
Uncertainty-Aware Discrete Diffusion Improves Protein Design

Sazan Mahbub 1 2 ∗ Christoph Feinauer 1 Caleb N. Ellington 1 Le Song 1 3 Eric P. Xing 1 2 3

Abstract

Protein inverse folding involves generating
amino acid sequences that adopt a specified 3D
structure—a key challenge in structural biology
and molecular engineering. While discrete dif-
fusion models have demonstrated strong perfor-
mance, existing methods often apply uniform
denoising across residues, overlooking position-
specific uncertainty. We propose an uncertainty-
aware discrete denoising diffusion model that em-
ploys a prior-posterior signaling mechanism to
dynamically guide the denoising process. Our
approach further integrates learned priors from
a pretrained protein large language model and a
structure encoder within a modular framework,
jointly optimized through multi-objective train-
ing. Across multiple benchmarks, our method
achieves substantial improvements over state-of-
the-art baselines, offering a principled framework
for structure-conditioned sequence generation in
proteins and beyond.

1. Introduction
Designing protein sequences that fold into desired three-
dimensional structures is a central challenge in computa-
tional biology, with broad applications in therapeutics, syn-
thetic biology, and molecular engineering (Dauparas et al.,
2022; Wang et al., 2024; Gao et al., 2022; Sun et al., 2024; Li
et al., 2014; Hsu et al., 2022). This inverse folding problem—
mapping from a fixed structural scaffold to a viable amino
acid sequence—presents a fundamentally multimodal and
ill-posed task, where small structural variations can permit
diverse valid sequences (Dauparas et al., 2022). Recent ad-
vances in deep generative modeling have shown promise in
addressing this challenge, particularly through autoregres-
sive, masked, and diffusion-based frameworks (Sun et al.,
2024; Dauparas et al., 2022; Zheng et al., 2023b; Wang
et al., 2024).
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Among these, discrete denoising diffusion models have
gained traction due to their ability to generate high-quality
and realistic molecules for biomolecular design tasks (Wang
et al., 2024; Ellington et al., 2024; Zou et al., 2024; Sun
et al., 2024). These models simulate a corruption-recovery
process over sequence space, learning to denoise structure-
conditioned sequences through repeated transitions (Wang
et al., 2024; Sun et al., 2024; Austin et al., 2021). However,
existing formulations typically apply uniform denoising up-
dates across all sequence positions, overlooking the fact that
sequence uncertainty—often due to structural constraints—
vary widely across residues and time steps. This assumption
of homogeneity in uncertainty can lead to premature or
unreliable updates, especially in ambiguous regions.

In this work, we introduce a novel uncertainty-aware dis-
crete denoising diffusion model for structure-conditioned
protein sequence generation. We design a prior-posterior
uncertainty signaling mechanism that enables our frame-
work to dynamically decide where and when to denoise,
focusing computational effort on positions where confident
updates are possible and deferring those with high residual
ambiguity. This formulation enables a probabilistic and
interpretable denoising trajectory that adapts to both spatial
and temporal uncertainty profiles in the sequence. We also
propose an approach to parameterize this formulation with a
set of learnable modules that can leverage the learned prior
in pretrained large language models (LLMs) and structure
encoders for proteins. Furthermore, we jointly train these
modules through multi-objective optimization to further en-
hance inverse folding performance. Our proposed approach
offers a promising way to partially reduce the overhead of
hyperparameter search.

Through quantitative evaluation on three widely used bench-
marks, we demonstrate that our framework significantly
improves upon the current state-of-the-art in structure-
conditioned protein design. Beyond protein design, our
uncertainty-aware diffusion framework provides a general
approach for structure-conditioned discrete sequence gener-
ation and holds potential for broader applications in RNA,
DNA, and other domain-specific generative modeling tasks.

2. Method
In this section, we derive the probabilistic model underlying
our inverse folding method, starting with the simplest for-
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Figure 1. Probabilistic graphical model for the denoising process
in discrete diffusion. See Section 2.1 for details.

mulation for the denoising steps in diffusion. The problem
setup is detailed in Appendix B.1.

