,in+1
. Besides, Cn is obtained by cutting the unit cube [0, 1]d

by planes that are paralleled to the coordinate planes.

The following lemma is important in the construction of Hilbert curve.
Lemma 1 (Algorithm 3 in [25]). Given a sequence of partitions of the unit cube {Cn} that
has property (*), there exist a ordering for each partition Cn, i.e., On :

{
1, · · · , 2nd

}
→{

i1i2 · · · in : ij = 0, · · · , 2d − 1
}

, such that the following two conclusions hold.

1. If (j − 1)· 2d < i ⩽ j· 2d, the first n digits of On+1(i) are the same as On(j).

2. Adjacent cubes in the ordering intersect, i.e., COn(i) ∩ COn(i+1) ̸= ∅. Furthermore,
COn(i) ∩ COn(i+1) is a d− 1 dimensional cube.
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Proof of Proposition 1. Without loss of generality, we can assume that P is supported on [0, 1]d,
vanishes at the boundary and P(B) ⩾ C1λ(B) for some constant C1 > 0 and all measurable sets
B ∈ [0, 1]d. Suppose we have proven the conclusion for this case. By Assumption 5, there exists
f ∈ H([0, 1]d,K)∩FL([0, 1]

d,K) such that f−1
# P satisfies these conditions. There exists continuous

function γ such that f−1
# P = γ#λ, which implies P = (f ◦ γ)#λ. In particular, if γ is 1/d-Holder

continuous, f ◦ γ is also 1/d-Holder continuous because f is Lipschitz continuous.

When d = 0, the constant map satisfies the requirement. We focus on the case d ⩾ 1 in the following.
The proof is to modify the construction of the Hilbert space-filling curve. By changing the velocity of
the curve, the push-forward measure of the Hilbert space-filling curve can simulate a great number of
distributions. We use λ to represent the Lebesgue measure [0, 1].

Proof Sketch: The construction of f is inspired by the famous Hilbert space-filling curve [28]. To
illustrate the idea, let us first assume that P is absolutely continuous with respect to the Lebesgue
measure λ and consider d = 2. In the k-th step, we divide the unit cube into 22k evenly closed cubes
Cn = {C1,n, · · · , C22k,n} such that Cn is a refinement of Cn−1.

The construction of a standard Hilbert curve is to find a sequence of curves γn that go through
all the cubes in Cn. The curve γn has one special property. If γn−1(t) ∈ Ck,n−1, then γm(t) ∈
Ck,n−1,∀m ⩾ n. For example, in Figure 9, the points on the curve in the lower-left cubes will stay in
the lower-left cubes. Note that (γn)#λ(Ck,n) = λ

(
γ−1
n (Ck,n)

)
is the time curve γn stays in cubes

Ck,n. The idea is to change the speed of the curve so that P and (γn)#λ agree on cubes in Cn, i.e.,
P(Ck,n) = λ

(
γ−1
n (Ck,n)

)
. Since we assume that P is absolutely continuous, P(∂Ck,n) = 0 and we

don’t need to worry about how to divide the mass on the boundary. For example, let the green cubes
in the Figure 9 to be C0 and suppose that γ1 starts from C0. We will change the speed so that γ1
spends P(C0) time in this region. In the next step, we divide C0 into four colored cubes C1, · · · , C4

on the right. We change the speed again to let the time spent in each cube equal to P(Ci). Note that
this construction preserves the aforementioned property, i.e., for t ∈ [0,P(C0)], γn(t) ∈ C0,∀n ⩾ 1.
As n → ∞, it can be proven that γn converges uniformly to a curve γ. We can also prove that P and
γ#λ agree on ∪∞

n=1Cn. Given that ∪∞
n=1Cn generate the standard Borel algebra on [0, 1]2, we can

conclude that P = γ#λ.

In the general case, P may not be absolutely continuous. As a result, the boundary may not be
P-measure zero. We will need to perturb the cutting planes to ensure their boundaries are measured
zero.

Figure 9: The construction of Hilbert curve.

Preparation. For a n-dimensional cube C =
∏n

i=1[ai, bi], the diameter of C is diam(C) =√∑n
i=1(bi − ai)2. We also define the function R that measures the ratio between maximum edge

and minimum edge. For a collection of cubes C = {C1, · · · , Cm}, Ck =
∏n

i=1

[
aki , b

k
i

]
, R(C) is

defined to be

R(C) = maxi,k |aki − bki |
mini,k |aki − bki |

.
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R(C) measures the shape of the cubes in a collection. We need to control R(C) in the construction to
obtain Holder continuity in Step 2.

Step 1: Define partition. First, we construct a sequence of partitions that has the property
(*) recursively. Let C0 =

{
[0, 1]d

}
. Suppose we have defined close cubes collection Cn =

{Ci1,i2··· ,in}ij=0,··· ,2d−1, , such that

1. Cn is obtained by cutting the unit cube [0, 1]d by planes that are paralleled to the coordinate
planes.

2. Ci1,i2··· ,in−1
=
⋃

in
Ci1,i2··· ,in and diam(Ci1,i2··· ,in−1

) ⩽ 2/3 · diam(Ci1,i2··· ,in).

3. P(∂Ci1,i2··· ,in) = 0 and R(Cn+1) ⩽ (1 + 2−n)R(Cn).

Next, we construct Cn+1 from Cn that preserves these properties. We refine the division Cn =
{Ci1,i2··· ,in}ij=0,··· ,2d−1 by union of hyperplane Pi,r = {y : yi = r} to get {Ci1,i2··· ,in+1} such that
Ci1,i2··· ,in =

⋃
in+1

Ci1,i2··· ,in+1
and diam(Ci1,i2··· ,in−1

) ⩽ 2/3 · diam(Ci1,i2··· ,in). By property 1,
Cn is obtained by dividing [0, 1]d using

P1,r10
, · · · , P1,r1

2n−1
, · · · , Pi,rij

, · · · , Pd,rd
2n
, ri0 = 0, ri2n = 1,

we can further cut the unit cube using hyperplane {Pi,(rij+rij+1)/2)
}i=1,···d,j=1,···2n−1. However, this

construction may not satisfy property 3, P(∂Ci1,i2··· ,in+1
) = 0. We need to perturb each hyperplane

to ensure a measure-zero boundary. Since

Zi =
{
r ∈ R : P

({
x ∈ [0, 1]d, [x]i = r

})
̸= 0
}

is at most countable, we can perturb the hyperplanes a little bit, i.e.,
{Pi,(rij+rij+1)/2+ϵi,j)

}i=1,···d,j=1,···2n−1 to ensure property 3. In this way, we can choose
|ϵi,j | to be sufficiently small such that

diam(Ci1,i2··· ,in+1
) ⩽ 2/3 · diam(Ci1,i2··· ,in),

and
maxi,j

((
rij+1 − rij

)
/2 + |ϵi,j |

)
mini,j

((
rij+1 − rij

)
/2− |ϵi,j |

) ⩽
maxi,j

(
rij+1 − rij

)
mini,j

(
rij+1 − rij

) · (1 + 2−n
)

.

Therefore, R(Cn+1) ⩽ (1 + 2−n)R(Cn) and it is easy to see that properties 1,2,3 are satisfied.

Step 2: Construct Hilbert Curve. By Lemma 1, there exist an sequence of ordering {On} of {Cn}
that satisfies

• The first n digits of On+1(i) with On(j), (j − 1)· 2d < i ⩽ j· 2d.

• COn+1(i) ∩ COn+1(i+1) are d− 1 dimensional cubes.

