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Abstract

We consider the problem of classification with a (peer-to-peer) network of heterogeneous and
partially informative agents, each receiving local data generated by an underlying true class,
and equipped with a classifier that can only distinguish between a subset of the entire set
of classes. We propose an iterative algorithm that uses the posterior probabilities of the
local classifier and recursively updates each agent’s local belief on all the possible classes,
based on its local signals and belief information from its neighbors. We then adopt a novel
distributed min-rule to update each agent’s global belief and enable learning of the true
class for all agents. We show that under certain assumptions, the beliefs on the true class
converge to one asymptotically almost surely. We provide the asymptotic convergence rate,
and demonstrate the performance of our algorithm through simulation with image data and
experimented with random forest classifiers and MobileNet.

1 INTRODUCTION

With the improvement of computation and communication technologies comes a new paradigm of problem
solving with distributed intelligent agents. For example, Internet of Things (IoT) Li et al. (2015) retrieve
information from sensors and process it at a centralized server. Edge Computing Shi et al. (2016) allows
data produced by IoT devices to be processed locally, taking advantage of distributed computing to reduce
communication latency to the hub and to improve data security.

Classification over a distributed network of intelligent sensor agents is essential to many applications, such as
object or image identification González-Briones et al. (2018), anti-spam networks Luo et al. (2007), object
tracking, etc. In these applications, the agents receive and process signals in real time. However, the
distributed agents can be restricted by their computation and communication capabilities. Thus, given the
private signals that each sensor collects, it is important to design e�cient online (i.e., real-time) algorithms
for the information of each agent to be integrated over time and propagated through the network.

In addition to communication and computation challenges, distributed agents often possess partial knowledge
and must make decisions within constraints. For example, in third-generation surveillance systems Valera &
Velastin (2005) with a large number of monitoring points, camera sensors are limited by their field of view
Patricio et al. (2006). Environmental and industrial monitoring involve agents with diverse sensor types
collecting various data Valverde et al. (2011). Multi-agent object recognition, first introduced by Yanai &
Deguchi (1998), utilizes low-cost agents identifying only a single class, to achieve wide-range recognition by
increasing the number of agents and including human agents YeeWai et al. (2020). In activity recognition
scenarios, various sensors, each limited in its ability to obtain full information, e.g., accelerometer, gyroscope,
and magnetometer in mobile phones, are employed to classify human activities, and various vehicle sensors
are utilized to classify vehicles Smith et al. (2017).

Modern machine learning models, such as deep neural networks with millions or billions of parameters (e.g.,
Simonyan & Zisserman (2014), He et al. (2016)), can achieve high performance in classification tasks for a
large number of classes. However, they are very expensive to be utilized in an online setting, requiring a large
amount of training and inference resources. The constraints of computational resources make the learning
and the implementation of such machine learning models very challenging on distributed networks of sensors,

1



Under review as submission to TMLR

such as robotic networks, wireless sensor networks, or IoT. Additionally, some models are pre-trained and
developed, but might only be adequate for a subset of the given classification tasks. With the limitations
described above, we ask: Can we utilize a network of partially informative machine learning models, each
specialized in distinguishing a small number of classes, to achieve real-time identification of the true class in
the entire network?

Contributions

In this paper, we aim to address the online distributed classification problem where heterogeneous agents are
limited in computational resources and partially informative, i.e., their local classifiers can only distinguish
between a subset of classes but provide no information on the classes outside that subset.

We propose a local update rule that can be applied with any local classifier generating posterior probabilities
on the set of possible classes. Our local update rule incorporates data arriving in real-time to enhance the
stability of estimation performance and robustness to noise.

We leverage the latest concepts from non-Bayesian distributed hypothesis testing and adopt a novel min-based
global update rule. Utilizing only the partially informative belief vectors, each agent can asymptotically
identify the true class given observations over time. We analyze the asymptotic convergence rate of the beliefs
of agents, demonstrating that they can collectively reject the false classes exponentially fast. Finally, we
show by simulation that our proposed approach outperforms other aggregation rules such as average and
maximum.

Related Literature

Distributed non-Bayesian social learning

Distributed non-Bayesian learning considers the problem of identifying the true class over a network of
distributed (peer-to-peer) agents. Each agent maintains a belief vector over a set of hypotheses and updates
the beliefs sequentially. An agent’s belief update is considered non-Bayesian as it treats the beliefs generated
through interacting with neighbors as Bayesian priors rather than conditioning on all information available
Jadbabaie et al. (2012).

