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Abstract

Privacy concerns grow with the success of modern deep learning models, especially when the
training set contains sensitive data. Differentially private generative model (DPGM) can
serve as a solution to circumvent such concerns by generating data that are distributionally
similar to the original data yet with differential privacy (DP) guarantees. While GAN has
attracted major attention, existing DPGMs based on flow generative models are limited
and only developed on low-dimensional tabular datasets. The capability of exact density
estimation makes the flow model exceptional when density estimation is of interest. In this
work, we will first show that it is challenging (or even infeasible) to train a DP-flow via DP-
SGD, i.e. the workhorse algorithm for private deep learning, on high-dimensional image sets
with acceptable utility, and then we give an effective solution by reducing the generation from
the pixel space to a lower dimensional latent space. We show the effectiveness and scalability
of the proposed method via extensive experiments, where the proposed method achieves a
significantly better privacy-utility trade-off compared to existing alternatives. Notably, our
method is the first DPGM to scale to high-resolution image sets (up to 256 × 256). Our
code is available at https://github.com/dihjiang/DP-LFlow.

1 Introduction

Large-scale datasets (Deng et al., 2009; Lewis et al., 2004; Bennett et al., 2007) facilitate the great success
of modern machine learning (ML) systems. However, privacy concerns arise especially when sensitive data
(e.g. human face images and medical data) are involved in the training. Prior privacy-preserving techniques
include naive data anonymization (Narayanan & Shmatikov, 2008), k-anonymity (Sweeney, 2002), l-diversity
(Machanavajjhala et al., 2007), semantic security (Goldwasser & Micali, 1984), and differential privacy (DP)
(Dwork, 2006), where DP is recognized as a rigorous quantization of privacy, and it has become the gold-
standard privacy-preserving technique in the current ML community.

Differentially private generative model (DPGM) aims to synthesize data that are distributionally similar to
the private data while satisfying DP guarantees so that the individual privacy that can be inferred from the
incremental change in the dataset is bounded. DPGM can (1) serve as a proxy for releasing private data, and
can (2) generate data for private data analysis tasks (e.g. data querying and ML tasks) without incurring
further privacy cost, as ensured by the post-processing theorem (Dwork et al., 2014).

Generative adversarial network (GAN) (Goodfellow et al., 2014) has attracted the most attention in de-
veloping DPGMs (Xie et al., 2018; Torkzadehmahani et al., 2019; Jordon et al., 2019; Long et al., 2021;
Augenstein et al., 2020; Chen et al., 2020), and VAE also draws a lot of attention (Chen et al., 2018; Acs
et al., 2018; Takahashi et al., 2020; Pfitzner & Arnrich, 2022; Weggenmann et al., 2022; Bernau et al., 2022).
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In contrast, the DPGMs based on the normalizing flow are relatively limited (Waites & Cummings, 2021;
Lee et al., 2022). Due to the capability of the exact density computation, flow models are particularly
useful when density is of interest in some applications. For example, developing a DP-flow could benefit
performing anomaly detection in a privacy-preserving manner (Waites & Cummings, 2021). However, both
existing DP-flow works (Waites & Cummings, 2021; Lee et al., 2022) are restricted to tabular datasets (with
lower data dimensions). It remains unclear whether DP-flow is feasible on higher-dimensional datasets such
as image datasets.

Abadi et al. (2016) propose Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm, which
has become the standard approach to train a DP deep learner. The core steps of DP-SGD are clipping
the per-example gradient norm and injecting Calibrated Gaussian noise into the aggregated gradient of a
batch. Briefly, let p denote the model dimension, the noise introduced by DP-SGD in each iteration is
given by z ∼ N (0p, σ2C2Ip×p), where C is the clipping bound of gradient norm and σ is a noise multiplier.
Apparently, E[∥z∥2

2] = pσ2C2 ∝ p, which means the model utility may not be preserved with DP-SGD for
a large model. For example, Yu et al. (2021) show that the gradient will be submerged in the added noise
(by DP-SGD) when the model becomes larger on a series of ResNet (He et al., 2016) variants. This utility
drop could become more pronounced under strong privacy guarantees (e.g. ϵ = 1), as the noise multiplier
becomes larger. Note that according to ϵ-DP definition (given in Section 2), the privacy protection becomes
weak when ϵ = 10 or above, because the ratio of two probabilities is upper bounded by exp(10) ≈ 2.2× 104,
whereas they are presumed to be comparable for practical deployment (e.g. ϵ = 1 or below). However, a
line of recent SoTA DPGMs only generate acceptable images at ϵ = 10, whereas they are not able to scale
well on small ϵ (e.g. ϵ = 1) (Chen et al., 2020; Jordon et al., 2019; Torkzadehmahani et al., 2019).

Training a normalizing flow with DP-SGD on an image set seems ostensibly easy, but any ML re-
searcher/engineer will encounter the two non-trivial empirical challenges, as also pointed out by Lee et al.
(2022): (1) batch normalization (BN) challenge: flow models usually apply a batch normalization (BN)
layer in each block to boost the performance, where the per-example gradient (in DP-SGD) is not available,
as BN will break the independence among all gradients in a batch; (2) model complexity challenge: flow
models generally consist of repetitive blocks of invertible transformations with a large depth, which results
in higher model complexity compared to other generative models. We explore the challenges with two SoTA
flow models, i.e. RealNVP (Dinh et al., 2017) and Glow (Kingma & Dhariwal, 2018). Glow uses activation
normalization as an alternative to BN, thus per-example gradient is computable (i.e. no BN challenge for
Glow). However, both RealNVP and Glow suffer from the model complexity challenge, i.e. they tend to be
more complex than other generative model counterparts for synthesizing images with similar fidelity, thus
are more challenging to attain desirable model utility with DP-SGD. Our motivating example is shown in
Figure 6, where naively training a flow generative model in the pixel space with DP-SGD results in null
model utility.