Let I0 = {[0, 1]}, we define In recursively. Suppose we have define interval collection
In = {{Ii1,i2··· ,in}ij=0,··· ,2d−1} such that Ii1,i2··· ,in−1 =

⋃
in
Ii1,i2··· ,in and P(Ci1,i2··· ,in) =

|Ii1,i2··· ,in |. Since P(∂Ci1,i2··· ,in+1
) = 0, we have P(Ci1,i2··· ,in) =

∑
in+1

P(Ci1,i2··· ,in+1
). With

the ordering, we divide each IOn(j), 0 ⩽ j ⩽ 2nd−1 into 2d closed sub-interval IOn+1(i), j2
d ⩽ i <

(j + 1)2d such that IOn+1(i) = [
∑i−1

k=1 pk,
∑i

k=1 pk] , where pi = P(COn+1(i)). This construction
satisfies |IOn+1(i)| = P(COn+1(i)). Note that by condition 3 in step 1, P vanishes at the boundary of
the cubes. Therefore,

|IOn(i)| = P(COn(i)) =

i2d∑
j=(i−1)2d+1

P(COn+1(j)) =

i2d∑
j=(i−1)2d+1

|IOn+1(j)|. (20)

Now, we can construct a piecewise linear function γn+1(t) such that

(γn+1)#λ(COn+1(i)) = P(COn+1(i)), (γn+1)#λ(∂COn+1(i)) = 0,∀i. (21)
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The idea is to construct a piecewise linear curve going through all cubes in Cn+1 exactly once and
modify its speed. Take v0 ∈ Center(COn+1(1)), vi ∈ Center(COn+1(i) ∩ COn+1(i+1)), v2d(n+1) ∈
Center(COn+1(2d(n+1))), where Center(

∏k
i=1[ai, bi]) = ((ai + bi)/2)i=1,··· ,k is the center of a cube.

vi is well-defined since COn+1(i) ∩ COn+1(i+1) are cubes of dimension d − 1 by Lemma 1. One
possible choice of γn+1(t) is

γn+1(t) = v0 +

2(n+1)d∑
i=1

1

pi
(vi − vi−1)

(t− i−1∑
k=1

pk

)+

−

(
t−

i∑
k=1

pk

)+
 . (22)

The first two curves γ1, γ2 are shown in Figure 9. It is straightforward to verify that
γn+1(

∑i
k=1 pk) = vi and

γn+1(IOn+1(i)) = γn+1([

i−1∑
k=1

pk,

i∑
k=1

pk]) ⊂ COn+1(i).

In fact, since vi−1, vi are on different surfaces of the cube COn+1(i) , the line segment between
vi−1, vi lies inside the interior of COn+1(i) and γn+1 goes through all the cubes COn+1(i) ex-
actly once. We have γ−1

n+1(Int(COn+1(i))) ⊂ [
∑i−1

k=1 pk,
∑i

k=1 pk] and (γn+1)#λ(COn+1(i)) =
P(COn+1(i)), where Int(·) is the interior of a set. Besides, we also have (γn+1)#λ(∂COn+1(i)) ⩽
λ(γ−1

n+1({vj}j=1···2d(n+1))) = 0.

Finally, for any k1 ⩾ k2 ⩾ n, t ∈ [0, 1], by property 2 in step 1, (20) and (22), γk1
(t), γk2

(t) are in
one cube Ci1,i2··· ,in . and diam(Ci1,i2··· ,in) ⩽

(
2
3

)n √
d. Thus, |γk1

(t)− γk2
(t)| ⩽

(
2
3

)n √
d which

implies {γn(t)} converges uniformly to one continuous function γ(t).

Step 3: Verify Conclusion P = γ#λ. By W ((γk)#λ, γ#λ) ⩽ ∥γk − γ∥∞ → 0, (γk)#λ converges
weakly to γ#λ. By construction, P(∂Ci1,i2··· ,in) = 0 and (γn)#λ(Ci1,i2··· ,in) = P(Ci1,i2··· ,in).
Therefore, by condition 2 in step 1, for any k ⩾ n,

(γk)#λ(Ci1,i2··· ,in) = (γk)#λ(
⋃

in+1,··· ,ik

Ci1,i2··· ,ik)

=
∑

in+1,··· ,ik

(γk)#λ(Ci1,i2··· ,ik)

=
∑

in+1,··· ,ik

λ
(
γ−1
k (Ci1,i2··· ,ik)

)
=

∑
in+1,··· ,ik

P(Ci1,i2··· ,ik) = P(Ci1,i2··· ,in), (23)

where we use P(∂Ci1,i2··· ,in) = 0 and (γk)#λ(∂Ci1,i2··· ,in) = 0 in the second and the last equation.
We claim that γ#λ(∂Ci1,i2··· ,in) = 0. For k > n, we define

Bk =
⋃

∂Ci1,i2··· ,ik ∩ ∂Ci1,i2··· ,in ̸= ∅
Ci1,i2··· ,ik .

Let k > k1 ⩾ n and Bϵ
n = {x : d(x, ∂Ci1,i2··· ,in) < ϵ}, we have

(γk)#λ (Int(Bk1
)) ⩽ (γk)#λ(Bk1

) = P(Bk1
) ⩽ P

(
B(2/3)k1

√
d

n

)
, ∀k > k1,

where we use (23) and the fact that (γk)#λ vanishes on ∂Ci1,i2··· ,ik in the first equality and
diam(Ci1,i2··· ,ik1

) ⩽
(
2
3

)k1
√
d in the last inequality. Let k → ∞, by Portmanteau Theorem,

we get

γ#λ(∂Ci1,i2··· ,in) ⩽ γ#λ (Int(Bk1
)) ⩽ lim inf

k→∞
(γk)#λ(Bk1

) ⩽ lim inf
k→∞

P
(
B(2/3)k1

√
d

n

)
= P

(
B(2/3)k1

√
d

n

)
.

Since k1 is arbitrary, let k1 → ∞,

γ#λ(∂Ci1,i2··· ,in) ⩽ lim
k1→∞

P
(
B(2/3)k1

√
d

n

)
= P(∂Ci1,i2··· ,in) = 0

23



and we conclude that γ#λ(∂Ci1,i2··· ,in) = 0. By Portmanteau Theorem, let k → ∞ in (23),
we obtain γ#λ(Ci1,i2··· ,in) = P(Ci1,i2··· ,in). Let C∗ =

⋃∞
i=1 Ci. Notice that for any open set

U ∈ [0, 1]d, U =
⋃

C⊂U,C∈C∗ C, which means the σ-algebra generated by C∗ contains all Borel sets.
Besides, C∗ is a π-system. Hence, λ

(
γ−1(U)

)
= P(U) for all Lebesgue measurable set U .

Step 4: Holder Continuity of γ. We verify the condition of [47, Theorem 1]. In and Cn in the
above construction correspond to developments αk, βk in [47, Theorem 1]. Define fk(IOk(i)) =

COk(i), i = 1, · · · , 2kd as a map from In to Cn.

1. By construction, if I1 ∈ Ik, I2 ∈ Ik−1, I1 ⊂ I2, fk(I1) ⊂ fk−1(I2).

2. If I1, I2 ∈ Ik and I1 ∩ I2 ̸= ∅, I1, I2 are adjacent. By Lemma 1, fk(I1), fk(I2) share a
(d− 1)-dimensional boundary. Therefore, fk(I1) ∩ fk(I2) ̸= ∅.

3. We have |Ck−1| ⩽ 2d|Ck|.

4. By property 3,

R(Cn) ⩽
n−1∏
k=1

(
1 + 2−k

)
<

∞∏
k=1

(
1 + 2−k

)
< ∞.

Let A =
∏∞

k=1

(
1 + 2−k

)
. We have for any C ∈ Cn, by Assumption 5

diamd(C) ⩽ R(Cn)λ(C) ⩽ AC−1
1 P(C) ⩽ AC−1

1 max
I∈I

(diam(I)) ,

where C1 is the constant in Assumption 5.

5. Since Ik consists of one-dimensional intervals, we have diam(Ik) = gap(Ik).

Therefore, γ is 1/d-Holder continuous.

Proof of Theorem 3. The proof is similar to the proof of Theorem 2. The difference is that in the first
part, we use a deep ReLU network to approximate the Holder continuous curve γ instead of wide
ReLU network.

Let µi = PCi/P(Ci). By Assumption 4 and Assumption 5, for each connected component Ci of the
support, there exists Lipschitz maps gi2 ∈ H([0, 1]d

C
i , Ci) ∩ FL([0, 1]

dC
i , Ci) such that

(gi2)
−1
# µi(B) ⩾ Cgλ(B)/P(Ci),

for any measurable set B ⊂ [0, 1]d
C
i . By Proposition 1, there exist a 1/dCi -Holder continuous curve

γi : [0, 1] → [0, 1]d
C
i such that (γi)#λ = (gi2)

−1
# µi.

By [53, Theorem 2] (take ω(x) = C∥x∥1/d where C is the Holder continuity constant factor), there
exists deep ReLu network ĝi,j1 of width 12 and depth L1 such that

∥ĝi,j1 − (γi)j∥∞ ⩽ O
(
L
−2/dC

i
1

)
,

where (γi)j is the j-coordinate of γi. Let ĝi1(x) =
(
ĝi,11 (x), · · · , ĝi,d1 (x)

)
, we get

∥ĝi1 − γi∥∞ ⩽ O
(
L
−2/dC

i
1

)
.