2.1. Probabilistic Model for Discrete Denoising
Diffusion

We seek a transition probability P (x0|xT ), which allows
sampling the discrete protein sequence x0 given its noisy
counterpart xT . While single-step denoising has been
widely studied in biological contexts (Sumi et al., 2024;
Sevgen et al., 2023; Karimi et al., 2020), recent advances
in iterative denoising via discrete diffusion language mod-
eling (Ho et al., 2020; Austin et al., 2021) have introduced
new directions for bio-sequence generation (Ellington et al.,
2024; Sun et al., 2024; Zou et al., 2024; Wang et al., 2024).
These models estimate the marginal P (x0|xT ) through in-
termediate variables xt for t ∈ [1, T − 1] (Ho et al., 2020;
Austin et al., 2021), with the joint probability expressed as
Equation 1 and demonstrated in Figure 1a.

P (x0, . . . , xt−1, xt, . . . , xT−1|xT ) =
∏

t∈[1,T ]

P (xt−1|xt).

(1)
Here, P (xt−1|xt) is the simplest form of a denoiser that
assumes a fully Markovian reverse transition for a single
reverse diffusion step from time t to t − 1 , where a dis-
crete sequence xt ∈ AL is denoised into a cleaner version
xt−1 (here A is a set of 20 standard amino-acids). As the
noise depends on the time-step t, directly learning an effec-
tive transition function for P (xt−1|xt) is challenging (Ho
et al., 2020; Austin et al., 2021). To address this, recent
works (Austin et al., 2021; Zheng et al., 2023a; Sahoo et al.,
2024) introduce an intermediate variable to factorize the
model. Following this strategy, we define x̂0⟨t⟩ as a crude
estimate of the clean data x0 given the noisy input xt (Figure
1b), leading to a joint probability,

P (xt−1, x̂0⟨t⟩ | xt) = P (x̂0⟨t⟩ | xt) · P (xt−1 | x̂0⟨t⟩, xt).
(2)

Such factorization provides us with two conditionals–
P (x̂0⟨t⟩ | xt) and P (xt−1 | x̂0⟨t⟩, xt). For the remain-
ing discussion of this article, we call the former one as
the denoising probability and the later as the refinement

probability distribution, respectively. While it is reason-
able to assume xt−1 ⊥⊥ xt | x̂0⟨t⟩

(
leading to P (xt−1 |

x̂0⟨t⟩, xt) = P (xt−1 | x̂0⟨t⟩)
)
, this can subsequently be-

come a quite strong assumption about the accuracy of the
samples from the denoiser x̂0⟨t⟩ ∼ P (x̂0⟨t⟩ | xt). We relax
this assumption in our design. Now we get the transition
probability by marginalizing over x̂0⟨t⟩,

P (xt−1 | xt)

=
∑
x̂0⟨t⟩

P (xt−1, x̂0⟨t⟩ | xt)

=
∑
x̂0⟨t⟩

P (x̂0⟨t⟩ | xt) · P (xt−1 | x̂0⟨t⟩, xt)

= Ex̂0⟨t⟩∼P (x̂0⟨t⟩|xt)P (xt−1 | x̂0⟨t⟩, xt).

(3)

2.2. Uncertainty-Aware Guidance
In this section, we introduce uncertainty estimation on se-
quence data as a way to guide discrete diffusion. While var-
ious uncertainty estimation approaches could be integrated
into our framework (Liu et al., 2020; Gawlikowski et al.,
2023; Kristiadi et al., 2021; Hie et al., 2020), we follow the
supervised strategy of Liu et al. (2024), motivated by its
success in natural language generation. Exploring alterna-
tive techniques—including non-learnable and unsupervised
methods—is left for future work.