Prior works assume each agent has exact and complete knowledge of the local likelihood functions of all
classes, known as the private signal structure (e.g., Jadbabaie et al. (2012); NediÊ et al. (2017); Lalitha
et al. (2018); Mitra et al. (2021)). Other works attempt to estimate these likelihood functions (e.g., Hare
et al. (2021)). These assumptions necessitate domain knowledge of the generative mechanism and all sensor
characteristics and can cause model misspecifications or introduce additional uncertainties. Distributed
non-Bayesian learning then considers scenarios where subsets of classes are observationally equivalent (i.e., the
conditional likelihood distributions of given signals are identical) at each agent, which necessitates cooperative
decision-making to identify the true class.

Our problem setup is fundamentally di�erent from the existing work in distributed non-Bayesian social
learning. Instead of relying on complete knowledge of the likelihood function and signal structure, our
work leverages advancements in machine learning and directly utilizes the posterior probability provided by
classifiers to identify the true class. These classifiers can include both discriminative models (such as random
forests and neural networks, which often outperform generative models) and generative models that utilize
likelihood functions (such as Naive Bayes). We assume that each agent is partially informative, i.e., each can
provide information and distinguish between only a subset of classes while providing no information on the
others. We expand upon these critical di�erences in more detail in Section 3.

Ensemble learning

Ensemble learning Zhang & Ma (2012); Sagi & Rokach (2018) is the generation and combination of multiple
base learners to solve machine learning tasks. Some common output fusion methods are weighting (e.g.,
voting, Bayesian combination, and linear combination), and meta-learning methods (e.g., mixture of experts
and stacking).
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Weighting combines model outputs by assigning weights to each base model and is used in popular models
such as Boosted Trees and Random Forests Sagi & Rokach (2018). However, the weighting approach is most
suitable when the performance of the base models is comparable. It is not suitable for the scenario that we
are considering, where each agent only provides information on a subset of classes.

Meta-learning models contain more than one learning phase. Mixture of experts is a learning technique
where a task is divided into multiple sub-tasks and one or a few experts are selected from an ensemble of
learners to solve specific sub-tasks Yuksel et al. (2012). Mixture of experts typically requires a trained gating
mechanism or a centralized manager to select which expert to use given the input. Similarly, stacking trains
an ensemble of models and learns a model to combine the predictions. In this work, we propose a local
update rule to incorporate predictions over time, and utilize a global update rule that requires no training and
can achieve learning even when the agents are fully distributed. In a fully connected network, our problem
essentially simplifies to an instance of ensemble learning. In this case, our proposed update rule and min-rule
play significant roles in ensuring robust performance, where the update rule and the min-rule contribute to
e�ective real-time learning and the rejection of false classes to enhance overall classification accuracy.

Distributed classification

In their work of distributed classification, Kotecha et al. (2005); Predd et al. (2006) consider that information
from all sensors is gathered at a fusion center. In Kokiopoulou & Frossard (2010), a fully distributed
consensus-based approach is proposed considering multi-observations of the same object and proposes a
non-parametric approach; other works, such as Forero et al. (2010), cast the distributed learning problem
as a set of decentralized convex optimization subproblems but are classifier specific and cannot be used for
complex models such as deep neural networks or heterogeneous models.

Distributed learning is a critical research field, especially in the context of multi-agent systems where a group
of agents collaborates to achieve a shared goal. Our problem uniquely considers a fully distributed network of
agents aiming to discern the true class of the world using their local partially informative classifier of any
type, through communication and cooperation with neighboring agents.

2 PROBLEM FORMULATION

2.1 Observation and Agent Model

We begin by defining � = {◊1, ◊2, . . . , ◊m} as the set of m œ N possible classes of the world, where each
◊i œ � is called a class. At each time-step t œ N, n œ N data points {x1,t, . . . , xn,t} are generated from an
unknown true class ◊ú œ �. Each data point xi,t œ X µ Rd is an input vector within a d-dimensional (d œ N)
finite input space. We assume that these data points are identical and independently distributed across time.
However, at a given time step, the data points may be correlated.

Consider a group of n œ N agents (e.g., robots, sensors, or people). At each time step t, each agent i observes
a private data sample xi,t œ X . Each agent knows the set of possible classes � and is equipped with a locally
pre-trained approximated mapping function (classifier) fi : X æ Pi, where Pi µ R|�i| is the probability
measure such that

q
◊œ�i

pi(◊|x) = 1. This classifier transforms the input x œ X into posterior probabilities
{pi(◊|x) œ Pi : ’◊ œ �i}, which represents the probability of class ◊ œ �i given the observed input x. Due to
limitations (such as during training), each agent can only distinguish a subset of the classes �i ™ �, while
providing no information on the other classes � \ �i. An agent is considered partially informative if it can
only distinguish a proper subset of all possible classes.

Definition 2.1. (Partially Informative) An agent i, equipped with classifier fi, is partially informative if
�i µ �.