Thus, the width of ĝi1 is Θ
(
dCi
)
. By Lemma 3

W
((

gi2
)−1

#
µi, P (ĝi1(Ui))

)
= W

(
(γi)#Ui, P (ĝi1(Ui))

)
⩽ ∥ĝi1 − γi∥∞ ⩽ O

(
L
−2/dC

i
1

)
.

The rest are the same as proof of Theorem 2.
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Proof of Corollary 1. Suppose that structure equations of M are

Vi =

{
fi (Pa(Vi),UVi) , Vi is continuous,

argmaxk∈[ni]

{
gVi

k + log (fi (Pa(Vi),UVi
))k

}
, Vi is categorical, ∥fi∥1 = 1

, fi ∈ FL.

Let din
i be the input dimension of fi, dout

i be the output dimension,

f̂i =

argminf̂i∈NN
din
i
,dout

i
(dout

i (2din
i +10),L0)

∥f̂i − fi∥∞, Vi continuous,

max{0, argminf̂i∈NN
din
i
,dout

i
(dout

i (2din
i +10),L0)

∥f̂i − fi∥∞}, Vi categorical.

We truncate the neural network at 0 for categorical variables because the propensity functions are
required to be non-negative. This truncate operation will not influence the approximation error since
fi are non-negative. According to Assumption 3, fi are Lipschitz continuous. By [53, Theorem 2],
we have, if Vi is continuous, ∥f̂i − fi∥∞ ⩽ O(L

−1/din
i

0 ) ⩽ O(L
−1/din

max
0 ).

If Vi is categorical, let S = ∥f̂ (pa(vk),uVk
) − f (pa(vk),uVk

) ∥∞, p = f (pa(vk),uVk
) , p̂ =

f̂ (pa(vk),uVk
) /∥f̂∥1. If S > 1/(2K), ∥p− p̂∥∞ ⩽ 2KS. If S ⩽ 1/(2K),

∥p− p̂∥∞ ⩽
1

∥f̂∥1
∥f̂ (pa(vk),uVk

)− f (pa(vk),uVk
) ∥∞ +

1

∥f̂∥1
|∥f̂∥1 − 1|∥f∥∞

⩽
(ni + 1)

∥f̂∥1
S ⩽

(ni + 1)

1− niS
S ⩽ 2(K + 1)S

where we use Assumption 3 that ni ⩽ K and S ⩽ 1/(2K). Thus,

∥fi − f̂i/∥f̂i∥1∥∞ ⩽ O(∥fi − f̂i∥∞) ⩽ O(L
−1/din

max
0 ).

By Theorem 3, there exists a neural network ĝj with architecture in Theorem 3 such that

W (P (Uj), P (ĝj(Zj))) ⩽ O

(
L
−2/dU

j

1 + L
−2/dU

j

2 + (τ − τ log τ)

)
,

where Zj ∼ U([0, 1]NC,j ) i.i.d., NC,j is the number of connected components of support of Uj , dUj is
the dimension of latent variables Uj and L1, L2, τ are hyperparameters of the neural network defined
in Theorem 3. Let Ûj = ĝj(Zj), By Lemma 5,

W (P (U1, · · · , UnU
), P (Û1, · · · , ÛnU

)) ⩽
nU∑
j=1

W (P (Uj), P (ĝj(Zj))) ⩽ O

(
L
−2/dU

j

1 + L
−2/dU

j

2 + (τ − τ log τ)

)
.

Let M̂ be the casual model with the following structure equations

V̂i =

f̂i

(
Pa(V̂i), (ĝj(ZCj

))UCj
∈UVi

)
, Vi is continuous,

argmaxk∈[ni]

{
gk + log

(
f̂i

(
Pa(V̂i), (ĝj(ZCj ))UCj

∈UVi

))
k

}
, Vi is categorical.

By Theorem 1, we get

W
(
PM∗

(V (t)), PM̂(V (t))
)
⩽ O(

∑
Vi continuous

∥fi − f̂i∥∞ +
∑

Vi categorical

∥fi − f̂i/∥f̂i∥1∥∞

+W (P (U1, · · · , UnU
), P (Û1, · · · , ÛnU

)))

⩽ O(L
−2/din

max
0 + L

−2/dU
max

1 + L
−2/dU

max
2 + (τ − τ log τ)),

for any intervention T = t.

C Proof of Consistency

C.1 Inconsistent Counterexample (Proposition 2)

Proposition 5. There exists a constant c > 0 and an SCM M∗ satisfying Assumptions 1-5 with
a backdoor causal graph such that there is no unobserved confounding in M∗. For any ϵ > 0,
there exists an SCM Mϵ with the same causal graph such that W (PM∗

(V ), PMϵ(V )) ≤ ϵ and
|ATEM∗ − ATEMϵ

| > c.
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Proof. Let V = {X,T, Y } be the covariate, treatment and outcome respectively. T is a binary
variable. Let structure equations of causal model Mδ be

X =


−1 ,w.p. 1/2
0 ,w.p. 1/4
δ ,w.p. 1/4,

P (T = 1|X = x) =

{
1/2 , x = −1 or 0,
3/4 , x = δ,

Y =

{
T + Uy , X < 0

X/δ + Uy , X ⩾ 0

where all latent variables are independent and Uy is mean-zero noise. The distribution of Mδ is

PX,T,Y (0, 1, y) = pUy
(y)/8, PX,T,Y (0, 0, y) = pUy

(y)/8

PX,T,Y (δ, 1, y) = 3pUy
(y − 1)/16, PX,T,Y (δ, 0, y) = pUy

(y − 1)/16.

PX,T,Y (−1, 1, y) = pUy (y − 1)/4,PX,T,Y (−1, 0, y) = pUy (y)/4.

As δ → 0, distribution of Mδ
d−→ M∗, where structure equations of M∗ are

P (U1 = 1) = 3/5, P (U1 = 0) = 2/5, P (U2 = 1) = 1/3, P (U1 = 0) = 2/3,

X =

{
−1 ,w.p. 1/2,
0 ,w.p. 1/2,

P (T = 1|X = x) =

{
1/2 , x = −1,

5/8 , x = 0,

Y =


T + Uy , X = −1,

U1 + Uy , X = 0, T = 1,

U2 + Uy , X = 0, T = 0,

where U1, U2, Uy are independent. The distribution of M∗ is

PX,T,Y (0, 1, y) = pUy (y)/8 + 3pUy (y − 1)/16,

PX,T,Y (0, 0, y) = pUy
(y)/8 + pUy

(y − 1)/16,

PX,T,Y (−1, 1, y) = pUy
(y − 1)/4,

PX,T,Y (−1, 0, y) = pUy (y)/4.

It is easy to see that M∗ satisfies Assumption 1-5. Some calculation gives
W (PM∗

(V ), PMδ(V )) ⩽ δ/2. It is easy to calculate the ATE of the two models.

ATEM∗ = 19/30, ATEMδ
= 1/2.

This example implies that even as the Wasserstein distance between PM∗
(V ), PMδ(V ) converges

to zero, their ATEs do not change. As mentioned in the main body, this problem is caused by the
violation of Lipschitz continuity assumption for Mδ. Note that in Mδ, E[Y |X,T ] = X/δ. As
δ → 0, the Lipschitz constant explodes.

This problem may also arise in (6). If the distribution ball Bn = {M̂ : W (PM̂, PM∗

n ) ⩽ αn}
includes a small ball around the true distribution Sϵ = {M̂ : W (PM̂, PM∗

) ⩽ ϵ} ⊂ Bn and
the NCM is expressive enough to approximate all the SCMs in the Sϵ, this example tells us the
confidence interval may not shrink to one point as sample size increases to infinity even if the model
is identifiable.

C.2 Proof of Theorem 4

To prove Theorem 4, we will need the following proposition.
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Proposition 6. Given a metric space (M,d) and sets Θ1 ⊂ Θ2 · · · ⊂ Θn ⊂ · · · ⊂ Θ∞ ⊂ M , where
Θ∞ = ∪∞

n=1Θn , positive sequences {ϵn}n∈N, {δn}n∈N such that limn→∞ ϵn = limn→∞ τn =
limn→∞ δn = 0 and continuous functions f, gn : Θ∞ → R, suppose that

1. Θ∞ is compact.