Our contributions can be summarized as follows:

• We explore the practical challenges of training a DP flow via DP-SGD on image sets, and propose
an efficient and effective solution, i.e. differentially private latent flow (DP-LFlow), by reducing the
training of flow from the full pixel space to a lower-dimensional latent space, which is more resilient
to the noise perturbation (by DP-SGD).

• Training DPGM on high-resolution images (256 × 256 pixels and beyond) is extraordinarily chal-
lenging due to the inevitably increased model dimension, and to our best knowledge, none of the
existing related works attempt to do so. In this work, we will show that DP-LFlow is also scalable
to the high-resolution image (256× 256) generation with DP constraints.

• The proposed method yields state-of-the-art (SoTA) performance on model utility under the same
(ϵ, δ)-DP constraint on widely compared image benchmarks. Moreover, our method indicates more
robustness and scalability on different datasets (gray-scale and RGB) and different DP constraints.
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Algorithm 1: Gradient perturbation in DP-SGD
Input: Private training set X = {xi}N

i=1, loss function L(·), batch size B, noise multiplier σ, gradient
clipping bound C, model parameter θ

1 for i← 1 to B do
2 gθ(xi) = ∇θL(xi; θ)
3 gθ(xi) = gθ(xi) ·min

(
1, C

∥gθ(xi)∥2

)
4 g̃θ = 1

B

[ ∑B
i=1 gθ(xi) +N (0, σ2C2I)

]

2 Preliminary

In this section, we recall background knowledge in differential privacy.

2.1 Differential Privacy

Differential privacy is widely regarded as a rigorous quantization of privacy, which upper-bounds the deviation
in the output distribution of a randomized algorithm given an incremental deviation in the input. Formally,
we have the following definition:
Definition 2.1 ((ϵ, δ)-DP (Dwork et al., 2014)). A randomized mechanism M : D → R with domain D
and range R satisfies (ϵ, δ)-differential privacy if for any two adjacent inputs D, D′ ∈ D and for any subset
of outputs S ⊆ R it holds that

Pr[M(D) ∈ S] ≤ exp(ϵ) · Pr[M(D′) ∈ S] + δ (1)

where adjacent inputs (a.k.a. neighbouring datasets) only differ in one entry. Particularly, when δ = 0, we
say that M is ϵ-DP.

There is a convenient parallel composition theorem for ϵ-DP mechanisms:
Theorem 2.1 (Parallel composition theorem of ϵ-DP, (McSherry, 2009)). LetMi (i = 1, 2, . . . , k) be k DP
mechanisms, and eachMi satisfies ϵi-DP. Given a deterministic partitioning function f , let D1, D2, . . . , Dk be
the disjoint partitions by executing f on D. Releasing M1(D1), . . . ,Mk(Dk) satisfies maxi∈{1,2,...,k} ϵi-DP.

We will extend the above parallel composition to the (ϵ, δ)-DP notion in Section 3.

A famous theorem, i.e. post-processing theorem, which is utilized by existing works (as well as ours) for
proving DP guarantee of a published model, is given by:
Theorem 2.2 (Post-processing theorem, (Dwork et al., 2014)). If M satisfies (ϵ, δ)-DP, F ◦M will satisfy
(ϵ, δ)-DP for any function F with ◦ denoting the composition operator.

Sampling from a DPGM is independent of training data, thus can be viewed as a post-processing step and
does not breach the DP guarantee.

Rényi differential privacy (RDP) extends ordinary DP using Rényi’s α divergence (Rényi, 1961) and provides
tighter and easier composition property than the ordinary DP notion, thus we adopt RDP to accumulate
the privacy cost. We defer details of RDP and implementation to Appendix E.

2.2 DP-SGD

Within predetermined training iterations, in each iteration, DP-SGD (Abadi et al., 2016) subsamples a
batch from the training set, clips and perturbs the gradient as in Algorithm 1, and optimizes the model
with privatized gradient g̃θ. As mentioned earlier, the norm of the Gaussian noise introduced at line 4 in
Algorithm 1 will scale linearly with the model dimension, thus will generally degrade the utility of large
models.
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2.3 Flow-based Generative Models

We briefly recap the flow generative models. Flow models learn a bijective map T between a simple prior
distribution q0 (e.g. Gaussian) and the target distribution q: z ∼ q0 ⇔ T(z) ∼ q. Through the change-of-
variable formula, the log-likelihood of input is tractable:

qT(x) = q0(z)
∣∣∣ det dz

dx

∣∣∣ = q0
(
T−1(x)

)∣∣∣ det dT−1(x)
dx

∣∣∣ (2)

Parameterize the bijective map by neural networks, we can train flow models by minimizing the Kull-
back–Leibler (KL) divergence between the true and estimated distribution:

min
T
DKL(q(x)||qT(x)) = min

T

∫
q(x) log q(x)

qT(x)dx (3)

= min
T
Ex∼q(x)[− log qT(x)]−H[q] (4)

where H[q] is the entropy of true distribution. Therefore, training the flow model amounts to minimizing
the negative log-likelihood of input.

3 Method: DP-LFlow

As shown in (Yu et al., 2021), a smaller/simpler ResNet is more resilient to DP-SGD. The intuition is that
the model utility will saturate as the model complexity increases. Therefore, an over-complicated model
may (unnecessarily) be disturbed by more noises in DP-SGD. We first confirm this insight for DPGMs as
well. Consider privately training a VAE on MNIST (LeCun et al., 1998) for example. Figure 1 shows such
comparison under non-private and private settings (with different privacy costs), respectively, where the
generation quality is measured by Fréchet Inception Distance (FID) (Heusel et al., 2017) (lower is better).
Figure 1 indicates that a smaller VAE generates better images than larger counterparts (both qualitatively
and quantitatively) under the DP training, even though larger VAEs perform better in the non-DP setting.
In fact, shrinking the model size under the DP training will benefit from the following aspects: (1) smaller
models are more resilient to (larger) noises (associated with strong DP guarantees); (2) a significant training
time overhead remains a notable challenge for DP-SGD (Subramani et al., 2021) due to the gradient clipping
and randomization. Smaller models could facilitate more efficient DP training; (3) as suggested by prior
work (De et al., 2022), a larger batch size in DP-SGD contributes to better model utility. With limited GPU
memory, smaller models allow for a large training batch size, since both input and model are sent to GPU
for training in practice.

