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Abstract
Imitation learning learns how to act by observ-
ing the behavior of an expert demonstrator. We
are concerned with a setting where the demon-
strations comprise only a subset of state-action
pairs (as opposed to the whole trajectories). Our
setup reflects the limitations of real-world prob-
lems when accessing the expert data. For example,
user logs may contain incomplete traces of behav-
ior, or in robotics non-technical human demonstra-
tors may describe trajectories using only a subset
of all state-action pairs. A recent approach to
imitation learning via distribution matching, Val-
ueDice, tends to overfit when demonstrations are
temporally sparse. We counter the overfitting by
contributing regularization losses. Our empirical
evaluation with Mujoco benchmarks shows that
we can successfully learn from very sparse and
scarce expert data. Moreover, (i) the quality of
the learned policies is often comparable to those
learned with full expert trajectories, and (ii) the
number of training steps required to learn from
sparse data is similar to the number of training
steps when the agent has access to full expert
trajectories.

1. Introduction
Sequential decision making is one of the central problems
in computer science. We are concerned with imitation learn-
ing, an approach to sequential decision making in which the
agent has to learn to imitate observed behavior (Abbeel &
Ng, 2004). Imitation learning shares commonalities with
reinforcement learning (RL), another popular approach to
sequential decision making (Puterman, 1994; Russell &
Norvig, 2016). In either model, the agent does not know
the dynamics of the world and has to learn a policy by inter-
action. Imitation learning differs from RL in the way that
the objective is specified. In RL, the agent has to maximize
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accrued reward over time. Designing a good reward func-
tion is often difficult, and is prone to errors that result in
learning unintended behaviors. Imitation learning alleviates
the burden of having to design reward functions. Some ap-
proaches to imitation learning first learn a reward function
that is consistent with observed behavior, and then recast
the problem as reinforcement learning (e.g., (Abbeel & Ng,
2004; Camacho et al., 2020a;b)).

Typical approaches to imitation learning make an implicit
assumption that the behavior to imitate is demonstrated with
dense execution traces. We relax such assumption (Section
3). Sometimes, the demonstrations are sparse—for example,
when demonstrations are extracted from videos that were
recorded with a lower bitrate than the frequency in which
robot cameras and actuators operate. Moreover, generating
expert data is usually time- and cost-expensive, especially if
demonstrations are generated manually by humans. We are
interested in addressing two questions: (i) Can we learn to
imitate expert behavior with just a few data points? (ii) How
shall we generate expert data if we had limited resources?

We observe that existing approaches to imitation learning,
originally designed to operate with dense demonstrations,
may not perform well when demonstrations are sparse. This
is the case of ValueDice, a recent approach to imitation
learning via distribution matching (Kostrikov et al., 2019).
In Section 3.2 we show that ValueDice has a high risk to
overfit to sparse data and learned policies do not replicate
observed behavior.

We contribute a number of regularizers that stabilize the
learning of ValueDice (Section 4). We refer to our approach
as SparseDice. We evaluate the performance of SparseDice
on four different domains for continuous control, extracted
from the Mujoco suite, provided with sparse demonstrations
(Section 5). SparseDice is more stable than ValueDice, and
makes it still possible to learn from sparse demonstrations.
We also examined the tradeoffs between the diversity of
demonstration data (when examples come from different
demonstration traces), and their sparsity. SparseDice can
learn better-quality policies when there is a good balance
between the diversity and sparsity of demonstration data.
Our results open the door to future research on imitation
learning from sparse demonstrations.
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2. Background on Imitation Learning
Imitation learning is the problem of learning a pol-
icy that replicates observed behavior (Abbeel & Ng,
2004). The problem is framed in the context of an MDP
〈S,A, p0, p, r, γ〉 that the agent can interact with. The agent
can observe the current state s ∈ S and apply an action
a ∈ A. As a result, the state of the MDP transitions to
a state s′ ∈ S with probability p(s′|s, a). Such interac-
tion yields a sequence τ = {(si, ai, si+1)}h−10 that we call
execution. In the scope of this paper we consider that execu-
tions have finite horizon h. At the end of the execution, the
state of the MDP is reset to a state s with probability p0(s).