2. gn satisfies
∥gn(θ1)− gn(θ2)∥ ⩽ Lgd(θ1, θ2) + τn, ∀θ1, θ2 ∈ Θ (24)

and supθ∈Θ∞
∥gn(θ)− g(θ)∥ ⩽ δn, gn ⩾ 0.

3. There exists a compact subset Θ̃∞ ⊂ Θ∞ such that for any θ0 ∈ Θ̃∞, there exists θ ∈ Θn

such that d(θ, θ0) ⩽ ϵn.

Consider the following optimization problems:

min
θ∈Θn

f(θ),

s.t. gn(θ) ⩽ Lgϵn + δn, (25)

min
θ∈Θ∞

f(θ),

s.t. g(θ) = 0. (26)

and

min
θ∈Θ̃∞

f(θ),

s.t. g(θ) = 0. (27)

We assume that the feasible region of (26) and (27) are nonempty. Let f∗
n, f

∗, f̃∗ be the minimal of
(25), (26) and (27) respectively. Then, [lim infk→∞ f∗

n, lim supk→∞ f∗
n] ⊂ [f∗, f̃∗].

Proof of Proposition 6. By compactness of Θ∞ and Θ̃∞, the minimizers of (26) and (27) are achiev-
able insider these two sets. Let θ∗ ∈ Θ∞, θ̃∗ ∈ Θ̃∞ be the minimizer of (26) and (27). We first prove
that lim supn→∞ f∗

n ⩽ f̃∗. Note that by (24), the limiting function g is Lg-Lipschitz. By condition

3, there exist θn ∈ Θn such that d
(
θn, θ̃

∗
)
⩽ ϵn. Note that

gn(θn) ⩽ |g(θn)− gn(θn)|+ |g(θn)− g (θ∗) |+ |g (θ∗) |
⩽ δn + Lgd (θn, θ

∗) ⩽ δn + Lgϵn.

Therefore, θn is a feasible point of (25). We have lim supn→∞ f∗
n ⩽ lim supn→∞ f(θn) =

f
(
θ̃∗
)
= f̃∗.

Next, we argue that lim infn→∞ f∗
n ⩾ f∗. If this equation does not hold, there exists ϵ > 0 and

subsequence
{
f∗
nk

}
k∈N such that f∗

nk
< f∗ − ϵ,∀k ∈ N. By compactness of Θ∞, for each k, there

exists a subsequence of θ∗nk
∈ Θ∞ such that θ∗nk

satisfies constraint of (25) and f∗
nk

= f
(
θ∗nk

)
. By

compactness,
{
θ∗nk

}
k∈N has a converging subseqence. Without loss of generality, we may assume

that
{
θ∗nk

}
k∈N converges to θ̂∗ ∈ Θ∞. Since gk converge uniformly to g,

lim
k→∞

gk
(
θ∗nk

)
⩽ lim

k→∞
|gk
(
θ∗nk

)
− g

(
θ∗nk

)
|+ g

(
θ∗nk

)
= g

(
θ̂∗
)
⩽ lim

k→∞
αk = 0.

θ̂∗ is a feasible point of Equation (26). Since f is continuous on Θ,

f
(
θ̂∗
)
= lim

k→∞
f
(
θ∗nk

)
⩽ f∗ − ϵ.

which leads to contradiction.
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Proof of Theorem 4. We begin by defining a proper metric space. By Assumption 3, all random
variables are bounded. Suppose that maxi,j{∥Vi∥∞, ∥Uj∥∞} ⩽ K. A canonical causal model
M ∈ M(G,F ,U) is decided by

θM = (f1, · · · , fnV
, P (U1), · · · , P (UnU

)),

where fi are functions in the structure equations (3) and Uj are uniform parts of the latent variables.
We denote Mθ to be the SCM represented by θ, the underlying SCM be Mθ∗

and P θ to be the
distribution of Mθ. We consider the space

M = FV1
× · · · × FVnV

× P
(
[−K,K]d

U
1

)
· · · × P

(
[−K,K]d

U
nU

)
,

where

FVi =

FK
L

(
[−K,K]d

V
i,in , [−K,K]d

V
i,out

)
, Vi continuous,

{f : ∥f∥1 = 1, f ∈ FK
L

(
[−K,K]d

V
i,in , [−K,K]d

V
i,out

)
} Vi categorical,

dVi,in, d
V
i,out are the input and output dimensions of fi,

FK
L = {f : ∥f∥∞ ⩽ K, f Lipschitz continuous}

and P(K) is the probability space on K. For θ = (f1, · · · , fnV
, P (U1), · · · , P (UnU

)) , θ′ =(
f ′
1, · · · , f ′

nV
, P (U ′

1), · · · , P (U ′
nU

)
)
, we define a metric on M

d(θ, θ′) =

nV∑
k=1

∥fk − f ′
k∥∞ +

nU∑
k=1

W (P (Uk), P (U ′
k)).

Theorem 1 states that the Wasserstein distance between two causal models is Lipschitz with respect
to metric d. Now, we define Θn. Let

Pn =
{
P (U) : U is the latent distribution of M̂ ∈ NCMG(F0,n,F1,n,F2,n, τn)

}
.

In other words, Pn contains all the push-forward measures of the uniform distribution by neural
networks. We denote Θn = F̂V1,n × · · · × F̂VnV

,n ××Pn, where

F̂Vi,n =

{
F0,n, Vi continuous,
{f/∥f∥1 : f ∈ F0,n} Vi categorical,

and F0,n is defined in Theorem 4. Note that by construction, latent variables are independent and Pn

can be decomposed into direct produce Pn,1 × · · · × Pn,nU
. Let

Θ∞ = ∪∞
n=1Θn, gn(θ) = Sλn

(
P θ∗

n (V ), P θ
mn

(V )
)
, f(θ) = Et∼µT

EMθ [F (V1(t), · · · , VnV
(t))]

and Θ̃∞ = {θ∗}. Note that f(θ) is a continuous function since by Theorem 1 and the fact that F is
Lispchitz continuous,

|f(θ)− f(θ′)| ⩽ Et∼µT
|W (P θ(V (t)), P θ′

(V (t))|
⩽ Et∼µT

[O(d(θ, θ′))] = O(d(θ, θ′)).

Now, we verify the conditions in Proposition 6.

1. By Arzelà–Ascoli theorem, FK
L

(
[−K,K]d

V
i,in , [−K,K]d

V
i,out

)
are precompact set with re-

spect to the infinity norm in space of continuous functions. And thus FVi are compact
sets.

Since measures in P
(
[−K,K]d

U
j

)
are tight , P

(
[−K,K]d

U
j

)
are compact with respect

to weak topology by Prokhorov’s theorem. And the Wasserstein distance metricizes the
weak topology. Thus, P

(
[−K,K]d

U
j

)
are compact and the space (M,d) is compact space.

Closed set Θ∞ ⊂ M is also compact.
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2. By definition of gn,

|gn(θ)− gn(θ
′)| = |Sλn

(
P θ∗

n (V ), P θ
mn

(V )
)
− Sλn

(
P θ∗

n (V ), P θ′

mn
(V )

)
|

⩽ |W
(
P θ∗

n (V ), P θ
mn

(V )
)
−W

(
P θ∗

n (V ), P θ′

mn
(V )

)
|+ 4(log(mn) + 1)λn

⩽ W
(
P θ
mn

(V ), P θ′

mn
(V )

)
+ 4(log(mn) + 1)λn

⩽ O(d(θ, θ′)) + 4(1 + log(nmn))λn,

where we use Lemma 7 in the second inequality and triangle inequality and Theorem 1 in the
third inequality. By the condition in Theorem 4, the second term (1 + log(nmn))λn → 0
as n → ∞. Therefore, (24) is verified with τn = 4(1 + log(nmn))λn.

We then verify the uniform convergence of gn. By triangle inequality,

|gn(θ)− g(θ)| = |Sλn

(
P θ∗

n (V ), P θ
mn

(V )
)
−W

(
P θ∗

(V ), P θ(V )
)
|

⩽ |Sλn

(
P θ∗

n (V ), P θ
mn

(V )
)
−W

(
P θ∗

n (V ), P θ
mn

(V )
)
|

+ |W
(
P θ∗

n (V ), P θ
mn

(V )
)
−W

(
P θ∗

(V ), P θ(V )
)
|.