Prior Uncertainty. We start by defining a random vari-
able ut ∈ {0, 1}N , where uit = 1 indicates the i-th residue
is noisy, and uit = 0 indicates it matches the native sequence
(Figure 1c). Considering ut ⊥⊥ {x̂0⟨t⟩, xt−1} | xt, we can
rewrite the joint probability in Equation 2 as,

P (xt−1, x̂0⟨t⟩, ut | xt) = P (x̂0⟨t⟩ | xt)
· P (ut | xt) · P (xt−1 | x̂0⟨t⟩, ut, xt).

(4)

Considering ut factorizes over residues,

P (xt−1, x̂0⟨t⟩, ut | xt) = P (x̂0⟨t⟩ | xt)

·
∏

i∈[1,N ]

P (uit | xt) · P (xit−1 | x̂0⟨t⟩, uit, xt). (5)

Since uit follows a Bernoulli distribution, we have
E[uit|xt] = P (uit = 1 | xt), which we refer to as the prior
uncertainty estimate and model it as a learnable function.

Posterior Uncertainty. We assume imperfect denoisers,
sampling from which can often lead to erroneous discrete
jumps. Before taking any denoising step we want to esti-
mate how much point-wise uncertainty would change if
we updated the i-th residue with x̂i0⟨t⟩. To model this,
we introduce another latent variable vt ∈ {0, 1}N repre-
senting the estimated per-residue correctness of x̂0⟨t⟩, with
vt⊥⊥{xt, xt−1, ut} | x̂0⟨t⟩ (Figure 1d). The joint probability
in Equation 5 then becomes,

2



Uncertainty-Aware Discrete Diffusion Improves Protein Design

P (xt−1, x̂0⟨t⟩, ut, vt | xt) = P (x̂0⟨t⟩ | xt)

·
∏

i∈[1,N ]

P (uit | xt) · P (vit | x̂0⟨t⟩)

· P (xit−1 | uit, vit, x̂0⟨t⟩, xt).

(6)

Here the expectation E[vit|x̂0⟨t⟩] = P (vit = 1 | x̂0⟨t⟩) is our
point-wise posterior uncertainty estimate.

Together, uit and vit form a prior-posterior uncertainty sig-
nal over the i-th residue— E[uit | xt] estimates existing
uncertainty in xit, while E[vit | x̂0⟨t⟩] estimates uncertainty
after updating with x̂i0⟨t⟩. We can now marginalize over
both variables to obtain the transition probability,
P (xt−1 | xt) =

∏
i∈[1,N ]

P (xit−1 | xt)

= Ex̂0⟨t⟩∼P (x̂0⟨t⟩|xt)

[ ∏
i∈[1,N ]

∑
uit,v

i
t∈{0,1}

P (uit | xt)

· P (vit | x̂0⟨t⟩) · P (xit−1 | uit, vit, x̂0⟨t⟩, xt)
]
.

(7)

2.3. Conditioning on 3D Structure
Since we aim to generate a protein sequence xt−1 ∈ A
given its 3D conformation ψ ∈ RL×N×3, we additionally
condition the transition probability P (xt−1 | xt) on ψ. This
modifies the Equation 7 as,
P (xt−1 | xt, ψ) =

∏
i∈[1,N ]

P (xit−1 | xt, ψ)

= Ex̂0⟨t⟩,ψ∼P (x̂0⟨t⟩|xt,ψ)

[ ∏
i∈[1,N ]

∑
uit,v

i
t∈{0,1}

P (uit | xt, ψ)

· P (vit | x̂0⟨t⟩, ψ) · P (xit−1 | uit, vit, x̂0⟨t⟩, xt)
]
.

(8)

Now our prior and posterior uncertainty estimates become
E[uit | xt, ψ] = P (uit = 1 | xt, ψ) and E[vit | x̂0⟨t⟩, ψ] =
P (vit = 1 | x̂0⟨t⟩, ψ), respectively.