These agents communicate via an undirected graph Ga = (Va, Ea), where Va = {1, 2, . . . , n} is the set of
vertices representing the agents and Ea ™ Va ◊ Va is the set of edges. An edge (i, j) œ Ea indicates that
agent i and j can communicate with each other. The neighbors of agent i œ Va, including agent i itself, are
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represented by the set Ni = {j œ Va : (i, j) œ Ea} fi {i}, and is termed the inclusive neighborhood of agent i.
In this work, we assume the communication graph Ga is connected and time-invariant. 1

Our objective in this work is to design distributed learning rules that allow each agent i œ V , equipped with a
partially informative classifier fi to identify the true class ◊ú of the world asymptotically almost surely by
communicating and collaborating with its neighbors.

2.2 Quality of Classifiers

Considering the capabilities of each agent and its corresponding local classifier, we introduce the following
notations to describe the distinct roles of agents.
Definition 2.2. The discriminative score used to evaluate the capability of a classifier between two classes
◊p œ �i and ◊q œ �i is given by

Di(◊p, ◊q) ,
ÿ

xœX
pi(x|◊p) log pi(◊p|x)/pi(◊p)

pi(◊q|x)/pi(◊q) . (1)

Here, pi(x|◊p) is the likelihood of seeing data x given that class ◊p œ �i is true, and ’◊ œ �i, pi(◊) is the
prior probability of class ◊ being true without any conditions. To ensure the definition is valid, we assume
that the posterior and prior probability of each agent is non-zero, i.e., pi(◊|x) > 0, pi(◊) > 0, ’◊ œ � and
’x œ X . This discriminative score can be interpreted as the expected information per sample in favor of ◊p

over ◊q when ◊p is true.

Using the discriminative score, we define a source agent.
Definition 2.3. An agent i is said to be a source agent for a pair of distinct classes ◊p, ◊q œ � if the
discriminative score Di(◊p, ◊q) > 0. The set of source agents for ◊p, ◊q is denoted as S(◊p, ◊q). An agent i is
said to be a source agent for a set of classes �i ™ � if agent i is a source agent for all pairs of ◊p, ◊q œ �i.

A source agent for a pair ◊p, ◊q œ � can distinguish between the pair of classes ◊p, ◊q using its private signals
x and its posterior pi(◊|x) obtained through its mapping function, i.e., classifier fi. We assume each agent
can distinguish between the classes in �i, as follows.
Assumption 2.4. Each agent i œ Va is a source agent of classes �i ™ � and �i ”= ÿ.

The agents can obtain the approximated mapping function fi through discriminative methods or generative
methods. Classifiers that do not directly support probability predictions, such as Support Vector Machine
and k-Nearest Neighbors, can use calibration methods such as Niculescu-Mizil & Caruana (2005); Platt et al.
(1999) to obtain the probability for each respective label.

In order for all agents to identify the true class, for each pair of classes, there must exist at least one agent in
the network who can distinguish that pair. In our distributed and partially informative scenario, we consider
the following conditions.
Assumption 2.5. (Global Identifiability)[Mitra et al. (2021)] For each pair ◊p, ◊q œ � such that ◊p ”= ◊q, the
set S(◊p, ◊q) of agents that can distinguish between the pair ◊p, ◊q is non-empty.

The global identifiability assumption is necessary under independent signals and is standard in related social
learning literature (e.g., Jadbabaie et al. (2012), ensuring no class ◊ ”= ◊ú is observationally equivalent to ◊ú

for all agents in the network.

Additionally, we define the confusion score of agent i, which captures the following: given data generated by
class ◊ú ”œ �i, whether agent i believes the data belongs to class ◊p œ �i or ◊q œ �i.
Definition 2.6. The confusion score used to evaluate the capability of a classifier between two classes
◊p, ◊q œ �i and ◊ú ”œ �i is given by

D◊ú

i (◊p, ◊q) =
ÿ

xœX
pi(x|◊ú) log pi(◊p|x)/pi(◊p)

pi(◊q|x)/pi(◊q) . (2)

1For broader assumptions regarding communication topology, we direct readers to Mitra et al. (2021).
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Figure 1: Demonstration of one time step of the proposed multi-agent classification algorithm.

If D◊ú

i (◊p, ◊q) > 0, agent i thinks ◊p is more likely to be the true class over ◊q, and thus rejects ◊q from the
set of possible candidate classes of being the true class. If D◊ú

i (◊p, ◊q) < 0, agent i rejects ◊p from the set of
possible candidate classes of being the true class. If D◊ú

i (◊p, ◊q) = 0, agent i cannot reject either ◊p or ◊q.

Note that the discriminative score and confusion score defined above are not required for our algorithm to
obtain estimates, but provide information and performance guarantees on the models. To estimate the scores,
one needs knowledge of the likelihood function pi(x|◊) which is sometimes unknown in real-world applications.
In practice, the likelihood function can be estimated via sampling while fixing the class.

Based on the above discussion, we define a support agent who can assist in rejecting false classes.

