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Abstract— Ensuring safety in robotic systems remains a
fundamental challenge, especially when deploying offline policy-
learning methods such as imitation learning in dynamic en-
vironments. Traditional behavior cloning (BC) often fails to
generalize when deployed without fine-tuning because it does
not account for disturbances in observations that arises in real-
world, changing environments. To address this limitation, we
propose RISE (Robust Imitation through Stochastic Encodings),
a novel imitation-learning framework that explicitly addresses
erroneous measurements of environment parameters into policy
learning via a variational latent representation. Our framework
encodes parameters such as obstacle state, orientation, and
velocity into a smooth variational latent space to improve
test time generalization. This enables an offline-trained policy
to produce actions that are more robust to perceptual noise
and environment uncertainty. We validate our approach on
two robotic platforms, an autonomous ground vehicle and a
Franka Emika Panda manipulator and demonstrate improved
safety robustness while maintaining goal-reaching performance
compared to baseline methods.

I. INTRODUCTION

As autonomous robots become increasingly integrated
into real-world applications, ensuring safe and high-
performance control remains a fundamental challenge. To
address safety constraints in such scenarios, various optimal-
control strategies have been explored, including Constrained
Model Predictive Control (MPC) [1], Hamilton–Jacobi (HJ)
reachability-based methods [2], [3], and Control Barrier
Functions (CBFs) [4], [5]. While these approaches provide
formal safety guarantees, they typically rely on explicit mod-
els of system and environment dynamics, which are often
difficult to obtain in real-world settings. Moreover, many of
these frameworks assume the ability to perform consistent
online rollouts, which raises concerns about the feasibility
and safety of conducting unsafe rollouts during training.
To address this, several works advocate offline learning
approaches [6], [7] that leverage pre-recorded datasets to
avoid repeated unsafe rollouts.

At times, safety concerns also extend to demonstration
data, where recording unsafe demonstrations may be infeasi-
ble. In such cases, Imitation Learning (IL) is a promising ap-
proach for training control policies from safe expert demon-
strations, particularly when system dynamics are partially
known or difficult to model. However, traditional IL methods
such as behavioral cloning (BC) often struggle to general-
ize beyond the training distribution, resulting in degraded
performance at deployment, especially when measurement
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Fig. 1: Behavior Cloning (BC) struggles to generalize for
noisy obstacle readings in real-world and often collides with
dynamic obstacles, whereas RISE picks safer actions without
deviating from the original trajectory while it navigates
through dynamic obstacles.

equipment provides only rough estimates of obstacle posi-
tions and the surrounding environment. Several techniques
propose adding noise during demonstration collection [8],
[9] to encourage robustness, but this is not always possible,
particularly when the demonstration data is pre-recorded.

Attempts have been made to combine methods such as
Constrained MPC and CBFs with IL [10], [11] to improve
constraint satisfaction in robotic systems. For example, HJ
reachability–based imitation learning [9] enforces control
constraints by computing forward or backward reachable sets
to guarantee safety. However, these methods are computa-
tionally expensive and do not scale well to high-dimensional
robotic systems due to the curse of dimensionality. Simi-
larly, some CBF-based IL approaches [12] do not explicitly
enforce control bounds and often assume unlimited control
authority, which is impractical for real systems.

In many practical applications, key safety-related cues
(e.g., obstacle position, velocity, and geometry) are available
from onboard (or even precise coordinates through motion
capture), and task specifications such as goal positions are
often pre-defined and may vary across deployments. Al-
though these structured environmental cues are available,
their precise and accurate state coordinates and velocity may
not be obtainable in real time; instead, only rough measured
estimates are typically available.

To address these challenges, we propose RISE, a novel
framework that accounts for noisy measurements of obstacle
data by conditioning the policy on a learned probabilistic
latent space. Specifically, we build on Goal-Conditioned
Imitation Learning (GCIL) [13], [14], and augment it by
integrating the variational encoder to accommodate noisy, yet
safety-critical environmental factors into a structured latent
representation. This enables a more realistic interpolation



between environment parameters, thus, improving task adapt-
ability for unseen intermediate datapoints while leveraging
the structured perturbation data directly from the latent space.
This improves inculcating inherent awareness of safety from
the provided data, which is generally hard to achieve with
behavior cloning alone.