A policy for an MDP is a function π that maps each state
s ∈ S into a probability distribution over actions, π(·|s) :
A → [0, 1]. An execution of a policy π from state s0 is
a sequence τ = {(si, ai, si+1)}h−10 such that each ai has
been sampled from πexp(·|si), and si+1 ∼ p(·|si, ai). The
value of a policy π in a state s0, Vπ(s0), is the expected
cumulative discounted reward of a policy execution:

Vπ(s0) := EπΣh−10 γir(si, ai)

where ai ∼ π(·|s) and si+1 ∼ p(·|si, ai), r : S × A → R
is the reward function, and 0 < γ ≤ 1 is the discount factor
of the MDP. A policy π is optimal if it maximizes Vπ(s) in
all states s ∈ S.

The agent has access to a set of demonstrations, D. For-
mally, a demonstration is an execution drawn from an opti-
mal policy πexp that optimizes for the expected cumulative
discounted reward of the MDP. Demonstrations showcase
how an expert may act in the MDP.

The objective of the agent is to recover πexp. In imitation
learning the agent does not know the dynamics model of
the MDP, and does not have access to the reward function
either. Note that imitation learning makes the assumption
that demonstrations are drawn from an expert policy that op-
timizes for some reward function. However, such a reward
function does not need to be explicitly specified.

2.1. Imitation Learning Via Distribution Matching

ValueDice is a recent, promising approach for imitation
learning, that approaches the problem through the lens of
distribution matching (Kostrikov et al., 2019). In this setting,
we want to find a policy π whose state-action distribution
dπ matches with the distribution dexp of an expert policy
πexp, which are unknown to the agent. Following (Puterman,
1994), there exists a one-to-one correspondence between a
policy π and dπ , defined as:

dπ(s, a) = (1− γ)Σ∞t=0γ
tp(st = s, at = a|s0)

where s0 ∼ p0(·), st ∼ p(·|st−1, at−1), and at ∼ π(·|st).
With this notion, we can presume that expert demonstrations

τ = {(si, ai, si+1)}h−10 are sampled from a distribution
si+1 ∼ dexp(·|si, ai) associated to some expert policy πexp.
In order to measure the discrepancy between dπ and dexp, it
is common to use (and minimize) the KL divergence DKL:

DKL(dπ||dexp) = −E(s,a)∼dπ log
dexp(s, a)

dπ(s, a)

One of the practical problems of the above expression is
that we cannot sample from the expert policy. The authors
of ValueDice perform several manipulations to the KL di-
vergence to derive a max-min objective function JDICE that
is more practical to optimize for.

max
π

min
ν:S×A→R

JDICE(π, ν)

JDICE(π, ν) = logE(s,a)∼dexpe
ν(s,a)−Bπ(s,a)

− (1− γ)E(s,a)∼dπν(s, a)

To obtain the expression JDICE , they start from an alter-
native representation of the KL divergence, known as the
Donsker-Varadhan form (Donsker & Varadhan, 1983):

DKL(dπ||dexp) =− min
x:S×A→R

log(E(s,a)∼dexpe
x(s,a))

+ E(s,a)∼dπx(s, a)

Then, the objective JDICE can be obtained by performing
a change of variables x(s, a) = ν(s, a)−Bπ(s, a), where
Bπ(s, a) = γEs′∼p(·|s,a),a′∼π(·|s)ν(s′, a′) is the expected
Bellman operator with respect to π and zero reward.

In practice, the expression for JDICE(π, ν) can be adapted to
perform mini-batch training with a mix of samples from the
set of expert demonstrations and the tuples of experience
(s, a, s′) stored in the replay buffer, obtained by interaction
with the environment. Namely,

Jmix
DICE(π, ν) = logE(s,a)∼dmixe

ν(s,a)−Bπ(s,a)

− (1− α)(1− γ)E s0∼p(·)
a0∼π(·|s0)

ν(s0, a0)

− αE(s,a)∼dRBν(s0, a0)−Bπ(s, a)

where dRB is the (uniform) distribution of state-action
pairs in the replay buffer (RB), and dmix(s, a) = (1 −
α)dexp(s, a) + αdRB(s, a).