By Lemma 7, |Sλn

(
P θ∗

n (V ), P θ
mn

(V )
)
−W

(
P θ∗

n (V ), P θ
mn

(V )
)
| ⩽ 2(log(mn) + 1)λn

and we get

|gn(θ)− g(θ)| ⩽ 2(log(mn) + 1)λn + |W
(
P θ∗

n (V ), P θ
mn

(V )
)
−W

(
P θ∗

n (V ), P θ(V )
)
|

+ |W
(
P θ∗

n (V ), P θ(V )
)
−W

(
P θ∗

(V ), P θ(V )
)
|

⩽ 2(log(mn) + 1)λn +W
(
P θ
mn

(V ), P θ(V )
)
+W (P θ∗

n (V ), P θ∗
(V ))

⩽ 2(log(mn) + 1)λn +O
(
W (P θ∗

n (U), P θ∗
(U)) +W

(
P θ(U), P θ

mn
(U)

))
,

(28)

where we use Theorem 1 in the last inequality.

We first bound supθ W
(
P θ(U), P θ

mn
(U)

)
using standard VC dimension argument. Note

that {U1, · · · , UnU
} are independent. By Lemma 5,

W
(
P θ(U), P θ

mn
(U)

)
⩽

nU∑
i=1

W
(
P θ(Ui), P

θ
mn

(Ui)
)
. (29)

By the construction in Theorem 3, P θ(Ui) ∼
∑

j∈[NC,i]
pjP (fθi,j (Zi,j)), Zi,j ∼

Unif(0, 1), where fθi,j are neural networks with constant width and depth L1,n+L2,n, NC,i

is the number of connected components of supp(P (Ui)) and θi,j are the parameters of the
neural networks. By Lemma 4,

sup
θ

W
(
P θ(Ui), P

θ
mn

(Ui)
)
⩽ O( max

j∈[NC,j ]
sup
θi,j

W (P (fθi,j (Zi,j)), Pmn
(fθi,j (Zi,j))).

By [6], the pseudo-dimension of NN (Θ(1), L) is O
(
L2 logL

)
. By boundness of all the

neural networks and Lemma 8 2, with probability at least

1−exp
(
O
(
(ϵ

′

n)
−dU

max log(ϵ
′

n)
−1 + (Ln,1 + Ln,2)

2 log(Ln,1 + Ln,2) log ϵ
−1
n −mnϵ

2
n

))
,

the following event happens.

sup
θi,j

W (P (fθi,j (Zi,j)), Pmn
(fθi,j (Zi,j)) ⩽ ϵn + ϵ

′

n.

2Note that we truncate the neural network to ensure boundness in Theorem 4. This extra truncate operation
f̃ = max{−K,min{K, f}} can be viewed as two extra ReLu layers, so Lemma 8 is still applicable.
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Let

ϵ
′

n = m
−1/(dU

max+2)
n logmn, Ln,i = m

dU
max/(2d

U
max+4)

n logmn, ϵn = Cm
−1/(dU

max+2)
n logmn

with constant C > 0 sufficiently large, we get

P

(
sup
θi,j

W (P (fθi,j (Zi,j)), Pmn(fθi,j (Zi,j))) ⩽ O

(
m

−1/(dU
max+2)

n logmn

))
⩾ 1−O

(
m−2

n

)
.

As long as mn = Ω(n), the Borel-Cantelli lemma implies that almost surely, there
exists N > 0 such that when n > N , supθi,j W (P (fθi,j (Zi,j)), Pmn(fθi,j (Zi,j))) ⩽

O

(
m

−1/(dU
max+2)

n logmn

)
for all i, j. Therefore, almost surely, for sufficiently large n,

sup
θ

W
(
P θ(Ui), P

θ
mn

(Ui)
)
⩽ O

(
m

−1/(dU
max+2)

n logmn

)
, (30)

[17, Theorem 2] shows that for sufficiently large n, if δn = C1n
−1/max{dU

max,2} log2(n),
where C1 > 0 is a constant,

P (W (P θ∗
(Ui), P

θ∗

n (Ui)) > δn) ⩽


exp(−CC1 log

2(n)) dUmax = 1,

exp

(
−CC1 log4(n)

log2(2+C−1
1 n1/2 log−2(n))

)
dUmax = 2,

exp(−CC1 log
2/dU

max(n)) dUmax > 2,

where C > 0 is a constant. Let C1 sufficiently large such that

P (W (P θ∗
(Ui), P

θ∗

n (Ui)) > δn) ⩽ O
(
n−2

)
.

Therefore,
∑∞

n=1 P (W (P θ∗
(Ui), P

θ∗

n (Ui)) > δn) < ∞. By Borel-Cantelli lemma, with
probability 1, there exist N > 0 such that W (P θ∗

(Ui), P
θ∗

n (Ui)) ⩽ δn,∀n > N . By
Equation (29), with probability 1, there exist N > 0 such that

W (P θ∗
(U), P θ∗

n (U)) ⩽ O(δn),∀n > N. (31)

Therefore, by Equations (28), (30) and (31), almost surely, the following inequality holds
eventually,

sup
θ∈Θ∞

|gn(θ)− g(θ)| ⩽ O

(
log(nmn)λn + δn +m

−1/(dU
max+2)

n logmn

)
= sn,

where sn is defined in Theorem 4.

3. [53, Proposition 1] shows that given a L-Lipschitz continuous function f : [0, 1]m → R,
there exist f̂ ∈ NNm,1(W,Θ(log(m)) such that ∥f − f̂∥∞ ⩽ O

(
W−1/d

)
and f̂ is

√
mL-

Lipschitz continuous. 3 For a multivariate function with output dimension m′ , we can
approximate each coordinate individually and get a neural network approximation f̂ that is√
mm′L-Lipschitz continuous and ∥f − f̂∥∞ ⩽ O

(
W−1/m

)
.

Next, we define the truncate operator TKf = min{K,max{−K, f}}, which is a contrac-
tion mapping, and prove that applying the truncate operator will not increase approximation
error. If |f | ⩽ K, we have

∥f − TK f̂∥∞ = ∥TKf − TK f̂∥∞ ⩽ ∥f − f̂∥∞ ⩽ O
(
W−1/m

)
.

3The original proof does not specify the depth of the neural network. The authors show that the network
architectures can be chosen as consisting of O(W ) parallel blocks each having the same architecture. Each
block is used to realize the function

ϕ(x) = (min(min
k ̸=s

(xk − xs + 1),min
k

(1 + xk),min
k

(1− xk)))+, x ∈ Rm.

This function can be realized by feed-forward network with width O
(
m2

)
and depth O(logm).
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Therefore, we get that

sup
f∈FK

L ([−K,K]m,[−K,K]m′ )

inf
f̂∈NN

√
mm′L,K

m,m′ (W0,n,Θ(logm))

∥f − f̂∥∞ ⩽ O
(
W

−1/m
0,n

)
. (32)

Theorem 3 implies that for each latent variable Ui, there exist a neural network gi with
architecture in Corollary 1 such that

W (P (Ui), P (gi(Zi))) ⩽ O(

n∑
i=1

L
−2/dmax

i,n + τn(1− log τn)).

By Assumption 3, we know ∥Ui∥∞ ⩽ K, which implies

W (P (Ui), P ((TKgi)(Zi))) ⩽ W (P (Ui), P (gi(Zi))) ⩽ O(

n∑
i=1

L
−2/dU

max
i,n + τn(1− log τn)).

(33)

Combining Equations (32) and (33) with the same proof as Corollary 1, it can be proven in
the same way as Corollary 1 that there exists a θn ∈ Θn satisfying

d(θ∗, θn) ⩽ ϵn = O
(
W

−1/din
max

0,n + L
−2/dU

max
1,n + L

−2/dU
max

2,n + τn(1− log τn)
)
.

Let Θ̃∞ = {θ∗}, we have verified the third assumption in Proposition 6.

Take the Wasserstein radius to be αn = O(sn + ϵn), Proposition 6 implies the conclusion.