Definition 2.7. Consider an agent i such that ◊ú ”œ �i. The agent i is said to be a support agent for a
class ◊ œ �i if there exists some class ◊̂ œ �i \ {◊}, such that the confusion score D◊ú

i (◊̂, ◊) > 0. We denote
the set of support agents who can reject ◊ as U◊ú(◊).

3 Proposed Learning Rules

In this section, we propose our local and global update rules. We include an overview of the update rules in
Fig. 1. First, we propose the local update rule for each agent to update its local belief vectors fii,t for all ◊ œ �,
and discuss how to address the issue with the partially informative classifier of each agent. Subsequently, we
describe the communication and update rules for global belief vectors µi,t for all ◊ œ � of each agent.

3.1 Local Update of Posterior

In this subsection, we first present the derivation leading to the local updates and subsequently discuss
modifications that account for the partial information available to each agent.

Standard non-Bayesian social learning assumes that each agent has knowledge of its local likelihood functions
{pi(·|◊k)}m

k=1 (e.g., Mitra et al. (2021)). However, to obtain the likelihood functions, one has to make
assumptions on the underlying distributions of the data. Here, we propose a method that directly uses the
posterior probabilities from classifiers fi.

We let pi(◊|xi,t) be the posterior probability from the classifier of agent i, upon seeing private data xi,t at
time step t. Note that since each agent i is partially informative (i.e., �i µ �), the probability vector has
dimension |�i|. We use the idea of adjusting a classifier to a new priori probability from Saerens et al. (2002)
and recursively apply it to the outcomes of the classifier. Suppose agent i receives a new data point xi,t at
time-step t. According to Bayes’ theorem, the likelihood of observing xi,t given class ◊ is characterized by

pi(xi,t|◊) = pi(◊|xi,t)pi(xi,t)
pi(◊) , ’◊ œ �i, (3)
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where we directly obtain the posterior probability pi(◊|xi,t) from the trained classifier of agent i, pi(◊) is the
probability of observing class ◊ without any conditions, and pi(xi,t) is the probability of observing data xi,t

without any conditions.

Suppose we want to utilize prior knowledge and adjust the posterior probabilities p̃i(◊|xi,t) with a new prior
distribution p̃i(◊). The adjusted posterior probability p̃i(◊|xi,t) also obeys Bayes’ theorem, with a new prior
p̃i(◊) and a new probability function p̃i(xi,t), i.e.,

p̃i(◊|xi,t) = p̃i(xi,t|◊)p̃i(◊)
p̃i(xi,t)

, ’◊ œ �i. (4)

We assume the likelihood distribution of the underlying generation mechanism does not change, i.e., p̃i(xi,t|◊) =
pi(xi,t|◊). By substituting Equation 3 into Equation 4 and defining gi(xi,t) , pi(xi,t)/p̃i(xi,t), we obtain

p̃i(◊|xi,t) = pi(◊|xi,t)gi(xi,t)
p̃i(◊)
pi(◊) , ’◊ œ �i. (5)

Since
q

◊œ�i
p̃i(◊|xi,t) = 1, we obtain gi(xi,t) = 1/(

q|�i|
k=1 pi(◊k|xi,t) p̃i(◊k)

pi(◊k) ) and consequently, the adjusted
posterior probability p̃i(◊|xi,t) is

p̃i(◊|xi,t) =
pi(◊|xi,t) p̃i(◊)

pi(◊)
q|�i|

k=1 pi(◊k|xi,t) p̃i(◊k)
pi(◊k)

, ’◊ œ �i. (6)

With the above discussion on adjusting posterior probabilities given a new prior, we now describe how
to update the local beliefs of each agent with partially informative classifiers. We define the local belief
fii,t(◊) , p̃i(◊|xi,1, . . . , xi,t), ’i œ Va as the posterior probability of ◊ œ �i after seeing all the data up to
time t. At each iteration t, since we assume the data are i.i.d. given the class, each agent can incorporate
its previously adjusted belief fii,t≠1(◊) as a prior and uses the posterior pi(◊|xi,t), from its classifiers fi, to
update the belief fii,t. Substituting p̃i(◊) = fii,t≠1(◊) into the numerator of Equation 6 and ignoring the e�ect
of the denominator for now, we obtain the unnormalized local belief fîi,t as

fîi,t(◊) = pi(◊|xi,t)
pi(◊) fii,t≠1(◊), ’◊ œ �i. (7)

Intuitively, if seeing the data point xi,t improves the posterior probability of class ◊ œ �i, i.e., pi(◊|xi,t) > pi(◊),
the local belief fîi,t(◊) is increased, compared to its previous local belief fii,t≠1(◊). On the other hand, if
receiving data xi,t suggests the true class is less likely to be ◊ œ �i, i.e., pi(◊|xi,t) < pi(◊), the local belief
fîi,t(◊) is decreased, compared to its previous local belief fii,t≠1(◊).