Latent Flow: However, the model expressiveness will be restricted if the model is too simple. Therefore,
we aim to design a model that is small yet expressive enough so that we can achieve a better privacy-utility
trade-off with DP-SGD. Inspired by the recent latent diffusion model (Rombach et al., 2022) that achieves
SoTA text-to-image generation performance via reducing the diffusion process from the raw input space to a
lower dimensional latent space, we propose to train a normalizing flow in a similar manner (i.e. on the latent
code produced by an autoencoder), by simultaneously minimizing the reconstruction loss of the autoencoder
and the negative log-likelihood of the flow. Specifically, let ϕ, θ, ω parameterize the encoder, decoder, and
flow, respectively, and we adopt the notations in Section 2.3. Let w = fϕ(x) be the latent embedding of the
autoencoder, the training objective can be written as:

min
ϕ,θ,ω

Ex∼q[∥x−Dθ(w)∥2
2︸ ︷︷ ︸

Autoencoder loss

×T 2−
(

log q0(z) + log
∣∣∣ det dT−1

ω (w)
dw

∣∣∣)︸ ︷︷ ︸
Normalizing flow loss

] (5)

where z ∼ q0 = N (0, I) and T is a temperature parameter. As shown in Rombach et al. (2022), the
semantic meaning of most images still remains after aggressive compression, thus allowing us to train a flow
in an aggressively trimmed latent space, which avoids unnecessary and expensive computation on full input
dimensions. It is worth mentioning that latent flow is also not sensitive to BN layers (e.g. for RealNVP), i.e.
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Figure 1: FID vs. VAE size (in MB). We only vary the model complexity, with all the rest training parameters
(e.g. subsampling rate, noise multiplier, training iterations) fixed.

the utility of latent flow is slightly reduced by removing the BN layer, which validates the use of DP-SGD
for latent flow models. Under the non-private setting, the proposed model with a configuration of size 2.5
MB achieves an FID = 12.5 on MNIST, which is already superior to VAE counterparts with a larger model
size (e.g. in Figure 1), suggesting its promising usage under the private training.

Partitioning Dataset: Current SOTA methods tend to apply conditional generative models (conditioned
on labels), where the label is encoded in the model as part of the input, thus the noise perturbation also
distorts the label information, which is unnecessary. We run DP-SGD on the proposed model under the con-
ditional setting (autoencoder + conditional flow), and observe that the label information is largely distorted
when ϵ = 1 (see Section 4.5 for details). To circumvent the perturbation to labels, we propose to partition
the dataset according to labels, train unconditional generative models on each of the subsets, and release the
union of all unconditional generators as the resulting model. The partitioning is also beneficial for shrinking
the model size, as each generator is only interactive with a sole data modality instead of multi-modalities.
Adapted from proposition 2.5 in (Li et al., 2016), the DP guarantee for the union can be derived from
the parallel composition, by extending the original parallel composition theorem (Theorem 2.1) from ϵ-DP
notion to (ϵ, δ)-DP notion. The proof can be found in Appendix A.

Theorem 3.1. Let Mi (i = 1, 2, . . . , k) be k DP mechanisms, and each Mi satisfies (ϵi, δi)-DP. Given a
deterministic partitioning function f , let D1, D2, . . . , Dk be the disjoint partitions by executing f on D.
Releasing M1(D1), . . . ,Mk(Dk) satisfies (maxi∈{1,2,...,k} ϵi, maxi∈{1,2,...,k} δi)-DP.

For simplicity, we set ϵi, δi the same as the target ϵ, δ for all sub-models in the experiment. The schematic
workflow of DP-LFlow is shown in Figure 7.
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4 Experiments

In this section, we evaluate and compare DP-LFlow against SoTA baselines through extensive experiments
in Section 4.2. More importantly, we will show that DP-LFlow is amenable to high-resolution image sets
in Section 4.3, which was hardly studied in prior related works. Besides, since flow models are capable of
computing the exact likelihood of input, they are sometimes more applicable when density estimation is of
concern. Section 4.4 shows such an example, where DP-LFlow can detect intra-dataset anomaly with DP
guarantees. RealNVP is used as the flow model in DP-LFlow, as it yields better performance in practice.
Implementation details and neural network configurations are given in Appendix E.

4.1 Experimental Setup

Datasets: We consider three widely used image datasets, including both grayscale images (MNIST (LeCun
et al., 1998), Fashion MNIST (Xiao et al., 2017)) and RGB images (CelebA (Liu et al., 2015)), as well as
one high-resolution RGB datasets (CelebA-HQ (Karras et al., 2018), for our presentation only). For MNIST
and Fashion MNIST, we generate images conditioned on 10 respective labels. For CelebA and CelebA-HQ,
we condition on gender. Descriptions and preprocessing of the datasets are given in the Appendix B.

Evaluation Tasks & Metrics: We evaluate and compare DPGMs by two metrics via 60k generated
images:

• Fréchet Inception Distance (FID) (Heusel et al., 2017).

• Classification accuracy. We train three different classifiers, e.g. logistic regression (LR), multi-layer
perceptron (MLP), and convolutional neural network (CNN), on generated images, then test the
classifier on real images. We take 5 runs and report the average. See Appendix E for details of
classifiers.