Relation with Q learning. It has been observed that ν
is some sort of Q value function of the underlying MDP
(Kostrikov et al., 2019). Such MDP has rewards r(s, a) =
−x(s, a). The function that optimizes the KL divergence is
x∗ = log dπ(s,a)

dexp(s,a) +C for some constant C (see (Kostrikov
et al., 2019)).
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3. Learning from Sparse Demonstrations
The literature on imitation learning commonly makes an
underlying assumption that the number of expert demonstra-
tions available to the agent is scarce. This assumption re-
flects the limitations of many real-world learning systems for
which generating expert data incurs a cost, there are limited
time resources to collect such data, and the amount of stor-
age is limited—e.g., generating expert demonstrations for
a grasping robot is time- and cost-expensive (e.g., (Kalash-
nikov et al., 2018)). Perhaps surprisingly, there is also
the de facto conception that each individual demonstration
comprises all the state-action pairs that appear along the
execution trajectory. We argue that this assumption does not
accommodate many real-world systems in which collecting
dense demonstrations is prohibitively costly or not even fea-
sible. For example, we may use demonstration videos to
teach a robot how to assemble furniture, but the bitrate of
such videos may be lower than the frequency rate of robot
cameras, sensors, and actuators.

We study imitation learning with sparse demonstrations.
In this setting we relax the assumption that demonstra-
tions are dense, and we consider that expert demonstra-
tions constitute a number of examples—rather than dense
trajectories. Formally, an example is a triplet (s, a, s′),
where a ∼ π(·|s) is drawn from an expert policy πexp and
s′ ∼ p(·|s, a). An sparse demonstration is a subsequence of
examples {(si, ai, si+1)}J for some J ⊆ [1, h− 1], where
τ = {(si, ai, si+1)}h−10 is a (dense) demonstration.

Imitation learning from sparse examples has been underex-
plored. One of the objectives of this paper is to evidence
different trade-offs related to generating expert data and
learning from it. Certainly, we want to better understand
how we shall generate and process such expert data. Our
contributions can be summarized as follows:

• We evidence that current methods for imitation learn-
ing are brittle when they are trained with sparse demon-
strations, thereby motivating the need for new algo-
rithms that can handle sparse demonstrations;

• We show that current methods for imitation learning
can be made more robust to sparse demonstrations,
thereby unveiling opportunities for future research on
this topic;

• We study the performance of our methods relative to
different distributions of sparse demonstration data,
gaining insights on how we shall generate demonstra-
tions when our resources to do so are limited.

3.1. Generating Datasets with Sparse Experience

One of the reasons that motivated the work presented in this
paper was that we wanted to gain a better understanding on

how to generate expert data for imitation learning. Given a
fixed amount of resources to generate data, shall we generate
a few dense demonstrations, or shall we generate a larger
number of sparse demonstrations?

Existing datasets for imitation learning contain dense
demonstrations. We design different methods to generate
datasets of sparse demonstrations, that we detail below. In-
formally, we generate sparse data by sampling dense trajec-
tories according to a fixed distribution. Such distributions
are parameterized in a way that we can tune the degree of
sparsity of data.

Uniform(p): Each state-action pair in every demonstration
is sampled iid with probability p. On average, the
number of state-action pairs is reduced by a factor p.

Periodic(t) A state-action pair is sampled at every t
timesteps. The number of state-action pairs is reduced
by a factor 1/t.

Snippets(`; p) Snippets of ` consecutive timesteps are sam-
pled independently with probability p. Approximately
and on average, the number of state-action pairs is
reduced by a factor p.

3.2. Limitations of ValueDice

The first contribution of this paper is an empirical evaluation
of the performance of ValueDice when demonstrations are
sparse. We found that the quality of the policies learned
by ValueDice can degrade significantly in such a setting.
This is not an unexpected result, because ValueDice (as well
as other algorithms for imitation learning) was originally
designed to learn from dense demonstrations. The result,
however, motivates the development of new algorithms for
imitation learning with sparse demonstrations.