To summarize, the key contributions of our paper are:
• Unlike CBF and HJ reachability approaches, which

require exact system dynamics or an accurate environ-
ment model, RISE operates in real-world settings where
dynamics are unavailable or imprecise.

• We train a variational autoencoder (VAE) to predict a
probabilistic distribution over obstacle states, thereby
capturing uncertainty from noisy observations. Condi-
tioning the policy on this distribution yields more robust
behaviors that avoid likely obstacle locations.

• Few safety-critical policy-learning frameworks (includ-
ing many CBF-based methods) explicitly consider phys-
ical actuation limits. Our approach incorporates actua-
tion constraints and learns policies that respect those
limits while behaving conservatively near obstacles.

• We validate the framework in simulated robotic en-
vironments and on hardware. Comparative analyses
against baselines such as PCIL and C-PPO [15], [16]
show improved safety with maintained goal-reaching
performance.

II. PRELIMINARIES

A. Safe Imitation Learning

Most regular Imitation learning frameworks train policies
that map observations to actions using expert demonstrations,
in cases where dynamics of the system is unknown or
very complex. Various IL approaches, including behavioral
cloning (BC) [17], DAgger [18], and inverse reinforcement
learning (IRL) [19] exist, however, even though they are
derived from the demonstrations of a superior policy, they
lack the capability to learn safety-aware policies due to lack
of true reward signals. Safe Imitation Learning frameworks,
on the other hand, either try to remain within in-distribution
region as demonstrated by the expert demonstrations [10],
[20], thus, minimizing the risk of violating safety, or they add
an adversarial noise to the demonstrations while recording
them [8], [9] to inherently learn a more robust policy. But
it is important to also consider that these approaches have
their shortcomings, either they are overly conservative or they
require a specific dataset to train, both of which may not be
acceptable at all times.

B. Parameter-Conditioned Imitation Learning

It is a subdomain of Imitation Learning, where each
demonstration data-point is augmented with one or more
parameters (e.g., goal state [13]), hence, seeking to obtain
the indicator reward for the task that the demonstration was
provided for. The conditioning parameter contains informa-
tion that a learning method can leverage to disambiguate
demonstrations. Parameters such as goal-states have also
extended the domain of reinforcement learning through Goal

Conditioned Reinforcement Learning (GCRL) [21], where
the agent is not provided expert demonstrations but reward
signals instead. Typically these reward signals are difficult
to define, especially for complex tasks and environments,
providing demonstrations is often a more natural option in
such situations. Additionally, the policy rollouts required by
GCRL are often expensive in real-world settings.

C. Variational AutoEncoder (VAE)

Variational AutoEncoders (VAEs) [22] are generative
models that learn a probabilistic latent space representation
of data. A VAE consists of an encoder and a decoder
component, both of which are connected to each other using
the reparameterization trick (as referred in [22]).

The objective function of a VAE is to maximize the
Evidence Lower Bound (ELBO):

ELBO(x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)),
(1)

where the first term maximizes the likelihood of reconstruc-
tions, and the second term regularizes the latent space by
minimizing the Kullback-Leibler (KL) divergence between
the approximate posterior and a prior distribution p(z).

VAEs have been widely adopted for learning structured
representations, denoising, and improving generalization in
downstream tasks, making them a valuable tool for enhanc-
ing imitation learning in RL [23], thus, making them an ideal
choice for an application like ours.

III. METHODOLOGY

In this section, we present the framework that learns a
latent unsafe region distribution for given noisy obstacle
perception signals to enable robust imitation learning. The
method first encodes raw measured parameters (e.g., obstacle
position, obstacle velocity, and obstacle radius as in the
cases demonstrated) into a structured latent variable, and
then conditions an imitation policy on the current state, goal
region and this derived latent distribution.

A. Problem Formulation

Consider a robotic system with state space S, action space
A, and a set of safety parameters C. The safety parameters
c ∈ C represent critical environmental features such as
obstacle positions, velocities, and geometries. The objective
is to learn a policy π : S×C → A that maps states and safety
parameters to actions while maintaining safety constraints
and accomplishing the desired task.