Post-processing: We observe that FID is quite sensitive to the noise around the object (e.g. digits, cloths)
and the sharpness of images, even when the semantic content is retained. We apply a post-processing step to
our DP image generation by first smoothing and then sharpening the generated images, which could lead to
∼10 improvement in FID. Whereas this post-processing does not improve classification accuracy too much.
Adjusting the blurriness and sharpness of generation is not involved with training data, thus is considered a
post-processing step that does not breach the DP guarantee by Theorem 2.2. We will report our quantitative
evaluations with and without this trick.

SoTA Baselines: Our method is compared with the following baseline methods that are also developed on
image datasets, i.e. DP-CGAN (Torkzadehmahani et al., 2019), DP-MERF (Harder et al., 2021), Datalens
(Wang et al., 2021), PATE-GAN (Jordon et al., 2019), G-PATE (Long et al., 2021), GS-WGAN (Chen
et al., 2020), DP-Sinkhorn (Cao et al., 2021). For more details, we refer readers to Section 6 and respective
references.

4.2 Comparison with SoTA Baselines

We follow the general benchmark for evaluating DP generation, by considering both weak (e.g. ϵ = 10)
and strong (e.g. ϵ = 1) privacy guarantees. The proposed DP-LFlow is compared with SoTA baselines
through extensive qualitative and quantitative experiments on both grayscale and RGB image datasets. For
completeness, we also report our quantitative results without the post-processing trick, where the relative
rank of our method without the post-processing trick remains the same as with the trick.

4.2.1 Under the Weak DP Guarantee ϵ = 10

Most existing works perform reasonably when ϵ = 10, as shown in Figure 2. Nevertheless, as shown in
Table 1, DP-LFlow achieves significant improvement in both FID and classification accuracy.
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Table 1: Quantitative comparison on MNIST and Fashion MNIST given (10, 10−5)-DP. Acc denotes classi-
fication accuracy, which is shown in %. ↑ and ↓ refer to higher is better or lower is better, respectively. We
use boldface for the best performance. Results of DP-CGAN, GS-WGAN, DP-Sinkhorn are cited from Cao
et al. (2021). Results of G-PATE and DataLens are cited from their papers, respectively. Ours* denotes our
result without the post-processing trick.

Method MNIST Fashion MNIST
FID ↓ LR MLP CNN FID ↓ LR MLP CNN

Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑
Real data (non-private) 1.6 92.2 97.5 99.3 2.5 84.5 88.2 90.8
DP-CGAN 179.2 60 60 63 243.8 51 50 46
DP-MERF 121.4 79.1 81.1 82.0 110.4 72.3 70.8 73.2
G-PATE 150.6 - - 80.9 171.9 - - 69.3
DataLens 173.5 - - 80.7 167.7 - - 70.6
GS-WGAN 61.3 79 79 80 131.3 68 65 65
DP-Sinkhorn 55.6 79.1 79.2 79.1 129.4 70.2 70.2 68.9
Ours 16.8 85.8 93.0 95.3 72.3 78.6 78.8 81.0
Ours* 25.4 85.1 92.4 94.8 80.8 78.1 78.4 80.7

Figure 2: Qualitative comparison on MNIST and Fashion MNIST under (10, 10−5)-DP. Images of DP-CGAN,
GS-WGAN, DP-Sinkhorn are cited from (Cao et al., 2021). Images of G-PATE and DataLens are cited from
their papers, respectively.

4.2.2 Under the Strong DP Guarantee ϵ = 1

When ϵ = 1, i.e. the more challenging case under the DP setting, we consider both gray-scale image datasets
and RGB image datasets for comparison. Figure 3 and Figure 4 show that the existing works are not readily
amenable to a small ϵ such as 1. In contrast, DP-LFlow exhibits significant visual improvement on all three
datasets.

Quantitatively, Table 2 indicates that DP-LFlow outperforms other baselines on CNN classification accuracy
on all three datasets. Besides, DP-LFlow achieves FID scores that are comparable to SoTA performance
on Fashion MNIST and achieves the best FID on MNIST and CelebA. Given that the three datasets are
either largely different in input dimension or largely different in semantic content, the superior performance
of DP-LFlow further validates its generality and versatility.
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Figure 3: Qualitative comparison on MNIST and Fashion MNIST under (1, 10−5)-DP. Images of G-PATE
and DataLens are cited from their papers, respectively.

Figure 4: Qualitative comparison on CelebA conditioned on gender under (1, 10−5)-DP. Images of DataLens
are cited from the original paper. Top row: female. Bottom row: male.

It is worth mentioning that a couple of recent works on DP diffusion models are also capable of generating
realistic images under DP constraints and indicate superiority on downstream ML tasks (Dockhorn et al.,
2023; Ghalebikesabi et al., 2023). For example, when ϵ = 1, Dockhorn et al. (2023) achieve 93.4 and 73.6
test classification accuracies on MNIST and FMNIST, respectively, while ours are 88.9 and 77.4. However,
their required computational resource is significantly higher than DP-LFlow, e.g. Dockhorn et al. (2023)
need 8 GPUs and one day to train a DP diffusion model on MNIST and FMNIST, while our method only
requires 1 single GPU and a few hours; On CelebA, Dockhorn et al. (2023) needs 8 GPUs and 4 days,
while our method only needs 1 GPU and around half-day. More importantly, DP-LFlow still has two unique
properties compared to DP diffusion models: (1) DP-LFlow can generate large images up to 3× 256× 256
(see Section 4.3), while Dockhorn et al. (2023); Ghalebikesabi et al. (2023) only present generation results
on images up to 3× 32× 32; (2) DP-LFlow is able to conduct the DP-OOD detection task (see Section 4.4).

4.3 Generating High-resolution Images with DP Constraints

To our best knowledge, the highest resolution image dataset used in related works is CelebA downsampled at
64×64 pixels (by DataLens and G-PATE), which, however, is still not typically considered a high-resolution
space. Here we consider a high-resolution dataset CelebA-HQ in 256 × 256, which is also close to many
modern large-scale image classification benchmark datasets such as ImageNet (224× 224 or 256× 256).