C.3 Proof of Proposition 3

Lemma 2. Let (T̂ , Ŷ ) ∼ µ, (T, Y ) ∼ ν and suppose that f(t) = Eν [Y |T ], f̂(t) = Eµ[Ŷ |T̂ ] are
L-Lipschitz continuous and |f(t)| ⩽ K, |f̂(t)| ⩽ K, then we have∫

(f(t)− f̂(t))2dν(dt) ⩽ CWW (µ, ν),

where CW = 4LK + 2Kmax{L, 1}.

Proof of Lemma 2. By the duality formulation of Wasserstein-1 distance, we have

W (µ, ν) = sup
g∈Lip(1)

Eµ[g(T̂ , Ŷ )]− Eν [g(T, Y )].

Let g0(t, y) = (f̂(t)−f(t))y, we verify g0 is a Lipschitz continuous function in {(t, y) : ∥(t, y)∥∞ ⩽
K}.

|g0(t1, y1)− g0(t2, y2)| ⩽ |g0(t1, y1)− g0(t1, y2)|+ |g0(t1, y2)− g0(t2, y2)|
= |(f̂(t1)− f(t1))(y1 − y2)|+ |y2(f̂(t1)− f(t1)− (f̂(t2)− f(t2)))|
⩽ 2K|y1 − y2|+K(|f̂(t1)− f̂(t2)|+ |f(t1)− f(t2)|)
⩽ 2K|y1 − y2|+ 2KL|t1 − t2|.

Let Lg = 2Kmax{L, 1}, we have proven that g0 is Lg-Lipschitz continuous in {(t, y) : ∥(t, y)∥∞ ⩽
K}. Thus,

W (µ, ν) ⩾
1

Lg
(Eµ[g0(T̂ , Ŷ )]− Eν [g0(T, Y )])

=
1

Lg
(Eµ[(f̂(T̂ )− f(T̂ ))E[Ŷ |T̂ = t]]− Eν [(f̂(T )− f(T ))E[Y |T = t]])

=
1

Lg
(Eµ[(f̂(T̂ )− f(T̂ ))f̂(T̂ )]− Eν [(f̂(T )− f(T ))f(T )]). (34)
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Now, let h(t) = (f̂(t) − f(t))f̂(t). Following the same argument, it can be proven that h(t) is
Lipschitz continuous with Lipschitz constant being Lh = 4LK. Hence,

Eµ[h(T̂ )] ⩾ Eν [h(T )]− LhW (µ, ν).

Plug into (34), and we get

(Lg + Lh)W (µ, ν) ⩾ Eν [(f̂(T )− f(T ))f̂(T )− (f̂(T )− f(T ))f(T )]

= Eν

[
(f̂(T )− f(T ))2

]
.

Proof of Proposition 3. If Y is not descendant of T , E[Y (t)] = E[Y ] and we have∫ t2

t1

(EM[Y (t)]− EM̂[Ŷ (t)])2dt =

∫ t2

t1

(EM[Y ]− EM̂[Ŷ ])2dt

= (t2 − t1)(EM[Y ]− EM̂[Ŷ ])2 ⩽ (t2 − t1)W (PM(V ), PM̂(V̂ ))2.

Now, suppose that Y is a descendant of T . Let X = Pa(T ). Note that fy(x, t) = EM[Y |X =
x, T = t] is Ly-Lipschitz continuous with Lipschitz constant Ly ⩽ (L + 1)nV . This is because
Y can be written as Y = F0(X,T,Uy) where Uy are latent variables independent of T,X and
F0 is composition of fi in structure equations. The composition of Lipschitz functions is still
Lipschitz and F0 is a composition of at most nV L-Lipschitz functions. F0 is (L+ 1)nV -Lipschitz
and so is fy(x, t) = EUy

[F0(X,T,Uy)]. Recall that ν, µ are the observation distributions of M
and M̂ respectively in Proposition 3. Similarly, f̂y(x, t) = EM̂[Ŷ |X = x, T = t] is Ly-Lipschitz
continuous. By Lemma 2 and the overlap assumption, we have

CWW (µ, ν) ⩾ Eν

[
(fy(X,T )− f̂y(X,T ))2

]
=

∫
(fy(x, t)− f̂y(x, t))

2ν(dt|x)ν(dx)

⩾ δ

∫ t2

t1

∫
(fy(x, t)− f̂y(x, t))

2ν(dx)P (dt).

⩾ δ

∫ t2

t1

(∫
fy(x, t)ν(dx)−

∫
f̂y(x, t)ν(dx)

)2

P (dt).

Note that f̂y(x, t) is Lipschitz continuous, we have∣∣∣∫ f̂y(x, t)ν(dx)−
∫

f̂y(x, t)µ(dx)
∣∣∣⩽ LyW (µ, ν).

Therefore,(∫
fy(x, t)ν(dx)−

∫
f̂y(x, t)ν(dx)

)2

⩾
1

2

(∫
fy(x, t)ν(dx)−

∫
f̂y(x, t)µ(dx)

)2

−
(∫

f̂y(x, t)µ(dx)−
∫

f̂y(x, t)ν(dx)

)2

⩾
1

2

(∫
fy(x, t)ν(dx)−

∫
f̂y(x, t)µ(dx)

)2

− L2
yW

2(µ, ν)

=
1

2
(EM[Y (t)]− EM̂[Ŷ (t)])2 − L2

yW
2(µ, ν).

Combine all the equations, we get∫ t2

t1

(EM[Y (t)]− EM̂[Ŷ (t)])2P (dt) ⩽
2CW

δ
W (µ, ν) + 2L2

yW
2(µ, ν)(t2 − t1).
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Proof of Corollary 2. In the proof of Theorem 4, we know with probability at least 1−O(n−2), (6)
has feasible solutions and

W (PM∗

n (V ), PM∗
(V )) ⩽ O(αn), W (P θn

mn
(V ), P θn(V )) ⩽ O(αn),

where notations θ and P θ are defined in the proof of Theorem 4 and θn is one of the minimizers of
(6). By Lemma 7, we know that

W (PM∗

n (V ), P θn
mn

(V )) ⩽ Sλn(P
M∗

n (V ), P θn
mn

(V )) + 2(log(mnn) + 1)λn ⩽ O(αn).

We get that

W (PM∗
(V ), P θn(V )) ⩽ W (PM∗

n (V ), PM∗
(V ))+W (PM∗

(V ), P θn(V ))+W (P θn
mn

(V ), P θn(V )) ⩽ O(αn).

By Proposition 3, we get |Fn − F∗| ⩽ O(
√
αn).

D Experiments

The structure equations of the generative models are (5). We use three-layer feed-forward neural
networks with width 128 for each f̂i and six-layer neural networks with width 128 for each ĝj . We
use the Augmented Lagrangian Multiplier (ALM) method to solve the optimization problems as
in [3]. We run 600 epochs and use a batch size of 2048 in each epoch. mn is set to be mn = n.
The "geomloss" package [16] is used to calculate the Sinkhorn distance. To impose Lipschitz
regularization, we use the technique from [23] to do layer-wise normalization to the weight matrices
with respect to infinity norm. The upper bound of the Lipschitz constant in each layer is set to be 8.
The τ in the Gumbel-softmax layer is set to be 0.

For the choice of Wasserstein ball radius αn, we use the subsampling technique from [11, Section
3.4]. We can take the criterion function in [11] to be Q(θ) = W (PM∗

(V ), PMθ

(V )) and its
empirical estimation to be Qn(θ) = W (PM∗

n (V ), PMθ

n (V )). In the first step, we minimize the
Wasserstein distance θ̂∗n = argminθ W (PM∗

n (V ), PMθ

n (V )). Then, [11] propose to refine the ra-
dius Qn(θ̂

∗
n) by taking the quantile of subsample {supθ:Qn(θ̂)⩽βQn(θ̂∗

n)
Qj,b(θ)}, where Qj,b denotes

the criterion function estimated at j-th subsample of size b. However, it is time-consuming to solve
this optimization problem many times. In practice, we set the radius αn to be the 95% quantile
of {W (P̄M∗

j }(V ), PMθ̂∗n
n (V )), where we use 50 subsamples P̄M∗

j , j = 1, · · · , 50 from PM∗
n(V )

with size b = ⌊15
√
n⌋.

D.1 Discrete IV [14]

We consider the noncompliance binary IV example in [14, Section D.1]. The causal graph is shown
in Figure 10. We could see from Table 2 that the bound given by NCM is slightly worse than
Autobounds but is still close to the optimal bound. Besides, the Autobounds bound does not cover
the optimal bound in this example.