B. Latent Unsafe Region

Let c ∈ Rdc denote the raw measured parameters. We
employ a variational encoder network E(·) to embed c into
a latent normal distribution. To train our VAE-style encoder
using ELBO, we model z using the reparameterization trick:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I), (2)

where µ is the mean and σ is the deviation, which are
the outputs of the encoder network. Thence derived latent
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Fig. 2: Architecture: (Left) During training, expert demonstration trajectories, augmented with obstacle parameters, and
goal coordinates, are used to learn the Variational Encoder to produce a latent representation (z), which is combined with
agent’s state to drive training of the Policy Network. (Right) At inference, trained architecture deploys the Policy Network
on a real agent, generating actions for safe navigation in dynamic environments.

variable z is passed into the decoder and the VAE is then
learnt using the negative ELBO loss.

The encoder architecture consists of fully connected layers
with ReLU activations, culminating in parallel output layers
for µ and σ.

C. Behavior Policy

The policy π(s, g, z) maps the current state s ∈ Rds , the
goal g and the latent safety variable z to an action a ∈ Rda :

a = π(s, g, z). (3)

Unlike traditional behavior cloning approaches that directly
map states to actions, our policy also leverages the structured
latent representation of measured obstacle parameters. By
sampling from the VAE posterior during training, the policy
effectively sees multiple plausible obstacle hypotheses (a
form of virtual data augmentation), which improves robust-
ness to perceptual variation. The policy network uses a 2-
layered fully connected Neural Network with 128 neurons in
the hidden layer with ReLU activations. The state vector s,
goal vector g and latent vector z are concatenated and passed
through these layers to produce the action output.

Algorithm 1 summarizes the training procedure where it
integrates the encoder-decoder architecture with the policy
network in an end-to-end training framework.

IV. EXPERIMENTS

In our experiments we ask whether the proposed method
can reliably handle inputs that lie within the data distribution
yet were not observed during training, i.e., whether the
policy can interpolate across realistic, unseen environment
configurations produced by noisy measurements. In partic-
ular, we evaluate how well the framework mitigates distri-
bution shift arising from disturbances in sensor or tracking
readings. We benchmark against representative baselines on
two simulated tasks (autonomous navigation of a ground
vehicle and a Reach-Safe Franka Emika Panda manipulation
task) and demonstrate results on Franka Panda hardware.

Our evaluation emphasizes safety metrics and robustness
under randomized initial conditions, and in the following
subsections we describe how we generate challenging test
cases for thorough performance assessment.
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Fig. 3: Comparative study between all baselines and our
approach based on evaluation matrics. The top plots illustrate
the results for the Ground Vehicle Navigation setup, mean-
while, the bottom plots correspond to Franka Manipulator
Task results from simulation.
A. Baselines and Evaluation Metrics

To evaluate our framework, we compare it against two
baselines: Parameter-Conditioned Behavior Cloning (PC-
BC) [13], which learns policies through behavior cloning
with explicit conditioning on environmental parameters un-
der randomized safety conditions, relying only on domain
randomization for generalization. Primarily, we use the same
inputs as our proposed approach, just without the Variational
Encoder in this case; and Constrained Proximal Policy Opti-
mization (C-PPO) [24], which extends PPO by incorporating
safety constraints using Lagrange multipliers to penalize
constraint violations during training. PC-BC tests whether
including the variational encoder affects the performance or
just a raw exposure to diverse conditions alone enables gen-
eralization, while C-PPO provides a reinforcement learning-
based comparison that explicitly incorporates constraints.
The performance of our method and its baselines are assessed
using the following two key metrics:



Algorithm 1 Training Algorithm

Require: Dataset D = {(s, a, s′, obs)}
1: Stage 1: Pre-Train VAE (ELBO)
2: for epoch = 1 to EVAE do
3: for batch {obs} from D do
4: µ, σ ← qϕ(obs)
5: ϵ ∼ N (0, I), z = µ+ σ ⊙ ϵ
6: ˆobs← pψ(z)
7: L ← − log pψ( ˆobs|z) + βKL[qϕ(z|obs)∥p(z)]
8: Update ϕ, ψ ← ∇ϕ,ψLELBO
9: end for