Since agents are partially informative, in the case that ◊ œ � \ �i, we let

fîi,t(◊) = max
◊kœ�i

fîi(◊k), ’◊ œ � \ �i. (8)

The intuition of this modification is that agent i will have a weaker belief on the classes that are less likely to
be the true class, informed by its classifier; agent i considers that the classes it cannot identify to be equally
likely (i.e., with the same probabilities) of being the true class. This modification ensures that agent i leaves
open the possibility that the true class is one that it cannot identify based on its own classifier.

We apply normalization, such that
q

◊œ� fii,t(◊) = 1, and obtain

fii,t(◊) = fîi,t(◊)qm
k=1 fîi,t(◊k)

, ’◊ œ �. (9)

The local update incorporates only the private observations and beliefs, without any network influence. We
will show in Section 4 that for a source agent i œ S(◊ú, ◊), fii,t(◊) æ 0 almost surely. However, without
communication with neighbors, agents cannot identify ◊ú just yet due to their partially informative classifiers.
We will utilize the global update to propagate the beliefs such that every agent can identify the true class ◊ú.
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3.2 Global Update

We define the global belief vector of an agent i on class ◊ œ � at time t to be µi,t(◊). Each agent determines
the final estimation result using the global belief vector. At each time step t, once the local beliefs fii,t of all
agents i œ Va are updated, all agents perform a round of global update as in Mitra et al. (2021) to update
their global belief vector µi,t as follows:

µi,t(◊) =
min

Ó
{µj,t≠1(◊)}jœNi

, fii,t(◊)
Ô

qm
k=1 min

Ó
{µj,t≠1(◊k)}jœNi

, fii,t(◊k)
Ô , ’◊ œ �. (10)

The intuition behind the update rule is that the agents go through a process of elimination and reject the
classes with low beliefs. In the scenarios with partially informative agents, these agents do not rule out their
locally unidentifiable classes. With the min-update, the source agent i œ S(◊, ◊ú), who can distinguish a
pair of classes ◊, ◊ú with its local classifier, will contribute its information to the agent network and drive its
neighbors’ beliefs on the false class ◊ lower through the min operator. As proven in Mitra et al. (2021), the
min-rule achieves faster asymptotic convergence rates than linear and log-linear updates.

For simplicity of analysis, we assume a connected communication network in this work. However, as
demonstrated by Mitra et al. (2021), network-wide inference can be achieved as long as the source agent is
reachable by other agents in the network. Furthermore, in the case of time-varying communication graphs,
the algorithm remains e�ective when the union of the communication graph is jointly strongly connected. A
similar analysis can be used to show that the update rule in our paper (leveraging posterior distributions
directly instead of likelihoods as in Mitra et al. (2021)) will also work in time-varying networks (as long as
the unions of the networks over bounded intervals of time are connected).

Although we adopt the global min update rule from Mitra et al. (2021), our problem formulation and
theoretical performance guarantees di�er significantly. Firstly, we bridge the gap between distributed
classification and non-Bayesian social learning. Unlike prior works that require precise knowledge of the
underlying generative mechanism and signal structure, we leverage posterior probabilities from classifiers. As
illustrated in Fig. 1, while prior work directly uses outputs from sensors with known signal structures, our
work directly leverages the outputs generated by any classifiers. Our work facilitates the application of both
generative and discriminative classifiers, enhancing model flexibility and applicability. Secondly, our approach
incorporates a unique input structure, where agents are partially informative, i.e., provide information for a
subset of classes. In contrast, traditional social learning requires each agent to have complete likelihood
functions for all possible classes, i.e., {pi(·|◊q)}m

q=1. By adopting the proposed approach, we eliminate the
extensive modeling e�orts required to characterize sensor and signal structures, consequently reducing overall
modeling and training requirements. Thirdly, we identify, define, and quantify the roles of support agents, a
crucial aspect overlooked in prior work. These agents, while not able to directly distinguish the true class,
contribute to rejecting false classes. In particular, we show that the performance is influenced by both source
and support agents in the network, and o�er performance guarantees that demonstrate a strict improvement
over Mitra et al. (2021).

We include the posterior modification, local and global updates of agent i œ Va in Algorithm 1.

4 Analysis of Convergence

In this section, we introduce assumptions and subsequently demonstrate the convergence of the local and
global updates. The proofs of all theoretical results can be found in the appendix.

For the local and global update rules, if the initial belief is zero for any ◊ œ �, the beliefs of ◊ will remain
zero in the subsequent updates. Thus, we assume the initial beliefs to be positive to eliminate this situation.
In addition, to simplify the analysis, we let the assumption be satisfied by uniformly initializing the beliefs of
all classes.
Assumption 4.1. Agent i œ Va has positive initial beliefs and fii,0(◊) = 1

|�| and µi,0(◊) = 1
|�| , ’◊ œ �.