8



Published in Transactions on Machine Learning Research (10/2023)

Table 2: Quantitative comparison on image datasets given (1, 10−5)-DP. FMNIST denotes Fashion MNIST.
Acc denotes CNN classification accuracy, which is shown in %. ↑ and ↓ refer to higher is better or lower
is better, respectively. We use boldface for the best performance. Results of PATE-GAN and G-PATE are
cited from Long et al. (2021). Results of DataLens are cited from Wang et al. (2021). Ours* denotes our
result without the post-processing trick.

Dataset Metrics PATE-GAN DP-MERF DP-Sinkhorn G-PATE DataLens Ours Ours*

MNIST FID ↓ 231.5 118.3 168.5 154.3 186.1 69.7 83.4
Acc ↑ 41.7 80.5 60.5 58.8 71.2 88.9 88.2

FMNIST FID ↓ 253.2 104.2 184.2 214.8 195.0 132.4 143.5
Acc ↑ 42.22 73.1 62.1 58.12 64.8 77.4 76.8

CelebA FID ↓ 434.5 219.4 - 293.2 297.7 204.8 217.7
Acc ↑ 44.48 57.6 - 70.2 70.6 73.2 72.1

Figure 5: Samples from DP-LFlow trained on CelebA-HQ under (10, 10−5)-DP. Top 2 rows: female. Bottom
2 rows: male. FID = 328.6, LR classification accuracy = 77.4.

Note that now the input dimension drastically increases from 1 × 28 × 28 = 784 (for MNIST and Fashion
MNIST) to 3 × 256 × 256 ≈ 1.97 × 105. This means that the model generally has to drastically scale up
to adequately learn the input distribution, leading to a significant challenge for training a DPGM with
DP-SGD.

Nevertheless, with the help of lower dimensional latent space where we can apply aggressive compression
while retaining the semantic content, we can restrict the generative model to a size (∼ 22 MB, compared to
∼ 2.5 MB on MNIST) that is suitable for DP training yet adequate to learn the data distribution. By training
a DP-LFlow on CelebA-HQ, Figure 5 shows that DP-LFlow is able to produce diverse and recognizable face
images with DP constraints on such high dimensional input space.

4.4 Differentially Private Out-of-distribution (OOD) Detection

One exceptional feature of flow models is their capability of exact density estimation, which can benefit
certain applications such as out-of-distribution detection. A natural method to do so is to thresholding the
log-likelihood, since it is presumed that the in-distribution (InD) data (where the training data are drawn
from) will be assigned a higher likelihood than OOD data by the flow model. This idea can be readily
extended to latent flow models by checking the log-likelihood of latent code mapped from the input data. As
our sub-models are privately trained on each subset by class, we can immediately conduct the differentially
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Table 3: Differentially private OOD detection
results. The evaluation metric is shown by AU-
ROC (higher is better, and 1.0 means InD and
OOD likelihood are perfectly separable).

InD class MNIST Fashion MNIST
ϵ = 10 ϵ = 1 ϵ = 10 ϵ = 1

0 0.98 0.87 0.90 0.87
1 0.99 0.98 0.97 0.96
2 0.86 0.75 0.90 0.88
3 0.88 0.82 0.91 0.91
4 0.95 0.85 0.87 0.85
5 0.90 0.75 0.91 0.86
6 0.97 0.77 0.84 0.82
7 0.93 0.88 0.97 0.97
8 0.89 0.74 0.86 0.79
9 0.95 0.83 0.94 0.93

Average 0.93 0.82 0.91 0.88

Figure 6: Training a RealNVP (∼150 MegaBytes (MB))
on CelebA (a) non-privately with BN layers, (b) non-
privately without BN layers, (c) under (10, 10−5)-DP
without BN layers

private intra-dataset OOD detection, by treating each training class as the InD and the rest classes combined
as OOD. A lower log-likelihood of the latent code computed from input data implies OOD-ness. We use
Area Under Receiver Operating Curve (AUROC) as the evaluation metric, which is threshold-free and widely
used in OOD detection literature. Table 3 indicates that under weak and strong guarantees, DP-LFlow can
effectively detect intra-dataset OOD input on both MNIST and Fashion MNIST across all InD classes in a
privacy-preserving manner.

4.5 Ablation Study

DP-LFlow contains two main components, and we conduct an ablation study as follows.

4.5.1 Flow in the Pixel Space vs. Latent Space

We first trained a RealNVP with DP-SGD by removing the BN layer. Figure 6 show that the generation
from a DP-RealNVP (subfigure (c)) is largely submerged in the noise. Besides, we also trained a Glow with
DP-SGD (with various model complexities), yet ended up with null synthesis when targeting (10, 10−5)-DP.
Both RealNVP and Glow suffer from the model complexity challenge. Compared to the generation of DP-
LFlow in Figure 4 (which even targets a stronger privacy regime, i.e. ϵ = 1), training a flow in the latent
space relieves the model complexity challenge, thus is more resilient to the noise perturbation introduced by
DP-SGD.

4.5.2 With vs. Without Partitioning the Dataset

Qualitatively, we observe that training a conditional DP-LFlow on the whole dataset will fail to correctly
condition on each label, (especially under ϵ = 1), i.e. the generations conditioned on different labels are not
consistent with the true labels, thus the numerical classification accuracy is relatively lower, although FID
is fairly comparable. We summarize the numerical comparison in Table 4.

The reason is that, in contrast to uninvertible models like conditional GAN and conditional VAE that only
encode labels in the latent vector, the label information in the conditional flow is encoded in all coupling
layers, because flow is an invertible model so that both forward and backward pass needs label information.
Thus, training conditional flow with DP-SGD will distort the label information more than uninvertible
models. We also tried to modify the way of encoding labels in different variants: only encoding labels in
the first, last, or both first and last coupling layers, or only encoding labels in the latent vector, but none
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Table 4: Ablation on partitioning the MNIST dataset. We compare the performance without post-processing
tricks (smoothing and sharpening) for simplicity.