Z T Y

U

Figure 10: Instrumental Variable (IV) graph. Z is the instrumental variable, T is the treatment and Y
is the outcome.
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Algorithm Average Bound SD of length Optimal Bound True Value
NCM (Ours) [-0.49,0.05] 0.05 [-0.45, -0.04] -0.31

Autobounds ([14]) [-0.45,-0.05] 0.02 [-0.45, -0.04] -0.31
Table 2: The sample size is taken to be 5000. We average over 10 runs with different random seeds.
SD is short for the standard derivation.

D.2 Continuous IV

Now, we turn to the continuous IV setting, where T is still binary, but Y and Z can be continuous.
Let Eλ

i ∼ λZ1 + (1− λ)Unif(−1, 1), where Z1 is the Gaussian variable conditioning on [−1, 1] and
the structure equations of Mλ to be

EY = Eλ
1 , U = Eλ

2 , Z = Eλ
3 ,

P (T = 1|Z) = (1.5 + Z + 0.5U)/3,

Y = 3T − 1.5TU + U + EY ,

where Eλ
i are independent. It is easy to see the ATE of this model is 3 regardless of λ. In the

experiment, we randomly choose ten λ ∼ Unif(0, 1). For each λ, we run the algorithms 5 times to
get the bound. We choose different latent distributions (indexed by λ) in the experiments to create
more difficulty.

Since Autobounds can only deal with discrete variables, we discretize Z and Y . Suppose that
Z ∈ [l, u], we map all points in intervals [l+ i(u− l)/k, l+(i+1)(u− l)/k], I = 0, 1 · · · , k− 1 to
the middle point l+ (i+ 1/2)(u− l)/k. We choose k = 8 in the following experiments. The choice
will give rise to polynomial programming problems with 214 decision variables, which is quite large.

Table 3 demonstrate the results. While both algorithms cover the true ATE well, we can see that NCM
gives much tighter bounds on average. The main reason may be that the discretized problem does not
approximate the original problem well enough. It is possible that a larger discretized parameter k can
give a better bound, but since the size of the polynomial problem grows exponentially with k, the
optimization problem may be intractable for large k. On the contrary, NCM does not suffer from
computational difficulties.

Algorithm Average Bound SD of length Success Rate True Value
NCM (Ours) [2.49,3.24] 0.49 50/50 3

Autobounds ([14]) [1.40, 3.48] 0.26 50/50 3
Table 3: We take a sample size of 5000. We randomly choose 10 λ ∼ Unif(0, 1) and get 10 models
Mλi . For each model Mλi , we run the two algorithms for 5 times. The success rate is the number
of times when the obtained bounds cover the true ATE divided by the total number of experiments.
SD is short for the standard derivation.

D.3 Counterexample

We test our neural causal method on the counterexample in Appendix C.1. We choose the noise Uy

to be the normal variable. The structure equations are

P (U1 = 1) = 3/5, P (U1 = 0) = 2/5, P (U2 = 1) = 1/3, P (U1 = 0) = 2/3,

X =

{
−1 ,w.p. 1/2,
0 ,w.p. 1/2,

P (T = 1|X = x) =

{
1/2 , x = −1,

5/8 , x = 0,

Y =


T + Uy , X = −1,

U1 + Uy , X = 0, T = 1,

U2 + Uy , X = 0, T = 0,
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We compare the confidence intervals of the unregularized neural casual method and the Lipschitz
regularized one under different architectures. We choose the layerwise Lispchitz constants upper
bound to be 5 and 1.2. As a benchmark, we also include the bound obtained by the Double Machine
Learning estimator using the EconML package. The result is shown in Appendix D.3. For this
identifiable case example, the double ML estimator produces better bounds for the ATE. The intervals
given by regularized and unregularized NCM are similar to the regularized one slightly better in the
left figure, where we use medium-sized NNs. However, in the right figure, the obtained intervals after
regularization are tighter, although slightly biased, compared with the regularized setting. From these
two experiments, we conclude that the architecture of NNs will also influence the results and adding
regularization during the training process can prevent extreme confidence intervals or inconsistency.

Figure 11: Comparison of Lipschitz regularized and unregularized neural causal algorithm. The two
figures show the results of different architectures. The figure on the left side uses a medium-sized NN
(width 128, depth 3) to approximate each structural function, while the right figure uses extremely
small NNs (width 3, depth 1). In all experiments, we use the projected gradient to regularize the
weight of the neural network. For each sample size, we repeat the experiment 5 times and take the
average of the upper (lower) bound.

E Technical Lemmas

Lemma 3. Let µ, µ̂ be two measures on compact set K ⊂ Rd1 , for any measurable functions
F, F̂ : K → Rd2 , if F is L-Lipschitz continuous, then

W (F#µ, F̂#µ̂) ⩽ LW (µ, µ̂) + ∥F1 − F2∥∞.

Proof. For any 1-Lipschitz function g : Rd2 → R,

EX∼F#µ[g(X)]− EX∼F̂#µ̂[g(X)] = EX∼µ[g ◦ F (X)]− EX∼µ̂[g ◦ F̂ (X)]

= (EX∼µ[g ◦ F (X)]− EX∼µ̂[g ◦ F (X)])

+ (EX∼µ̂[g ◦ F (X)]− EX∼µ̂[g ◦ F̂ (X)]).

Note that for any x, y ∈ Rd1 ,

|g ◦ F (x)− g ◦ F (y)| ⩽ ∥F (x)− F (y)∥ ⩽ L∥x− y∥.

Thus, g ◦ F is L-Lipschitz continuous and

EX∼µ[g ◦ F (X)]− EX∼µ̂[g ◦ F (X)] ⩽ LW (µ, µ̂). (35)

For the second term,

EX∼µ̂[g ◦ F (X)]− EX∼µ̂[g ◦ F̂ (X)] ⩽ EX∼µ̂[|g ◦ F (X)− g ◦ F̂ (X)|]
⩽ EX∼µ̂[∥F (X)− F̂ (X)∥]
⩽ ∥F (X)− F̂ (X)∥∞. (36)

Combine (35) and (36), we have the conclusion.
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Lemma 4. Let µ1, · · · , µn, µ̂1, · · · , µ̂n be measure on Rd, for any p1, · · · , pn ∈ [0, 1] such that∑n
k=1 pk = 1, we have

W

(
n∑

k=1

pkµk,

n∑
k=1

pkµ̂k

)
⩽

n∑
k=1

pkW (µk, µ̂k).

Proof. For any 1-Lipschitz function f : Rd → R, we have

EX∼
∑n

k=1 pkµk
[f(X)]− EX∼

∑n
k=1 pkµ̂k

[f(X)] =

n∑
k=1

pk(EXk∼µk
[f(Xk)]− EXk∼µ̂k

[f(Xk)])

⩽
n∑

k=1

pkW (µk, µ̂k).

By dual formulation of Wasserstein-1 distance,

W

(
n∑

k=1

pkµk,

n∑
k=1

pkµk

)
= sup

f 1-Lipschitz
EX∼

∑n
k=1 pkµk

[f(X)]− EX∼
∑n

k=1 pkµ̂k
[f(X)]

⩽
n∑

k=1

pkW (µk, µ̂k).

Lemma 5. Given two measures µ = µ1 ⊗ · · · ⊗ µn, µ̂ = µ̂1 ⊗ · · · ⊗ µ̂n, we have

W (µ, µ̂) ⩽
n∑

k=1

W (µk, µ̂k).

Proof. For any ϵ > 0, let πk be a coupling of µk, µ̂k such that

EXk,Yk∼πk
[∥Xk − Yk∥1] ⩽ W (µk, µ̂k) + ϵ.

Then,

W (µ, µ̂) ⩽ Eπ1⊗···⊗πn
[∥X − Y ∥]

=

n∑
k=1

EXk,Yk∼πk
[∥Xk − Yk∥1]

⩽ W (µk, µ̂k) + ϵ.

Let ϵ → 0, we get the result.

Lemma 6 (Approximation error of Gumbel-Softmax layer). Given 1 > τ > 0 and p1, · · · , pn > 0,
let µτ ∼ Xτ = (Xτ

1 , · · · , Xτ
n) be

Xk =
exp((log pk +Gk)/τ)∑n
k=1 exp((log pk +Gk)/τ)

, (37)

where Gk ∼ exp(−x− exp(−x)) are i.i.d. standard Gumbel variables. Let µ0 be the distribution of
X0 = limτ→0 X

τ =
(
X0

1 , · · · , X0
n

)
. Then,

W
(
µτ , µ0

)
⩽ 2(n− 1)τ − 2n(n− 1)e−1τ log τ.