The next results prove the correctness of the proposed local update.
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Algorithm 1 Classification for agent i œ Va

Input: At each time step t, each agent i receives xi,t œ Rp (unlabelled private observation)
Initialization: µi,0(◊) = 1

|�| , fii,0(◊) = 1
|�| , ’◊ œ �

At t = 0, transmit µi,0 to neighbors and receive {µj,0}jœNi

for t œ N do
for every ◊ œ �i do

Obtain posterior probabilities pi(◊|xi,t)
fîi,t(◊) = pi(◊|xi,t)

pi(◊) fii,t≠1(◊)
end for
for every ◊ œ � \ �i do

fîi,t(◊) = max◊kœ�i fîi,t(◊k)
end for
for every ◊ œ � do

fii,t(◊) = fîi,t(◊)qm

k=1
fîi,t(◊k)

µi,t(◊) =
min

)
{µj,t≠1(◊)}jœNi

,fii,t(◊)
*

qm

k=1
min

)
{µj,t≠1(◊k)}jœNi

,fii,t(◊k)
*

end for
Transmit global belief vector µi,t to neighbors
Receive neighbors’ global belief vectors {µj,t}jœNi

end for

Theorem 4.2. Consider an agent i œ S(◊, ◊ú). Suppose Assumptions 2.5 and 4.1 are satisfied, then, the update
rules eqs. (7) to (9) ensure that for any ◊ œ �\{◊ú}(i) fii,t(◊) æ 0 almost surely, (ii) limtæŒ fii,t(◊ú) , fii,Œ(◊ú)
exists almost surely and fii,Œ(◊ú) Ø fii,0(◊ú) > 0.

Theorem 4.2 shows that for a source agent i œ S(◊, ◊ú), its local belief on the false class ◊, fii,t(◊) æ 0 almost
surely, via the proposed local updates. For a source agent, it can reject the false class asymptotically without
the help of any other agents, while keeping the belief on the true class away from zero. In the next result, we
show that for a support agent i œ U◊ú(◊), its local belief on the false class ◊ œ �i goes to zero as well.
Lemma 4.3. Consider an agent i œ U◊ú(◊). Suppose Assumptions 2.5 and 4.1 are satisfied. Then the update
rules eqs. (7) to (9) ensure that fii,t(◊) æ 0 almost surely.

The above result states that with probability 1, a support agent will be able to rule out the false class ◊.
Intuitively, given the input data, agent is able to reject the classes that are the furthest away in the feature
space from the true class (the least likely to be a true class), even when the agent cannot distinguish the true
class using its local classifier.

With the rejection of local false beliefs, next, we show that the global belief on the true class ◊ú converges
to 1 almost surely. To analyze the global convergence, recall that we assume the network is connected to
simplify analysis. In general, we only require the source agents to have paths to other agents in the network.
Theorem 4.4. Suppose Assumptions 2.5 and 4.1 are satisfied. Then, the update rules in Algorithm 1 lead to
the learning of the true class for all agents, i.e., µi,t(◊ú) æ 1 almost surely for all i œ Va.

The previous result shows that the true class ◊ú will be identified by all agents in the network with probability
1. In the next theorem, we characterize the rate of rejection of any false class ◊ œ � \ {◊ú}.
Theorem 4.5. Suppose Assumptions 2.5 and 4.1 are satisfied. Then, for all i œ Va, for any false class
◊ œ � \ {◊ú}, the update rules in Algorithm 1 guarantee the rejection of ◊ with the rate:

lim inf
tæŒ

≠ log µi,t(◊)
t

Ø Rv◊ a.s., (11)

where Rv◊ , maxiœS(◊,◊ú)fiU◊ú (◊){Di(◊ú, ◊), max◊̂œ�i
D◊ú

i (◊̂, ◊)} is the best rejection rate of false class ◊ and
v◊ œ arg maxiœS(◊,◊ú)fiU◊ú (◊) Rv◊ .

8
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With probability 1, each agent will be able to reject any false class ◊ exponentially fast, with a rate that is
eventually lower-bounded by the best agent v◊ with the highest performance score Rv◊ , either the best source
agent i œ S(◊ú, ◊) and its discriminative score Di(◊ú, ◊) or the best support agent i œ U◊ú(◊) and its confusion
score max◊̂œ�i

D◊ú

i (◊̂, ◊) in the network. This lower bound is a strict improvement over Mitra et al. (2021),
as both source agents and support agents contribute to the prediction convergence. Additionally, as stated in
Mitra et al. (2021), the convergence rate is independent of network size and structure. In other words, the
long-term (asymptotic) learning rate is independent on how the information is distributed among the agents.