2.4. Parameterization and Optimization
In this section, we describe how we parameterize the transi-
tion probability in Equation 8. We discuss our full frame-
work as comprising five modules: (1) a structure encoder
Estθ1(·), (2) a sequence encoder Eseqθ2

(·), (3) a sequence de-
coder Dseq

θ3
(·), (4) an uncertainty estimator Uθ1,θ2,ϕ(·), and

(5) a refinement module R(·). All modules except R(·) are
learnable and parameterized by θ1, θ2, θ3, and ϕ. We also
use a single uncertainty estimator to model both prior and
posterior uncertainty estimates.
Denoiser Parameterization. For the first three modules,
we adopt AIDO.ProteinIF (Sun et al., 2024), a state-of-
the-art discrete diffusion-based inverse folding method.
AIDO.ProteinIF uses ProteinMPNN-CMLM (Zheng et al.,
2023b) as Estθ1(·), which also produces the initial sequence
estimate xT which is then iteratively refined, similar to other
leading methods (Zheng et al., 2023b; Wang et al., 2024).

Structure 
Encoder …

(ProteinMPNN-
CMLM)

All mask tokens
=…<MASK><MASK><MASK>…

Initial estimate sequence
=…<A><I><H>…

Structure encoding

(Sampling)

(Pred. 
Probab.)

Refinement 
module …

AIDO.Protein
Encoder  ..

Decoder …

AIDO.Protein
Encoder ..

Classifier …

AIDO.Protein
Encoder ..

Classifier …

Input 3D structure

(Denoiser)

(Uncert. estimator)

(Uncert. estimator)

More accurate 
estimate

(i.e., partially 
denoised)

(Pred. 
Probab.)

Figure 2. Overall architecture of our proposed method. Here,
(xT , e

st) = Est
θ1
(xM , ψ), eseqt = Eseq

θ2
(xt), and êseqt =

Eseq
θ2

(x̂0⟨t⟩). See Section 2.4 for details.

Eseqθ2
(·) is the encoder of AIDO.Protein–a 16B parameter

protein language model, while Dseq
θ3

(·) is a lightweight trans-
former (Vaswani, 2017) that fuses structure and sequence
representations. At each time-step t, we obtain a crude
estimate x̂0⟨t⟩ from xt as,

x̂0⟨t⟩ = Dseq
θ3

(Eseqθ2
(xt), Estθ1(xM , ψ)), (9)

where xM ∈ {<MASK>}L denotes a fully masked sequence
with all residue labels unknown. We use xM alongside
the structure ψ as input to ProteinMPNN-CMLM, ensur-
ing the structure encoding depends solely on ψ. Unlike
xt, where each xit is a noisy but valid amino acid, xM
contains no residue information. Equation 9, represent-
ing the denoiser probability Pθ1,θ2,θ3(x̂0⟨t⟩ | xt, ψ), can
be formulated as both deterministic or stochastic via sam-
pling temperature (Sun et al., 2024; Wang et al., 2024).
Unlike AIDO.ProteinIF, which uses time-dependent struc-
ture encoding Estθ1(xt, ψ), we fix it as Estθ1(xM , ψ), enabling
caching and reducing computation. Empirically, this simpli-
fication does not affect performance.
Uncertainty Estimator Parameterization. To leverage
the learned priors from the structure and sequence encoders,
we parameterize the uncertainty estimator Uθ1,θ2,ϕ(·) with
θ1, θ2, and ϕ. This allows direct prediction of the prior and
posterior uncertainty for residue i as,

E[uit | xt, ψ] = Uθ1,θ2,ϕ(xt, xT , ψ)i,
E[vit | x̂0⟨t⟩, ψ] = Uθ1,θ2,ϕ(x̂0⟨t⟩, xT , ψ)i,

(10)

which can further be expanded as,

E[uit | xt, ψ] = Ûϕ(Eseqθ2
(xt), Estθ1(xM , ψ))

i

E[vit | x̂0⟨t⟩, ψ] = Ûϕ(Eseqθ2
(x̂0⟨t⟩), Estθ1(xM , ψ))

i,
(11)
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where Ûϕ(·) ∈ [0, 1] is a soft binary classifier, parameter-
ized by ϕ, that uses structure and sequence encodings to
predict point-wise uncertainty probabilities.