We evaluate our methods on four popular benchmarks for
continous control extracted from the Mujoco suite: Ant,
Hopper, Half Cheetah, and Walker 2D. To generate sparce
demonstation datasets, we downsample dense demonstra-
tions with the Uniform, Periodic, and Snippets methods
described earlier in this section. We use the same set of
dense demonstrations used by Kostrikov et al. (2020a), gen-
erated by executing policies trained using TRPO (Schulman
et al., 2015). The TRPO agent was trained with a reward
function, but our agents for imitation learning do not have
access to such reward function.

To evaluate the performance of the policies learned by Val-
ueDice, we measure the reward collected by policy rollouts,
and averaged results over 10 runs. The reward function
is the same used by the TRPO agent that generates expert
demonstrations. However, the reward function is hidden to
the ValueDice agent, which has to learn solely from (sparse)
demonstrations.
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Figure 1: The quality of the policies learned with ValueDice drops significantly when demonstrations are downsampled.
We used 10 demonstrations, that were downsampled with principled sampling methods (Uniform, Periodic, and Snippets).
ValueDice can overfit data, even when trajectories are sampled periodically every other timestep.

ValueDice is sensitive to data sparsity. We conducted a
series of experiments in which we trained ValueDice with a
diverse set of sparse demonstration datasets, for which we
varied the degree of sparsity. We observed that the quality
of the policies learned by ValueDice degrades when the
demonstrations are sparse. Figure 1 summarizes the results
of some of our experiments. We show the quality of the poli-
cies along a wide range of 500, 000 training steps. When
the demonstrations are dense, the quality of the policies
learned by ValueDice is high and stable. However, when
the demonstrations are sparse the quality of the policies is
lower and not stable, and it degrades significantly. It is very
noticeable that ValueDice is unstable even when demonstra-
tions are obtained by sampling Periodically every t = 2
timesteps. Such subsampling is not very aggressive and, a
priori, we had expected that ValueDice was able to inter-
polate demonstration data. However, ValueDice overfitted
data very easily, and their performance is very low also in
that setting.

Batch Normalization in ValueDice. We conducted a se-
ries of experiments to determine whether the overfitting of
ValueDice to sparse demonstrations can be solved via sim-
ple batch normalization. Unfortunately, this was not the
case. Figure 2 summarizes the results of our evaluations.
We augmented the network architecture used in ValueDice
with batch normalization in the intermediate layers, and also
in the final layer. The performance of these two configura-
tions was very similar to the the performance of the original
implementation of ValueDice. These ablations suggest that
we need more sophisticated regularization methods.

4. SparseDice: Regularizing ValueDice
We propose SparseDice, a strongly regularized DICE algo-
rithm, to overcome the overfitting of ValueDice and improve
its stability (Section 3.2). The main objective, JDICE(π, ν),
is a functional that takes both π, and ν functions as inputs.
We exploit this dependency and regularize the objective by

ensuring that both π and ν stay close to the expert demon-
strations without overfitting. In the following, we introduce
a series of loss functions that we add to JDICE(π, ν).

Notation. Recall from Section 2.1 that we denote by
RB the replay buffer, i.e.., the set of tuples of experience
(s, a, s′) obtained by interaction with the environment. We
denote by D the set of (sparse) demonstrations, that also
comprise tuples of examples (s∗, a∗, (s∗)′). In the definition
of the regularization losses, we denote with νt (resp., πt) the
target network that results from freezing the weights of ν
(resp., π) to make them untrainable. Using target networks
is a standard practice to make training more stable.

4.1. Regularizers for the Value Function

Expert contrastive loss ν can be interpreted as the value
function of the underlying MDP where the reward is defined
as log dexp(s,a)

dπ(s,a) . Based on this observation, we introduce
contrastive learning losses to enforce ν to take high values
on expert demonstrations and low values otherwise,

L(ν) = E(s∗,a∗)∼dexp max
a

ν(s∗, a)− νt(s∗, a∗)

The action space is continuous and computing
maxa ν(s∗, a) is intractable. Instead, we replace
maxa ν(s∗, a) with ν(s∗, a′), where a′ is sampled ran-
domly from the set of actions that appear in the expert
demonstrations. Finally, we impose a non-negativity
constraint as the above objective is always non-negative and
use a mini-batch approximation,