ϵ FID ↓ LR Acc ↑ MLP Acc ↑ CNN Acc ↑
With partitioning 10 25.4 85.2 92.7 95.0
Without partitioning 10 21.3 86.2 91.5 91.8
With partitioning 1 83.4 83.2 82.4 88.3
Without partitioning 1 87.1 40.8 72.5 77.5

of the variants solve the issue. Instead, resorting to partitioning the dataset can readily bypass the label
distortion in the private training, which leads to better model utility compared to a single conditional model
on all classes, and by Theorem 3.1 we can retain the same level of privacy guarantees as publishing a single
conditional generator. In other words, partitioning the dataset contributes to improving the privacy-utility
trade-off.

5 Discussion

Pretraining the autoencoder: Though our current training proceeds by simultaneously updating the
autoencoder and flow, one may wonder whether we can pretrain an autoencoder first and then train a flow
with the pretrained autoencoder. However, there are a few concerns that impede the two-stage training
paradigm:

• Pretraining on a public dataset: The majority of existing works (including all of our compared
works) do not use external public dataset for pretraining, so it would make the comparison unfair
if we do so. Besides, we need to put a strong assumption that the public dataset does not have
any privacy concerns. While this can be easily ensured in experiments, it may not always be true
in reality, thus is likely to undermine the potential impact of this work. Therefore, we stick to
restricting our information to the private dataset only.

• Pretraining on the private dataset: In this case, changing a point in the dataset will result
in a different pretrained autoencoder, which means all the gradients in a batch (when running DP-
SGD on flow) will change, instead of at most one gradient is affected in original DP-SGD, thus the
sensitivity of the gradient will scale up by B, i.e. the batch size. To make the same DP guarantee
hold, we can recalculate the ϵ by replacing the original noise multiplier σ with σ · B to account for
the gradient sensitivity change in a minibatch. However, the actual noise multiplier is much larger
and will undoubtedly destroy the model utility.

Batch normalization (BN) vs. Group normalization (GN): Replacing BN with GN is a common
practice for training DP models, e.g. as in Luo et al. (2021). However, unlike the image classification
network (Luo et al., 2021) that only takes forward pass, flow generative models are invertible models, and
any normalization technique will run into issues when we want a backward pass (e.g. sampling), i.e. there is
no mean and variance for unnormalization. Currently, BN layer in flow models tends to register two buffers,
i.e. running mean and running variance, to keep track of the batch mean and batch variance in the training,
then fix it to generate data in the backward pass. We implement a GN layer for flow models similarly, i.e.
registering two buffers to keep track of the group mean and variance in the training (we use 4 groups for each
instance). However, during generation, we first try repeating the group mean and variance for the sampled
batch, but the generation exhibits no variance, i.e. they all look similar. Then we change the registered
buffers to keep track of a pool of group mean and variance, but the generation becomes null. We leave a
tailored normalization layer that is suitable for private training for future work.

Limitation: The insight behind DP-LFlow, i.e. shrinking the model size, seems to contradict the intuition
and the findings in a prior study on scaling laws of language models (Kaplan et al., 2020), because more
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model parameters generally mean better learning capability. However, Kaplan et al. (2020) conducted all
experiments in the non-private setting, and our findings in Figure 1 on image generators are consistent with
Kaplan et al. (2020) in the non-private setting. In the private setting, Figure 1 motivates us to improve the
performance of DPGMs by preventing the model from being over-complicated. Nevertheless, it is apparent
that an over-simple generative model (certainly including DP-LFlow) is not able to generate realistic images
either with or without DP guarantee. Therefore, shrinking the model size may impose an upper bound on
the model utility.

6 Related Work

We categorize related works by approaches:

DP-SGD: The vast majority of related works are realized by training different generative models with DP-
SGD. GAN: DP-GAN (Xie et al., 2018) first trains GAN with DP-SGD algorithm, where the discriminator
is trained with DP-SGD, then the generator is automatically DP as ensured by post-processing theorem.
DP-CGAN (Torkzadehmahani et al., 2019) extends the idea into the conditional setting. VAE: DP-VaeGM
(Chen et al., 2018) trains k VAEs on k classes of private data with the DP-SGD algorithm, and returns the
union as generations. This work only focuses on privacy attacks. DP-kVAE (Acs et al., 2018) first partitions
the dataset into k clusters by kernel k-means method, then trains k VAEs on each data cluster with DP-SGD.
However, their generation exhibits clear mode-collapse. Flow: DP-NF (Waites & Cummings, 2021) directly
trains a flow-based model by DP-SGD. DP-HFlow (Lee et al., 2022) designs a fine-grained gradient clipping
strategy to increase the signal-to-noise ratio and accelerate the training. However, both works relating to
flow models are limited to (low dimensional) tabular datasets. Diffusion model: A few recent papers
also tried training the powerful diffusion models with DP-SGD (Dockhorn et al., 2023; Ghalebikesabi et al.,
2023), which can generate realistic images under DP constraints. However, their training is significantly more
computation-intensive, e.g. Dockhorn et al. (2023) requires 8 GPUs and one day to train a DP diffusion
model on MNIST and FMNIST.

PATE Mechanism: Private Aggregation of Teacher Ensembles (PATE) (Papernot et al., 2017; 2018) is
another mechanism for learning a DP model, by perturbing the aggregated information from an ensemble
of teacher models with noise. PATE-GAN (Jordon et al., 2019) first applies PATE mechanism to GAN,
where the discriminator becomes non-differentiable, thus a student discriminator is trained with all teacher
ensembles, which is then used to train the generator. G-PATE (Long et al., 2021) sanitizes the aggregated
gradients from teacher discriminators to the generator to make the generator DP. However, gradient vectors
need to be discretized in each dimension to employ the PATE mechanism that only takes categorical data
as input. DataLens (Wang et al., 2021) further improves G-PATE by introducing a three-step gradient
compression and aggregation algorithm called TopAgg.