Refinement Module. We design the refinement module
R(·) as a simple, non-learnable function based on the esti-
mated point-wise uncertainties,

xit−1 = R(xt, x̂0⟨t⟩, ψ)
i

=

{
x̂i0⟨t⟩ if E[uit | xt, ψ] > E[vit | x̂0⟨t⟩, ψ]
xit otherwise .

(12)

Equation 12 updates residue i with x̂i0⟨t⟩ only if it reduces
the estimated uncertainty. This design eliminates the need
for a common hyperparameter—the number of tokens de-
noised per step—and makes our method less sensitive to the
number of denoising steps, as uncertainty estimates serve
as an implicit stopping criterion. As a result, our frame-
work partially reduces the cost of hyperparameter tuning. In
future work, we plan to explore learnable alternatives for
R(·).

Table 1. Quantitative evaluation on CATH 4.2 dataset in three dif-
ferent settings. Best and second best scores shown in bold and
italic fonts, respectively. Here “PMPNN”= ProteinMPNN.

Models
Short chains Single chains All

PPL ↓ AAR (%) ↑ PPL ↓ AAR (%) ↑ PPL ↓ AAR (%) ↑

StructTrans 8.39 28.14 8.83 28.46 6.63 35.82
GVP 7.23 30.60 7.84 28.95 5.36 39.47
PMPNN 6.21 36.35 6.68 34.43 4.61 45.96
PMPNN-CMLM 7.16 35.42 7.25 35.71 5.03 48.62
PiFold 6.04 39.84 6.31 38.53 4.55 51.66
LM-Design 7.01 35.19 6.58 40.00 4.41 54.41
DPLM - - - - - 54.54
AIDO.ProteinIF 4.29 38.46 3.18 58.87 3.20 58.60

Ours 4.86 40.00 3.19 61.16 3.24 60.93

Optimization. We study both individually and jointly opti-
mized models for the denoiser (parameterized by θ1, θ2, θ3)
and the uncertainty estimator (parameterized by θ1, θ2, ϕ).
We first perform individual optimization by using the pub-
licly available AIDO.ProteinIF model (Sun et al., 2024)1

and training a separate uncertainty estimator with binary
classification, updating only ϕ while freezing θ1 and θ2. We
then jointly fine-tune all parameters with a multi-objective
setup combining discrete diffusion (Austin et al., 2021) and
classification losses. The best performance is achieved by
sampling with individually trained models and refining with
jointly trained ones—consistent with prior work showing
the benefit of starting from reasonable initial estimates (Sun
et al., 2024; Zheng et al., 2023b; Wang et al., 2024).

1https://huggingface.co/genbio-ai/AIDO.ProteinIF-16B

Table 2. Quantitative evaluation on TS50 and TS500 benchmark
datasets. Best and second best scores shown in bold and italic
fonts, respectively. Here “PMPNN”= ProteinMPNN.

Models TS50 TS500

PPL ↓ AAR % ↑ PPL ↓ AAR % ↑

GVP 4.71 44.14 4.20 49.14
PMPNN 3.93 54.43 3.53 58.08
PMPNN-CMLM 3.60 54.84 3.46 57.44
PiFold 3.86 58.72 3.44 60.42
LM-Design 3.82 56.92 2.13 64.50
AIDO.ProteinIF 2.93 66.19 2.68 69.66

Ours 2.86 68.85 2.59 71.18

3. Results and Discussion
We evaluate our method on standard benchmarks—CATH-
4.2 (Orengo et al., 1997), TS50 (Li et al., 2014), and
TS500 (Li et al., 2014)—and compare it with several state-
of-the-art baselines (Appendix C.3). Results in Tables 1
and 2 report performance using perplexity (PPL) and se-
quence recovery (or amino acid recovery, AAR) (Zheng
et al., 2023b; Wang et al., 2024); metric and dataset details
are provided in Appendix C.1 and C.2.

On the CATH-4.2 dataset, our method performs consis-
tently well across all three standard evaluation settings (Ap-
pendix C.2), achieving the highest AAR in each. It im-
proves over AIDO.ProteinIF by 1.54% on short sequences,
2.29% on single chains, and 2.33% overall. Our method also
achieved highly competitive scores in perplexity, ranking
second across all CATH-4.2 settings. On the full test set,
it achieves a PPL of 3.28, closely behind AIDO.ProteinIF.
Investigating the divergence between PPL and AAR remains
future work.