L(ν) = Σ(s∗,a∗)∈batch(D)
a′∼Uniform(A)

max(0, ν(s∗, a′)− νt(s∗, a∗))

RB contrastive loss This loss enforces ν to take high
values in the state-action pairs that are on-policy. For each
pair (s, ·) ∈ RB sampled from the replay buffer, we compute
the value ν(s, a′) with the action a′ ∼ π(·|s) returned by the
current policy and enforce that it is higher than values with
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Figure 2: We augmented ValueDice with standard batch normalization methods used to stabilize learning. We experimented
with adding batch normalization in the intermediate layers of ValueDice, and in the final layer. In our experiments, batch
normalization does not improve the stability of ValueDice.

random actions. It is important to note that the parameters
of the policy π are frozen and not made trainable.

L(ν) = E (s,·)∼dRB

a′∼πt(·|s)
max
a

ν(s, a)− νt(s, a′)

Similar to the expert contrastive loss, we replace maxa with
random actions and use mini-batch approximation,

L(ν) = Σ(s,·)∈batch(RB)
a′∼πt(·|s)

a′′∼Uniform(A)

max(0, ν(s, a′′)− νt(s, a′))

ν RB expert contrastive loss We regularize ν to stay
close to values of state and action pairs on expert demonstra-
tions by minimizing the delta between on-policy and expert
ν estimates,

L(ν, π) = E(s,·)∈dRB

a′∼π(·|s)
max(0, ν(s, a′)− µexp)

where µexp = E(s∗,a∗)∼dexpνt(s
∗, a∗) is the mean of ν val-

ues over the demonstration data. In practice we use,

L(ν, π) = Σ(s,·)∈batch(RB)
a′∼π(·|s)

max(0, ν(s, a′)− µD)

where µD = 1
|batch(D)|Σ(s∗,a∗)∈batch(D)νt(s

∗, a∗).

ν expert greater than mean loss We also regularize ν if
it diverges too much from average expert values,

L(ν) = Σ(s∗,a∗)∈D(ν(s∗, a∗)− E(s,a)∈Dνt(s, a))2

In practice we use,

L(ν) = Σ(s∗,a∗)∈batch(D)(ν(s∗, a∗)− µD)2

where µD = 1
|batch(D)|Σ(s∗,a∗)∈batch(D)νt(s

∗, a∗).

ν bellman update loss The value function ν can be in-
terpreted as a Q value function that optimizes for the ex-
pected cumulative discounted reward r(s, a) = −x(s, a)

(Kostrikov et al., 2019). This is a consequence of reinterpret-
ing the KL divergence as an MDP with rewards −x(s, a).
Furthermore, the optimal values r∗(s, a) = −x∗(s, a) =

log dexp(s,a)
dπ(s,a) + C are constant when π converges to πexp.

If we interpret ν as a Q value function, then we can apply
Bellman updates to ν in the same manner that is done in
SARSA—i.e., for a transition (s, a, s′) and reward r, we
update Q(s, a) to r + γQ(s′, π(s′)) with some learning
rate α. There is one missing piece: in imitation learning
the agent does not have a reward function. However, we
can estimate r from the values of the value function, v.
Observe that ν, interpreted as a Q value, is the sum of
discounted rewards r + γr + γ2r + . . . = r

1−γ , and we
have the equivalence r = ν(1 − γ). Finally, we can esti-
mate a (constant) reward function r by sampling a batch
of expert experience, and averaging over the values of ν:
r = (1−γ)∗ 1

|batch(D)|Σ(s∗,a∗)∈batch(D)ν(s∗, a∗). We use
this reward in conjunction with Q learning updates to derive
the following loss,

L(ν) = Σ(s,a,s′)∈RB(ν(s, a)− (rt + γ ∗ νt(s′, π(s′)))2

4.2. Regularizers for the Policy

Policy expert imitation loss We enforce π to imitate the
actions that appear in the expert demonstrations. More
precisely, we use the squared L2 distance between an expert
action a∗ for state s∗, and the action a′ ∼ π(·|s∗) output by
the policy.