5 Experiment and Simulation

5.1 Demonstrative Example

In this subsection, we provide an example with three classes and two agents to demonstrate our algorithm.
The data distribution and agent classification boundaries can be found in Fig. 2.

Each agent i has a classifier producing probabilities. Agent 0 employs a one-class classifier, represented by
the circular decision boundary. If a data point x sampled from ◊0 is within the circle, agent 0 can correctly
classify it, i.e., p(◊0|x) = 0.8, and if x is sampled from any � \ {◊0}, p(◊0|x) = 0.2. Agent 1 can distinguish
classes 1 and 2 apart with its linear decision boundary. If a data point x is on the left of the decision boundary,
agent 1 identifies it as ◊1, i.e., p(◊1|x) = 0.8 and p(◊2|x) = 0.2. Conversely, if the data is on the right of the
decision boundary, agent 1 identifies it as ◊2, i.e., p(◊1|x) = 0.2 and p(◊2|x) = 0.8.

Despite agent 0’s inability to discriminate between classes 1 and 2, and agent 1’s lack of information on class
0, the global identifiability assumption is still met. For every pair of classes, there is an agent capable of
di�erentiating between them, i.e., S(◊0, ◊1) = {1}, S(◊0, ◊2) = {1}, and S(◊1, ◊2) = {2}.

With the classifier outlined above, each agent observes a data point drawn from ◊1 (denoted by stars) and
obtains posterior from its local classifier. The fictitious example is presented in Table 1. Using the posteriors,
each agent applies the proposed local update rule, and subsequently, updates the global belief.

As shown in Table 1, the proposed local and global updates are more e�ective in identifying the true class
with higher confidence. By rejecting false classes via the min operator, the proposed algorithm assigns the
highest score for the true class. In contrast, the commonly studied averaging method results in a lower belief
on the true class, while adopting the maximum leads to the agents’ inability to identify the true class.

Achieving the performance demonstrated is impossible with methods proposed by Mitra et al. (2021) and most
non-Bayesian social learning works. Prior works directly use outputs from sensors (see Fig. 1) with known
signal structures and are based on the critical assumption that the local signal structures (characterized by
likelihood functions) for all classes are known precisely. As depicted in Fig. 2, obtaining the likelihood functions
for all classes of each agent is infeasible with only observation data at deployment. Even extensive training
on the likelihood functions, such as Hare et al. (2021), requires knowledge of the family of distributions and
introduces additional uncertainties. On the other hand, our proposed method allows for e�cient classification,
even when agents are equipped with simple discriminative classifiers. This signifies a substantial improvement
in terms of practicality and e�ciency for a broader application in real-world scenarios.

5.2 Dataset and Agent Network

In this simulation, we use the widely recognized CIFAR-10 image dataset Krizhevsky et al. (2009), containing
10 distinct classes with a total of 50,000 training images and 10,000 testing images.

We use an Erdos-Renyi graph with an edge generation probability of 0.5 for the communication topology of 9
agents as shown in Fig. 3. Each agent has access to all the training data of 4 classes (5000 images per class),
as labeled, thus has capabilities of identifying the 4 classes, i.e., |�i| = 4. The subsets of identifiable classes
�i of each agent are selected such that the global identifiability condition is satisfied.

We train random forests as the classifiers for each agent. A random forest is an ensemble of decision trees
Breiman (2001), and we obtain the posterior probability by averaging the probabilistic prediction of all

9
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Figure 2: Demonstrative example with 3 classes and
2 agents.

◊0 ◊1 ◊2

Posterior agent 0 0.2
agent 1 0.8 0.2

Local belief agent 0 0.12 0.44 0.44
agent 1 0.44 0.44 0.12

Global belief
proposed 0.18 0.64 0.18
averaging 0.28 0.44 0.28
maximum 0.44 0.44 0.44

Table 1: Beliefs and comparisons of the demonstrative
example.

Figure 3: Agent communication topology and their distinguishable classes �i.

trees for each agent. In this demonstration, random forests are not the best classifier for the complex image
classification task; however, we use them as weak classifiers to demonstrate the capabilities of our algorithm.
For a centralized baseline, we train a random forest with 200 trees with all the training data (50,000 images)
from CIFAR-10. For the distributed scenario, we independently train a random forest with 50 trees for each
agent, using only the training data belonging to classes in �i.

Finally, to demonstrate the roles of source and support agents and the improvement in learning rate, we
select a subset of agents and provide neural-network-based classifiers with higher accuracy (than random
forest). We select MobileNet V3 Large Howard et al. (2019) for its relative light weight, good performance,
and its model architecture design for mobile classification tasks. For fair comparisons (with the random
forest set up), we tune MobileNets (weights pre-tained with ImageNet Howard et al. (2019)Russakovsky et al.
(2015)) with all available CIFAR-10 training data, depending on the agent and its classes �i.