To assess generalizability, we evaluate our method on TS50
and TS500—two distinct test-only datasets (Li et al., 2014;
Zheng et al., 2023b). Our model achieves state-of-the-art
AAR (68.85% on TS50, 71.18% on TS500), demonstrating
strong generalization across diverse proteins. It also attains
the best PPL on TS50 (2.88) and the second-best on TS500
(2.62), outperforming AIDO.ProteinIF (2.68).

4. Conclusion
We present an uncertainty-aware discrete denoising diffu-
sion model for structure-conditioned protein sequence gen-
eration. By employing a prior-posterior uncertainty signal-
ing mechanism, our approach enables adaptive and inter-
pretable denoising trajectories that account for residue- and
timestep-specific ambiguity. Through modular integration
with pretrained large language model and structure encoder,
and joint multi-objective optimization, our method achieves
significant improvements over existing baselines. These
results highlight the potential of incorporating uncertainty-
awareness into discrete generative frameworks for advanc-
ing sequence design across biomolecular domains.
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A. Related Work
Early breakthroughs in this space established autoregressive models as a powerful design paradigm. ProteinMPNN (Dauparas
et al., 2022) exemplified this direction, achieving state-of-the-art recovery rates across a range of structural motifs and design
contexts, including oligomers and binders. Its ability to generalize across diverse topologies positioned it as a widely adopted
baseline. To address the computational inefficiency inherent in autoregressive sampling, PiFold (Gao et al., 2022) proposed
a hybrid framework that incorporates expressive backbone encodings with an accelerated decoding scheme, delivering
order-of-magnitude speedups while preserving accuracy.

Parallel to these efforts, large-scale structure-supervised training became a promising strategy. Leveraging AlphaFold2-
predicted structures (John et al., 2021), Hsu et al. (2022) trained transformer architectures to directly map backbone
geometries to plausible sequences, allowing the model to internalize structural priors from millions of inferred conformations.
This formulation decoupled the reliance on experimental structures and enabled broader generalization.

Pretrained language models have also been adapted for inverse folding by conditioning on structure-derived features.
ESM-1b and ESM-1v (Nadav et al., 2023; Meier et al., 2021) served as foundational models, later extended in Zheng et al.
(2023b) for structure-guided generation. These approaches benefit from linguistic pretraining on massive protein corpora,
providing rich residue-level priors that can be fine-tuned for geometry-aware decoding.

More recently, generative models based on diffusion dynamics have introduced a new formulation. Diffusion Probabilistic
Language Models (DPLMs) (Wang et al., 2024) model inverse folding as a discrete denoising process, gradually refining
corrupted sequences toward structure-compatible outputs. This technique introduces temporal uncertainty modeling, which
facilitates a smoother posterior landscape and often yields improved diversity and stability in generation.

At the high end of model capacity, AIDO.Protein (Sun et al., 2024) utilizes a 16-billion parameter mixture-of-experts
framework pretrained across multiple sequence and structure tasks. Its architecture allows conditional computation and
task-specific adaptation, leading to superior performance in benchmark evaluations and improved coverage of structurally
diverse regions. Given the rapidly evolving landscape, benchmarking remains a critical bottleneck. ProteinInvBench (Gao
et al., 2023) was introduced to standardize evaluation across structure-conditioned generation methods. It incorporates a
wide spectrum of tasks—ranging from native sequence recovery to functional design—and includes unified metrics and
competitive baselines, supporting reproducibility and comparability.

B. Preliminaries
B.1. Problem Definition

The task of protein inverse folding involves determining a plausible amino acid sequence that would adopt a given three-
dimensional (3D) structure. Let the protein conformation be denoted by ψ = {ψ1, ψ2, . . . , ψL}, where each ψi ∈ RN×3

represents the spatial positions of N representative atoms of the i-th residue in 3D space, and L denotes the length of the
protein. The objective is to predict a corresponding primary sequence x = [x1, x2, . . . , xL], where each xi ∈ A is an amino
acid drawn from the standard set A of canonical residues, where | A |= 20.