10: end for
11: Freeze VAE parameters: ϕ, ψ ← detach

12: Stage 2: Train NN policy
13: for epoch = 1 to Eπ do
14: for batch {(s, a, g, obs)} from D do
15: µ, σ ← qϕ(obs) ▷ no gradients into VAE
16: Lπ ← 0
17: for m = 1 . . .M do ▷ M unique perturbations
18: ϵ(m) ∼ N (0, I), z(m) = µ+ σ ⊙ ϵ(m)

19: â(m) ← πθ(s, g, z
(m))

20: Lπ += ℓ
(
â(m), a

)
▷ e.g., MSE / NLL

21: end for
22: Lπ ← Lπ/M
23: Update θ ← ∇θLπ
24: end for
25: end for
26: return trained policy πθ (VAE used in inference to

sample z)

1) Safety Rate: Percentage of test trials in which the agent
doesn’t collide with the obstacle at any timestamp.

2) Reach Rate: Percentage of complete trials where the
learned policy successfully reaches the goal. Note that
a successfully reached episode is one during which the
agent doesn’t collide into the obstacle at any point in
time during the entire episode.

B. Autonomous Navigation of a Ground Vehicle

In this task, the agent, an autonomous ground vehicle must
reach the goal while navigating an environment containing
a dynamic obstacle. The agent’s state is represented as s =
(x, y, θ), where (x, y) denotes position and θ is orientation.
The action space consists of linear and angular velocities,
a = (v, ω). The environment features a moving obstacle
whose position is sampled to ensure a safe margin between
the agent’s initial state and goal. The obstacle’s radius varies
in a range of values to introduce variability, and its velocity
is dynamically assigned to create unpredictable motion.

C. Franka Manipulator Task

In this task, a Franka Panda manipulator must reach a pa-
rameterized goal while avoiding obstacles in its workspace.
For this experiment, we have used safe-panda-gym simu-
lation environment [25], [26]. The action space comprises

end-effector displacement, a = (dx, dy, dz), applied through
Position Control.

D. Training Data & Evaluation

Expert Data Generation: Expert demonstrations are
generated using a mixture of experts like model predictive
control [1], control barrier function (CBF), etc. The dataset,
which includes 10k expert demonstrations, is constructed by
randomly sampling initial robot states, and goal position.

Evaluation and Comparative Analysis: We evaluate
performance across 1000 sampled test scenarios, all sampled
by adding random noise (sampled from standard normal
distribution) to the training data to emulate the desired noise
in environmental parameter readings. Figure 3 summarizes
the results. Our approach outperforms both C-PPO and PC-
BC on both the evaluation metrics. It achieves the highest
Safety Rate while maintaining a superior Reach Rate.
Although C-PPO comes close in terms of safety, it struggles
with goal-reaching performance, thus showing its conserva-
tive nature. On the other hand, we see PC-BC to be more
aggressive and hence, suffers from frequent collisions. These
results underscore the ability of RISE to balance safety while
maintaining task performance.

Fig. 4: Illustration shows Franka Panda manipulator ad-
vancing toward its designated target (green region) while
executing collision avoidance maneuvers in the presence of
a dynamic obstacle (red sphere). Arrows indicate direction.

Hardware Results: We further validate our framework on
a physical Franka Emika Panda manipulator. In this setup,
virtual obstacles are employed, and environmental parame-
ters (obstacle properties and goal locations) are provided in
real time to the policy. Figure 4 presents key frames from
the hardware demonstration, confirming successful goal-
reaching with effective obstacle avoidance.

V. CONCLUSION

In this paper, we proposed a practical imitation-learning
framework that makes policies robust to realistic measure-
ment uncertainty by conditioning them on a variational la-
tent representation of environment parameters. By sampling
plausible obstacle states from the VAE posterior during
training, the policy learns to interpolate across nearby, real-
istic percepts and therefore behaves more conservatively and
reliably in noisy, dynamic scenes without requiring explicitly
requiring to train the model on these datapoints, nor requiring
the exact dynamics models. Validation on an autonomous
ground vehicle and a Franka Emika Panda demonstrates
improved safety while preserving goal-reaching performance
versus baselines.
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