5.2.1 Local Update

In this simulation, we demonstrate the performance of the local update rule. We consider a centralized baseline
random forest trained with data from all classes, i.e., |�i| = 10, as described in the previous subsection. The
class with the highest probability is the estimated true class. The trained model achieved a training accuracy
of 0.96 and a testing accuracy of 0.47. The confusion matrix of the model evaluated with testing data is
shown in Fig. 15 (in the Appendix).

We select class “cat” (label 3) as the true class ◊ú since it is the class with the lowest accuracy according
to the confusion matrix. We independently and identically sample 150 cat images from the false negative
(incorrectly classified as other classes) testing data and provide them sequentially to the classifier. The
number of misclassifications of these images is shown in Fig. 16 (in the Appendix). The classifier cannot
identify the true class ◊ú for any data point.

10
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Figure 4: Local averaging Figure 5: Proposed local update

Figure 6: Local beliefs of agent
1.

Figure 7: Local beliefs of agent
3.

Figure 8: Local beliefs of agent
5.

We then consider simple averaging, where we average across all the posterior probabilities from the classifiers
over all time steps. The results are shown in Fig. 4. However, the classifier cannot identify the correct class
by averaging the probabilities. In Fig. 5, the posterior probabilities were updated according to Equation 7
and Equation 9, assuming uniform prior distributions. The classifier can identify the correct class at 60 time
steps and the belief on the correct class fi(◊ú) converges to 1.

5.2.2 Distributed Setting

We now consider the distributed setting with 9 agents as in Fig. 3, each independently trained with their 4
classes of training data and equipped with a random forest of 50 trees. At each time step, each agent is given
an image that is identically and independently sampled from the testing data of class ◊ú (cat).

In Fig. 6, Fig. 7, and Fig. 8, we include the local beliefs of agents for their respective observable classes
�i. Each agent rejects all classes except one class that is the most likely to be the true class. However,
because of the partial information of each agent, they cannot identify the true class just yet: they rely on the
communication with neighbors to identify the true class.

In Fig. 9, Fig. 10, and Fig. 11, we include the beliefs of agents on the true (class 3) and false classes (selected
to be class 5 and class 0), respectively. We include the beliefs of agent 1, who is a source agent in S(3, 5),
and support agent 3, 5, 7. We observe that the beliefs on the true class converge to 1 and the beliefs on the
false class converge to 0 for all selected agents. Agent 1 was able to correctly identify the true class ◊ú using
its private and neighbors’ information. Agents 3, 5, and 7, who have no capability of distinguishing between
class 3 and class 5, were also able to identify the correct class by integrating neighbors’ information. Note
that the time steps scale of Fig. 11 is di�erent than previous two figures, due to the fast rejection of class 0,
thanks to support agent 3, who can reject class 0 e�ciently. Following the proposed update rules, all agents
were able to identify the correct class at about 10 time steps when µi(◊ú) > µi(◊), ’◊ œ � \ {◊ú}.

5.2.3 Improvements in Learning Rate

We further examined the performance of the proposed algorithm, when selected agents are given powerful
classifiers. More powerful classifiers will result in higher discriminative scores or higher confusion scores,
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Figure 9: Global beliefs on true
class 3.

Figure 10: Global beliefs on false
class 5.

Figure 11: Global beliefs on false
class 0.

Figure 12: Global beliefs on true
class with improved agent 7.

Figure 13: Global beliefs on true
class with improved agent 1.

Figure 14: Global beliefs on true
class with improved agent 1 and
agent 7.

depending on the specific agents. In this experiment, with the application of distributed sensor networks
in mind, we selected agent 1 and agent 7, and trained MobileNet V3 Large Howard et al. (2019) using all
the training data in their respective classes �i. In Fig. 12, we only give agent 7 a trained neural network.
However, the performance improvement is limited. This is due to the fact that agent 7 is not a source agent,
nor can it distinguish the most confused classes, 3 and 5. In Fig. 13, we only give agent 1 a trained neural
network. As shown in the figure, the performance of all selected agents are significantly improved, since agent
1 is a source agent i œ S(3, 5). Finally, in Fig. 14, we give agent 1 and agent 7 their respective trained neural
networks. This results in an overall better transient behavior and asymptotic convergence.

6 Conclusions and Future Work

We proposed a distributed algorithm to solve the classification problem with a network of partially informative
and heterogeneous agents. We based our algorithm on a simple recursive local update and a min-rule-based
global update. We provided theoretical guarantees of the convergence and demonstrated the performance
of our algorithm through simulation with image data and experimented with random forest classifiers and
MobileNet.

For future work, we are looking into improving the performance of the proposed algorithm through training
di�erent agents with data of di�erent feature spaces, such as images, sounds, temperatures, etc. We will also
explore the use of calibration techniques to improve the transient behaviors of the proposed algorithm.
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