The inverse folding process can be formulated as learning a function

θ : RL×N×3 → AL,

which takes the structural input and outputs a position-wise distribution over amino acids. Contemporary solutions rely
heavily on neural architectures, particularly graph neural networks (GNNs) and 3D-aware models like convolutional
networks adapted to irregular geometries, due to their capacity to model the intricate spatial and sequential dependencies
inherent in protein structures (Gao et al., 2022; Dauparas et al., 2022; Jing et al., 2020; Hsu et al., 2022).

In many approaches, the protein structure is abstracted as a graph G = (N , E), where each node ni ∈ N corresponds
to a residue and is annotated with geometric information (e.g., backbone coordinates), and each edge eij ∈ E encodes
relational features such as pairwise distance, angle, or biochemical interactions between residues i and j (Dauparas et al.,
2022; Jing et al., 2020; Mahbub & Bayzid, 2022). This graph-based formalism allows the model to integrate local and
non-local structural cues during sequence prediction.

Once trained, such models can infer a compatible sequence for a given structure either by sequentially choosing amino acids
in an autoregressive fashion or by generating all residues simultaneously through a non-autoregressive mechanism, e.g.,

7



Uncertainty-Aware Discrete Diffusion Improves Protein Design

using variational autoencoders. Sampling-based techniques, including Monte Carlo simulations, and iterative refinement
methods including denoising diffusion, are often used to explore diverse sequence candidates that conform to the same
fold (Dauparas et al., 2022; Wang et al., 2024; Liu & Kuhlman, 2006).

C. Experimental Setup
C.1. Evaluation Metrics

We evaluate our model’s performance in the protein inverse folding task using two principal metrics: Perplexity (PPL) and
Amino Acid Recovery (AAR).

Perplexity (PPL). PPL provides a measure of the model’s predictive certainty over amino acid choices and is commonly
used in sequence modeling tasks (Chen et al., 1998). In the context of protein design, lower perplexity values suggest that
the model assigns high probabilities to native-like sequences, indicating that the learned distribution aligns well with that of
natural proteins (Zheng et al., 2023b).

For autoregressive models, PPL is generally calculated as,

PPLAR = exp

(
− 1

L

L∑
i=1

logP (xi | x<i, ψ)

)
, (13)

where x<i denotes the sequence prefix up to position i− 1, and ψ ∈ RL×N×3 represents the 3D structural context of the
protein, where L is the number of residues in the protein and N is the number of representative atoms per-residue.

Since our model leverages a non-autoregressive, iterative refinement approach, we instead use a modified formulation where
the predictions are conditioned on a noisy version of the native sequence,

PPLNAR = exp

(
− 1

L

L∑
i=1

logP (xit−1 | xt, ψ)

)
, (14)

Here, xt denotes a perturbed (noisy) variant of the true sequence at denoising time-step t, and P (xit−1 | xt, ψ) is the model’s
estimated probability of observing residue xit−1 at position i and time-step t− 1 given xt and ϕ.

Amino Acid Recovery (AAR). AAR, also known as sequence recovery rate, is widely recognized as the standard metric
for structure-conditioned protein design (Sun et al., 2024). It measures the typical percentage of residues in a predicted
sequence that match their counterparts in the native sequence for a given protein structure. For a protein of length L, AAR is
defined as:

AAR =
1

L

L∑
i=1

1(xit = xi0)× 100%, (15)

where xi0 is the native amino acids at position i and xit is its estimate at denoising time-step t, and 1(xit = xi0) is an indicator
function equal to 1 if the two residues match, and 0 otherwise. AAR is reported as the median over all the sequences in a
test set (Zheng et al., 2023b; Wang et al., 2024; Dauparas et al., 2022).