Proof. Without loss of generality, we may assume that
∑n

k=1 pk = 1. Otherwise, we can divide the
denominator and numerator in (37) by

∑n
k=1 pk. Let ∆n = {(x1, · · · , xn) :

∑n
k=1 xk = 1}. We

construct a transportation map T : ∆n → ∆n as follows. T (x1, · · · , xn) is a n-dimensional vector
with all zeros except that the i = argmaxj xj-th entry being one. If there are multiple coordinates
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that is maximum, we choose the first coordinate and let the remaining coordinate be zero. It is easy
to verify that T#µ

τ and µ0 have the same distribution [36]. For any δ > 0, we have

P (|Gk1
+ log pk1

− (Gk2
+ log pk2

)| < δ) =

∫ ∞

−∞

∫ y+log
pk2
pk1

+δ

y+log
pk2
pk1

−δ

exp(−x− y − exp(−y)− exp(−x))dxdy

⩽ 2δe−1

∫ ∞

−∞
exp(−y − exp(−y))dy = 2δ,

where we have used exp(−x− exp(−x)) ⩽ exp(−1). Let event Eδ = {∃i, j ∈ [n] : |Gi + log pi −
(Gj + log pj)| < δ}, we have

P (Eδ) ⩽
∑
i ̸=j

P (|Gi + log pi − (Gj + log pj)| < δ)

⩽ δn(n− 1)e−1.

Now, we calculate the transportation cost

EXτ∼µτ [∥T (Xτ )−Xτ∥1] ⩽ P (Eδ)EXτ∼µτ [∥T (Xτ )−Xτ∥1|Eδ] + P (Ec
δ)EXτ∼µτ [∥T (Xτ )−Xτ∥1|Ec

δ ] .

Note that ∥T (Xτ )−Xτ∥1 ⩽ 2. For the first term, we have

P (Eδ)EXτ∼µτ [∥T (Xτ )−Xτ∥1|Eδ] ⩽ 2δn(n− 1)e−1.

For the second term, under event Ec
δ , let kmax = argmaxi Xi, if j = kmax = argmaxi(log pk+Gk)∣∣∣ exp((log pj +Gj)/τ)∑n

k=1 exp((log pk +Gk)/τ)
− 1
∣∣∣ = ∣∣∣∑k ̸=j exp((log pk +Gk)/τ)∑n

k=1 exp((log pk +Gk)/τ)

∣∣∣
⩽
∣∣∣∑k ̸=j exp((log pk +Gk)/τ)

exp((log pj +Gj)/τ)

∣∣∣
=
∑
k ̸=j

exp((log pk +Gk − (log pj +Gj))/τ)

⩽ (n− 1) exp(−δ/τ).

If j ̸= kmax, we have∣∣∣ exp((log pj +Gj)/τ)∑n
k=1 exp((log pk +Gk)/τ)

∣∣∣ ⩽ exp((log pj +Gj − (log pmax +Gmax))/τ) ⩽ exp(−δ/τ).

Therefore,

EXτ∼µτ [∥T (Xτ )−Xτ∥1|Ec
δ ] ⩽ 2(n− 1) exp(−δ/τ).

We get an upper bound of the transportation cost,

W
(
µτ , µ0

)
⩽ EXτ∼µτ [∥T (Xτ )−Xτ∥1] ⩽ 2δn(n− 1)e−1 + 2(n− 1) exp(−δ/τ).

Let δ = −τ log τ , we get

W
(
µτ , µ0

)
⩽ 2(n− 1)τ − 2n(n− 1)e−1τ log τ.

Lemma 7 (Approximation Error of Sinkhorn distance). For any µ ∈ ∆n, ν ∈ ∆m and λ > 0, we
have

0 ⩽ W1,λ(µ, ν)−W (µ, ν) ⩽ (log(mn) + 1)λ,

where W1,λ(·, ·) is the entropy regularized Wasserstein-1 distance. Moreover, we have the following
estimation of approximation error.

|Sλ(µ, ν)−W (µ, ν)| ⩽ 2(log(mn) + 1)λ.

37



Proof. Let h(T ) = −
∑n,m

i,j=1 Tij log Tij + 1, by [35, Proposition 1], we have

0 ⩽ W1,λ(µ, ν)−W (µ, ν) ⩽ cλ, (38)
where c = max {h(T ) : transportation plan T is achieve optimal loss W (µ, ν)}. Since Tij ∈ [0, 1]
and f(x) = −x log x is concave, we have

h(T ) =− nm · 1

nm

n,m∑
i,j=1

Tij log Tij + 1.

⩽ −nm ·

 1

nm

n,m∑
i,j=1

Tij

 log

 1

nm

n,m∑
i,j=1

Tij

+ 1

= 1 + log(nm).

By definition of Sinkhorn distance,
Sλ(µ, ν) = W1,λ(µ, ν)−W1,λ(µ, µ)/2−W1,λ(ν, ν)/2.

By (38), we get
|Sλ(µ, ν)−W (µ, ν)| ⩽ 2(log(mn) + 1)λ.

Lemma 8. Given a measure µ on Rd and a real function class F with output dimen-
sion d, suppose that the pseudo-dimension of F is less than dF < ∞ and there exists
K > 0 such that |f(x)| ⩽ K,∀f ∈ F , x ∈ Rd′

, then with probability at least 1 −
exp

(
O
(
δ−d log

(
δ−1
)
+ dF log ϵ−1 − nϵ2

))
,

sup
f∈F

W (f#µ, f#µn) ⩽ δ + ϵ

for all δ, ϵ > 0, where µn is the empirical distribution of µ.

Proof. By the dual formulation of the Wasserstein distance,
sup
f∈F

W (f#µ, f#µn) = sup
h∈F1(Rd,Rd),h(0)=0

sup
f∈F

EX∼µn [h ◦ f(X)]− EX∼µ[h ◦ f(X)].

We define
N1(ϵ,F , n) = sup

x1,··· ,xn

N (ϵ, {(f(x1), · · · , f(xn) : f ∈ F)}, ∥· ∥1),

where N (ϵ, S, ∥· ∥1) is the covering number of set S in ℓ1 norm. Obviously, if h is 1-Lipschitz,
N1(ϵ, h ◦ F , n) ⩽ N1(ϵ,F , n).

By Theorem 18.4 in [2], for any fixed h,

N1(ϵ, h ◦ F , n) ⩽ N1(ϵ,F , n) ⩽ e(dF + 1)

(
2e

ϵ

)dF

.

By Theorem 17.1 in [2],

P

(
sup
f∈F

EX∼µn
[h ◦ f(X)]− EX∼µ[h ◦ f(X)] > ϵ

)
⩽ exp

(
O
(
dF log ϵ−1 − nϵ2

))
.

Let Hδ be the δ-net of the set H =
{
h : h ∈ F1

(
[−K,K]d, [−K,K]d

)
, h(0) = 0

}
in ℓ∞ norm. By

Lemma 6 in [21],
|Hδ| ⩽ exp

(
O
(
δ−d log δ−1

))
.

Therefore, with probability no more than exp
(
O
(
δ−d log δ−1 + dF log ϵ−1 − nϵ2

))
sup

h∈Hδ,f∈F
EX∼µn

[h ◦ f(X)]− EX∼µ[h ◦ f(X)] > ϵ.

Notice that
sup

h∈H,f∈F
EX∼µn [h ◦ f(X)]− EX∼µ[h ◦ f(X)] ⩽ 2δ + sup

h∈Hδ,f∈F
EX∼µn [h ◦ f(X)]− EX∼µ[h ◦ f(X)],

which implies that with probability no more than exp
(
O
(
δ−d log δ−1 + dF log ϵ−1 − nϵ2

))
sup

h∈H,f∈F
EX∼µn

[h ◦ f(X)]− EX∼µ[h ◦ f(X)] > 2δ + ϵ.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We accurately summarize our contributions in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mention some limitations as future directions in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

39



Justification: All assumptions and detailed proof are given.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all implementation details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide all implementation details in the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all implementation details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the confidence interval.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide all implementation details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This is a theoretical work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:This is a theoretical work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theoretical work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is a theoretical work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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