Kernel-based Methods: DP-MERF (Harder et al., 2021) proposes to perturb the kernel mean embed-
dings of real data through random Fourier features, and train a generator by minimizing the maximum mean
discrepancy (MMD) between the noisy embedding of private input and embedding of generation. PEARL
(Liew et al., 2022) extends the idea of DP-MERF by introducing an adversarial objective on sampling
frequencies, which indicates improvement in performance.

Others: GS-WGAN (Chen et al., 2020) creates a privacy barrier at the output of the generator of a
Wasserstein GAN (WGAN), based on the observation that only the generator will be published, thus only
the generator needs to be private. DP-Sinkhorn (Cao et al., 2021) adds a privacy barrier in a similar way as
GS-WGAN, where a Sinkhorn loss is used as the training objective.

7 Conclusion

Though DP-SGD is currently the workhorse algorithm for training a deep learning model, it remains a big
challenge whether it can be applied to training large models with acceptable model utility. In this paper,
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we first show that training a DP flow via DP-SGD is highly challenging (or even infeasible) with achieving
acceptable utility due to a few particular challenges of flow models, and then propose an effective solution,
i.e. DP-LFlow, by reducing the flow training from the full input space to a lower dimensional latent space, so
that the model is more resilient to (larger) noise perturbation introduced by DP-SGD. Experimental results
on widely compared image benchmarks demonstrate the generality and scalability of DP-LFlow on different
image spaces (grayscale and RGB) and different DP constraints (weak and strong DP guarantees). Notably,
to our best knowledge, DP-LFlow is the first DPGM to scale to high-resolution image datasets, which further
validates its effectiveness and versatility.
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A Proof

Theorem 3.1. Let Mi (i = 1, 2, . . . , k) be k DP mechanisms, and each Mi satisfies (ϵi, δi)-DP. Given a
deterministic partitioning function f , let D1, D2, . . . , Dk be the disjoint partitions by executing f on D.
Releasing M1(D1), . . . ,Mk(Dk) satisfies (maxi∈{1,2,...,k} ϵi, maxi∈{1,2,...,k} δi)-DP.

Proof. Without loss of generality, given two neighboring datasets D and D′, assume that D contains one
more element than D′. Executing f on D and D′, we have partitions D1, D2, . . . , Dk and D′

1, D′
2, . . . , D′

k,
respectively. There exists j such that (1) Dj contains one more element than D′

j , and (2) Ds = D′
s for

s = 1, 2, . . . , k and s ̸= j. Denote M1(D1), . . . ,Mk(Dk) by M(D). Since the subsets are disjoint from each
other, running k algorithms on each subset is independent of each other. For any sequence t = (t1, t2, . . . , tk)
of outputs of M1, . . . ,Mk where ti ∈ Range(Mi), we have:

Pr[M(D) = t] = Pr[M1(D1) = t1 ∧M2(D2) = t2 ∧ . . . ∧Mk(Dk) = tk] (6)

= Pr[Mj(Dj) = tj ]
∏

s=1,2,...,k,s ̸=j

Pr[Ms(Ds) = ts] (7)

≤
(

exp(ϵj)Pr[Mj(D′
j) = tj ] + δj

) ∏
s=1,2,...,k,s ̸=j

Pr[Ms(D′
s) = ts] (8)

= exp(ϵj)
∏

i=1,2,...,k

Pr[Mi(D′
i) = ti] + δj

∏
s=1,2,...,k,s̸=j

Pr[Ms(D′
s) = ts] (9)

= exp(ϵj)Pr[M(D′) = t] + δj

∏
s=1,2,...,k,s ̸=j

Pr[Ms(D′
s) = ts] (10)

≤ exp(ϵj)Pr[M(D′) = t] + δj (11)
≤ exp( max

i=1,2,...,k
ϵi)Pr[M(D′) = t] + max

i=1,2,...,k
δi (12)

B Datasets

We briefly introduce the public datasets and associated preprocessing. Image size is shown in #channels×
height× width. Images are normalized to the range of [0, 1].

MNIST (LeCun et al., 1998) & Fashion MNIST (Xiao et al., 2017): MNIST contains hand-written
digits images, whereas Fashion MNIST contains cloth and shoe images. Images in both datasets are single-
channel, in the size of 1 × 28 × 28, and have 10 classes. We adopt the official training and test split. 10k
images from the training split are randomly held out as the validation set.

CelebA (Liu et al., 2015): CelebA is a dataset including face images of celebrities. Each image is in the
size of 3× 178× 218 and has 40 binary attributes. All images are cropped to 3× 178× 178, and then resized
to 3× 32× 32. We also adopt the official training, validation and test split, but randomly select 50k images
of each gender from the training split as our training set.

CelebA-HQ (Karras et al., 2018): CelebA-HQ is a high-quality version of CelebA, which is commonly
recognized as a high-resolution image set. It consists of 30k images in total. We download a gender condi-
tioned split (where images are resized to 3 × 256 × 256) by following this link. 1999 images are randomly
held out from the training split as the validation set.

C Rényi differential privacy (RDP)

Rényi differential privacy (RDP) extends ordinary DP using Rényi’s α divergence (Rényi, 1961) and provides
tighter and easier composition property than the ordinary DP notion, thus we adopt RDP to accumulate
the privacy cost. Formally, we recall:
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Table 5: Network configurations for different datasets in the experiments. #h_conv denotes the number of
hidden sizes in the convolutional layers. #h_lin denotes the number of hidden sizes in the linear layers. #c
denotes the length of latent code. #b means the number of blocks in flow.