C.2. Benchmark Datasets

We conduct our experiments using three established benchmarks in the protein inverse folding literature: CATH-4.2 (Orengo
et al., 1997), TS50 (Li et al., 2014), and TS500 (Li et al., 2014). Comprehensive statistics for these datasets are presented in
Table 3. Among them, CATH-4.2 is a commonly adopted dataset that serves as the primary source for training, validation,
and testing in numerous prior works (Gao et al., 2022; Dauparas et al., 2022; Wang et al., 2024; Sun et al., 2024). All protein
sequences in this benchmark are capped at 500 amino acids in length. Within the CATH-4.2 test set, earlier studies have
delineated three experimental subsets: sequences under 100 residues (termed “short sequences”), sequences that belong to
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a single protein chain (having only one entry in CATH 4.2, comprising roughly 92.86% of the test set), and the full test
set itself. The short-sequence subset includes proteins with fewer than 100 amino acids, accounting for about 16.5% of
all test samples. To evaluate generalization beyond the training domain, we additionally assess performance on TS50 and
TS500. TS50 contains only 50 proteins, with the longest sequence spanning 173 residues. In contrast, TS500 introduces
significant sequence length diversity, ranging from just 43 to as long as 1,636 residues. Following prior protocols (Zheng
et al., 2023b; Gao et al., 2022), we use TS50 and TS500 exclusively for evaluation, relying on models trained solely on the
training portion of CATH-4.2.

Table 3. Overview of dataset composition and sequence length distribution across CATH-4.2, TS50, and TS500. Columns: “Sample count”
= number of sequences, “Residue count” = number of total amino acids, “Avg.” = average sequence length, “Med.” = median sequence
length, “S.D.” = standard deviation of sequence lengths.

Dataset Split Sample count Residue count Avg. Med. S.D.

CATH-4.2

Train 18,024 3,941,775 218.7 204.0 109.93
Validation 608 105,926 174.2 146.0 92.44
Test 1,120 181,693 162.2 138.0 82.22
All 19,752 4,229,394 214.1 196.0 109.06

TS50 Test 50 6,861 137.2 145.0 25.96
TS500 Test 500 130,960 261.9 225.0 167.30

C.3. Baselines for Comparison

To benchmark our method, we compare against eight state-of-the-art approaches that exemplify diverse modeling paradigms
for structure-conditioned protein sequence generation: AIDO.Protein (Sun et al., 2024), ProteinMPNN (Dauparas et al.,
2022), its non-autoregressive counterpart ProteinMPNN-CMLM (Zheng et al., 2023b), LM-Design (Zheng et al., 2023b),
DPLM (Wang et al., 2024), PiFold (Gao et al., 2022), GVP (Jing et al., 2020), StructTrans (Ingraham et al., 2019).

AIDO.Protein (Sun et al., 2024) leverages large-scale pretraining—spanning 16 billion parameters—and adapts to the
inverse folding task through a discrete diffusion modeling objective that is explicitly conditioned on structural input.
ProteinMPNN (Dauparas et al., 2022), an autoregressive model, generates amino acid sequences sequentially based on
structural input, whereas ProteinMPNN-CMLM (Zheng et al., 2023b) replaces the autoregressive decoding with a masked
prediction strategy via the conditional masked language modeling (CMLM) objective (Ghazvininejad et al., 2019), yielding
improved sequence recovery. Built similarly on the CMLM framework, LM-Design (Zheng et al., 2023b) augments
non-autoregressive decoding with protein language model pretraining to further boost performance on inverse folding.
DPLM (Wang et al., 2024) takes a different direction by introducing discrete diffusion objectives, enabling more flexible
sequence modeling through iterative refinement. PiFold (Gao et al., 2022) combines expressive structural features with
efficient autoregressive decoding, offering both competitive accuracy and inference speed. GVP (Jing et al., 2020) extends
classical neural architectures by incorporating geometric vector perceptrons, enabling operations directly on 3D Euclidean
features. StructTrans (Ingraham et al., 2019) adopts a conditional generation framework over protein graphs to synthesize
sequences compatible with given backbone structures.
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