L(π) = Σ(s∗,a∗)∈batch(D)
a′∼π(·|s∗)

(a′ − a∗))2

Policy self imitation loss Since the policy might overfit
to expert demonstrations, we regularize the policy based on
its distance to the replay buffer. More precisely, this loss
samples state-action pairs (s, a) from the replay buffer, and
computes the squared L2 distance between an action a for
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(a) We used 10 demonstrations, that were sampled uniformly.

(b) We used 10 demonstrations, that were sampled periodically.

(c) We used 10 demonstrations, and we sampled snippets with uniform probability.

Figure 3: SparseDice is more robust than ValueDice when demonstrations are subsampled.

state s, and the action a′ ∼ π(·|s) output by the policy.

L(π) = Σ(s,a)∈batch(RB)
a′∼π(·|s)

(a′ − a))2

5. Experimental Evaluation
ValueDice can learn from a small set of dense demonstra-
tions (Kostrikov et al., 2020a). However, as we saw in Sec-
tion 3.2, one of its limitations is that demonstrations have
to contain all the time steps in a trajectory. Otherwise, Val-
ueDice has a high risk of overfitting when demonstrations
are sparse. We saw that in such a case, the policies learned
by ValueDice did not replicate expert behavior. Overfitting
occured even when we sampled every other time step in the
expert trajectories.

The purpose of our experimental evaluation is to address
two practical questions:

1. Can we learn to imitate expert behavior with just a
few data points? If so, how does the quality of the
policies learned degrade when we reduce the number
of training examples?

2. How shall we generate expert data? If we had limited
resources, we want to understand whether it is better to
generate a few dense demonstrations, or a more larger
set of sparse demonstrations.

Experimental setup. We evaluated the performance of
SparseDice on four popular continuous control tasks (Ant,
Hopper, Half Cheetah, and Walker 2D) extracted from the
Mujoco suite (Todorov et al., 2012). Expert demonstrations
were generated by running executions of a TRPO agent (that
was trained with rewards). Each (dense) expert demonstra-
tion comprises several thousands of consecutive examples
(s, a, s′), and showcases several cycles of a robot moving
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(a) Demonstrations were sampled uniformly.

(b) Demonstrations were sampled periodically.

(c) Snippets of demonstrations were sampled uniformly.

Figure 4: It is often better to sample from a more diverse dataset.

straightforward. The actions have certain stochasticity that
make the robotic behavior be not exactly cyclic. Our results
are averaged over 10 runs.

Implementation details. We implemented SparseDice on
top of ValueDice (Kostrikov et al., 2020a), by adding the
regularization losses listed in the preceding section. The
objective function, J(π, ν), is parameterized on two func-
tions ν and π. Each of these two functions is modeled
with a feed-forward neural network with three layers. In
SparseDice, we augmented the output layer of the ν network
with a sigmoid activation. Otherwise, we observed that the
outputs diverge as a side effect of some of the regularizers.
We perform mini-batch training steps after each interaction
with the environment, with a batch size of 256. When we
perform training steps we freeze the weights of the target
networks to compute the gradients.

5.1. Limitations of Learning with Sparse Data

We wanted to know whether it is possible to learn from a
few sparse data points. To this end, we conducted a series
of experiments to evaluate the performance of SparseDice
when it is trained with sparse demonstrations. We generated
a variety of sparse datasets by subsampling a fixed number
N = 10 of dense expert demonstrations. We experimented
with different sampling distributions, and different sampling
rates.

The results of our experiments are summarized in Figure
3. As expected, the quality of the policies learned by
SparseDice degrades when downsampling is more aggres-
sive. However, it is remarkable that SparseDice is more
stable than ValueDice, even when SparseDice is given less
amount of expert data. Our empirical evaluation showcased
that SparseDice is more robust to sparse demonstrations
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than ValueDice. The policies learned with SparseDice are
more stable, and in many cases they have better-quality than
those learned by ValueDice.

5.2. Adding More Diversity on Training Data

Generating training data is costly, and the amount of training
data that we can make available to the learning system may
be limited. Under these conditions, we wanted to learn how
we shall generate our training data. More precisely, it better
to generate a few dense trajectories, or many sparse trajecto-
ries? Furthermore, what are the best sampling strategies at
the time of generating the dataset of expert examples?