Dataset #h_conv in encoder #h_conv of decoder #c #b #h_lin of flow
MNIST [32, 64] [64, 32] 20 9 200
FMNIST [32, 64] [64, 32] 20 9 200
CelebA [64, 128, 256] [256, 128, 64] 32 9 200
CelebA-HQ [16, 32, 64, 128, 256, 512] [512, 256, 128, 64, 32, 16] 64 12 256

Definition C.1 ((α, ϵ)-RDP (Mironov, 2017)). A randomised mechanismM is (α, ϵ)-RDP if for all adjacent
inputs D, D′, Rényi’s α-divergence (of order α > 1) between the distribution ofM(D) andM(D′) satisfies:

Dα(M(D)∥M(D′)) := 1
α−1 logEZ∼Q

(
P (Z)
Q(Z)

)α

≤ ϵ, (13)

where P and Q are the density of M(D) and M(D′), respectively (w.r.t. some dominating measure µ).

Importantly, a mechanism satisfying (α, ϵ)-RDP also satisfies(ϵ + log 1/δ
α−1 , δ)-DP for any δ ∈ (0, 1).

Conveniently, RDP is linearly composable:
Theorem C.1 (Sequential composition of RDP (Mironov, 2017)). If mechanism Mi satisfies (α, ϵi)-RDP
for i = 1, 2, . . . , k, then releasing the composed mechanism (M1, . . . ,Mk) satisfies (α,

∑k
i=1 ϵi)-RDP.

We also adopt the Gaussian mechanism for achieving RDP:
Definition C.2 (Gaussian mechanism for RDP (Dwork et al., 2014; Mironov, 2017)). Let f : D → Rp be
an arbitrary p-dimensional function with sensitivity:

∆2f = max
D,D′

∥f(D)− f(D′)∥2 (14)

for all adjacent datasets D, D′ ∈ D. The Gaussian mechanism Mσ perturb the output of f with Gaussian
noise:

Mσ = f(D) +N (0, σ2 · I) (15)

where I is identity matrix. Then, Mσ satisfies (α, α(∆2f)2

2σ2 )-RDP.

DP-SGD tracks the total privacy consumption as follows: (1) for each training iteration, compute the RDP
privacy cost for a subsampled batch where Gaussian mechanism is applied; (2) compose RDP mechanisms
over training iterations; (3) convert RDP back to (ϵ, δ)-DP. The implementation details are given below.

D Framework

The schematic of DP-LFlow is shown in Figure 7.

E Implementation

E.1 Flow models

Our code for flow generative models are adapted from public repos, i.e. Glow and RealNVP. Hyperparameters
of the network are selected by comparing the performance on the validation set, and the selection results are
given in Table 5.

18

https://github.com/y0ast/Glow-PyTorch/blob/master/model.py
https://github.com/ispamm/realnvp-demo-pytorch/blob/master/rnvp.py


Published in Transactions on Machine Learning Research (10/2023)

Figure 7: The framework of DP-LFlow.

E.2 Privacy implementation

We use a public repo, i.e. pyvacy, for implementing DP-SGD algorithm, as well as the total privacy calcu-
lation. Pyvacy tracks the privacy loss by RDP accountant, which is a PyTorch implementation based on
Tensorflow Privacy.

For all datasets we use, we set subsampling rate as 0.1, training iterations as 300, noise multiplier as 1.25
to target (10, 10−5)-DP and 4.5 to target (1, 10−5)-DP, respectively. With better evaluation performance on
the validation set, gradient clipping norms are set as 0.1 for MNIST and Fashion MNIST, 0.01 for CelebA,
and 10 for CelebA-HQ.

E.3 Fréchet Inception Distance (FID)

FID calculates the distance between the feature vectors extracted by InceptionV3 pool3 layer (Szegedy et al.,
2016) on real and synthetic samples. Specifically,

FID = ∥µr − µg∥2
2 + Tr(Σr + Σg − 2(ΣrΣg) 1

2 ) (16)

where Xr ∼ N (µr, Σr) and Xg ∼ N (µg, Σg) are activations of InceptionV3 pool3 layer of real images and
generated images, respectively, and Tr(A) refers to the trace of a matrix A. Intuitively, a lower FID means
the generation Xg is more realistic (or more similar to Xr). We use a PyTorch implementation for computing
FID, which will resize images and repeat channels three times for grayscale images to meet the input size
requirement.

E.4 Classification task

We follow Cao et al. (2021) for the classifier implementation. We import scikit-learn package for implemen-
tation logistic regression classifier (e.g. from sklearn.linear_model import LogisticRegression) with default
parameter settings.

The MLP network consists of following layers: linear(input_dim, 100) → ReLU → linear(100, output_dim)
→ Softmax.

The CNN consists of following layers: Conv2d(input_channels, 32, kernel_size=3, stride = 2, padding=1)
→ Dropout(p=0.5) → ReLU → Conv2d(32, 64, kernel_size=3, stride = 2, padding=1) → Dropout(p=0.5)
→ ReLU → flatten → linear(flatten_dim, output_dim) → Softmax.
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Both MLP and CNN are optimized by Adam with default parameters. All classifiers are trained on synthetic
data, and we report test accuracy on real test data as the evaluation metric.

E.5 Baselines

All results of DP-MERF (Harder et al., 2021) are obtained by running their code with default parameters.
It is worth mentioning that DP-MERF does not implement on CelebA. We adapt their code on CelebA by
using the generative network they designed for SVHN with 16, 8, 8 channels for three convolutional layers,
respectively.

GS-WGAN only implements on (10, 10−5)-DP. To target (1, 10−5)-DP, we tried two vanilla variations by
tuning parameters of (10, 10−5)-DP in their code, i.e. increasing noise scale while keeping the rest param-
eters unchanged, or decreasing the number of iterations while keeping the rest parameters unchanged. We
experimentally found that both variations will not generate meaningful images. The former variation is not
even able to generate anything on Fashion MNIST, so we instead present the latter variation for comparison.

All other results (e.g. numbers in the tables, generated images) are cited from papers as we specify.
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