We conducted a series of experiments where we fixed (on
average) the number of examples in the datasets of demon-
strations. We constructed different datasets of experience
by sampling from 10, 30, 50, and 100 demonstrations. Sam-
pling was done in a way that the expected number of data
samples is fixed. However, by sampling from the set of
100 demonstrations we get more diverse data than sampling
from the set of 10 demonstrations.

The results are summarized in Figure 4. We observed that
SparseDice can benefit from being trained with more diverse
data. However, there exists tradeoffs. Given a fixed amount
of resources to generate examples, the best number of indi-
vidual demonstrations to sample from is uncertain, and we
do not have a rule to determine such number beforehand.

5.3. Ablations

We conducted ablations to assess the contribution of each
of the regularization losses to the quality of the policies
learned by SparseDice. We found this to be the case. In our
experiments, the “policy expert imitation loss” resulted to
be the most beneficial regularizer.

6. Related Work
Regularization is a core paradigm in machine learning.
While regularization has a long history in supervised learn-
ing, it has recently come into focus for RL and imitation
learning due to interest in transfer learning (Cobbe et al.,
2018) and offline RL (Levine et al., 2020). In transfer RL,
the focus is on learning feature representations which gener-
alize to other tasks given online access to a set of training
tasks, whereas our setting is closer to offline RL, for which
the main challenge is learning from a static dataset that ex-
hibits sparsity in the state-action space. This may partially
explain why we found poor performance of regularizers
(e.g., batch normalization) which are known to perform well
in transfer RL (Cobbe et al., 2018).

In the offline RL setting, much of the regularization is fo-
cused on keeping the learned policy close to the offline

dataset, via various behavior regularization techniques (Fuji-
moto et al., 2019; Wu et al., 2019). In the imitation learning
scenario, this is not as much of an issue, as the imitation
learning already compels the learned policy to stay close to
the offline dataset. Rather, many of our techniques can be
interpreted as regularization on the value function, which
also appears in the offline RL literature. Namely, our var-
ious regularization objectives on ν can be related to critic
regularizers in the offline RL literature (Nachum et al., 2019;
Kostrikov et al., 2021; Kumar et al., 2020). Many of these
existing works also contrastive-like regularizers which en-
courage larger critic values on actions in the offline dataset
and smaller values on actions sampled from the learned
policy.

As the ValueDICE objective (Kostrikov et al., 2020a) is
derived from a GAN-like loss (Goodfellow et al., 2014),
it is important to mention that regularizers are popular in
the GAN literature as well, where mode-collapse is a well-
known issue (Srivastava et al., 2017). One of the simplest
and most popular regularizers is the gradient penalty (Ar-
jovsky et al., 2017; Mroueh & Sercu, 2017). However, we
note that ValueDICE already includes a gradient penalty
based on these existing works; although such a regularizer
helps, we found that it is still not enough to maintain good
performance in extremely sparse settings.

Other than applying regularizers, other works have sug-
gested mitigating effects of sparse data by augmenting
the data. Namely, one applies perturbations (e.g., random
noise) to the given dataset to generate more synthetic data.
This technique is popular in supervised learning (Chen
et al., 2020) and has also been demonstrated in online
RL (Kostrikov et al., 2020b) and offline RL (Sinha & Garg,
2021) settings. However, the use of such techniques relies
on prior knowledge of the task to understand what perturba-
tions are valid, and in fact, choosing the right perturbations
can be a challenging problem on its own (Raileanu et al.,
2020).

7. Discussion
Imitation learning is a convenient approach to sequential de-
cision making. We argued that many real-world applications
of imitation leaning may need to handle sparse demonstra-
tion data—e.g., because of limited budget. Existing algo-
rithms for imitation learning that were designed to handle
dense demonstrations, such as ValueDice, may not be as
effective with sparse data. We contributed with regularizers
for ValueDice, that make learning more stable. We saw that
it is still possible to learn from a few sparse data points,
algthough there exist tradeoffs between data sparsity and
diversity that need be further studied. Our studies open the
door to future research on imitation learning with sparse
demonstrations.
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